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Summary. Grouped failure time data arise often in HIV studies. In a recent preventive HIV vaccine
efficacy trial, immune responses generated by the vaccine were measured from a case–cohort sample of
vaccine recipients, who were subsequently evaluated for the study endpoint of HIV infection at prespecified
follow-up visits. Gilbert et al. (2005, Journal of Infectious Diseases 191, 666–677) and Forthal et al. (2007,
Journal of Immunology 178, 6596–6603) analyzed the association between the immune responses and HIV
incidence with a Cox proportional hazards model, treating the HIV infection diagnosis time as a right-
censored random variable. The data, however, are of the form of grouped failure time data with case–
cohort covariate sampling, and we propose an inverse selection probability-weighted likelihood method for
fitting the Cox model to these data. The method allows covariates to be time dependent, and uses multiple
imputation to accommodate covariate data that are missing at random. We establish asymptotic properties
of the proposed estimators, and present simulation results showing their good finite sample performance.
We apply the method to the HIV vaccine trial data, showing that higher antibody levels are associated with
a lower hazard of HIV infection.

Key words: Case–cohort design; HIV vaccine trial; Interval censoring; Proportional hazards model; Ran-
dom dropout; Weighted likelihood.

1. Introduction
Interval-censored data arise often in HIV studies where times
to HIV infection are not exactly observed, but instead the two
time points within which the infection happens are observed.
The time points may be, for instance, the times of clinic visits.
These type of data are commonly seen in practice, for exam-
ple patients in clinical trials may be monitored for clinical
response at a set of visit times. A special case of interval-
censored failure times occurs when the visit times are fixed
in advance and are the same for all subjects. In this case the
failure times are grouped into a discrete set of time intervals.
For such a data structure, Kalbfleisch and Prentice (1973)
and Prentice and Gloeckler (1978), among others, proposed
and developed methods for maximum likelihood estimation
of the relative risks and survival function in the proportional
hazards model (Cox, 1972, 1975).

The case–cohort design was proposed by Prentice (1986)
for large cohort studies (e.g., prevention trials) for which the
covariates of interest are expensive to collect. In such a de-
sign, the covariate values are collected only for those subjects
who experience the failure event during the follow-up period
and for a subcohort that is randomly sampled from the study
cohort. For right-censored data, Self and Prentice (1988) de-
rived the asymptotic theory for a pseudolikelihood estimator
of the parameters in a general relative risk model, including
the proportional hazards model as a special case.

Gilbert et al. (2005) employed the Self–Prentice method
to analyze data from the first randomized placebo-controlled
phase 3 trial of a preventive HIV vaccine (Flynn et al., 2005).
Forthal et al. (2007) also analyzed these data, using an al-
ternative pseudolikelihood estimator for the Cox model with
case–cohort sampling (Estimator II of Borgan et al., 2000).
These analyses addressed the objective to evaluate the as-
sociation between anti-HIV antibody levels generated by the
vaccine and subsequent HIV infection in vaccine recipients.
Trial participants were immunized with vaccine or placebo at
months 0, 1, 6, 12, 18, 24, and 30. Volunteers testing neg-
ative for HIV infection at month 0 were enrolled, and HIV
infection tests were administered at each immunization visit
and at the final follow-up visit at month 36. A small propor-
tion of participants dropped out of the study at earlier times.
Serum and plasma samples were obtained from all volunteers
at the immunization visits as well as at visits 2 weeks after
the immunization, scheduled for measuring peak immunologic
response values. The assays were performed for all vaccine re-
cipients who became HIV infected and for a stratified random
sample of the uninfected vaccine recipients, selected after the
trial. Covariates measured on everyone include demographic
variables, geographic region, race, and baseline behavioral risk
score (taking integer values from 0 to 7).

For study participants who acquired HIV infection during
the study, the infection time can only be determined to be
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between the dates of the last negative and first positive HIV
tests. In both Gilbert et al.’s (2005) and Forthal et al.’s (2007)
Cox model analyses of the case–cohort data, the time to in-
fection was approximated by the midpoint of the dates of the
last negative and first positive tests. Approximating interval
censoring to right censoring, however, may introduce bias in
parameter estimation. It is desirable to develop a more gen-
eral method that takes the interval censoring nature of the
failure times into account.

We propose a weighted likelihood approach to fit a propor-
tional hazards model with grouped survival data and stratified
case–cohort covariate sampling, and apply the method to eval-
uate the association between the newest antibody measure-
ment described in Forthal et al. (2007) and HIV infection. The
method maximizes the inverse selection probability-weighted
log-likelihood function (or log-partial likelihood function).
The weighted likelihood approach has been used in other miss-
ing data problems; see Breslow and Wellner (2007) and refer-
ences cited therein. In our case, we consider both true weights
and estimated weights, where the true weights are calculated
by using the true selection probabilities determined by de-
sign and the estimated weights are calculated by using sam-
ple fractions within strata. Both methods lead to consistent
and asymptotically normal estimators of the parameters, and
the variances of the estimators can be consistently estimated.
As pointed out by many authors including Breslow and Well-
ner (2007), the method with estimated weights is more effi-
cient. The numerical calculations can be readily carried out
via Newton–Raphson iteration. We apply multiple imputation
to handle missing immunological responses in the subcohort.
We present the proposed methods and asymptotic results in
Section 2 and report a simulation study in Section 3. In Sec-
tion 4 we apply the proposed method to the vaccine trial
study and make concluding remarks in Section 5. We provide
detailed technical derivations and proofs of the asymptotic
properties in the Web-based Supplementary Materials.

2. The Weighted Likelihood Method
Consider the general setting of grouped survival data. Let T
be the underlying time to the event of interest, and C be the
underlying censoring time. Let X be a p-dimensional covariate
(process). Assume noninformative censoring and C is indepen-
dent of T given X. In the HIV vaccine trial study, however,
neither T nor C is completely observed. Instead, T is either
known to be in one of the m fixed time intervals: (t0, t1], (t1,
t2], . . . , (tm−1, tm), where 0 = t0 < t1 < · · · < tm−1 < tm =
+∞, or right censored at a visit time tj , 1 ≤ j ≤ m − 1. In
either case, X will be observed up to the last observed visit
time. The two cases coincide when j = m − 1. Here C can be
assumed to be discrete with values t1, . . . , tm−1.

Suppose we only observe data in the first Ri intervals for
subject i, where 1 ≤ Ri ≤ m − 1; then the subject either
experiences an event in the Ri th interval or is right censored
at tRi

. Let ∆ij = 1 if the event for the ith subject falls into
the jth interval and ∆ij = 0 otherwise, 1 ≤ j ≤ Ri , and de-

note ∆i,Ri+1 = 1 −
∑Ri

j=1 ∆ij and ∆i = (∆i1, . . . ,∆i,Ri+1)
′. In

fact ∆ij = 0 for all j < Ri , but we keep the vector notation
∆i for ease of technical derivation. Note that Ri is a ran-
dom variable and the length of ∆i varies with Ri . Following
Prentice and Gloeckler (1978), we assume that the covari-

ate is componentwise constant in each of the Ri observed
time intervals and denote Xi = (Xi1, . . . ,Xi,Ri

)′, where Xij is
the p-dimensional covariate vector for the ith subject in the
jth interval. Assume that in a full cohort we would have n
independent and identically distributed (i.i.d.) observations
(∆i, Ri , Xi ), 1 ≤ i ≤ n, which is equivalent to observing
i.i.d. observations (∆i,Ri+1, Ri,Xi), 1 ≤ i ≤ n. Clearly the pair
of random variables (∆i, Ri ), or equivalently (∆i,Ri+1, Ri),
is completely determined by (Ti , Ci ). In particular, the set
{∆i,Ri+1 = 0, Ri = j} is equivalent to observing the event in
(tj−1, tj ], which in turn is equivalent to the set {Ti ∈ (tj−1,
tj ], Ci ≥ tj }; and the set {∆i,Ri+1 = 1, Ri = j} is equivalent
to censoring the event at time tj , which in turn is equivalent
to the set {Ti ≥ tj , Ci ∈ (tj−1, tj ]}.

Suppose T follows a Cox regression model, that is, the haz-
ard function can be written as

λ(t |X(t)) = λ(t) exp(X(t)′β), (1)

where X(t) is the p-dimensional covariate vector at time t and
β = (β1, . . . ,βp)

′. Let Λ(t) be the baseline cumulative hazard
function, and denote αk = Λ(tk ) − Λ(tk−1) and γk = logαk,
k = 1, 2, . . . ,m, where αm and γm are equal to +∞. Then the
conditional probability of the event for the ith subject falling
into the jth interval given Xi is

P(∆ij = 1 |Xi) = e
−
∑j−1

k=1
e
γk+X′

ik
β(

1 − e−e
γj+X′

ij
β)

×P (Ci ≥ tj |Xi), 1 ≤ j ≤ m.
Here for notational convenience we assume that∑0

k=1 e
γk+X ′

ik
β = 0. Note that the above expression only

involves covariates observed up to time tj for a fixed j. The
above expression can also be obtained by the first-order ap-
proximation of the conditional survival probability given Xi

for the Cox model with discrete failure times (see Kalbfleisch
and Prentice [2002] for details).

By the conditional independence of Ti and Ci given Xi , the
conditional probability mass function of (∆i, Ri ) given Xi can
be written as

P (∆i = δi, Ri = j |Xi)

=

j+1∏
�=1

(
e
−
∑�−1

k=1
e
γk+X′

ik
β)δi�

(
1 − e−e

γj+X′
ij

β)δij

f(δi, j |Xi)

≡ L(θ |∆i = δi, Ri = j)f(δi, j |Xi), 1 ≤ j ≤ m− 1,

where f(δi, j |Xi ) does not contain any information about
θ ≡ (γ1, . . . , γm−1, β

′)′ and hence can be dropped when con-
structing the likelihood function for θ. Detailed derivation is
given in Web Appendix A. Note that Li (θ) ≡ L(θ |∆i, Ri )
above is more complicated than necessary for numerical eval-
uation. But its current form will be very helpful in deriving
asymptotic properties for the proposed estimator, which will
be easily seen in Web Appendices C and D. Also note that
Li (θ) reduces to the likelihood contribution of the ith subject
in Prentice and Gloeckler (1978).

2.1 Estimation with True Weights
In case–cohort studies, the covariates are not observed for
all subjects. Here we consider the Bernoulli sampling scheme
(Manski and Lerman, 1977) for selecting the subcohort. Each
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subject is examined for a covariate Vi (which can either be
part of Xi or be an ancillary variable(s)) that is measured
in all subjects (i.e., at phase 1), and is then independently
selected at phase 2 into the subcohort with probability P (i ∈
SC |Vi ) = π(Vi ), where “SC” stands for subcohort and π(·) is
a known function. The covariate X is assembled only for sub-
jects in the subcohort and for those who experience the failure
event during follow-up. The data resulting from this sampling
scheme preserve an i.i.d. structure and satisfy the missing at
random (MAR) assumption (Little and Rubin, 2002), because
the probability that the covariate X is missing depends only
on V and ∆i,Ri+1 , which are always observed.

Kulich and Lin (2004) distinguished between “N-
estimation” and “D-estimation” for right-censored data in
case–cohort sampling designs, where N estimation uses
weights that are independent of failure status whereas D esti-
mation uses weights that depend on failure status. The main
reason for distinguishing these approaches is that the martin-
gale theory applies for N estimation, but not for D estimation.
This distinction is irrelevant for our methodology for grouped
failure time data because it does not have any difficulty in
handling failure status-dependent weights.

For the observed data in a case–cohort study, we propose
the following weighted likelihood function for making infer-
ences on θ:

Lw,n(θ) =

n∏
i=1

{Li(θ)}wi , where wi = (1 − ∆i,Ri+1)

+
I(i ∈ SC)

π(Vi)
∆i,Ri+1, 1 ≤ i ≤ n.

Clearly the weight wi depends on the failure status of subject
i. It is easily seen that only subjects with completely observed
covariates contribute to the weighted likelihood function, and
wi is the inverse of the probability that subject i is selected
from the original cohort to have covariate Xi measured. The
logarithm of the weighted likelihood function is

�w,n(θ) =

n∑
i=1

wi�i(θ)

=

n∑
i=1

wi

{
−

Ri+1∑
j=1

(
∆ij

j−1∑
k=1

eγk+X ′
ik

β

)

+∆iRi
log
(
1 − e−e

γRi
+X′

iRi
β)}

. (2)

We call the maximizer of �w,n(θ) the weighted likelihood es-

timator of θ, denoted by θ̂n, which can be obtained by solv-
ing the following weighted log-likelihood estimating equation
for θ:

∂

∂θ
�w,n(θ) =

n∑
i=1

wi
∂

∂θ
�i(θ) = 0. (3)

The Newton–Raphson method can be employed to solve the
above estimating equation. Note that the covariates after the
Ri th interval do not contribute to the log-likelihood function
and its derivatives. Define the matrix of the second derivatives
as

In =

(
Iγγ,n Iγβ,n

I ′γβ,n Iββ,n

)

=

(
−∂2�w,n(θ)/∂γ∂γ ′ −∂2�w,n(θ)/∂γ∂β′

−∂2�w,n(θ)/∂β∂γ ′ −∂2�w,n(θ)/∂β∂β′

)
,

where γ = (γ1, . . . , γm−1)
′. The numerical inversion of In is

necessary in Newton–Raphson iteration, which may be dif-
ficult if there are many intervals (m is large). Following the
idea of Prentice and Gloeckler (1978) and Finkelstein (1986),
however, the inversion can be simplified by using the following
equality:

I−1
n =

(
I−1
γγ,n +AB−1A′ −AB−1

−B−1A′ B−1

)
,

where A = I−1
γγ,nIγβ,n, B = Iββ,n − I ′γβ,nI

−1
γγ,nIγβ,n, which

only involves inverting the p-dimensional matrix B because
Iγγ,n is diagonal (see Web Appendix B for explicit forms
of the derivatives of the weighted log likelihood). Then the
Newton–Raphson method updates values of θ = (γ ′, β′)′ iter-
atively via(

γ(k)

β(k)

)
=

(
γ(k−1)

β(k−1)

)
+

{
I−1
n

∂�w,n(θ)

∂θ

}
θ=θ(k−1)

until the algorithm converges; here the superscript (k) repre-
sents values in the kth iteration. Note that when the sample
size is small, or some time intervals are narrow, there may be
no observed events in an interval, in which case the Newton–
Raphson procedure will fail. A simple remedy is to combine
such an interval with its neighbor to make the number of
events in the combined interval greater than zero and assign
the covariate value in the neighbor interval to be the one in
the combined interval. We do not encounter such a problem
in the HIV data analysis.

The dependency of the sampling probabilities on covariates
and outcome makes the case–cohort design a biased sampling
design. The inverse selection probability-weighted estimating
equation (3) corrects the bias, however, because by MAR we
have

E (wi |∆i, Ri,Xi, Vi)

= (1 − ∆i,Ri+1) + ∆i,Ri+1
P (i ∈ SC |Vi)

π(Vi)
= 1, (4)

and hence

E

{
wi
∂�i(θ)

∂θ

}
= EE

{
wi
∂�i(θ)

∂θ

∣∣∣∣∆i, Ri,Xi, Vi

}

= E

{
∂�i(θ)

∂θ
E(wi |∆i, Ri,Xi, Vi)

}

= E

{
∂�i(θ)

∂θ

}
= 0.

A naive approach to the analysis would simply put
wi = 1 for all subjects with covariates completely observed
and wi = 0 otherwise. We call the corresponding estimator
the naive estimator. Because the equality (4) does not hold
for all i, in general the naive estimator will be asymptotically
biased, which is verified by the simulation study in Section 3.
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For full cohort data, Prentice and Gloeckler (1978) pro-
vided an intuitive discussion on the asymptotic properties of
the maximum likelihood estimator for grouped survival data.
We give a set of mild regularity conditions in the following the-
orem that formally establishes both consistency and asymp-
totic normality of the weighted likelihood estimator with true
weights that are usually known for a case–cohort design,
which includes the maximum likelihood estimator (MLE) of
Prentice and Gloeckler (1978) as a special case. The proof is
given in Web Appendix C.

Theorem 1: Suppose the parameter space Θ is compact and
the true parameter θ0 is an interior point of Θ. Assume the
following conditions hold:

(i) The covariate X has bounded support.
(ii) The variance matrix of Xij is positive definite for all

1 ≤ j ≤ m − 1.
(iii) π(Vi ) ≥ δ > 0 for all i and some δ > 0.
(iv) P (Ci ≥ tm−1 |Xi ) > 0 with probability 1.

Then the maximizer θ̂n of �w,n(θ) converges to θ0 in prob-
ability as n → ∞, and

√
n(θ̂n − θ0) converges in distri-

bution to a Gaussian random variable with mean zero and
variance matrix Σ(θ0) = I−1(θ0)D(θ0)I

−1(θ0), where I(θ) =
Eθ0{∂2�i(θ)/∂θ∂θ

′} and D(θ) = Eθ0 [{wi∂�i(θ)/∂θ}{wi∂�i(θ)/
∂θ}′].

Note that the compactness of Θ and the boundedness of X
guarantee that the probability of observing an event in each of
the m intervals is strictly bounded between 0 and 1. Condition
(iv) implies that not all subjects drop out before time tm−1.
Otherwise tm−2 becomes the last time of visit. The asymptotic
variance Σ(θ0) can be consistently estimated by the sandwich
estimator

Σ̂n(θ̂n) = Î−1
n (θ̂n)D̂n(θ̂n)Î−1

n (θ̂n),

where În(θ) = n−1
∑n

i=1 wi{∂2�i(θ)/∂θ∂θ
′}, and D̂n(θ) =

n−1
∑n

i=1 w
2
i{∂�i(θ)/∂θ}{∂�i(θ)/∂θ}′.

2.2 Estimation with Estimated Weights
Although the sampling probabilities π(Vi ) are known, using
estimated weights in which π(Vi ) is replaced by its estimator
can improve the efficiency of the weighted likelihood estima-
tor (Robins, Rotnitzky, and Zhao, 1994; Breslow and Wellner,
2007). Suppose that all censored subjects are divided into S
strata by the variable V ∈ V ≡ {ν1, . . . , νS}, and in this sub-
section, we denote the true sampling probabilities by π(νs) =
p0s, 1 ≤ s ≤ S. Suppose that there are ns subjects in stra-
tum s, out of whom n∗

s are selected into the subcohort by
the independent Bernoulli sampling. We assume that when
n → ∞, ns/n → αs > 0, 1 ≤ s ≤ S. Instead of using the true
sampling probabilities p0 = (p01, . . . , p0S)′ in the weight func-
tion w, we now replace each p0s with the sampling fraction
p̂s = n∗

s/ns, 1 ≤ s ≤ S, and set π̂(Vi) = p̂s if Vi = νs, 1 ≤ s ≤
S. Now the estimated weight function becomes

wi(p̂) = (1 − ∆i,Ri+1) +
I(i ∈ SC)

π̂(Vi)
∆i,Ri+1 , 1 ≤ i ≤ n.

Denote the maximizer of
∑n

i=1 wi(p̂)�i(θ) by θ̃n. The following
theorem establishes the consistency and asymptotic normality

of θ̃n, but with a different asymptotic variance matrix to that
of θ̂n given in Theorem 1. A detailed proof is given in Web
Appendix D.

Theorem 2: Under the same conditions in Theorem 1, θ̃n
is consistent and

√
n(θ̃n − θ0) converges in distribution to a

Gaussian random variable with mean zero and variance

Σ(θ0) − I−1(θ0)B(θ0, p0)G22B
′(θ0, p0)I

−1(θ0)

as n→ ∞, where

B(θ, p) = Eθ0 [{∂�i(θ)/∂θ}{∂wi(p)/∂p}′],

G22 = diag{p01(1 − p01)/α1, . . . , p0S(1 − p0S)/αS},

which can be consistently estimated by

B̂(θ̃n, p̂) =
1

n

n∑
i=1

{∂�i(θ)/∂θ}{∂wi(p)/∂p}′
∣∣∣
θ=θ̃n,p=p̂

,

Ĝ22 = diag{np̂1(1 − p̂1)/n1, . . . , np̂S(1 − p̂S)/nS}.

2.3 Approaches to Handling Missing Covariate Data
Due to the expense of measuring the antibody responses in
the HIV vaccine trial, the antibody level for vaccine recipi-
ents who failed was only measured at the beginning of the
first interval (at month 6.5 visit) and at the visit immediately
preceding the failure visit, and for censored vaccine recipi-
ents it was only measured at month 6.5 and at a randomly
selected visit month after month 6.5. Because the missing el-
ements of X for subject i are missing by design, depending
only on ∆i,Ri+1 , the missing mechanism is MAR (Little and
Rubin, 2002). To handle this type of missing data, we propose
using multiple imputation to fill in the missing components
of X.

Specifically, suppose only X2 can be missing. For each time
interval 2 through m − 1 (excluding the last interval), we im-
pute the missing values of X2 by random draws from a linear
regression model with the covariate in the first interval as the
predictor, which is fitted separately for cases and noncases.
For example, to impute missing covariate values in the sec-
ond interval for cases, we first fit a linear model X22 = c0 +
c1X21 + ε, where ε ∼ N(0, σ2), using all the cases with com-
plete data for X22. After obtaining estimates ĉ = (ĉ0, ĉ1)

′ and
σ̂2, we then take a random draw of σ∗2 from σ̂2χn+1, where n is
the number of subjects included in the linear regression, and
c∗ and ε∗ are random draws from N(ĉ, σ∗2(A′A)−1) and N(0,
σ∗2), respectively, where A is the design matrix of the linear
regression. Finally, we fill in the missing value X22 by X̂22 =
c∗1 + c∗2X21 + ε∗. We construct 10 complete data sets following
this procedure. For each imputed data set, we calculate the
weighted likelihood estimator of β and its variance estimate,
and then combine the 10 sets of results using the method of
Little and Rubin (2002) to obtain the final estimate and its
variance estimate. Confidence intervals for β are calculated
using the t distribution following Little and Rubin (2002).

The above multiple imputation method for the HIV vac-
cine case–cohort study assumes that, given the baseline co-
variate, the covariate distribution in time interval (tj−1, tj ],
j = 2, . . . ,m − 2, for those who had infection in this interval
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is the same as that for those who had infection between tj
and tm−1. This may not be true and can only be viewed as an
approximation. As tj gets closer to tm−1, the approximation
becomes more precise. Note that such an assumption is not
imposed for noncases.

A referee recommended an interesting alternative approach
to the multiple imputation. Rather than weight subjects,
one can weight occasions within subjects. To be specific,
by rewriting the log likelihood for subject i as �i(θ) =∑Ri+1

j=1 Qj(Xij ,∆ij ; θ), one can estimate θ by maximizing

n∑
i=1

Ri+1∑
j=1

ξij
πij
Qj(Xij ,∆ij ; θ),

where ξij = 1 if Xij is observed and 0 otherwise, and πij =
P (ξij = 1 |∆i, Vi ). This approach does not need the assump-
tion underlying multiple imputation and is easy to implement.
However, it does not apply to the particular missing pattern
in the HIV vaccine case–cohort study because some of the
sampling probabilities πij in time interval j are actually zero.
Simulations under the same settings in the following section
show that the method gives large biases if the terms involving
zero sampling probabilities are eliminated. Hence we do not
consider this alternative approach further in this article. We
still present it here because it may work well for other suitable
applications.

3. Simulation Study
We conducted simulations to assess the performance of the
weighted likelihood estimator by comparing the bias, effi-
ciency, and coverage properties to other estimators including
the MLE for full cohort data, the naive estimator for case–
cohort data, and the Self–Prentice (1988) pseudolikelihood
estimator for case–cohort data. The pseudolikelihood estima-
tion is based on approximating interval censoring by right
censoring, whereby event times are defined by the midpoint
of the left- and right-censoring intervals.

We consider two covariates (X1,X2), where the correspond-
ing regression coefficients are (1, −1)′. Note that the subscript
of X here denotes covariate component, not an index for study
subject as in Section 2. To match the HIV vaccine trial (Flynn
et al., 2005), we set the time origin as 6.5 months post-entry
(the time by which the study subjects are “fully immunized”)
and use six time intervals (m = 6) with fixed visit times at
months 12, 18, 24, 30, and 36. The covariate X1 is set to be dis-
crete and time independent, which takes values 1 and 2 with
equal probability. The covariate X2 = (X21, X22, X23, X24,
X25)

′ is specified as a 5-variate random vector corresponding
to the five postimmunization visits at months 6.5, 12.5, 18.5,
24.5, 30.5, where X2j is the covariate value of X2 in the jth
interval. The conditional distribution of X2 given X1 is nor-
mal, that is, X2 |X1 = k ∼ N(µk, Σ), k = 1, 2, with µ1 =
(0.1, 0.2, 0.3, 0.4, 0.5)′, µ2 = (0, 0.1, 0.2, 0.3, 0.4)′, and

Σ =




1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1


 ,

where ρ = 0.7. With this setup the covariates X2j , j =
1, . . . , 5, are positively correlated following a first-order au-
toregressive process, and X1 and X2 are also correlated.

We choose the cohort size n as 200, 500, or 3000. When
n = 200, the probability of selecting censored subjects into the
subcohort is 0.333 and the baseline hazard is a constant value
0.015; when n = 500, the probability of selecting censored
subjects into the subcohort is 0.25 and the baseline hazard is
a constant value 0.02; when n = 3000, the selection proba-
bility is 0.085 for censored subjects and the baseline hazard
is a constant value 0.005. With these settings there are ap-
proximately 90 completely observed subjects when n = 200,
among whom about 40 are failures; approximately 200 com-
pletely observed subjects when n = 500, among whom about
half are failures; and approximately 400 completely observed
subjects when n = 3000, among whom about 150 are fail-
ures. The last situation resembles the HIV vaccine trial data
that will be analyzed in the next section. The survival times
are generated from a piecewise exponential distribution spec-
ified by model (1) (with λ0(t) ≡ c specified above). Censoring
times are generated from a discrete uniform subdistribution
at months (12, 18, 24, 30) combined with a truncation at
month 36 to yield about 25 early dropouts (prior month 36),
similar to what was observed in the HIV study. One thousand
simulation runs are conducted under each simulation setting.

For each simulation run, parameter estimates are obtained
by solving equation (3) with estimated weights using the
Newton–Raphson method. The initial value of β is set to be
zero, and the initial value of γ is obtained from the Kaplan–
Meier curve S(0)(·), calculated by pushing the failure time to
the right endpoint of the interval in which an event occurs,
via γ

(0)
j = log [log{S(0)(tj )} − log{S(0)(tj+1)}], 1 ≤ j ≤ m −

1. Then the variance estimator is calculated from the expres-
sions given in Theorems 1 and 2, and the 95% Wald confidence
interval for each parameter is obtained based on the asymp-
totic normality. Bias, coverage percentage, the average of the
estimated standard deviations, and the empirical standard de-
viation are calculated from the 1000 simulation runs. Because
the parameter of interest is β, only the bias for estimating γ
is reported. The relative efficiency of the weighted likelihood
estimator of β versus the MLE computed from the full data
is calculated by the ratio of empirical variances.

In addition to evaluating the different methods with no
missing components in X, we evaluate the weighted likeli-
hood method with multiple imputation, by coarsening the
simulated X2 covariates to have missing components in the
pattern described in Section 2.3. Tables 1 and 2 summarize
the simulation results, where weights are estimated by sam-
pling fractions. From Table 1 we see that the weighted likeli-
hood estimators have reasonably small biases. The standard
deviation estimators for β̂ are accurate, which lead to accurate
coverage percentages. The multiple imputation method works
well. It is not surprising that the weighted likelihood method
for case–cohort data is less efficient than the maximum like-
lihood estimator for the full cohort data. However, under
case–cohort sampling the weighted likelihood method is much
more efficient than the naive method that uses simple ran-
dom sampling. In addition, by ignoring the biased sampling
nature of the case–cohort sampled data, the naive estimator
is clearly biased. The pseudolikelihood method of Self and
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Table 1
Summary statistics of simulations, with true parameter values, β1 = 1 and β2 = −1

Coverage Average Empirical Relative efficiency
Method Parameter Bias percentage SE SE (from empirical variances)

n = 200. Mean sample size of completely observed subjects in the case–cohort sample is 90, in which the mean number of
censored subjects selected in the subcohort is 50

Weighted β1 −0.007 0.963 0.440 0.435 0.636
likelihood β2 0.044 0.942 0.203 0.211 0.720

Full data β1 −0.007 0.968 0.093 0.347 1
MLE β2 0.014 0.956 0.173 0.179 1

Naive β1 0.172 0.923 0.372 0.362 —
estimator β2 −0.080 0.907 0.175 0.177 —

Pseudolikelihood β1 −0.349 0.813 0.131 0.146 —
β2 0.360 0.722 0.262 0.293 —

Multiple β1 0.008 0.970 0.481 0.457 —
imputation β2 0.074 0.924 0.223 0.230 —

n = 500. Mean sample size of completely observed subjects in the case–cohort sample is 200, in which the mean number
of censored subjects selected in the subcohort is 100

Weighted β1 −0.022 0.942 0.295 0.302 0.580
likelihood β2 0.026 0.931 0.133 0.136 0.607

Full data β1 −0.026 0.955 0.230 0.230 1
MLE β2 0.010 0.954 0.108 0.106 1

Naive β1 0.218 0.824 0.233 0.239 —
estimator β2 −0.128 0.761 0.108 0.108 —

Pseudolikelihood β1 −0.261 0.780 0.131 0.146 —
β2 0.249 0.675 0.262 0.293 —

Multiple β1 0.030 0.964 0.301 0.287 —
imputation β2 0.011 0.959 0.145 0.147 —

n = 3000. Mean sample size of completely observed subjects in the case–cohort sample is 400, in which the mean number
of censored subjects selected in the subcohort is 250

Weighted β1 −0.003 0.945 0.208 0.215 0.561
likelihood β2 0.016 0.935 0.096 0.106 0.412

Full data β1 −0.018 0.948 0.066 0.161 1
MLE β2 −0.002 0.940 0.067 0.068 1

Naive β1 0.275 0.562 0.156 0.160 —
estimator β2 −0.183 0.229 0.067 0.068 —

Pseudolikelihood β1 −0.090 0.863 0.102 0.118 —
β2 0.099 0.774 0.203 0.234 —

Multiple β1 0.028 0.935 0.215 0.227 —
imputation β2 0.019 0.920 0.098 0.110 —

Prentice (1988) that uses approximated right-censored data
is also more biased than the weighted likelihood method for
grouped survival data. From Table 2 we see that the bias of γ̂
is severe for both the naive method and the pseudolikelihood
method, whereas it is very small for the weighted likelihood
method.

To better illustrate the efficiency gain of the weighted like-
lihood estimator with estimated weights compared to the es-
timator with true weights, we generate an auxiliary variable
V that is a coarsening of X. Particularly, V = 1 if the average
of X2 over the five intervals is less than 1 and X1 = 1; V =
2 if the average of X2 is less than 1 and X1 = 2; V = 3 if
the average of X2 is greater than 1 and X1 = 1; and V = 4
if the average of X2 over the five intervals is greater than 1
and X1 = 2. The subcohort is selected by stratified Bernoulli
sampling from the four strata defined by V. When n = 200,

the subcohort sampling probabilities are 0.4, 0.4, 0.7, and 0.7
for the four strata. When n = 500, the sampling probabili-
ties are 0.2, 0.2, 0.7, and 0.7. When n = 3000, the sampling
probabilities are 0.05, 0.05, 0.25, and 0.25. The probabilities
are determined such that the numbers of failures and controls
selected into the subcohort are approximately the same as in
the previous simulation. Results are given in Table 3, which
clearly show the advantage of using estimated weights.

4. Analysis of the HIV Vaccine Trial Data
We now analyze the HIV vaccine trial data using the weighted
likelihood method to investigate the association between anti-
body levels and HIV infection. We investigate the newest an-
tibody measurement described in Forthal et al. (2007), which
quantitates the degree to which the serum of a vaccine re-
cipient reduces (relative to control serum) the avidity of the
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Table 2
Biases for estimation of the γi’s in the simulations

Weighted Full data Naive Multiple
likelihood MLE estimator Pseudolikelihood imputation

n = 200, γi = −2.41
γ1 −0.13 −0.10 0.45 0.28 0.13
γ2 −0.07 −0.04 0.56 0.31 0.04
γ3 −0.02 −0.01 0.68 0.42 0.07
γ4 −0.04 −0.01 0.77 0.33 0.02
γ5 −0.06 −0.05 0.85 0.24 −0.03

n = 500, γi = −2.12
γ1 0.01 −0.02 0.57 0.53 0.06
γ2 −0.01 −0.01 0.64 0.29 0.03
γ3 −0.02 −0.03 0.72 0.30 0.09
γ4 −0.00 −0.03 0.85 0.24 0.03
γ5 −0.02 −0.02 1.04 0.31 0.02

n = 3000, true γi ≡ −3.51
γ1 −0.01 −0.01 1.55 1.60 0.04
γ2 −0.01 −0.00 1.63 1.23 0.04
γ3 −0.00 −0.01 1.76 1.28 0.03
γ4 −0.00 −0.00 1.93 1.28 0.04
γ5 −0.01 −0.00 2.11 1.28 0.01

Table 3
Comparing the weighted likelihood methods using true weights and estimated weights

β1 = 1 β2 = −1

Bias SE1 SE2 Coverage Bias SE1 SE2 Coverage

n = 200
True weights 0.046 0.195 0.212 0.938 −0.033 0.456 0.446 0.959
Estimated weights 0.037 0.185 0.181 0.917 −0.019 0.397 0.390 0.959

n = 500
True weights 0.020 0.129 0.121 0.939 0.001 0.288 0.278 0.940
Estimated weights 0.014 0.122 0.117 0.939 0.004 0.255 0.243 0.935

n = 3000
True weights 0.018 0.095 0.087 0.932 0.013 0.203 0.207 0.948
Estimated weights 0.018 0.085 0.080 0.937 0.007 0.158 0.166 0.955

SE1 = empirical standard error; SE2 = average of estimated standard errors.

binding of soluble CD4 to the GNE8 strain of HIV. We refer
to this antibody variable as the GNE8 CD4 avidity level. We
focus on measurements taken at months 6.5, 12.5, 18.5, 24.5,
and 30.5 to evaluate the relationship between peak GNE8
CD4 avidity levels and the rate of HIV infection. Because this
antibody variable was only obtained from vaccine recipients
who tested HIV negative at month 6, and the main scientific
goal is to evaluate the association in vaccine recipients after
they received the third immunization at month 6.5, the time
intervals for analysis are [6.5, 12), [12, 18), [18, 24), [24, 30),
[30, 36), and [36, ∞), where month 36 is the time of the fi-
nal study visit. Because there is only one measurement, if not
missing, for the peak GNE8 CD4 avidity level in each time
interval for each individual, it is reasonable to assume that
this measurement is constant in each time interval.

The GNE8 CD4 avidity level was measured for all infected
vaccine recipients and for a stratified random sample of un-
infected vaccine recipients. Placebo recipients are not used

in the analysis because their GNE8 CD4 avidity levels all
equal 0. We only consider men in the analysis because only
4 women were included in the case–cohort sample. The strat-
ification variable is defined by four demographic subgroups:
white low-risk men, nonwhite low-risk men, white higher-risk
men, and nonwhite higher-risk men, with sampling fractions
0.047, 0.176, 0.208, and 0.450, respectively. Here low (higher)-
risk subjects are those who had baseline behavioral risk score
(defined in Flynn et al., 2005) below or equal to (greater than)
2. The entire cohort size of vaccine recipients at the time-
origin month 6.5 is 3370, of whom 131 became HIV infected by
month 36. Among uninfected vaccine recipients, 115, 73, 71,
and 18 were sampled from the four strata for measuring the
GNE8 CD4 avidity level. Among the 277 sampled uninfected
vaccine recipients, 254 were right censored at month 36, and
23 were right censored at an earlier visit time.

In addition to the primary covariate of interest peak
GNE8 CD4 avidity level, other covariates included in the
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Table 4
Estimated log-relative hazards (RHs) of HIV infection in the vaccine trial

Medium-risk High-risk
(Antibody)1/5 White score score

log (RH) −1.204 −0.191 1.249 1.109
95% CI (−2.027, −0.342) (−0.736, 0.354) (0.728, 1.771) (0.489, 1.728)
P value 0.009 0.492 <0.001 <0.001

White: 1 for white, 0 for nonwhite.
Medium-risk group: risk score is equal to 2 or 3.
High-risk group: risk score is greater than 3.

Cox model analysis are race (white or nonwhite) and base-
line behavioral risk score. The baseline risk score is catego-
rized into three groups: low (<2), medium (2 or 3), and high
(>3). The peak antibody level is time dependent, but is as-
sumed to be constant between two adjacent vaccine shots.
It is measured at time points described at the beginning of
Section 2.3.

To handle the missing covariate data we use the multi-
ple imputation approach described in Section 2.3. During the
data exploration we found that the contribution of the an-
tibody level in model (1) is monotone, but not linear, with
faster increase at lower antibody levels. By trying out a few
power transformations of the antibody level, we found that
the one-fifth power transformation seemed to provide an es-
timated linear effect. Hence we implemented this transforma-
tion in the final analysis.

The results are presented in Table 4. We first investigated
interactions between antibody level and the other covariates,
and none are statistically significant. On main effects, the
race effect is not statistically significant, whereas baseline
risk group is highly significant. Compared to the low-risk
group, the estimated relative hazard of HIV infection for the
medium- or high-risk groups is approximately tripled, con-
trolling for antibody level and race. The GNE8 CD4 avidity
levels are significantly inversely associated with HIV infec-
tion rate. Note that on their original scale the antibody levels
range from 0 to about 0.75, and their transformed values range
from 0 to about 0.95. From Table 4 we see that the estimated
log-relative hazard of infection for every 0.1 unit increase in
the one-fifth power of antibody level is −0.120 with 95% con-
fidence interval of (−0.203, −0.034), controlling for race and
baseline risk score. Transformed back to the original scale,
the strength of association is larger at lower values of the an-
tibody level. For example, an antibody level of 0.25 compared
to 0 reduces the hazard of HIV infection by about 59.8%; an
antibody level of 0.5 compared to 0.25 reduces the hazard
by 12.7%; and the antibody level of 0.75 compared to 0.5 re-
duces the hazard by 8.5%, controlling for race and baseline
risk score.

5. Discussion
The case–cohort sampling considered here is independent
Bernoulli sampling that yields random sample sizes. The
advantage of this sampling scheme is the resulting i.i.d. struc-
ture of the data, which leads to parameter estimators with
more manageable asymptotic properties. An alternative ap-
proach would be sampling without replacement, wherein the
number of sampled subjects is fixed. A different proof of the

large sample properties needs to be developed for the non-
i.i.d. sampling method. The method of Breslow and Wellner
(2007) may apply.

It should also be noted that, although the weighted like-
lihood estimator provides an intuitively reasonable method
that can be easily carried out numerically, it is not the most
efficient estimator. Efficient estimation will in general involve
the joint distribution of covariates and high-dimensional inte-
gration, and hence is much more complicated, especially when
some covariates are continuous. When covariates are discrete,
a simpler derivation is possible, but not pursued here.

We assume constant covariates within each time interval
for the HIV vaccine case–cohort study. An ideal model with-
out such assumption would require both (1) a model of how
the covariate varies in continuous time; and (2) a model of
when a failure event occurred in an interval. For the HIV
data, we know from past experiments that the antibody lev-
els tend to decline after they are measured (because they are
measured at “peak” immunogenicity time points). However,
we do not have “trough” values (i.e., measurements on blood
samples taken just before another booster immunization). If
we did have the trough values, then perhaps a simple para-
metric model could be incorporated in the Cox model, but
without them it does not seem possible. It is of interest to
extend the method to relax the constancy assumption, but
because it is complicated and cannot be done for the moti-
vating data set, it is beyond the scope of this article.

6. Supplementary Materials
Web Appendices referenced in Section 2 are available un-
der the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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