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A method for obtaining accurate, quantitative 57Fe Mossbauer spectra from biological samples 
is illustrated stepwise in a data reduction procedure. Exact criteria are presented for deciding when 
it is necessary to account for the effects of the Beer-Lambert law in the Mossbauer spectra from 
biological samples. This procedure makes extensive use of the fast Fourier transform and other 
computer techniques in its data reduction and its curve-fitting stages. A method for optimizing 
sample thickness is presented. The choice of truncation in Fourier space as a means to numerically 
stabilize the deconvolution procedure is defended. Several advantages for curve fitting in Fourier 
space are shown. Maximization of information content is discussed for Mossbauer spectral simu- 
lation techniques. 

For over 15 years, this laboratory has published 
Mossbauer spectra from iron-containing proteins and other 
biological samples using a unique method of data acquisition 
and reduction [l -41. During the course of these studies, this 
method has not been described in detail (except in theses) nor 
has the motivation for its use been presented. The following 
description is an attempt to correct these shortcomings. 

The source lineshape convolution 
underlying Mossbauer spectra 

In Fig. 1, the fundamental parts of a Mossbauer spec- 
trometer are illustrated in a cartoon. The radioactive source 
(57C0 in a rhodium matrix) decays via electron capture [5] to 
emit gamma rays (principally at 122 and 14 keV energies) 
and X-rays (at 20 keV and 6 keV energies). This emitted 
beam (Zo) is collimated, passes through the sample and is 
counted as single photons by an argon gas proportional coun- 
ter. The energy of the source radiation is modulated via the 
relativistic Doppler shift [6] to yield a count rate that varies 
with source velocity, Z(u). The entire process, including the 
nuclear resonance fluorescence (Mossbauer effect) and the 
non-resonant events, has been described by the following ex- 
pression 12, 71: m 

Z(u) = Z"(l-f,)+Za+Zb+Zc+f,I" J S(v-E) 
-m 

. exp[ - a(E)facEl?/lOOO]dE (1) 
where Z(u)  and lo are the detected 14 keV count rates (cor- 
rected for pileup and solid angle effects) in the presence and 
absence of a sample, respectively. and fa are the Debye- 
Waller factors for the source and absorber, S ( u - E )  is the 
source lineshape, a(E) is the Mossbauer effect cross-section 
for the absorber, c is the absorber molarity, 4 is the sample 
thickness and 2 is Avogadro's number. Z, is the non-resonant 
14 keV background count rate and will be assumed here to 
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Fig. 1. The layout of a basic Mossbauer spectrometer. 

arise entirely from 122 keV gamma rays and will be given 
the value measured by our argon counter within a month of 
the source manufacture date. Zb is the background rate due to 
the source but not attenuable by the sample. Z, is the cosmic 
background rate. The details of the measurements of these 
various functions and parameters is given elsewhere [4]. 
Typical values for a new source (35 mCi 5 7 C ~  on 6 pm Rh 
foil) are: Zo = 20500, Z, = 750, I,, = 26 and Z, = 4 countds. 

It is common practice to present Mossbauer data as a plot 
of transmission (%), 100 Z(v)/Z(-m), as a function of source 
velocity. In 1971, Ure and Flinn [7] made a major contri- 
bution to this spectroscopic field by demonstrating a method 
to obtain the cross-section, a(u), from the data by a process 
of Fourier deconvolution, followed by taking the logarithm 
of the data as is usually the case in optical spectroscopy to 
account for the Beer-Lambert law. Their method was later 
modified [ 3 ]  by a change to the apodization procedure and a 
detailed explanation of the laboratory and computer methods 
used to implement their Fourier deconvolution procedure. 
However, from a previous paper by Blume and Kistner [8], 
one can show that Eqn (1) is erroneous for the cases where 
magnetic splittings (nuclear Zeeman, and magnetic hyperfine 
interactions [9] are part of the Hamiltonian for the absorbing 
57Fe nucleus. These innovations were integrated into a data 
reduction procedure by Filter et al. [ 3 ,  41. The purpose of 
this paper is to demonstrate the advantages of this procedure 
over that in common practice for biological samples. 
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Optimum sample thickness 

Because inelastic cross-sections for the relevant photon 
energies are proportional to 2’ (Segre, see [lo]), one can 
often model a biological sample as having the iron nuclei 
suspended in water when substituting values into Eqn (1). It 
is obviously important that high-2 elements, such as C1, be 
controlled for this model to be valid, but for many samples 
with organic buffering agents the approximation is sufficient 
for our argument. 

In the presence of magnetic splittings, circular polariz- 
ation of the gamma-ray beam requires that Eqn (1) be revised 
to account for the density matrix for the impinging photons 
[8]. The effects of polarization are very complicated [41, but 
the underlying principle can be simply demonstrated by 
answering the question: How much of I ,  can be removed 
by an absorption process that requires a photon that is right 
circularly polarized? The answer is ‘one-half’ at a maximum 
because normally the source radiation is not circularly polar- 
ized; it is composed of half right- and half left-circularly 
polarized light. Because the absorption process requires 
right-circularly polarized light, it cannot affect photons with 
the ‘wrong’ polarization. As mentioned above, this effect re- 
quires that Eqn (1) be rewritten to account for circular polar- 
ization of Z,,. In the following argument, we will assume that 
a(v) contains only a quadrupole pair describing each particu- 
lar iron environment. Under this assumption, Eqn (1) is valid 
because there is no polarization in the absorption lines from 
a randomly oriented sample where its a(v) is the sum of 
quadrupole pairs [4]. In the laboratory, this assumption is 
equivalent to taking the spectrum at zero applied magnetic 
field and at a high temperature so that the high internal mag- 
netic field of the iron atom is averaged to zero (for paramag- 
netic samples). 

With this understanding, we can substitute numbers into 
Eqn (1) that model a protein sample as an iron atom dis- 
solved in water. For an absorption displaying the smallest 
possible linewidth (calculated from the nuclear lifetime and 
decay branching ratios as full width at half maximum 
[FWHM] = 0.0975 m d s ) ,  the absorption maximum is given 
by the expression for resonance fluorescence [6] : 

a,,,- = a, = 2.566 X lo-’* cm2. (2) 

The Mossbauer spectra of many biological samples are quad- 
rupole pairs with linewidths ~ 0 . 1 6  mmh (FWHM). fa is as- 
sumed to be 0.8. With these assumptions, 

IQ 
P + v 2  cm-’ (3) ~ c . e ~ ~ ( u ) ~ i o o o  = 386 e ~ 

for one of the two- lines. Using mass attenuation coefficients 
for water that are available in the literature [ l l ] ,  we can re- 
write Eqn (1) to model our spectrometer’s count rate when 
running a biological sample at maximum resonance as : 

I(0) = 20500e-20t (l-f,)+f, S ( - E )  { -: 
. exp[ -386~4 L]dE} + 750e-’164 +30. (4) 

If x = 0.05, then e-x = 0.951. Thus, the approximation that 
e-x= 1 --x is certainly valid for the cases when the argument 
of the exponential is less than 0.05. In these situations the 
convolution performed by the integration can be approxi- 
mated by a doubling of the linewidth. Accordingly, the depth 
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Fig. 2. The signaynoise ratio of a 10 pM, single-iron environment 
(quadrupole pair) after a 28-h collection time as a function of 
sample thickness. The open beam 14.4 keV rate is 20500 counts/s; 
the rate due to 122-keV gamma rays is 750 counts/s and the back- 
ground rate is 30 countds. The non-resonant absorption is modeled 
as that of water. 

of resonance is divided by a factor of two, leading to the 
approximation : 
I(0) = 20500e-20e ((1-f,)+f,(l-193c~)}+750e-016e +30. 

( 5 )  
The number of counts represented by the resonance is [I(m)- 
Z(O)]t ,  where t is the duration time (s) of the experiment. 
Because radioactive decay is described by Poisson statistics 
(see [12]), the ’noise’ in the experiment can be approximated 
as the square root of I(m)t. Thus, a trivial definition of the 
signalhoise ratio (SIN) is : 

SIN = [I( m) - Z( O)] tI[Z( m)t] ’”. (6) 
Arbitrarily, we let c = (10 pM) and t = lo5 (28 h). We 
can then graph Eqn (6) as a function of 4 (Fig. 2). This graph 
shows that sample thicknesses between 0.3 -2 cm give 
reasonable signallnoise ratios with the maximum occurring 
around 0.9 cm. With the above assumptions, the graph is only 
rigorously valid for weak absorbers (ce< 1.3 X how- 
ever, if the absorber is strong, one is usually less concerned 
about optimizing signalhoise ratios. 

Thus, there is a large latitude allowed for choice of 
sample size. The optimization of signallnoise may not co- 
incide with the point of view of the biochemist whose task 
it is to supply the sample. Our spectrometer has a cylindrical 
sample volume of 200 p1 with a 0.69-cm diameter; therefore 
the sample thickness is 0.54 cm. 

When is it necessary to account 
for the Beer-Lambert law ? 

From Eqn (4) one can see that the response of the spec- 
trometer will become non-linear with respect to concen- 
tration when the argument of the exponential in the trans- 
mission integral [7] becomes too large. We showed that this 
error is approximately 0.001 if the exponential argument is 
0.05. This kind of error is negligible unless the number of 
counts in the resonant peak of the data is greater than a 
million. (From Poisson statistics, we know that the noise is 
equal to the square root of the counts.) In most biological 
experiments, there are other unknowns (concentration and 
sample volume and geometry) that lessen the utility of such 
an accurate quantitation even if it were accessible. Further- 
more, the difficulties in obtaining absolute quantitations are 



usually seen as beside the point because: (a) in most labora- 
tories, quantitation is achieved by running standards, and (b) 
most biochemists are chiefly interested in relative intensities 
when using Mossbauer spectroscopy. 

In the following treatment, the effect of the Beer-Lambert 
law (Eqn 4) on relative intensity measurements will be em- 
phasized. The arguments will be appropriate to the case 
where two lines are compared in one spectrum or in two 
different spectra, as in a quantitative calibration experiment. 
To make the example concrete, assume that the sample thick- 
ness is 1 cm (from the maximum in Fig. 2) and that the pro- 
tein concentration is 100 pM, where there is one iron atom 
in one environment and three iron atoms in another environ- 
ment. This example is also appropriate to comparing data 
from a single-iron 100 pM protein to that of a single-iron 
300 pM protein. 

Substituting into Eqn (4), the exponential argument at 
resonance (v = 0) is 0.03088 €or the one-iron environment 
and 0.09264 for the three-iron environment. The error due to 
ignoring the Beer-Lambert law is 1.5% and 4.5%, respec- 
tively. The intensity ratio is 1 : 2.909 for an error of 3 %. In 
this example, it was assumed that the protein molecule has 
four iron atoms; a 3% error does not lead to an incorrect 
determination of the quantity of iron in the protein, for ex- 
ample. Furthermore, most laboratories use absorption areas 
instead of peak intensities, so that the error initially appears 
to be negligible in this situation. 

Suppose, however, that the protein molecule (100 pM) 
contains 16 iron atoms so that the above exponential argu- 
ments are multiplied by four relative to the preceding para- 
graph. In this case the intensity errors are 5.9% and 16.4% 
for the two lines; the intensity ratio is 1: 2.665 for an error 
of 11.2% or 1.8 of the 16 irons in the protein. Ignoring the 
Beer-Lambert law is a disaster in this case. Furthermore, it 
has been common practice in other laboratories to use broad- 
ened linewidths (three-parameter lineshapes) in an attempt to 
correct for the effects of these non-linearities and thereby to 
use areas (not peak intensities) for quantitation. Not only is 
this procedure open to large errors in interpretation and to 
errors due to noise when (as in this example) there are 16, 
possibly different, iron atoms in the protein, but the reso- 
lution of the spectroscopy is sacrificed unnecessarily. There- 
fore, the argument that one should look at areas to lessen the 
effects of exponentiation need not apply when the spectrum 
is so complicated that interpretation is not suitable to curve- 
fitting methods. A good example of the relevance of the 
Beer-Lambert law to protein Mossbauer spectra can be found 
with component 1 of nitrogenase [13], a protein with over 
30 iron atoms/molecule. 

However, all of the preceding arguments have assumed 
that one can use Eqn (4) to compare spectra or the lines in 
the spectra. To use Eqn (4), one must determine fa, the ab- 
sorber Debye-Waller factor. The determination of this factor 
for a protein sample [4] requires very precise knowledge of 
the spectral intensity on an absolute scale. On this scale, a 
5 % intensity error is very large because the temperature 
range over which we are often constrained for biological 
samples is very small, usually 125-175 K. Only in this 
range is the spectrum composed of pure quadrupole pairs 
without any complication by magnetic interaction or the on- 
set of the liquid state and its effects on recoil-free fraction. 

Therefore, the question of when it is necessary to incor- 
porate the Beer-Lambert law in a Mossbauer data reduction 
scheme depends greatly on what is to be done with the data. 
However, when a single-iron environment reaches 300 pM 

with a 1-cm sample thickness, accuracy in quantitative spec- 
troscopic studies requires that one choose some method to 
account for the effects of this law. Thus, in a Mossbauer 
laboratory, work on biological compounds is continuously 
threatened by a lack of standard procedures to handle the 
Beer-Lambert law. In the following, reasons are presented 
for preferring one of these methods. 

Why should one deconvolve the transmission integral ? 

pression for the 'transmission integral' [7], T( u ) :  
By solving Eqn (1) for the integral, one arrives at an ex- 

(7) 
This function describes the interaction of the sample with 
those particular gamma rays that could have been absorbed 
by the Mossbauer effect; i.e. the recoil-free fraction of the 
14.4 keV gamma rays. Forming the data into this array is 
analogous to correcting for 'dark current' and 'stray light' 
in an optical spectrometer. The mathematics of Eqn (7) are 
straightforward, but every variable in the expression must be 
measured for each spectrum. Although this task is simplified 
by routine, this laboratory has found that there are many 
subtleties masked in some of the parameters. For example, 
self-absorption in the source [14] (by the "Fe left by the 
decay of 57C0) results in a time dependence in the source 
Debye-Waller factor 141. 

The major importance of the function, T(v) ,  is that its 
evaluation is a required step toward reaching the desired 
quantity, a(u). From Eqn (1) one can see that 

P 

T(u) = J S ( 0 - E ) .  exp[-f,na(E)/A]dE 
-m 

where we have rewritten Eqn (1) in terms of the number of 
57Fe atoms, n, and the cross-sectional area of the sample, A.  
The integral defines a convolution of the source lineshape, 
S, with the absorption function of the sample lineshape, a. 
There are three obvious ways to deal with this convolution: 
(a) one can deconvolve the integral to obtain ~ ( 0 ) ;  (b) one 
can fit T( v) with computer-simulated spectra that have been 
convolved explicitly; or (c) one can ignore the problem and 
fit the raw data directly. Reasons have been given for re- 
jecting this latter option when attempting quantitative work 
on biological samples. The reasons for preferring deconvol- 
ution of the data over convolution of the simulated spectra 
involve computer-simulation techniques and signalhoise 
considerations. They also depend on whether the absorber is 
strong or weak. 

Fourier deconvolution 
allows one to increase signalhoke on weak samples 

In Fig. 3 is an example of how one can first separate the 
signal from the noise (by fast Fourier transformation), per- 
form the deconvolution (by dividing by the transform of the 
source lineshape), then reject that part of the Fourier space 
where the signalhoise is less than one, thus significantly 
lowering the noise component in the final spectrum (compare 
Fig. 3A and 3K). Although Fig. 3 shows each step of the 
deconvolution process pictorially, two of the details can be 
reviewed to advantage. The mathematical basis of the pro- 
cess is the deconvolution theorem of Fourier transforms, 
which states that the Fourier transform of a convolution of 
two functions is equal to the product of the Fourier trans- 
forms of the two functions. Therefore, a deconvolution is 
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Fig.3. The individual steps of the Fourier deconvolution procedure shown separately for the signal and the noise of a spectrum. 
The spectrum (A) is the sum of two parts: a signal (B) with FWHM = 0.32 mmh and amplitude 0.02, and a noise component (C) whose 
root-mean-square amplitude is 0.005. The absolute magnitudes of the fast Fourier transforms of the two components are shown in (D) and 
(E). These two transforms are divided by the fast Fourier transform of the source (F), with FWHM = 0.16 m d s ,  to form the deconvolved 
transforms (G) and (H). These are truncated at the 11-th coefficient; (I) and (J) and back-transformed to form the deconvolved spectra (K) 
and (L), which are summed to form the resultant spectrum (M). The dashed lines in (E) and (H) are the root-mean-square noise levels, 
before and after deconvolution. 

equivalent to a division of two functions in Fourier space. 
Also, the truncation point in the Fourier spaces is situated 
where the signallnoise equals one, when the line in Fig. 3G 
has the same ordinate as the dashed line in Fig. 3H. 

The spectra in Fig. 3L and 3M also illustrate another 
property of the Fourier deconvolution process : the spectra 
have 'ripples', which result from the truncation in Fourier 
space. Some scientists have found these ripples to be hor- 
rifying artifacts that cannot be understood or trusted. In fact, 
they are simply what is left after the undesirable, high 'fre- 

quency' part of the Fourier space is discarded. By comparing 
Fig. 3C with 3M, one can see that the ripples were in Fig. 3C, 
but were not easily seen under the 'noise'. However, it is 
important to realize that the signalhoke ratio in Fourier 
space is not changed by Fourier deconvolution because both 
signal and noise are divided by the same numbers, the source 
function (Fig. 3F). The enhancement of signallnoise ratio is 
made possible by the separation of signal from noise by the 
fast Fourier transformation. Thus, Fourier transformation is 
a valuable tool for Mossbauer data reduction, due mostly 
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to the fact that the Mossbauer absorption lineshape decays 
exponentially in Fourier space while the noise function is flat 
(Fig. 3D and 3E). 

In this data reduction method, ripples are totally irrel- 
evant because all of the data-fitting procedures take place in 
Fourier space where there are no ripples. In a standard data 
reduction procedure, the spectrum analogous to Fig. 3K is 
transformed to a plot of no(v)lA by taking the negative loga- 
rithm according to Eqn (8) and dividing byf,. Next, the spec- 
trum is routinely shifted back to Fourier space for computer 
simulation. In Fourier space the trial vectors are very much 
shorter and simpler to generate (see below) so that the simu- 
lator programs run at least tenfold faster in Fourier space and 
with a greater precision. In a later section, other advantages 
to curve fitting in Fourier space will be presented. The im- 
portant point here is that Fourier deconvolution is not as 
much trouble as it seems because one should use Fourier 
transforms anyway for other reasons. 

In high-signallnoise spectra, Fourier deconvolution 
allows an accurate accounting of the Beer-Lambert law 

If the signal had been much stronger in Fig. 3 and the 
noise had been much less, then the truncation point in Figs 31 
and 35 would have been at a much larger argument in the 
Fourier space. Accordingly, the lineshape in Fig. 3K would 
have a much smaller artifact from truncation and would 
therefore have resembled the real lineshape to a much greater 
extent. This is fortunate because the subsequent logarithmic 
step is very sensitive to amplitude when the amplitudes are 
greater than 0.1, so that the rippling artifact would work 
against attaining high precision in the data reduction pro- 
cedure. Thus, Fourier deconvolution benefits Mossbauer 
spectra from both strong and weak absorbers, but for differ- 
ent reasons. For weak absorbers, the reason is signallnoise 
enhancement; for strong absorbers, the reason is that the 
Beer-Lambert law can be accounted for in this way. 

Why choose truncation as the apodization procedure? 
The operator of any modern NMR spectrometer is well 

aware of the many possibilities that exist for manipulating 
the free induction decay signals. It is common for the 
software to allow many choices for apodization procedures. 
Our truncation procedure is only one of the choices in this 
analogy (the free induction decay from a pulsed NMR ma- 
chine is also back-transformed to form the spectrum in the 
energy domain). We emphasize that multiplication by any 
function in Fourier space is an explicit convolution (see 
above). Because of this complication, the safest procedure 
for Mossbauer spectroscopists is to leave the elements of the 
Fourier space unchanged. On the other hand, it is clear from 
comparing Fig. 3G and 3H that the Fourier deconvolution 
procedure must be stabilized numerically by some apodi- 
zation procedure. Otherwise, the back-transformed spectra 
will be dominated by noise from the high arguments of the 
Fourier space. Our only disagreement with the treatment of 
Ure and Flinn [7] is with their choice to stabilize the Fourier 
deconvolution by multiplying the Fourier space with a Gaus- 
sian lineshape. This multiplication in Fourier space is an ex- 
plicit convolution that carries with it a lowering of the peak 
intensities in the energy space. Thus regardless of the signal/ 
noise ratio, the Beer-Lambert law cannot be accurately 
treated by this process. It is not possible to prove the superi- 

ible intensity and shape of na(v)/A but, for the extreme case 
where there is no noise in the spectrum, the correct solution 
is to leave the Fourier space unchanged. Truncation allows 
the smoothest approach to this asymptote. For NMR spec- 
troscopists, this choice of apodization procedure is immedi- 
ately acceptable because it is understood to be the only pro- 
cedure that can maintain peak intensity in the energy space. 

Data simulation in Fourier space 
The preceding description of the Fourier deconvolution 

method has shown how it succeeds in solving problems for 
Mossbauer spectroscopists, but no reasons for preferring this 
method over convolution of the spectral simulations have as 
yet been presented. To understand our bias for deconvol- 
ution, it is necessary to inspect the process of curve fitting in 
more detail. Our curve-fitting procedures involve the minim- 
ization of variance of a trial vector, 0, and an experimental 
vector, x. For example, one possible goodness-of-fit criterion 
is : 

N 

S. = N-' x(x , -a0 , -b)2  (9) 
, = l  

where a is a scaling parameter and b is the 'baseline' for 
the trial vector, 0,. Although a and b are seemingly trivial 
parameters, they represent a time disaster for non-linear min- 
imization procedures. A change in any of the independent 
variables in 0 can make an intensity change that in turn 
presents a problem for choosing the best values of a and b 
for the particular choice of independent variables. In general, 
the baseline is difficult to determine from an experimental 
Mossbauer spectrum, so that the determination of the best 
values of a and b is in itself a non-linear minimization prob- 
lem that must be solved for every choice of parameters for 
the trial vector. Because a and b are coupled in their effects 
on intensities, the solution of this problem greatly slows the 
rate of convergence for the fitting procedure. 

From elementary least-squares approximation theory, if 
b = 0, then the best choice for a is 

a = x .@I0 ' 0. 

Therefore, if the value of b is chosen, then the value of a can 
be derived by evaluating two dot-products. Although the use 
of Eqn (10) greatly speeds convergence, the difficulty of de- 
termining the baseline remains as a major drag on the minim- 
ization process. 

However, this problem is greatly modified when viewed 
in Fourier space. If the vectors in Eqn (9) are re-defined as 
vectors in the transform space, then b = 0 because the base- 
line is now contained in the first element of Fourier space. 
One can simply ignore this element when determining the 
value of S by beginning the summation in Eqn (9) at i = 
2 and the baseline problem disappears. The value of a is 
determined quickly at each iteration by using Eqn (10) (this 
equation is also valid when a, x, and 0, are complex num- 
bers). The value of b is determined after minimization by 
comparing x1 with 0,. 

There is another computational advantage to fitting in 
Fourier space. If the spectrum to simulate is written as a sum 
of m lines of various intensities but the same linewidth, then, 
in Fourier space, the spectrum can be expressed [lS] as 

0, = exp[-12nra(k-1) /~~1C X, . exp[-i2zb,(k-l)/~ 

(10) 

m 

r = l  

ority of truncation over Gaussian apodization for every poss- (11) 
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where 6, is the isomer shift and X, is the intensity of the jth 
resonance, r, is the halfwidth at half maximum of the absor- 
ber’s Lorentzian lineshape. Either of the exponential func- 
tions in Eqn (11) can be generated by iteration formulae. For 
example, if the lineshape vector is denoted as O,, then one 
can relate sequential elements of this vector as 

(12) 

Therefore, the entire vector, Y,, can be generated by a single 
call to the exponential function in the computer program. 
The complex exponential functions and trigonometric func- 
tions can also be generated in a similar manner. In addition, 
these vectors are relatively short for most spectra because the 
simulation vectors need extend only to the truncation point. 

Although the above may seem esoteric to most biochem- 
ists, these details represent a major time saving in computer- 
simulation methods. None of these are possible without 
working in Fourier space. The ‘baseline problem’ is a major 
time-waster if one convolves the simulated lineshapes be- 
cause the use of Eqn (10) is not possible in this case. What 
is not clear to us is the extent to which energy-domain spec- 
tral fitting techniques can be optimized. Once we began to 
fit our Mossbauer spectra (and EPR spectra also) in Fourier 
space we never returned to our former methods. 

Yx+, = YE exp [-2nT,lNl. 

Goodness-of-fit criteria 

In our first paper on Fourier deconvolution [ 2 ] ,  it was 
shown that the use of the X2-distribution to describe the stat- 
istical properties of spectral fitting errors was inappropriate. 
This approach does not differentiate between parts of the 
spectrum that contain mostly signal and those that contain 
mostly noise. The idea of using a weighted X’-distribution 
was promoted instead where the weighting coefficients were 
proportional to the size of the signal. However, when one is 
fitting in Fourier space, it soon becomes obvious that in this 
domain most of the undesirable noise has already been re- 
jected (by the truncation). Therefore, a non-weighted, root- 
mean-square error is more appropriate to spectral fitting in 
the Fourier space than to fitting in the energy space. Al- 
though spectral weighting is also possible in Fourier space 
(the signahoise ratio is highest at low arguments; see 
Fig. 3D and 3E), there is an advantage (in addition to speed) 
to omitting the weighting of the root-mean-square error. 

This advantage lies in speeding the convergence of the 
non-linear minimization procedures. As a minimization 
course approaches a ‘good fit’, the criteria for improving the 
fit fall increasingly on the small details of the spectrum. 
These small details are contained mostly in the higher argu- 
ments of the Fourier space. The advantage of not decreasing 
the importance of the higher arguments of Fourier space is 
that these arguments can thereby improve their guidance of 
the convergence of the minimization process when the 
changes are small. The period during the final refinements 
turns out to be where most of the time is spent in minimi- 
zation procedures. 

Note that if the quantity in Eqn (9), X,-aO, (the fit re- 
sidual), is envisioned to be a vector, then the length of this 
vector is proportional to the root-mean-square error. The 
length of a vector is invariant to unitary transformation; the 
fast Fourier transformation is a unitary transformation. 
Therefore, the root-mean-square error in energy space is be- 
ing simultaneously minimized by our Fourier space pro- 
cedures. However, in this new method the energy space has 

been changed relative to that from the ‘old days’ (see Fig. 3A 
and 3K). 

We realize that our use of a flat weighting function in 
Fourier space is in conflict with one of the maxims of infor- 
mation theory. Translating to the language used here, infor- 
mation theory claims that to maximize signallnoise ratio, the 
Fourier transform of the data treatment should match the 
Fourier transform of the signal in the data. Accordingly one 
should use a weighting function in Fourier space. However, 
because spectroscopists would find it difficult to accept data 
filtered in this way and because the goodness-of-fit criterion 
is only used to gauge the success of our minimization efforts, 
the use of Fourier space weighting is not recommended. 

Does Fourier deconvolution hide minor resonances 
in a spectrum? 

The focal point for criticism of the Fourier deconvolution 
method for Mossbauer spectra is the appearance of the back- 
transformeddeconvolved data and derives from the lack of 
‘high-frequency noise’ in the spectra. The back-transformed 
spectra contain ‘ripples’, which can be mistaken as artifacts 
of the truncation in Fourier space and obscurers of the ‘true 
nature’ of the spectra. Statements such as ‘the fast Fourier 
transform is a linear transformation’ have sometimes failed 
to convince skeptics that signalhoise ratios or relative ampli- 
tudes are not influenced by the process of division in the 
Fourier space. Likewise skeptics are not always convinced 
by the explanation that most of the ‘ripples’ are from the 
deconvolution of the noise component of the spectrum. We 
have also heard the claim that when the spectra contain res- 
onance lines of widely varying amplitudes, such as when 
magnetic interactions dominate, then the ‘ripples’ will ob- 
scure the weaker lines in the spectra. 

To illustrate the counter arguments to these claims, the 
following examples have been constructed. In these ex- 
amples (Fig. 4) an ‘experimental noise spectrum’ taken with 
no absorber present has been added to a theoretical spectrum 
consisting of two lines with the intensity ratio of 10: 1. The 
calculated spectra with a linewidth (FWHM) of 0.30 m d s  
are deconvolved by a source function of identical lineshape, 
but one-half the linewidth (FWHM = 0.15 m d s ) .  The de- 
convolved spectra are back-transformed, divided by two, and 
plotted over the ’raw data’ in Fig. 4A-C. The associated 
Fourier spaces are plotted in Fig. 4D-F. The three examples 
(Fig. 4) differ in their signalhoise ratios from the case with 
the poor signallnoise ratio to the case where only the noise 
due to digitizing the signal is represented. The twofold re- 
duction in the back-transformed data facilitates comparison 
of the convolved and deconvolved data. (Because deconvol- 
ution conserves area, the deconvolved data would be twice 
the amplitude of the convolved data without this division.) 
Specifically, a 0.30-mmh-wide line has one-half the ampli- 
tude of a 0.15-mds-wide line with equal area. In these ex- 
amples, the Beer-Lambert law and its complications are ig- 
nored. Therefore, only the effects of Fourier deconvolution 
are visible in Fig. 4. 

Inspecting the overplots in Fig. 4A and 4B shows that 
the baseline ripples in the deconvolved spectra (solid lines) 
are actually filtered noise in the convolved spectra. The solid 
lines in these overplots approximately trace excursions that 
are visible in the raw data (crosses), except where a reson- 
ance occurs. At the resonance positions, the additional reso- 
lution associated with deconvolution is obvious. The solid 
lines in Fig. 4C have one-half the linewidth and the same 
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Fig. 4. An experimental noise spectrum. A signal consisting of two lines, with intensity ratio of 10: 1 and a linewidth of 0.30 m d s ,  has 
been added to an experimental noise spectrum at various signallnoise ratios. The associated Fourier spaces are also included (D-F) with 
the truncation points denoted by arrows. The spectral sums, denoted by crosses (A-C), are Fourier-transformed, divided by the transform 
of a 0.15-mmls lineshape, truncated, back-transformed, divided by 2 and shown as solid lines in (A-C). The signallnoise ratio is 16 times 
larger in B than in A. In C only the noise due to digitizing the signal is present. 

intensity as their convolved counterparts. In the Fourier do- 
main all three spectra (Fig. 4D-F) have easily distinguish- 
able signal and noise components. The signal is an exponen- 
tially decreasing function whereas the noise is an exponen- 
tially increasing function with increasing argument of the 
Fourier space. At the point where the noise is larger than the 
signal, the Fourier space is truncated (marked by arrows). 
This truncation point moves to higher arguments as the rela- 
tive signal amplitude increases. These principles are easily 
seen in Fig. 4D-F. In the Fourier space, therefore, deconvo- 
lution amounts to a division of the signal and the noise by 
the same numbers; therefore the signalhoise ratio is un- 
changed for these elements of the Fourier space. The el- 
ements of the Fourier space that have a signalhoise ratio less 
than one are dropped from the analysis by the truncation. 
Therefore, Fourier deconvolution followed by truncation 
must increase the signalhoise ratio of the spectrum. It is true 
that the back-transformed spectrum has a modified lineshape 
as can be seen in Fig. 4A-C; however, this modification 

is not present in the Fourier space where the curve-fitting 
procedures take place. Therefore, these data reduction me- 
thods are artifact-free and there can be no loss in sensitivity 
to weak resonances due to the Fourier deconvolution pro- 
cedure. 

It is possible to argue that the truncation points chosen in 
Fig. 4D-F were based on the signal amplitude of the major 
line and were consequently not the optimal choice for the 
minor line in the spectrum. The Fourier spaces should be 
truncated at lower arguments because the minor line’s signal 
intensity is smaller than that of the major line. These are 
valid arguments and can give rise to procedures with added 
sensitivity to the minor lines in the spectrum because they 
amount to rejecting more of the Fourier space where the sig- 
nalhoise ratio is less than one for the minor lines. However, 
this choice of truncation point would result in a further dis- 
tortion of the major resonance lineshape and is not rec- 
ommended. The signalhoise ratio in a single element of the 
Fourier space is unaffected by division by any number. The 
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advantages to be gained by over-truncating are marginal and 
depend on the unpredictable character of the noise in the 
elements of Fourier space between the two truncation points. 

On the other hand, the principle that one should shorten 
the Fourier space to increase the sensitivity to ‘weak’ reso- 
nances is established in the preceding paragraph. Applying 
this principle to all spectra implies that truncation in Fourier 
space enhances rather than decreases the sensitivity of the 
spectroscopy to ’weak’ resonances. However, this additional 
enhancement is not very large as explained previously (see 
also Fig. 4A-C). 

When a strong magnetic interaction is present at the 57Fe 
nucleus, the Mossbauer spectra can be very complex with 
many lines of differing intensity. In this situation, the Beer- 
Lambert law becomes complex as well [ 3 ,  4, 81 so that it is 
standard procedure in this laboratory to perform the Fourier 
deconvolution on the data as shown in Fig. 4, but not to take 
the logarithm of the data as implied in Eqn (1). Instead, the 
computer-simulated spectra from the left- and right-handed 
polarizations of the gamma-ray beam are exponentiated, then 
summed to form a trial simulation for the deconvolved spec- 
tra [4]. The curve fitting takes place in Fourier space as us- 
ual. The two-line spectra in Fig. 4 model the application to 
magnetic spectra by demonstrating that the Fourier deconvol- 
ution process is appropriate for spectra with highly differing 
intensities. Mathematically, all the information presented 
above concerning the application of Fourier deconvolution to 
multi-line spectra are implied by the statement that the fast 
Fourier transform is a linear, unitary transformation : vector 
lengths are unchanged and summation is preserved by fast 
Fourier transformation. 

Conclusion 
The preceding comments are an attempt to review and 

justify the methods of this laboratory for data reduction of 
Mossbauer spectra. It is shown that they are often beneficial 
and sometimes necessary for the proper treatment of the data 
from biological samples. On the other hand, these methods 
are not always necessary and are difficult to implement. The 

laboratory took ten years to develop the enabling machinery 
and software. Nevertheless, there are many advantages, some 
of them seem crucial to us, to this method of handling 
Mossbauer data. The method was designed to deal routinely 
with the effects of the Beer-Lambert law on Mossbauer spec- 
tra. It performs this function well and, as a side benefit, also 
provides enhanced resolution and signaUnoise ratios, even in 
the presence of magnetic field splittings. The problem is sim- 
ply seen from a ’transformed’ point of view. 
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