
BIOMETRICS 56, 1047-1054 
December 2000 

Latent Variable Models for Longitudinal Data with 
Multiple Continuous Outcomes 

Jason Roy* and Xihong Lin 
Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. 

* email: jasonroy@umich.edu 

SUMMARY. Multiple outcomes are often used to properly characterize an effect of interest. This paper 
proposes a latent variable model for the situation where repeated measures over time are obtained on each 
outcome. These outcomes are assumed to measure an underlying quantity of main interest from different 
perspectives. We relate the observed outcomes using regression models to a latent variable, which is then 
modeled as a function of covariates by a separate regression model. Random effects are used to model the 
correlation due to repeated measures of the observed outcomes and the latent variable. An EM algorithm 
is developed to obtain maximum likelihood estimates of model parameters. Unit-specific predictions of the 
latent variables are also calculated. This method is illustrated using data from a national panel study on 
changes in methadone treatment practices. 
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1. Introduction 

Multiple outcomes are often used to properly characterize an 
effect of interest. Specifically, the outcome of main interest 
is often not observable or is difficult to measure. We instead 
observe several outcomes that, when taken together, charac- 
terize the endpoint of interest. For example, in teratology, 
measurements of multiple adverse effects are needed to iden- 
tify overall severity of birth defects (Sammel and Ryan, 1996), 
and in phase I1 clinical trials, multiple endpoints are neces- 
sary to capture treatment efficacy (Pocock, Geller, and Tsi- 
atis, 1987). Interest is often in studying the covariate effects 
on this unobserved endpoint of interest. 

The example that motivates this paper is a national panel 
study examining changes in methadone treatment practices 
(D'Aunno, Folz-Murphy, and Lin, 1999). Methadone treat- 
ment is important in reducing illicit drug use and preventing 
HIV transmission and is effective when certain critical treat- 
ment practices are followed. These treatment practices include 
providing adequately large dose levels and long enough treat- 
ment duration. For example, Ball and Ross (1991) found that, 
at a methadone dose level less than 71 mg/d, up to 44% of 
patients continued to use heroin. Strain (1999) recommended 
initial dose levels of at least 50 mg/d and dose levels up to 
100 mg/d for patients who do not respond to the lower dose 
range. It is therefore important that the maximum dose level 
that units are willing to provide reflect these recommenda- 
tions. Further, studies have shown that better client outcomes 
are associated with a longer time in treatment and a small 
percentage of clients receiving progressively smaller doses. In 
other words, the effectiveness of methadone treatment prac- 
tices is measured by several variables. 

Despite the evidence that certain critical treatment prac- 
tices must be followed in order for methadone treatment to be 
effective, several studies conducted in the 1980s showed that 
the majority of the U.S. methadone treatment units did not 
use effective treatment practices (Batten et al., 1992). In re- 
sponse to these studies, several national major initiatives were 
launched to improve treatment practices in the late 1980s and 
1990s. For example, the Center for Substance Abuse Treat- 
ment developed a set of methadone treatment guidelines for 
distribution to treatment providers across the nation. In view 
of these activities, a national panel study was funded by the 
National Institute of Drug Abuse (NIDA) in 1988 and was 
conducted at the Institute of Social Research at the Univer- 
sity of Michigan. The objectives of this study were (I) to in- 
vestigate the extent to which overall treatment practices have 
improved in the last decade, (2) to study what factors affect 
unit treatment practices, (3) to identify units with substan- 
dard treatment practices. 

This study sampled 172 methadone treatment units nation- 
wide in 1988. These units were surveyed again in 1990 and 
1995. Several measures reflecting the level of overall treat- 
ment practices were obtained at each wave. They included 
unit-average time in treatment, upper limit on doses, and the 
percentage of clients given decreasing doses. All of these out- 
comes are attempting to measure the same quantity, i.e., the 
effective treatment practices level, which is an overall measure 
of how well each unit is meeting desired standards at  a given 
time. Analysis of this data set is challenging due to the fact 
that the outcome of major interest, the effective treatment 
practices level, is not observable, although several surrogates 
are available, and that the multiple outcomes are measured 
repeatedly over time. 
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For cross-sectional data, several authors developed global 
tests for common dose effects on multiple outcomes (O’Brien, 
1984; Pocock et al., 1987). Legler, Lefiopoulou, and Ryan 
(1995) used the generalized estimating equation (GEE) meth- 
ods for analyzing multiple binary outcomes. Sammel and Ryan 
(1996) proposed a latent variable model for multiple continu- 
ous outcomes. 

For continuous longitudinal data, when only a single out- 
come is observed, linear mixed models are commonly used 
(Laird and Ware, 1982). However, limited work has been done 
on longitudinal data with multiple outcomes. Although sep- 
arate linear mixed models can be fitted for each outcome, 
this approach is limited by the fact that it fails to borrow 
strength across the outcome variables. By exploiting the cor- 
relation structure with a multivariate model, efficiency and 
power could be greatly increased (O’Brien, 1984). 

Shah, Laird, and Schoenfeld (1997) extended linear mixed 
models to allow for multiple outcomes in longitudinal data. 
They assumed covariates have different effects on different 
outcomes. Although this assumption is desirable in some ap- 
plications, it does not account for the feature that the multiple 
outcomes are attempting to  measure the same quantity in the 
applications we are interested in, such as the treatment prac- 
tices level in the methadone data example. In their model, 
covariate effects are tested using many degrees of freedom. 
Although one could assume a common covariate effect on all 
outcomes to address this question, this assumption is often 
not appropriate and is misleading. This is because different 
outcomes arc measured on different scales and different units. 
It is hence of substantial interest to develop a statistical model 
to account for this special feature of the data. 

Additional limitations of these two existing approaches are 
that (1) they do not address the question of main interest- 
the covariate effects on the outcome of main interest, e.g., 
the covariate effects on the overall effective treatment prac- 
tices level in the methadone example, and (2) they do not 
provide an estimate of the unit-specific outcome of main in- 
terest, eg. ,  the overall effective treatment practices level in 
the methadone example. These estimates are of particular in- 
terest in the methadone data example since the investiga- 
tor is interested in identifying units with substandard treat- 
ment practices. Efforts could then be focused on improving 
the treatment practices of these units. 

In this paper, we propose a latent variable model for mul- 
tiple outcomes measured repeatedly over time. We consider 
the situation where these outcomes measure an underlying 
variable of main interest from different perspectives. We re- 
late these observed outcomes using regression models to a 
latent variable. In particular, we view the observed outcomes 
as measures of the latent variable with error. A linear mixed 
model is then assumed to model covariate effects on the unob- 
served time-dependent latent variable. We allow the number 
and time of repeated measures to differ between units. This 
model provides estimates of overall covariate effects on the 
latent variable, which is the outcome of major interest, and 
borrows strength across outcomes while taking into account 
the correlation within each outcome over time and between 
outcomes on the same unit. This model also yields estimates 
of the unit-specific latent variables. An EM algorithm is de- 
veloped to calculate maximum likelihood estimates of model 

parameters. Estimates of the unit-specific latent variables are 
a by-product of the algorithm. We also show how to adapt this 
algorithm to the situation where a unit’s outcomes at a given 
time may not be fully observed. The method is illustrated 
using the methadone treatment practices data. 

2. The Latent Variable Linear Mixed Model 
Suppose that, for the ith of n units, we observe data at Ki 
time points. At the kth time point, t i k  ( k  = l , . .  . ,K i ) ,  we 
have J continuous outcomes x j k  ( j  = 1,. . . , J ) ,  which at- 
tempt to characterize a latent outcome of major interest, U i k ,  
e.g., the treatment practices level in the methadone example. 
One way to view this problem is that each of the observed 
outcomes Y i j k  measures the latent variable Uik with error. It. 
is likely that measurement error on each outcome from the 
same unit is correlated over time. For example, if the j t h  out- 
come for unit i measures the latent variable with a lot of error 
at time 1, it is likely that it also measures the latent variable 
with a lot of error at the time 2. We hence assume a linear 
mixed model to relate Y . j k  and U i k  to account for such a 
correlation. Specifically, we assume 

where Pj  = (&, is a vector of regression coefficients for 
the j t h  outcome, e i j k  is distributed as N(0, T:), and each bij 
is distributed as N(0, (3). The random intercept bij is used to 
model possibly correlated measurement errors of Y i j k  for uik 
over time. In other words, it models the within-subject corre- 
lation of the repeated measures x j k  if U i k  were observed. w e  
further assume the bi, ( j  = 1,. . . , J )  are independent. This 
model is similar to a factor analysis model (Bartholomew, 
1987) for each time point except here we allow an intercept 
term (&) and assume a single latent factor. 

Model (1) contains several implicit assumptions. First, by 
assuming the bij are independent, we are assuming condi- 
tional independence of the outcomes given the latent variable; 
i.e., at each time point, conditional on the latent variable Uik, 
the J outcomes Y i j k  (j = 1 , .  . . , J )  are independent. This as- 
sumption implies that cross-sectional correlation between the 
outcomes Y i j k  ( j  = 1,. . . , J )  is due entirely to the shared 
latent variable U i k .  In addition, model (1) assumes the rela- 
tionship between the latent variable and observed outcomes 
is constant over time. One way to check this assumption is 
to compare the factor loadings obtained from fitting a factor 
analysis model to the outcomes at each time point. 

We next assume a linear mixed model to study the effects 
of covariates on the latent variable U i k ,  

where Xik and a are p x 1 vectors of covariates and regression 
parameters, respectively, z i k  is a q x 1 design vector, ai is a 
q x 1 vector of random effects following N{O, D(@)}, D is a q x  q 
positive definite matrix characterized by a vector of variance 
components 0, and Eik is a normally distributed error term 
independent of ai. The random effects ai are used to model 
correlation of repeated measures of the latent variable Uik. For 
the sake of identifiability, we assume c i k  is N(0,l)  and X,k 
does not contain an intercept. This implies that we model a 
standardized latent variable. 

The features of this model can be illustrated using Figure 
1. Specifically, the dashed arrows indicate that, at each time 
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Figure 1. Illustration of the structure of the latent vari- 
able model. The j t h  random intercept bij is associated with 
the j t h  outcome vector Yij with variance parameter [ j .  The 
random effects ai are associated with the latent variables Ui 
with covariance parameters 8. The association between co- 
variates Xik and latent variable Uik is characterized by a. 
The parameters P characterize the association between Uik 
and outcomes Y i l k ,  . . . , Yi J k .  

point, the covariates X,k affect the latent variable Uzk,  which 
then affects the J observed outcomes X,k, and that cross- 
sectional correlation of the J outcomes (&, . . . , X J ~ )  is due 
to the shared latent variable U,k. The solid arrows show how 
longitudinal correlation of repeated measures of the observed 
outcomes and the latent variables is modeled. Specifically, 
conditional on the latent variable U, = ( U , ] , .  . . , U , K , ) ~ ,  lon- 
gitudinal correlation of repeated measures of the j t h  outcome 
Y,, = (yZ,i , .  . . , X , K , ) ~  due to measurement error is mod- 
eled by the random effect b,, . Longitudinal correlation of re- 
peated measures of the latent variables U, is modeled by the 
shared random effects a,. 

Models (1) and (2) can be succinctly written using matrix 
notation. Let Y, = (Y:, . . . Y s ) T ,  with e,, X,, and Z, de- 
fined similarly. Let PO = (,&I, . . . , J ) ~  and Pi be defined 
similarly. Models (1 and (2) become 

where @ denotes the Kronecker product, bi = (&I , .  . . , b, j )T  
follows N(0, R(6)) with R(6) = diag(E1,. . . , E J ) .  

Equations (3) and (4) can be thought of as the first and 
second stages of the model, respectively. It follows that the 
marginal distribution of Y, is multivariate normal with mean 
and covariance 

E(Y,) = pi = I K ,  @Po 4- Xia @ Pi ( 5 )  

(6) 
2 2 + diag (71 IK,, . . . , TJIK,) . 

The first term in cov(Y,) comes from the covariance of the 
latent variable vector U,, the second term comes from the 
covariance of the stage-1 random intercept vector b,, and the 
last term is from the covariance of the stage-1 random error 
vector e,. Hence, marginal correlation of the outcome vector 
Y, is modeled by cross-sectional correlation due to the shared 
latent variable U, and by longitudinal correlation due to the 
random effects b, and a,. 

Notice that the regression coefficient vector 01 enters into 
both the marginal mean and the marginal covariance of Y,. 
Direct calculations of the maximum likelihood estimator are 
hence difficult. An EM algorithm is developed in the next 
section. 

It is often of substantial interest to estimate the unit-specific 
latent variables U,. For example, in the methadone example, 
the latent variables U, represent the unit-specific treatment 
practices score at the three waves and can be used to identify 
which units use substandard treatment practices and need to 
improve. Since (Y,, U,) are jointly normally distributed, we 
can easily estimate the latent variables U, using the posterior 
means, 

E(U, I YE) = + C v , l ( Y z  - P,) ,  (7 )  

where A, = (IK, + Z,DZT) 18 PI.  Its covariance is 

Both E(Ui I Yi) and cov(Ui I Yi) can be easily calculated 
as a by-product of the EM algorithm derived in Section 3. 

3. Estimation Using the EM Algorithm 
We discuss in this section calculations of maximum likelihood 
estimates of the model parameters using the EM algorithm 
(Dempster, Laird, and Rubin, 1977). As discussed before, 
maximizing the actual log likelihood directly would be dif- 
ficult since 01 enters into both the marginal mean and co- 
variance of Yi. An advantage of using the EM algorithm for 
estimation in the latent variable linear mixed models (3) and 
(4) is that it takes advantage of the conditional independence 
of Yi given Ui and bi. 

We treat in the EM algorithm the latent variables Ui and 
the random effects (at, bi) as missing data. Hence, the com- 
plete data are (Yi, Xi, Zi ,  Ui, ai, bi) and the observed data 
are (Yi, X,, Zi).  It follows that the complete-data log likeli- 
hood is, apart from a constant, 

e(Po,P', a, T 2 ,  81 E )  
n 

= C { e ( y i  I Ui,bi;P,T)-te(uz ~ a i ; a )  
i= 1 

+ [(a*; 0) + W ;  E ) ) ,  (9) 
2 2  where T = ( T ~ ,  . . . ,T:) and 
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1 
!(Ui I a i ; a )  = --(U. 2 ,  

x (Ua - 
1 
2 
1 
2 

C(ai; 8) = -- log 

C(bi; () = -- log 

T - Xia - Ziai) 

X i a  - Ziai) 
1 

D(0) 1 --+TD-'ai 
2 
1 

R(C) I --bTR-lbi. 
2 

The EM algorithm proceeds by first assuming initial esti- 
mates of the parameters, then iterating between an Estep 
and an M-step. The E-step takes expectations of the suffi- 
cient statistics of the complete-data log likelihood, given the 
observed data. The M-step maximizes the expected complete- 
data log likelihood conditional on the other parameters being 
fixed at their current values. 

E-step. The E-step consists of the following steps: 

(1) Calculate the conditional expectations for the suffi- I 

cient statistics involving the latent _variable Ui as Ui = 
E(Ui I Yi) and E(UTU2 I Yi) = UTUi + tr{cov(Ui 1 
Yi)}, where the expressions of E(Ui 1 Yi) and cov(Ui 1 
Yi) are given in (7) and (8). 

(2) Calculate the conditional expectations of the sufficient 
statistics involving the stage-2 random effects ai as 
ai = E(ai I Yi) = (ZiD 8 P I ) ~ V ; ' ( Y ~  - pi )  and 
E(aiaT I Yi) = + D - (ZiD c3 /31)TV;'(ZiD c3 

(3) Calculate the conditional expectations of the sufficient 
statistics involving the stage-1 random effects bi as 
b i  = E(bi I Y , )  = (ljyi C3 R)TV;l(Yi - pi )  and 
E(bibT 1 Yi) = b , b ' i r + R - ( 1 ~ , ~ ' R ) ~ V i ' ( l ~ , ~ R ) .  

(4) Calculate the conditional expectation of (Uib' I Yi). 
Since (Yi, Ui, b,) are multivariate normal, we find that 
cov(Ui, bi I Yi) = -ATV;'(lK% 8 R). 

01). 

M-step. We maximize the expected complete-data log like- 
lihood for the parameters (P, a,  8, (, 7') at the M-step, which 
consists of the following steps (derived in the Appendix): 

(1) Let Pj  = ( P r ~ j , P l j ) ~  and Ui, = ( l ~ , , U i ) .  Then the 
estimate of pj ( j  = 1,. . . , J )  is updated by 

whose detailed expression is given in Appendix A. 
(2) The estimates of the rj are updated by 

X ( y i j  - u i * P j  - bijlK,) yi}, 

whose detailed expression is given in Appendix A. 
(3) The estimate of i$ is updated by [ j  = (l/n) C?==, E(b:j I 

Yi) for j = 1,. . . , J ,  where E(b:j 1 Yi) is the j t h  
diagonal element of the matrix E(bibT I Yi). 

(4) The estimate of a is updated by & = (C?==, XTXi)-l 

( 5 )  If D(8) is an arbitrary covariance matrix, then it can 
simply be estimated by D = (l /n) E(aiaT I Yi). 
Otherwise, 0 can be estimated iteratively using the 
Fisher scoring algorithm (see Appendix A). 

xc;=l XT(U2 - ziai). 

Maximum likelihood estimates are obtained by iterating 
between the outlined E- and M-steps until convergence. The 
covariance matrix of the parameter estimates is obtained by 
directly calculating the inverse of the Fisher information ma- 
trix using the marginal log likelihood of Yi at convergence 
(see Appendix B). The estimates E(Ui 1 Yi) calculated from 
the E-step at convergence are used to estimate the unit-speci- 
fic treatment practices scores in the methadone data example. 

So far, we have assumed that all J outcomes are observed 
at each of the Ki times for every unit i. However, it is not 
uncommon in practice to have some outcomes missing at a 
given time. We will now show how the above algorithm can 
easily be adapted to the situation where not all of the out- 
comes are observed for some units at any given time. We here 
assume missing outcomes are missing at random (Little and 
Rubin, 1987). 

For unit i, suppose we have Kij 5 Ki repeated measures on 
the j t h  outcome. Let Tij be an index matrix to indicate the 
time points when the j t h  outcome is observed. Specifically, 
Tij is a Kij x Ki matrix constructed by deleting rows of I K ~  
that correspond to missing observations on the j th  outcome. 
For example, if unit i is only missing the second repeated 
measure on the j t h  outcome, then Tij is the same as I K ,  but 
with the second row removed. We then can write the observed 
values Y:' as Y:j = TijYij. Let Ti = diag(Ti1,. , . , T ~ J ) ,  
thenY;=(Y:F, . . . ,  Y i J )  oT T - - T.Y.  z .  

The E-step is the same as before except that one replaces 
( y i , p i , A i , v i , l K t  C3 R , Z i D  8 P )  by {Y:, TiPir Tihi, 
TiViT', T i ( l ~ ~  BR), Ti(ZiDC3P)). All expectations in the 
M-step are taken conditional on the observed data Y:, and 
estimates of Pj  and ~j in the first two steps of the M-step 
need to be modified as 

n r  

R 
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Table 1 
Summary statistics of the three outcome variables by year for the methadone data 

1988 1990 1995 

Outcome Mean SD Mean SD Mean SD 

Upper limit dose 77.95 21.97 81.90 20.57 93.00 25.19 
Time in treatment (months) 20.74 9.30 19.19 10.09 21.49 9.64 
Percent decreasing dose 33.68 29.26 30.41 29.91 21.91 20.17 

4. Application to the Methadone Treatment 

We applied our method to the methadone treatment prac- 
tices data described in the Introduction. The data come from 
a U.S. national panel study of the nation’s methadone mainte- 
nance units (D’Aunno et al., 1999). The first wave data were 
collected in 1988 by selecting a random sample of 172 units 
nationwide. Unit directors and clinical supervisors of these 
participating units were surveyed with regard to a variety of 
client and unit characteristics. These units were contacted 
again in 1990 and 1995, and 140 units and 116 units partic- 
ipated, respectively. We assume in our analysis that missing 
data are missing at random (Little and Rubin, 1987). For 
more on this assumption, see the Discussion. 

The interest of the study is in determining (1) how well 
the treatment practices of methadone maintenance units are 
meeting desired standards, (2) how the treatment practices 
have changed over time, (3) what covariates are predictive of 
effective practices, and (4) which units use ineffective treat- 
ment practices. 

Several outcome variables, including maximum dose level 
(Yl) ,  unit-average length of treatment (Yz), and percent of 
clients receiving decreasing doses (Ys), were collected at each 
wave. These variables have all been shown to be important 
in evaluating the treatment practices of methadone mainte- 
nance units. Specifically, maximum dose levels of less than 80 
mg per day (mg/d), a large percentage of clients given pro- 
gressively smaller doses, and treatment lengths of less than 
several months are all considered ineffective treatment prac- 
tices. Table 1 gives the summary statistics of these treatment 
practices measures. It suggests that the treatment practices 

Practices Data 
improved slightly from 1988 to 1990 and improved substan- 
tially in 1995, especially when measured by maximum dose 
level and percent of clients receiving decreasing doses. 

A log transformation was performed on the maximum dose 
and percent decreasing dose variables to make the normality 
assumption more plausible. The covariates found to be most 
important and therefore used in our final model were unit 
average age of clients (years), percentage of black clients, per- 
centage of staff that are ex-addicts, whether unit is private- 
for-profit (yes/no), region (midwest, southwest, or northeast), 
and year (1988, 1990, 1995). Dummy variables were created 
for the region and year variables by using northeast and 1988 
as the references, respectively. 

We first conducted a preliminary analysis of the data by 
using the standard approach of modeling each outcome sep- 
arately. We fit a random intercept model for each outcome 
using SAS PROC MIXED. The results are given in Table 2. 
Both maximum dose level and the percentage of clients receiv- 
ing progressively smaller doses improved significantly in 1995 
compared with 1988. Units with a larger percentage of black 
clients were associated with smaller upper limit dose levels, 
shorter treatment duration, and a larger percentage of clients 
receiving decreasing doses. A larger percentage of clients re- 
ceiving decreasing doses was associated with a lower average 
age of clients and midwest units. Southwest units tended to 
have a smaller upper dose limit. Other variables were not sig- 
nificantly associated with any of the outcomes. 

As discussed previously, conducting separate analyses for 
each outcome does not account for the fact that these out- 
comes are measuring the same underlying quantity, i.e., over- 
all effective treatment practices level. In addition, it does not 

Table 2 
Parameter estimates from fitting a random intercept model to each outcome separatelya 

Covariate 

Intercept 
Percent black 

Staff ex-addicts 
Private-for-profit 
Midwest 
Southwest 
1990 
1995 
Random intercept 

Age 

Log(uPPer 

-0.002 (0.001) 

limit dose) 

4.42 (0.10) 

0.002 (0.003) 
-0.31 (0.13) 
-0.05 (0.08) 
-0.10 (0.06) 
-0.09 (0.04) 

0.05 (0.03) 
0.16 (0.03) 
0.03 (0.007) 

Time in 
treatment 

17.49 (3.67) 

0.18 (0.11) 
-0.05 (0.03) 

-3.81 (4.61) 
-3.48 (2.41) 
-0.46 (1.87) 
-0.23 (1.32) 
-1.75 (1.02) 

1.09 (1.21) 
22.93 (6.83) 

Log(percent 
decreasing dose) 

3.63 (0.47) 
0.007 (0.003) 

0.50 (0.58) 
0.37 (0.30) 
0.58 (0.24) 
0.18 (0.17) 

-0.03 (0.01) 

-0.19 (0.13) 
-0.35 (0.15) 

0.36 (0.11) 

a The numbers in parentheses are standard errors. 
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Table 3 
Stage-1 parameter estimates and their estimaled standard errors 

Outcome b o j  P l j  7; E3 

Log(upper limit dose) 4.31(0.08) 0.06 (0.03) 0.04 (0.01) 0.02 (0.01) 
Time in treatment 19.40 (1.64) 1.13 (0.56) 73.07 (7.47) 11.60 (6.33) 
Log(percent decreasing dose) 3.10 (0.31) -0.22 (0.10) 0.88 (0.10) 0.24 (0.11) 

produce estimates of the covariate effects on the overall effec- 
tive treatment practices level. We therefore applied the latent 
variable model to the methadone data. We first assumed at 
stage 1 of the model that the three outcomes are measuring 
the latent effective treatment practices score ( U )  with error. 
At stage 2 of the model, we were interested in how the covari- 
ates (X) (described above) were associated with the latent 
treatment practices score ( U ) .  There we assumed a random 
intercept model, i.e., Zi = 1 in equation (4). A SAS program 
written in IML was used to implement the EM algorithm and 
calculate the standard errors. 

Table 3 shows the stage-1 parameter estimates. Our analy- 
sis showed that the outcomes time in treatment and maximum 
dose level were positively associated with the latent effective 
practices score, while the percentage of clients receiving de- 
creasing dose was negatively associated with this latent vari- 
able. These findings agree with previous research (D'Aunno 
et al., 1999). 

Table 4 gives the estimates of the stage-2 parameters in 
the linear mixed model (4) for the latent variable U,. The 
results show that treatment practices did not change signif- 
icantly from 1988 to 1990 (p-value = 0.22) but significantly 
improved in 1995 (pvalue = 0.046). Units having more black 
clients used less effective treatment practices, while units hav- 
ing older clients had better practices. Northeast units had 
better practices compared to midwest and southwest units. 
Having a higher percentage of staff ex-addicts was associated 
with less effective treatment practices. These covariate effects 
were, however, either marginally significant or nonsignificant. 
We also examined interactions between the covariates and the 
time dummy variables, and none of the interaction terms were 
significant. 

It is of substantial interest to identify units whose treat- 
ment practices effectiveness are well below those of a typical 
unit. Hence, efforts to improve treatment practices could fo- 

Table 4 
Stage-2 parameter estimates and 
their estimated standard errors 

Parameter Estimate 5% P-value 

a1 (percent black) -0.03 0.02 0.065 

0 3  (staff ex-addicts) -4.07 2.52 0.107 
a4 (private-for-profit) -1.21 1.09 0.265 

a g  (southwest) -1.31 0.80 0.103 
cY7 (1990) 0.53 0.42 0.217 
0 8  (1995) 2.03 1.01 0.046 
B 3.77 4.01 

a 2  (age) 0.09 0.05 0.112 

a5 (midwest) -2.09 1.22 0.088 

cus on these units. A feature of our analysis is that estimates 
of the latent effective practices score via the posterior mean 
in equation (7) can be used to identify these units. Figure 2 
shows the estimated latent variable over time for each unit. 
The plot is sorted by ordering the units according to average 
(over time) of estimated latent scores, so units with the lowest 
average estimated treatment practices scores over three waves 
are on the left side of the graph. We included vertical lines 
at the 2.5 and 97.5 percentiles so that units with treatment 
practices well below or above average can easily be identified. 
These units are indicated in the description of Figure 2. 

5. Discussion 
We have proposed in this paper a latent variable model for the 
situation where several outcomes are measured over time and 
are all attempting to measure the same unobservable quantity 
We assume that these multiple outcomes are related to a la- 
tent variable, and we model the covariates effects on the latent 
variable using a random effects model. An EM algorithm was 
developed to estimate the model parameters. Unit-specific la- 

0 1990 

", 
¶ *  

x ^^ 

1 50 100 150 

Unit Sequence Number 

Figure 2. Estimated effective practices scores over time 
plotted for each unit. The horizontal axis gives the unit se- 
quence number resulting from ordering the units according 
to average (over time) of estimated latent scores. Units with 
the least effective practices are on the left-hand side of the 
plot. The dashed vertical lines indicate the 2.5 and 97.5 per- 
centiles; i.e., units whose treatment practices can be viewed 
as substandard (units that have an average estimated latent 
variable less than 97% of the units in this study) appear to 
the left of the first vertical line (units with ID = 30020, 67, 
30462, 30270, and 46). Units to the right of the second vertical 
line can be viewed as using more effective treatment practices 
(units with ID = 30440, 30218, 30386, 30094, and 30054). 
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tent variables were obtained as a byproduct of the algorithm. 
The proposed EM algorithm is easy to implement; however, it 
could converge slowly. It is worth further research to develop 
a more efficient algorithm to fit such models. 

Our model provides a straightforward way to estimate and 
test for the global covariate effects since the parameters a 
have global interpretations, e.g., they represent the effects of 
the covariates on the overall effective treatment practices level 
in the methadone data. Global testing has been shown to be 
more efficient when analyzing cross-sectional data with mul- 
tiple outcomes (O’Brien, 1984; Legler et al., 1995). Analo- 
gous results would hold for longitudinal data with multiple 
outcomes. This is because global testing borrows information 
across multiple outcomes by modeling their correlation; it ex- 
ploits the nature of the data-that multiple outcomes tend 
to measure the same underlying quantity. Hence, greater ef- 
ficiency could be gained when the covariates are modeled for 
their overall effects by using many fewer parameters. A chal- 
lenge in performing global testing for continuous outcomes 
is that the outcomes are often measured at different scales 
and units. Our latent variable model provides a framework 
for addressing this issue and performing global testing. 

Our method assumes that missing data are missing at ran- 
dom. For the methadone data, missing data take two forms, 
i.e., intermittent missing outcomes and missing values due to 
unit dropout. There are very few intermittent missing val- 
ues in this study and therefore possible nonignorability would 
likely not have much of an effect on inferences. However, 33% 
of the units dropped out of the study before study completion. 
The missing-at-random assumption implies that the probabil- 
ity the units dropped out at the current wave depends on the 
treatment practices outcomes at the previous wave but not on 
the current unobserved outcomes. An analysis examining the 
possibility of data being not missing at random is reported 
elsewhere (Roy and Lin, 1999). 

We consider in this paper the situation where the multiple 
outcomes are continuous. In some situations, however, both 
continuous and discrete endpoints may be necessary to fully 
characterize the latent outcome. Therefore, an area in need 
of further research is the extension of this model t o  allow for 
several continuous and discrete outcomes. 
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RESUME 
Des rkponse multiples sont souvent utiliskes pour caractkriser 
proprement un effet d’intkr6t. Ce papier propose un modkle 
B variable latente pour les situations ou des mesures rkpktkes 
dans le temps pour chaque rkponse. Ces rkponses sont con- 
sidkrkes comme mesurant une quantitk sous-jacente d’intkrbt 
principal sous diffkrentes perspectives. Nous associons les rk- 
ponses observkes en utilisant des modBles de regression B la 
variable latente, qui est elle modkliske comme une fonction 
des covariables par un modkle de rkgression skpark. Des ef- 
fets alkatoires sont utilisks pour modkliser la corrklation en- 

par la variable latente. Un algorithme EM est dkveloppk pour 
obtenir les estimations du maximum de vraisemblance des 
paramktres du modkle. Les prkdictions spkcifiques aux unitks 
de la variable latente sont aussi calculkes. Cette mkthode est 
illustrke en utilisant des donnkes d’une ktude sur un panel na- 
tional au sujet des changements dans les pratiques du traite- 
ment par mkthadone. 
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APPENDIX A 

Detailed Calculations in the M-Step of the  E M  Algorithm 

Differentiating the complete-data log likelihood (9) with re- 
spect to Pj gives 

It follows that 6 = (C&, X?Xi)-' C;==, XT(Ui - Ziai). 
Finally, if D is arbitrary, D has the closed form given in 

the paper. Otherwise, we can use Fisher scoring to solve the 
following equations for 8:  

n ae 
aaj - = cuz(Yij - uj,*pj - b i j l K t ) .  

Setting it to zero and taking an expectation conditional on 
the observed data gives 

+ f e t r  [. (aia? 1 Yi)  D - l a ~ D - 1  80, 1 . i=l 

i=l 

The Fisher scoring algorithm updates 8 using One, = @,,Id + 
Iiiae/aO loold, where ice has its ( j ,  k)th component equal to 

E -___ =-ti- D- -D- - . ( a c i e k )  ( ';: I:;) 

1 -l bj = XE (UzUi, I Yi) " i=l 
n 

x C E  [UE(Yij - b i j l ~ , )  I Yi] 
i= 1 

Maximizing (9) with respect to E is equivalent to maximizing 

2=1 ,=1 

with respect to 
1 , .  . . ,  J ,  tj = ( l / n )  Cr=i E(b:j 1 Yz>. 

for each j .  Therefore, we have, for I )  = 

The partial derivative with respect to T: is 

Differentiating (9) with respect to a gives 

APPENDIX B 

Calculatzons of the Informatzon Matrtx 

The information matrix is obtained by differentiating twice 
the marginal multivariate normal log likelihood with mean 
and covariance given in equations (5) and (6) and taking an 
expectation of the resulting form. Let G, = 1~~ @I I J ,  H, = 
X, @ P I ,  and M, = X,a @ I J .  The expected information 
matrix for the MLE of y = ( P o ,  01, a) is 

where A has its (3 ,  k)th component (1 /2 )  tr[V;l(8V2/ap1,) x 

v;l (avz/wlk)l. 
Let 6 = ( T ~ ,  OT, ET)*, then 

Here Aj is a J x 1 vector with the j t h  element equal to one 
and is zero otherwise. 

i=l 




