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Abstract-Primary cultures of rat brain astrocytes were used to examine the uptake of the glucose 
analogue, 2-deoxy-d-glucose (2-DOG). 2-DOG competes with glucose for uptake, indicating that both 
are transported by the same carrier system. Extracellular K +  at 1 1 . 9 m ~  increased the uptake of 
2-DOG at 2-DOG concentrations greater than 100 p ~ .  Uptake appears Na+-dependent only at high 
concentrations of 2-DOG. This suggests that the extracellular concentrations of Na+ and K'  may 
regulate the astrocytic uptake of 2-DOG. 

THE REGULATION of glucose uptake in the nervous 
system is poorly understood. Glucose is virtually the 
sole carbon source for the adult mammalian brain 
(KETY, 1957; BALAZS, 1970). It is rapidly taken up 
both in oiuo (KETY, 1957; PARDRIDGE & OLDENDORF, 
1975) and in uitro (BACHELARD, 1971; HORTON et al., 
1973) and metabolized to amino acids, nucleic acids, 
and proteins (MAKER et al., 1976). Glucose is trans- 
ported into brain by either passive or facilitated diffu- 
sion (PARDRIDGE & OLDENDORF, 1975), but little is 
known about the mechanism of, or regulation of glu- 
cose uptake in the various cell types in brain. 

The uptake of glucose may be the rate-limiting step 
in cerebral glycolytic metabolism (ROLLESTON & 
NEWSHOLME, 1967; MAKER et al., 1976). It appears 
to be ion-dependent, requiring both K +  and Na+ 
(SCHULTZ & CURRAN, 1970). This implies that extra- 
cellular K +  may act as a modulator of glucose uptake 
in uioo. The close apposition of neuronal and glial 
membranes (PETERS & PALAY, 1965) gives credence 
to this possibility. Extracellular K +  may reach levels 
of 9-1 2 mM in the stimulated intact cat cortex, and 
at the upper limits of [K'l0,,, glial membranes depo- 
larize (SOMJEN, 1975). Increased extracellular K +  ele- 
vates the O2 consumption of brain slices (MCILWAIN, 
1951, 1953; HERTZ & CLAUSEN, 1963), of hand dis- 
sected glia (HERTZ, 1966) and of cultured astrocytes 
(HERTZ, 1973a, h ;  HERTZ et a/., 1973). Indeed, HERTZ, 
(1973a, b) has suggested that astrocytes may be the 
cerebral cell type most affected by shifts in extracellu- 
lar K +  

A technique for the culture of pure populations of 
non-neoplastic astrocytes (CUMMINS & GLOVER, 1978) 
has allowed us to explore the control of glucose 
uptake by K + .  We demonstrate here that K +  modu- 
lates the uptake of the glucose analog 2-deoxy-d- 
glucose (2-DOG) in astrocytes in uitro. 

MATERIALS AND METHODS 

The technique for culturing astrocytes from neonatal rat 
brain has been described elsewhere (CUMMINS & GLOVER. 
1978). Briefly, forebrains of 3-4-day-old neonatal rats were 
dissected under sterile conditions, minced and trypsinized 
in 0.25% trypsin in Earle's Balanced Salt Solution (BSS). 
The suspension was centrifuged, and the pellet was washed 
once in BSS, and diluted to yield 10 60 x 15 mm plates 
(3002 series, Falcon Plastics) per forebrain. Cells were 
grown in a medium composed of 10% fetal bovine serum 
in MEM, with either Earle's or Hank's BSS. The medium 
was supplemented with 100 U penicillin, 100 pg streptomy- 
cin, and lOOU polymyxin per ml medium. Cells were 
grown in a National incubator, in an atmosphere of 95% 
air and 5% C02 .  Under these conditions, cells grew to 
confluency in 12-14 days. Glial specific stains were used 
to aid in identifying and characterizing the confluent cells 
(CUMMINS & GLOVER, 1978). 

Radioactive 2-deoxy-d-glucose, C3H(G)], was obtained 
from New England Nuclear (Boston, MA) and had a 
specific activity of 10 Ci/mmol. Crystalline 2-DOG was 
obtained from Sigma Chemical Co., and PL Biochemicals. 
The purity of both preparations was tested by tlc, and 
found to contain less than 1.0% glucose. 

Uptake of 2-DOG was performed on confluent cultures 
16-18 days after plating. Sixty millimeter Petri dishes (Fal- 
con Ware, 3002 Series) were used routinely. Dishes were 
removed from the incubator, media poured off and the 
edges blotted. The plates were washed with 12-15ml of 
0.9% NaCl at room temperature, inverted, and blotted. 
Two milliliters of warm (37°C) incubating solution contain- 
ing the desired concentrations of 2-DOG and K '  ions 
were added and the dishes incubated at 37°C. At the indi- 
cated times, the incubation solution was poured off, and 
plates were rapidly washed 3 times each with approx 20 ml 
of ice-cold 0.9% NaCI. Two milliliters of 0.4 N-NaOH was 
immediately added to stop the uptake and digest the cell 
monolayer (KLETZIEN & PURDUE, 1974). 

To determine non-specific binding of radioactive 
2-DOG, fresh dishes were washed with ice cold 0.9% NaCI. 
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and the edges blotted. Two milliliters ice-cold medium was 
added containing the appropriate concentration of 2-DOG 
and ions. The medium was rapidly swirled and poured 
off (3-5s). Plates were washed again with ice-cold 0.9% 
NaCl and the cells digested in NaOH. After 12-14h at 
4°C the cells were completely digested. An equal volume 
of 0.4 N-HCI was added, and duplicate aliquots counted. 
Samples were corrected for quenching on the basis of inter- 
nal standardization. Values for blanks were subtracted 
from each time point to give the indicated uptake. 

To determine protein content, five culture dishes were 
taken from the same batch on the same day as the uptake 
experiments. Cells washed free of medium were homogen- 
ized, and the protein determined (LOWRY et at., 1951). 

Unless indicated otherwise, uptake of 2-DOG was 
measured in a medium of 5.3mM-KCI. 150mM-NaC1, 
1.0 mM-CaCl,, 600 pM-MgCI,, I .6 ~ M - K H ~ P O ~  and 
4.3 mM-Na2HP04 Final concentrations of each cation 
were 158.6 mequiv/l. Na' and 6.9 mequiv/l. K'. When the 
ionic composition of the medium was varied, Na' was 
substituted for K +  isoosmotically. 

To determine the intracellular concentration of 
2-DOG-6-P04, an aliquot of cell extract was run on silica 
gel tlc plates in chloroform-methanol-water (60: 70: 26). 
The dried plates were sprayed for reducing sugar (BLOCK 
et at., 1958) revealing two spots which were established 
to be 2-DOG and 2-DOG-6-POe Both spots were scraped 
from the plates and their radioactivity determined. 

RESULTS 

Confluent cells showed the characteristic mor- 
phology of astrocytes in uitro (SHEIN, 1965; NAKAI 
& OKAMOTO, 1968; MURRAY, 1968; ANTANITUS et al., 
1975). The cells were flat, and possessed several pro- 
cesses but showed no obvious polarity. Nuclei were 
ovoid and contained one or two nucleoli. 

When stained with glial specific stains, confluent 
cultures appear similar to astrocytes in uiuo (Fig. 1). 
Staining was uniform and very few cells did not 
impregnate. Morphological, histological, and cyto- 
chemical characterization of cultured cells appear 
to indicate that our technique yields a homotypic 
population of astrocytes (CUMMINS & GLOVER, 1978) 
(Fig. 1). 

Since rapidly growing cultures take up sugar ana- 
logs more rapidly than confluent cultures (SEFTIN & 
RUBIN, 1971; KLETZIEN & PURDUE, 1974), uptake 
studies were always performed on cultures 16-18 days 
old, and fed 48 h prior to the experiments. A time 
course of the uptake of 2 m ~ - 2 - D 0 G  shows that it 
was linear for at least 15 min (Fig. 2). 

Kinetic parameters of 2-DOG uptake were deter- 
mined in media containing 0.1, 0.25, 0.5 and 
1 .0m~-2-DOG in the presence and absence of 
l.OmM-glucose, and after 15 min of incubation. A 
Lineweaver-Burk plot of 2-DOG uptake is shown in 
Fig. 3. A K ,  for the uptake of 0 . 3 7 m ~  was deter- 
mined with a V,,, of 189nmol/mg protein/l5 min. 
These values are lower than reported for 2-DOG 
uptake by non-nervous tissue (RENNER et al., 1972; 
KLETZIEN & PURDUE, 1974; SANDRA & PRZYBYLSKI, 
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FIG. 2. Time course of 2-DOG uptake. Confluent cells 
were incubated for the indicated time in 2.0m~-2-DOG, 
in a buffer containing 6.9 mM-K+, and 158.6 mM-Na'. The 
cells were washed at the end of the incubation, and 
digested with 0.4 N-NaOH, according to Materials and 
Methods. Duplicate aliquots from 3 to 5 plates were 
counted and averaged and the S.E.M. determined for each 
point. In this and the two following figures, only points 

with the S.E.M. greater than 10% will show error bars. 

1975), lower than those reported for brain slices 
(BACHELARD, 1971) and whole brain (HORTON et al., 
1973; PARDRIDGE & OLDENDORF, 1975), close to 
values reported for synaptosomes (DIAMOND & FISH- 

2-DOG and glucose may be transported by the 
same carrier system (BIDDER, 1968; BACHELARD et al., 
1971; BETZ & GILBOE, 1974). Glucose inhibition of 
2-DOG uptake (BACHELARD, 1971; HORTON et al., 
1973; KOHN & CLAUSEN, 1972) is therefore evidence 
that the carrier systems are the same. Figure 3 also 
shows that 1.0 mM-glucose competitively inhibited 
2-DOG uptake. An apparent K i  value of 3.3 mM was 
determined. 

MAN, 1973). 

240 r 

2ool I60 

0 

I I I 
-4  - 2  0 2 4 6 8 10 12 

I / s ,  mM-' 

FIG. 3. Kinetics of 2-DOG uptake, and the competitive 
inhibition of 2-DOG uptake by glucose. 2-DOG at 0.10, 
0.25, 0.50 and 1 . 0 0 m ~  was incubated with (-0) or 
without (M) 1 . 0 m ~  glucose for 15min. Units: V, 
pmol2-DOG taken up per ml protein in 15 min of incuba- 
tion: S, mM. The V,,, is 189nmol/mg protein x 15min, 
and the apparent Ki is 3.3 mM. Each point represents dupli- 

cate determinations on 3-5 culture dishes. 



FIG. 1. Morphology and cytochemistry of cultivated astrocytes. Top: living cells, phase contrast photo- 
micrograph, 200 x . Middle: confluent astrocytes stained with Mallory's phosphotungstic acid hematox- 
ylin. For details, consult CUMMINS & GLOVER (1978). Bottom: cells stained with Cajal's Gold Sublimate 
method. Astrocytes stain ubiquitously with this astrocyte specific stain. For details of this procedure, 

consult CUMMINS & GLOVER (1978). 
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FIG. 4. Potassium-dependence of 2-DOG uptake. Cultures 
were incubated with the indicated concentration of 2-DOG 
for 15min. The final concentration of NaCl + KC1 was 
163 mM. To achieve the indicated concentration of K', 
KCI was isoosmotically substituted for NaCl. Each point 
represents the average of duplicate determinations on 3-5 

dishes. 

2-DOG uptake was examined under conditions of 
varying extracellular K * concentrations. When Na+ 
was replaced isoosmotically with K', sugar uptake 
increased at 2-DOG concentrations greater than 
1 0 0 p ~ ,  and reached a maximum at 11 .9m~-K+.  In- 
creasing K' concentration had a mixed effect on 
2-DOG uptake when compared to levels seen at 
6.9m~-K'.  2-DOG uptake was also examined in a 
K +  and Na' free medium and found to be decreased 
at most 2-DOG concentrations as shown in Fig. 4. 

In brain, 2-DOG is rapidly phosphorylated to 
'2-DOG4-phosphate by hexokinase (DIAMOND & 
FISHMAN, 1973). This phosphorylated form usually 
constitutes the preponderance of intracellular 
2-DOG. HORTON et al. (1973) found that 
2-DOG-6-P04 constituted 60% of the total in a 
whole brain preparation, while DIAMOND & FISHMAN 
(1973) found the phosphorylated form to represent 
77% of the total in a synaptosomal preparation. 

To assess the effects of extracellular Kt on the 
phosphorylation of 2-DOG, aliquots of cellular 
extract were separated on silica gel tlc plates, and 
the relative proportion of 2-DOG and 2-DOG4-PO4 
was determined. The percentages of 2-DOG and 
2-DOG4-P04 are shown in Table 1. Elevations in 
extracellular K ' failed to affect the phosphorylation 
of transported 2-DOG. 

DISCUSSION 

Astrocyte-like cells have been cultured from adult 
human (PONTEN & MCINTYRE, 1968), fetal human 
(SHEIN, 1965), fetal hamster (SHEIN et al., 1970), and 
embryonic chick brain (BOOHER & SENSENBRENNER, 
1971). These cells have been characterized as poly- 
morphic, with ovoid nuclei, and processes of variable 

TABLE 1. RATIO BETWEEN FREE AND PHOSPHORYLATED 
2-DOG-EFFECT OF EXTRACELLULAR Kt 

K& 2-DOG 
(mM) % Free % Phosphorylated 

6.9 0.10 50 50 
50 0.25 - 

0.50 33 66 
1 .oo 51 49 

11.9 0.10 50 50 
0.25 45 55 
0.50 51 49 
1 .oo 55 45 

16.9 0.10 51 49 
0.25 42 58 
0.50 44 56 
1 .oo 55 45 

26.9 0.10 45 55 
0.25 42 58 
0.50 42 58 
1 .oo 

52.9 0.10 46 54 
0.25 45 55 
0.50 42 58 
1 .oo 26 14 

- - 

Aliquots of cell digestate were run on silica gel tlc plates, 
as described in Materials and Methods. The plates were 
stained, the spots scraped into scintillation vials and 
counted. Incubation for 15 min as in Fig. 4. 

length (NAKAI & OKAMOTO, 1968; LUMSDEN, 1968). 
Cultures derived from neonatal rat brain (CUMMINS 
& GLOVER, 1978) produce a population of astrocytes 
which evince morphological, histochemical and cyto- 
chemical characteristics similar to astrocytes in situ. 
These cells resemble astrocytes by the morphological 
criteria of PONTEN & MCINTYRE (1968), SHEIN (1965), 
SHEIN et al. (1970), NAKAI & OKAMOTW (1968), MUR- 
RAY (1968) and LUMSDEN (1968). Moreover, the cul- 
tured astrocytes stain with astrocyte-specific stains, 
and also contain significant amounts of glycogen, a 
cytoplasmic constituent which S O ~ L O  & PALAY 
(1968), and PETERS et al. (1976) have demonstrated 
in brain astrocytes. 

The control of hexose uptake in nervous tissue is 
not well understood. Control of hexose uptake may 
be more complex in brain than in other tissues due 
to the blood-brain barrier for hexoses (PARDRIDGE 
& OLDENWRF, 1975), the multiplicity of compart- 
ments in brain (LUND-ANDERSON et al., 1976), as well 
as differences in the uptake properties of the constitu- 
ent cell types. We chose to use 2-DOG as a model 
hexose to examine the uptake of sugars by cultured 
astrocytes. This substance is readily taken up by brain 
in uiuo (BIDDER, 1968; PARDRIDGE & OLDENDORF, 
1975), by brain slices in uitro (BACHELARD, 1971; 
Coom & ROBINSON, 1971) and by synaptosomes 
(DIAMOND & FISHMAN, 1973; HEATDN & BACHELARD, 
1973). Furthermore, it is not metabolized in brain 
beyond the phosphorylation step (SOLS & CRANE, 
1954; BACHELARD et al., 1971). 

Of the two glucose analogs most often used to 
study the parameters of hexose uptake, 2-DOG 
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appears t o  be the one most closely related to glucose 
in its uptake properties. 2-DOG is a competitive in- 
hibitor of glucose uptake in brain (PARDRIDGE & 
OLDENDORF, 1957), whereas glucose does not appear 
t o  compete with 3-0-methylglucose in any simple 
manner (COOKE & ROBINSON, 1971). Since glucose is 
a competitive inhibitor of 2-DOG uptake in astro- 
cytes, we feel justified in using 2-DOG as a model 
for examining the regulation of glucose uptake in 
astrocytes. 

Levels of extracellular K +  in brain remain rela- 
tively constant, with extreme stimulation of neurons 
increasing the extracellular Kf  by about 6mM to a 
final concentration of 9-12 mM (SOMJEN, 1975; SOMJEN 
K t  a/., 1976). We have demonstrated that for most 
2-DOG concentrations maximal 2-DOG uptake in 
oitro occurred a t  1 1.9 mM-K+. This finding suggests 
that the extracellular levels of K +  in brain may be 
an important regulator of hexose uptake by astrocytes 
in situ. 

Sugar uptake is N a +  dependent in most mam- 
malian tissues (KOHN & CLAUSEN, 1971; SCHULTZ & 
CURRAN, 1970). In most systems there is also a clear 
K +  dependence of uptake processes (BIHLER & SAW, 
1971a, b) and sugar transport in excitable cells 
appears t o  be a function of both K +  and Na' extra- 
cellular concentrations (RYBOVA, 1959; BHATTA- 
CHARYA, 1961). The observed Na+ dependence of the 
astrocytic uptake of 2-DOG is in marked contrast 
to the Na+ independent hexose uptake reported for 
whole brain (PARDRIDGE & OLDENDORF, 1975; LUND- 
ANDERSON et al., 1976). 

The results presented here indicate that astrocytes 
are closely attuned to the metabolism of neurons, and 
that astrocyte metabolism may be regulated by one 
aspect of neuronal activity, the level of extracellular 
K +  
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