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SUMMARY. Randomized clinical trials with rare primary endpoints or long duration times are costly. Be- 
cause of this, there has been increasing interest in replacing the true endpoint with an earlier measured 
marker. However, surrogate markers must be appropriately validated. A quantitative measure for the propor- 
tion of treatment effect explained by the marker in a specific trial is a useful concept. Freedman, Graubard, 
and Schatzkin (1992, Statistics in Medicine 11, 167-178) suggested such a measure of surrogacy by the ratio 
of regression coefficients for the treatment indicator from two separate models with or without adjusting 
for the surrogate marker. However, it has been shown that this measure is very variable and there is no 
guarantee that the two models both fit. In this article, we propose alternative measures of the proportion 
explained that adapts an idea in Tsiatis, DeGruttola, and Wulfsohn (1995, Journal of the American Sta- 
tistical Association 90, 27-37). The new measures require fewer assumptions in estimation and allow more 
flexibility in modeling. The estimates of these different measures are compared using data from an ophthal- 
mology clinical trial and a series of simulation studies. The results suggest that the new measures are less 
variable. 
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1. Introduction 
Clinical trials with rare primary endpoints or long duration 
times often require large sample sizes and extensive periods of 
follow-up. Because of this, there has been increasing interest 
in using surrogate endpoints in lieu of the primary endpoints 
in these situations. Surrogate endpoints are usually interme- 
diate biomarkers in disease development that can be observed 
and assessed earlier and are often easy to  measure. They are 
generally proposed based on the biological process of a disease 
and their strong correlations with the primary endpoint (El- 
lenberg and Hamilton, 1989; Schatzkin et al., 1990; Fleming, 
1992). However, correlation alone is not a good statistical cri- 
terion for surrogate validation. For example, in AIDS-related 
trials, it is known that the levels of CD4 counts and virus 
load are associated with AIDS and death. But data suggest 
that treatment-induced improvements in CD4 or viral RNA 
load do not reliably predict treatment-induced changes in the 
primary clinical outcomes (Lagakos and Hoth, 1992; Fleming 
and DeMets, 1996). 

Prentice (1989) proposed a formal definition of surrogate 
endpoints and gave general operational criteria for validation 
of the surrogate endpoints. By his criteria, an appropriate 
surrogate endpoint is required to fully capture the treatment 
effect on the primary endpoint. This is rather too stringent 
a criterion and is unlikely to be satisfied completely. In prac- 
tice, it is likely that a surrogate endpoint may explain part but 
not all the treatment effect. However, the more explained, the 

better we will perceive the marker as a surrogate endpoint. 
Thus, a quantitative measure of the proportion of the treat- 
ment effect that is explained by the surrogate marker would 
be a useful summary measure. For convenience, we refer to the 
proportion of the treatment effect explained by the biomarker 
as PE. Freedman, Graubard, and Schatzkin (1992) proposed 
such a quantitative measure for a single trial. 

Daniels and Hughes (1997) proposed a meta-analysis nieth- 
od for the evaluation of a potential surrogate marker. A Bayes- 
ian approach was used to model the association between the 
treatment effects on the primary endpoints and the treatment 
effects on the surrogate endpoints from multiple clinical trials. 
A marker is considered as a valid surrogate if the association 
is significantly different from zero. Their approach enables one 
to obtain prediction intervals for the treatment effect on the 
primary outcome given the estimated treatment effect on the 
surrogate markers from a new trial. 

Buyse et al. (2000) developed a new set of criteria for sur- 
rogate validation within the multiple clinical t.rial settings. 
They proposed a trial-level and an individual-level criteria. 
The trial-level criterion is the coefficient of determination 
( R 2 )  for prediction of the treatment effect on the primary 
endpoint conditioned on the treatment effect on the surre  
gate. The individual-level criterion is the correlation between 
the surrogate and the primary endpoint at the subject level. 

In this article, we focus our attention on measures for PE  
in the context of a single randomized clinical trial. The follow- 

803 



804 Biometrics, December 2002 

ing notation is adopted: T and S denote the random variables 
for the primary endpoint and surrogate markers, respectively. 
2 is the binary treatment indicator variable, with Z = 1 for 
treatment (or new treatment) and Z = 0 for placebo (or stan- 
dard treatment). We will be assuming throughout the article 
that there is a treatment effect on the primary endpoint, i.e., 
P(T 1 2) # P(T) ,  where P(.) denotes the probability distri- 
bution. 

In a randomized clinical trial, a perfect surrogate occurs 
when S captures all the dependence of T on 2. In other 
words, P(T I 2,s) = P ( T  1 S) .  A useless surrogate can 
occur in cases where, conditional on the treatment assign- 
ments, the surrogate is independent of the primary endpoint, 
P ( T  I 2,s) = P(T I 2). A useless surrogate can also oc- 
cur when S is independent of the treatment indicator Z, 
P(S I 2) = P(S). A partial surrogate occurs when the sur- 
rogate endpoint captures some but not all the dependence of 
T on 2. An ideal measure of PE  will be one for a perfect 
surrogate, zero for a useless surrogate, and between zero and 
one for a partial surrogate. 

In Section 2, we review the quantitative measure for PE  
proposed by Freedman et al. (1992). In Section 3, we propose 
new measures for PE and investigate some of their properties. 
In Section 4, we discuss approaches to estimation and infer- 
ence for the new measures. In Section 5 ,  data from a clinical 
trial in ophthalmology are used to estimate the new measures 
and Freedman’s measure. In Section 6, simulation studies are 
carried out t o  compare the new measures with Freedman’s 
measure in cases where T and S are binary. 

2. Freedman’s Measure for Proportion of Treatment 

Freedman et al. (1992) proposed a measure for PE within the 
context of a binary primary endpoint. The measure, denoted 
P ,  is defined based on two logistic models, 

Effect Explained 

and 

and P = (p  - p~) / , / 3  = 1 - ps/p, the difference between the 
treatment effect with or without adjusting for the surrogate 
marker divided by the unadjusted treatment effect. Assuming 
treatment has a significant effect on the primary outcome, 
then P = 1 if /!Is = 0 and P = 0 if /!Is = p. The measure 
P generalizes in obvious ways for other nonbinary variables 
T with appropriate models, e.g., time-to-event outcome with 
proportional hazard (PH) models. 

Freedman’s P suffers a number of drawbacks (Daniels and 
Hughes, 1997; Lin, Fleming, and DeGruttola, 1997; Buyse and 
Molenberghs, 1998; Bycott and Taylor, 1998). First, models 
for [T 1 S,Z]  and [T 1 Z]  will be fitted simultaneously for 
estimation of P. However, in general, they will not both be 
true at the same time. Assuming the model for [T I S ,Z]  is 
the correct one, integration with respect to P ( S  I Z) will not 
usually result in the exact linear form as the model for [T I Z] 
except for a few special cases. Thus, in general, at least one 
model fitted will be misspecified. Lin et al. (1997) studied 
the behavior of estimated coefficients from misspecified PH 
models for censored failure time data. 

Another drawback is that calculation of P requires there 
to be no significant interaction term between the surrogate S 
and the treatment 2 in model (1). When the data suggest an 
interaction, P is not well defined. A third drawback for P to 
be a useful measure is that it has a large variability. TO get a 
reasonably precise estimate for P requires a highly significant 
unadjusted treatme$ effect or a large sample size. Otherwise, 
the point estimate P can lie outside [0,1] and the confidence 
interval for P frequently covers the whole [0,1] interval and 
is too wide to be useful (Freedman et al., 1992; DeGruttola 
et al., 1996; Lin et al., 1997; Bycott and Taylor, 1998). 

3. A New Measure for Proportion Explained 
3.1 Definition of F 
Tsiatis, DeGruttola, and Wulfsohn (1995) studied the relai 
tionship between survival and longitudinal CD4 counts. A 
model for the CD4 trajectory in each treatment group is 
developed. Let S( t ,  Tr) and S( t ,  P1) denote the predicted 
survival curve in the treatment group and the placebo group, 
respectively. To see how much survival benefit could have been 
predicted by just the increase in CD4 counts, using the hazard 
function for the placebo group, the predicted survival curve 
S(t,mix) for an average CD4 trajectory from the treatment 
group was computed. If CD4 counts serve as a useful surrogate 
endpoint, S(t,rniz) would to be close to S(t ,Tr) ,  whereas if 
changes in CD4 explain very little of the treatment effect, 
S(t,mix) would be close to S(t,Pl). The relative position of 
S( t ,  mix) between S( t ,  Tr) and S( t ,  P1) was suggested as a way 
to assess the proportion of treatment effect explained. 

Motivated by their work, we propose a new measure F for 
PE. We refer to the placebo group (Z = 0) as group A and to 
the treatment group (Z = 1) as group B. The new measure is 
F = ( A A - A B ) / ( A A - B B ) ,  where AA = h(JgA(s)dPA(s)), 
BB = h(lgB(s)dPB(s)), and AB = h(/gA(S)dPB(S)). Here 
PA(S) and PB(S)  denote the distribution of S in groups A 
and B, respectively. gA(S) and gB(S) are functions of the 
conditional distribution of T given S in the placebo and 
treatment groups, respectively. For example, gA (S) and gB ( S )  
can be the mean of this distribution. h(.) is a monotonic 
function. In general, h(.) ,  gA(S), and g B ( S )  are chosen such 
that ( A A  - BB)  will be the desired measure of treatment 
effect on the primary endpoint T. 

To explain the idea, let T be a binary variable. Choose 
h(u) = u, gA(S) = Pr(T = 1 I s,z = a), and gB(S) = 
Pr(T = 1 1 S , Z  = 1). Then population quantities AA = 
Pr(T = 1 1 Z = 0) and BB = Pr(T = 1 1 Z = 1). 
The treatment effect ( A A  - BB)  is the difference on the 
probability scale between the two groups. AA is the weighted 
mean of the conditional probability gA(S) with weight given 
by the density of S in the placebo group. Similarly, AB = 
i g A ( s ) d P ~ ( s )  is the weighted mean of gA(S) with the density 
of S in the treatment group as weight. Hence, AB measures 
what Pr(T = 1) in the placebo group would be if the values of 
the surrogate are distributed as those in the treatment group. 
If T = 1 represents disease occurrence, then A A  - AB can 
be interpreted as the change in the risk that is due to the 
change in distribution of S induced by the treatment. A com- 
plementary form of F is F’ = ( B A  - B B ) / ( A A  - BB)  with 
B A  = h(Jgg(s)dPA(s)). Ideally, the values of F and F’ will 
be close to each other. 
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The choices of h( . ) ,  gA(S), and gB(S) define the treatment 
effect. For binary T, we could express the treatment effect 
on the probability scale using h(u) = u as shown above. 
Alternatively, we could let h(u) = logu/(l - u) and g(S)  = 
P(T = 1 1 S ,  2) if we believe the logit is the more natural scale 
on which to assess probabilities. In this case, the treatment 
effect is expressed by log(odds ratio) with AA = logit[Pr(T = 
1 [ Z = O)] and B B  = logit[Pr(T = 1 1 Z = l)]. For a time-to- 
event variable T, we may choose h(u) = u, gA(S) = Pr(T > 
c I S , z  = 0) and gB(S) = Pr(T > c 1 S,Z = l), where c 
is a prespecified time, say 5 years. Then the treatment effect 
(AA - BB)  is the difference in the probability of surviving at 
least 5 years between two groups. 

3.2 Conditions for Measure to Be Bounded Within [0,1] 
As a measure of proportion, we would prefer F and F’ to 
have values in the range from 0 to  1 with 0 indicating a useless 
surrogate and 1 a perfect one. However, this i s  not guaranteed. 
It is possible for F and F’ to be less than 0 or greater than 
1. In this section, we present and discuss the conditions for 
the population quantities F and F’ to be bounded within 
[0,1]. We will also discuss situations where these population 
quantities will be outside [0,1]. By population quantities, we 
mean F and F‘ as functions of the joint distribution of T and 
S ,  which can be interpreted as the values that would arise 
from an infinitely large sample. 

For simplicity, assume h(u) = u. For a perfect surrogate, 
the conditional distribution [T I S,Z] is the same as [T I S].  
Thus, gA(S) = g B ( S )  and F = F‘ = 1. For a useless 
surrogate, either p ~ ( s )  = p ~ ( s ) ,  or gA(S)  and g B ( s )  are 
constant with respect to S.  Both result in F = F’ = 0. Hence, 
for the perfect or useless scenario, the population quantities 
F and F’ are equal and take the desired values. 

For a partial surrogate, in special cases, eg., when the 
treatment effect on T is not a function of S ,  in other words, 
g A  (S) = gB(S)+c where c is a constant, F will be equal to F’. 
In general, F’ is likely to have different values from F.  As a 
measure of proportion, ideally, F and F’ will fall between zero 
and one in partial surrogate scenarios. However, this does not 
hold in all situations. Certain conditions need to  be satisfied 
for F and F‘ t o  be bounded within (0,l). 

Without the loss of generality, we assume AA > BB. Under 
this assumption, the conditions for F and F’ to be bounded 
within (0 , l )  are 

These conditions are best understood in terms of a plot of 
gA(S) and gB(S) versus S ,  as shown in Figure 1. [S 1 A] and 
[S I B] are the distributions of the surrogate marker in groups 
A and B, respectively. g(S 1 2) is a function of the distribution 
of [T I S, Z] for each value of 2. It could be the probability of 
disease or survivorship up to a certain time point or hazard 
at a certain time point. The position AA indicates approxim- 

surrcgale markel 

Figure 1. Illustration plot OfgA(S), gB(S) versus S. gA(S) 
and gB(S) are functions of the conditional distributions of 
[T [ S,Zl for group A (the placebo group) and group €3 
(the treatment group). The solid line in the plot is gA(S) 
and the dashed line is gB(S). AA indicates the position 
that is approximately the value of E A  [gA(S)]; similarly, AB 
approximates E B [ ~ A ( S ) ] ,  B A  approximates E A [ ~ B ( S ) ] ,  and 
BB approximates E B  [gB (S ) ] .  

ately the value of E A [ ~ A ( S ) ] ;  similarly, AB approximates 
E B  [gA ( S ) ] ,  B A  approximates E A  [gB ( S ) ] ,  and BB approxim- 
ates E B [ ~ B ( S ) ] .  For the perfect surrogate scenario, g A ( S )  = 
gB(s), and it is easy to see F = F’ = 1 from the plot. For 
the useless surrogate scenario, either [S 1 Z = 11 is identical 
t o  [s I z = 01 or gA(S) and gB(S)  become horizontal lines 
(constant with respect to S) .  Both give F = F’ = 0. For 
the partial surrogate scenario, graphically what is required 
for both F and F’ to lie between zero and one is that both 
AB and B A  lie between AA and BB. 

The four necessary and sufficient conditions C1-C4 can 
be further simplified depending on the shape of gA(S) and 
gB(S) and the distributions of S in the two groups. Plots 
similar to Figure 1 enable us to visualize relatively easily the 
necessary and sufficient conditions. Consider the cases where 
the distributions PA(S) and PB ( S )  have a stochastic ordering. 
Without loss of generality, assume PA(S) is stochastically 
higher than PB(S) ,  i.e., Pr(S 5 s 1 group B) 2 Pr(S 5 s 1 
group A) V s. It is easy to  see that 

R1: PA(S) stochastically higher than PB(S)  
R2: gA(S) and g B ( S )  are nondecreasing functions of s 
R3: gA(S) - gB(S) 2 0 for all S 

are sufficient but not necessary conditions for ClLC4 to be 
satisfied and hence for F and F‘ to be bounded within [0,1]. 
What is shown in Figure 1 is a typical case of such situations. 
Note gA(S) and g ~ ( s )  need not be parallel. In other words, 
the treatment effect can be a function of S.  Rl-R3 can be 
further weakened. For example, gA(S) - gB(S) 1 0 can be 
relaxed by allowing gA(S) and gB(S) to cross each other at 
certain points. Nondecreasing gA(S) and gB(S) can also be 
relaxed to  allow certain regions of g(S 1 2) t o  be decreasing. 
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R1-R3 are simpler than Cl-C4 and are easier to 
understand and check. Condition R1 is an assumption on how 
treatment affects the surrogate marker, and it is reasonable to 
think that it is satisfied for plausible markers being seriously 
considered in a randomized trial. Condition R2 is likely to 
be satisfied for any marker that is strongly associated with 
the primary endpoint. Condition R3 is the one that may 
not be satisfied in every trial. For example, if g A ( S )  and 
g B ( S )  represent the risk in the control and treatment groups, 
respectively, R3 requires that, conditioning on each value for 
the surrogate marker, the risk for the treated group should be 
consistently lower than the risk in the control group. R3 may 
not be true when there are unexpected aspects of the pathway 
between treatment, surrogate marker, arid primary endpoint. 
For example, unintended adverse effects can occur such that 
the risk is higher in the treated group than in the control 
group. In these cases, g A ( S )  is lower than gB(S)  instead of 
higher, as shown in Figure 1. If the magnitude of the adverse 
effect is strong, AA - BB can be negative while AA - AB and 
BA - BB are positive due to R1 and R2. As a result, F and 
F’ have negative values. If the magnitude of the adverse effect 
is weak, AA - B B  will be positive but less than AA - AB or 
BA - B B  and results in values greater than one for F and 

In cases where conditions C1-C4 or Rl-R3 are satisfied, the 
scale from zero to one corresponds to a meaningful transition 
from useless surrogacy to perfect surrogacy. However, as 
described above, the population quantities F (F’) can have 
values greater than one or less than zero, which most likely 
indicates the existence of unintended effects. 

3.3 Interpretation of F (F’) in Special Cases 
F is constructed based on the concept of trying to measure 
what the treatment effect would be if the surrogate marker in 
the nontreated group has the treatment-induced distribution 
and vice versa for F’. However, AB and B A  are two 
hypothetical quantities that are not observable. In this 
section, we investigate F (8‘’) in several special situations 
where they can be represented by familiar quantities. 

3.3.1 Normally distributed T and S .  In cases where both T 
and S are normally distributed with linear mean structure, 

F‘. 

si = a0 + a]ZZ + tS2 

Ti = yo + rizi + E T ~ ,  

where 

the model for T given ( S , Z )  is a linear model without an 
interaction term, 

T = Po + P1 s + P2Z + €*, 

where 
OT 
“S 

Po =yo - -Pff0, 

P1 = --P, 

Pz = 71 - -pal,  

“T 
US 

*T 
“ S  

aST 
“SOT ’ P =  ___ 

and 

E* N N (0, a$ (1 - p ’ ) )  

If we choose the treatment effect to be the difference in 
mean, then 

and 

Thus, F (F’) depends on the strength of the association 
between T and S (measured by P I ) ,  the effect of Z on S (al), 
and the adjusted treatment effect (P2) .  In this example, the 
linear form of the mean structure for [T I Z ]  can be obtained 
exactly by integrating E[T I S,Z] with respect to P(S  1 2). 
We note that 

p =  = PlW 
71 Pz +Pl%’  

which is equal to F (F’) .  Also note that, in this case, condition 
Rl  is satisfied if < 0 and R2 is satisfied if 01 2 0 and 
condition R3 is satisfied if P2 _< 0. 

3.3.2 Binary primary endpoint and binary surrogate 
marker. Many diagnostic markers, with appropriate cutoff 
values, are used in medical applications to predict disease. A 
good test would have high positive predictive value (PPV) 
and high negative predictive value (NPV). Let p+  denote 
Pr(disease) and p -  = 1 - pf . If a binary surrogate marker S 
is defined such that 

S = {  1 if positive diagiiosis 

and the treatment effect is the difference on the probability 
scale, then F = 6 y ~ / r  and F‘ = 6 7 B / 7 ,  where 

0 otherwise 

6 = Pr(S  = 1 1 Z = 0) - Pr (S  = 1 I 2 = I) ,  

which is the treatment effect on S ,  

7 = Pr(T = 1 1 Z = 0) - Pr(T = 1 I Z = I ) ,  

which is the treatment effect on T ,  

y~ = Pr (T  = 11 = o,s= 1) - Pr(T= 1 [ Z = 0,s = o) ,  
and 

y~ = Pr(T= 1 I Z = 1,s = 1) - P r ( T  = 1 j 2 = 1,s = 0). 

Y A  and y~ are equal to [(PPV - p f )  + (NPV - p - ) ]  in the 
placebo group and the treatment group, respectively; thus, y 
reflects the strength of the association between S and T ,  with 
larger y indicating higher association. F and F‘ are influenced 
by two components: the ratio of the treatment effect on S and 
T and the accuracy of the prediction of T based 011 S. For a 
given treatment effect on the primary outcome (T ) ,  the larger 
the effect on the surrogate marker (6) or the stronger the 
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association between S and T, the higher F and F’ will be. 
The two components of F (F’)  are very similar to the meas- 
ures Buyse and Molenberghs (1998) proposed for surrogate 
validation, relative effect (RE) and adjusted association. 

Condition R1 is satisfied if 6 > 0 and R2 is satisfied if 
YA 1 0 and Y B  2 0. R3 is satisfied if NPVA 5 NPVB 
and PPVA 2 PPVB, where (NPVA, PPVA) and (NPVB, 
PPVB) are the NPV and PPV in the placebo and treatment 
groups, respectively. Note in this case F = F’ if (PPV + 
N P V )  are the same in the treatment and placebo groups. 

3.3.3 Binary primary endpoint T. Now consider cases 
where T is binary and the effect of S on T in group B is 
related to that for group A by a linear shift on the logistic 
scale. In other words, 

logit(Pr(T = 1 1 S, Z ) )  = Po +PIS - wZ. 

Assume w to be a nonnegative constant so that treatment 
will reduce the odds of T = 1 given S = s. If we define the 
treatment effect (AA - BB) on the probability scale, then 

which leads to messy expressions for F and F‘. If instead 
we define the treatment effect on the logit probability scale 
and choose g A ( S )  and g B ( S )  to be gA(S)  = Po + P i s  and 
g B ( S )  = PO + P I S  - w,  then 

which simplifies to 

Pl(CLS,A - P S , B )  = - W 

Pl(PS,A - P S , B )  + w  01 b S , A  - p S , B )  + w ’ 
where p s , ~  and ~ S , B  are the expectation of S in the two 
groups. 

F’ equals F because g A ( s )  is a linear shift of g B ( s ) .  In 
this form, F (F’) combines three components: the magnitude 
of the effect of the treatment on the marker ( p s , ~  - p s , ~ ) ,  
the strength of the association between the marker and the 
endpoint ( P I ) ,  and the adjusted effect of the treatment on the 
endpoint (w). This form of F (F’), which we can think of as 
a transformation of the original one, also gives some insight 
into the meaning of F (F’). However, the original F on the 
probability scale may have a more informative interpretation 
in terms of the proportion of treatment effect being explained. 
In this case, where treatment effect is defined on the logit 
probability scale, condition R3 is satisfied if w is nonnegative 
and R2 is satisfied if 01 2 0. The condition R1 is equivalent 
to P S , A  > PS,B.  

4. Estimation and Inference 
4.1 Estimation 
Estimation of Freedman’s P requires joint modeling of [T 1 
S , Z ]  and [T I Z] ,  which leads to the possibility that one of 
the models may be misspecified. In addition, P is only defined 
when there is no significant interaction between S and Z for 
model [T I S, 21. In contrast, F (F’) requires the specification 

of [T I S ,Z]  and [S I Z].  Unlike P ,  estimation of F is 
not necessarily tied to the linear models and can be much 
more flexible. For example, we can fit a generalized linear 
model for [T 1 S,Z] to obtain estimates g A ( s )  and gB(s ) .  
Such models could include interactions between S and Z 
if needed. Or we may choose estimation approaches that 
impose less parametric structures on g A ( S ) ,  g B ( S ) ,  and 
their relationship. This flexibility in choice of estimation 
approaches enables F (F’) to be used in more general design 
settings than is P ,  especially if the linear no-interaction model 
is not preferred. 

To estimate F and F’, we need estimates for the distribu- 
tion [s 1 Z] and estimates for gA(S)  and g B ( s ) ,  denoted 
by i j ~ ( S )  and i j ~ ( S ) ,  respectively. [S I Z] can be estimated 
simply by the empirical distribution, which results in AA = 
( ~ / N A )  x C Z l  i j ~ ( S ~ ) ,  B k  = ( ~ / N B )  C z l  i j ~ ( S % ) ,  and A% = 
(1 f N B )  C,N=“,, i j~(s~), where NA and NB are the number of 
subjects in the placebo and treatment groups, respectively. If 
parametric forms are used for [S I 21, Monte Carlo methods 
can be used to  evaluate the integrals based on estimates of 
g A ( S ) ,  g B ( S ) ,  p ~ ( s ) ,  and p ~ ( s )  from the data. 

4.2 Confidence Intervals 
F (F’) is a ratio of parameters. For simplicity, denote F (F’) 
by r = 81/02. Let 011, 022, and u12 be the variance of the 
estimates 81, 82,  and their covariance, respectively. Three 
different approaches can be used to  construct the (1 - a)% 
confidence interval for F (F’). The first one is based on 
Fieller’s Theorem. It assumes that (el ,&) follows a bivariate 
normal distribution. The asymptotic (1 - a)% confidence set 
for r solves H ( r ) 2  5 Z:-,,2, where H(T)  = (61 --&)/(CII - 
2 ~ 6 1 2  + r2622)1/2, which could be a finite interval, a disjoint 
interval, or the real line. 

When the bivariate normal assumption is not appropriate 
or in cases where 011, 022, and u12 are not easy to compute, 
the bootstrap technique (Efron and Tibshirani, 1986) can be 
used to  obtain the confidence interval. The bias-corrected 
(BC) percentile method is implemented here. Let G ( s )  be 
the c.d.f. of the bootstrapped statistics i*, a(.) (the standard 
normal c.d.f.) and i (the sample estimate). zo = W1{G(?)} 
and rBC[CU] = G-’(@{Zzo + @-‘(a)}). Then the (1 - a)% 
BC confidence interval for T will be (rBC[a],rgC[l - a]). 

The third approach is based on Hwang (1995), who 
suggested that, in order to have good coverage probabilities, 
one should bootstrap the pivot quantity, If(?). Then the 
confidence set for the parameter of interest solves 1 5 H ( r )  5 
u, where 1 and u are the lower and upper limit of the (1 -a)% 
confidence interval for H ( T )  obtained from the BC percentile 
method. When the variances and covariance are not easy to 
calculate, a nested bootstrap computation may be needed to 
estimate o:~, 0a2, and aTz. 

The delta method could also be used to derive the con- 
fidence intervals for F and F’. Freedman (2001) compared, 
through computer simulations, the properties of confidence 
intervals for P based on Fieller’s Theorem with the delta 
method and found that Fieller’s method is superior to the 
delta method. In this article, we do not use the delta method 
to construct confidence intervals. 
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5. Application to Ophthalmology Data 
5.1 Ophthalmology Data 
This dataset (Buyse and Molenberghs, 1998) is from a 
randomized clinical trial in ophthalmology studying the 
effects of interferon-a in patients with age-related muscular 
degeneration (ARMD). Patients in the treatment group 
received interferon-a and those in the control group received 
placebo. A patient’s visual acuity was assessed through the 
ability to read lines on a vision chart. The primary endpoint 
of the trial was the proportion of patients who lost at least 
three lines of vision at 1 year. Buyse et al. used the loss of at 
least two lines of vision at 6 months as the surrogate. 

In summary, S and T are defined as 

0 

1 otherwise, 
0 

1 if otherwise, 

if patient had lost less than 
s = {  two lines of vision at 6 months, 

T = { three lines of vision at 1 year, 
if patient had lost less than 

and the data are 

Z S NO. of T = 0 NO. of T = 1 Total 

0 0 56 9 65 
0 1 8 30 38 
1 0 31 9 40 
1 1 9 38 47 

5.2 Estimation 
For this dataset, we choose h(u)  = u and g ~ ( s ) ,  g B ( s )  to be 
the conditional probability Pr(T = 1 1 S,Z) .  PA(s ) ,  PB(s) ,  
g A ( s ) ,  and g B ( s )  are empirically estimated from the sample 
proportions. The data suggest that the use of interferon 
expedites the degradation process of vision for patients. The 
overall effect of Z on T and the effect of Z on S are 
in the same direction. F and F’ estimate how much the 
negative effect of interferon =vision can be explains by 
S. T A  = 39/103 = 0.379, BB = 47/87 = 0.540, AB = 
(30/38)(47/87)+(9/65)(40/87) = 0.490, and F A  = (38/47) x 
(38/103) + (9/40)(65/103) = 0.440, leading to F = 0.690 
and F’ = 0.619. To estimate P,  niodel (1) and model (2) 
are both fitted to the data. The regression .coefficient (and 
standard error) for the unadjusted treatment effect @) is 
0.657 (f0.296) and for the adjusted treatment effect (ps) is 
0.364 (f0.377), giving P = 0.445. The point estimates for F ,  
F’, and P are all between zero and one, suggesting a partial 
surrogate. 

Condition R1 will be satisfied if P(S = 1 I 2 = 1) > P(S = 
1 I Z = 0). R2 will be satisfied if P(T = 1 I S = 1 ,Z)  2 
P(T = 1 1 S = 0, Z),  Z = 0 , l .  And R3 will be satisfied if 
P(T = 1 I S,Z = 1) 2 P(T = 1 I S,Z = O),S = 0 , l .  The 
data in the table suggest that R1, R2, and R3 are true. 

Three methods, as described earlier, are used to construct 
the confidence intervals for F ,  F’, and P.  The estimated 
variances of 6 and 6s from fitted models (1) and (2) are 
used as dl1 and $22, and d12 = ~ o r r ( P , B ~ ) ( ~ . 1 1 ~ 2 2 ) ~ ’ ~ ,  
where c5r(B,ps) is obtained from bootstrap samples. In 
this example, the numerator and denominator of F and 
F’ are functions of the multinomial probabilities, which are 
asymptotically normal. By the delta method, the variances 
and covariance for the numerator and denominator of F (PI)  
can be computed. For the bootstrap methods, parametric 
bootstrapping is used in which 1000 samples are generated 
from mult inomial distributions. 

The resulting 95% confidence intervals for F ,  F‘, and P 
estimated from the ophthalmology data are shown in Table 
1. Based on the result, the confidence intervals for F and 
F’ are smaller than the corresponding intervals for P.  In the 
first and second methods, there is at least a 30% reduction in 
the interval width of F (F’) compared with P. Although the 
upper bounds of all the confidence intervals are above one, the 
lower bounds of the confidence intervals for F or F’ are larger 
than zero, while the lower bounds for P are less than zero. The 
intervals obtained by the three different methods are fairly 
close to each other, which suggests the normal assumption 
for the numerator and denominator is reasonable. We also 
observe that there are some differences between the confidence 
intervals for F and F’ in terms of region covered, with the 
intervals for F’ shifted to smaller values. 

For a small fraction of the bootstrap samples, the estimates 
in the denominator of F ,  F’, or P are close to zero. Of the 
bootstrapped F (F’), 1.2% (1%) are outside the range [-4,4] 
and 2.8% of the bootstrapped P are outside the range [-4,4]. 
F, F’, and P that lie within [-4,4] are plotted against the 
unadjusted treatment effect p (as in model 2) (Figure 2). The 
plot also suggests that P has a larger variation and that F 
and F’ are more likely than P to be concentrated within the 
range [O, 11. 

6. Simulation Study 
Simulation studies were carried out to compare the behavior 
of F and F‘ to P in cases where both T and S are binary. 
Different sets of data, {Z = (0, l), S = (0, l), and T = (0, l)}, 
are generated according to the following two logistic models: 

h ^  

Table 1 
95% Confidence intervals of F ,  F’, and P for ophthalmology data 

Method 1, Method 2, Method 3, 
Fieller Theorem bootstrap directly bootstrap pivot 

95% confidence interval for F (0.17, 3.12) (0.21, 3.11) (0.19, 3.33) 
95% confidence interval for F’ (0.02, 2.57) (0.18, 2.87) (0.07, 2.56) 
95% confidence interval for P (-0.30, 4.35) (-0.31, 4.25) (-0.30, 3.04) 
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Unadbted Treatment Elf& Unad&!sled Treatment Enect 

Figure 2. Plots of F ,  F‘, and P from bootstrap samples 
for ophthalmology data against the unadjusted treatment ef- 
fect. Only the estimated values that are between [-4,4] are 
plotted. 

(4) 

Datasets are created for three scenarios: perfect, useless, and 
partial surrogates. In each scenario, we simulate 500 datasets 
and each dataset has a total of 200 subjects randomized to 
the treatment group or the placebo group with equal prob- 
abilities. The parameter values for each scenario are listed 
in Table 2. In all simulated cases, conditions Rl-R3 are all 
satisfied. 

We study the bias, variability, and coverage rate of 95% 
confidence intervals. The true value of F (F’) can be calcu- 
lated algebraically based on (3) and (4). For P ,  a large dataset 
(n  = 2000) is simulated and then logistic models (1) and (2) 
are fitted on this large dataset to get the estimate for the 
true value of P. Ninety-five percent confidence intervals for 
F ,  F‘, and P are calculated for each simulated dataset based 
on Fieller’s Theorem as described earlier. 

We show in Table 3 for each scenario the true value of F ,  
F‘, and P,  the lower and upper 2.5% percentiles and median 
of the estimates from 500 datasets, and coverage rate for 95% 
confidence intervals. The number of times (out of 500) that 
the 95% confidence intervals for F ,  F‘, and P lie within [0,1], 
have lower bounds no smaller than zero, or have upper bounds 
no larger than one are shown in Table 4. 

The results show that the bias for all three estimates are 
close to  zero. The coverage rates of the 95% confidence in- 
tervals based OF Fieller’s Theorem are close to the nominal 
level. Overall, F and F’ are less variable than P .  The ranges 
of 2.5% and 97.5% percentiles for F and F’ are mostly smaller 
and are about 30-85% of the ranges for P .  In the partial sur- 
rogate scenarios, the 2.5% percentiles of 3 and are mostly 
greater than 0.2, while the 2.5% percentiles of P are mostly 
below or near zero. Table 4 shows that 95% confidence inter- 
vals for F and F’ are, on average, 11 times more likely to fall 
between [0, I] than P. In the partial surrogate cases, the num- 
ber of times that the lower bounds for F and F’ are above 
zero are 1.5 to 5.5 times those for P.  These results suggest 
that the variabilities of F and F’ are smaller than P. In the 

Table 2 
Parameter settings for  simulations 

Scenario cases a1 01 0 2  B.? 

Perfect 1 1 .o 3.0 0 0 
2 1.5 3.0 0 0 
3 1.0 4.0 0 0 

Useless 1 0 3.0 0.8 0 
2 0 1.5 0.8 0 
3 0.5 0 0.8 0 

Partial 1 1.0 6.0 0.3 0 
2 1.0 3.0 0.45 0 
3 1.0 2.0 0.45 0 
4 0.5 2.0 0.68 0 
5 1.0 2.3 0.68 0.3 
6 1.0 2.3 0.68 -0.3 
7 1.0 2.3 0.68 0.68 
8 1.0 2.3 0.68 -0.68 

partial scenarios, which are most likely to happen in practice, 
the lower bounds of the confidence intervals for F and F’ are 
much more likely to be above zero than are the confidence 
intervals for P,  which indicates that F and F’ are more useful 
as measures for surrogacy. 

Although the variability of F (F’) is smaller than that of P ,  
the results suggest that the confidence intervals for F (F’) are 
still wide. The majority of the intervals for F and F’ extend 
beyond zero and/or one, especially the latter, as shown in Ta- 
ble 4. As discussed earlier, F (F’) are not true proportions 
with estimates bounded within [0,1]; thus, it is plausible for 
the values of F and F’ to be outside [0,1]. Table 3 shows that 
the 2.5% and 97.5% percentiles for F and from the 500 sim- 
ulated datasets can go outside [0,1], especially on the upper 
sides. It is not surprising that the confidence intervals can also 
include values less than zero and greater than one. Freedman 
(2001) shows that the lengths of the confidence intervals for 
P using Fieller’s Theorem decrease as the unadjusted treat- 
ment effect becomes more significant. For adequate statistical 
power to validate surrogate endpoints using P, the unadjusted 
effect would need to  be five or six times its standard error. 
It is likely that a stronger treatment effect will also result in 
shorter confidence intervals for F and F’. 

In the partial surrogacy scenarios, as expected, increasing 
the treatment effect on S and decreasing the treatment effect 
on T adjusting for S results in larger values for F ,  F’, and P. 
We observe that P has consistently lower values than F or F‘ 
inside the interval (0, l), which could be due to the different 
metrics used in estimating PE. 

We also observe that, in the useless surrogate scenarios 
(cases 1 and 2), where treatment has no effect on the sur- 
rogate marker (a  = 0), the large-sample limit for P is nega- 
tive while the large-sample limit for F and F’ are zero. This 
suggests that P is not measuring PE  appropriately in these 
situations. 

7. Discussion 
Appropriate statistical validation of the surrogacy for a bio- 
marker is important. Prentice (1989) suggests a strict valida- 
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Table 3 
Results from simulation studies for  F ,  F', and P .  Shown are the large-sample limit, median of the estimates, 

upper and lower 2.5% percentiles, and coverage m t e  of confidence interval based o n  Fieller's Theorem. 

Cover age 

F F' P 
&(2.5%,97.5%) True value Median 

Scenario Cases F F' P F  F ' P  F F' P 

Perfect 1 1 1 1 0.98 0.97 0.96 (0.45, 3.12) (0.47, 3.14) (0.15, 4.86) 0.94 0.95 0.96 
2 1  1 1 1.01 0.98 1.00 (0.58, 2.04) (0.58, 1.99) (0.44, 2.68) 0.95 0.95 0.96 
3 1  1 1 0.99 0.98 0.94 (0.58, 1.93) (0.58, 2.03) (0.13, 3.48) 0.95 0.95 0.96 

Useless 1 0.00 0.00 -0.56 0.00 0.00 -0.54 (-1.84, 1.28) (-1.61, 1.23) (-3.42, 1.31) 0.95 0.98 0.96 
2 0.00 0.00 -0.14 0.00 0.00 -0.13 (-0.78, 0.33) (-0.85, 0.35) (-1.16, 0.20) 0.98 0.99 0.94 
3 0.00 0.00 0.00 0.00 0.00 -0.00 (-0.24, 0.24) (-0.19, 0.27) (-0.17, 0.18) 0.99 1.0 0.94 

Partial 1 0.91 0.85 0.67 0.90 0.84 0.66 (0.64, 1.36) (0.50, 1.49) (-0.24, 2.33) 0.95 0.96 0.95 

3 0.54 0.57 0.45 0.54 0.56 0.44 (0.20, 1.52) (0.24, 1.63) (0.06, 1.56) 0.95 0.96 0.95 
2 0.71 0.68 0.50 0.69 0.68 0.47 (0.36, 1.32) (0.34, 1.34) (-0.03, 1.60) 0.94 0.96 0.95 

4 0.29 0.30 0.11 0.28 0.28 0.10 (-0.10, 0.78) (-0.11, 0.86) (-0.38, 0.79) 0.93 0.98 0.95 
5 0.45 0.49 0.27 0.45 0.48 0.25 (0.21, 0.82) (0.23, 0.94) (-0.08, 0.83) 0.95 0.97 0.96 
6 0.57 0.52 0.41 0.57 0.50 0.39 (0.26, 1.32) (0.23, 1.25) (0.06, 1.38) 0.95 0.97 0.96 

8 0.73 0.55 0.55 0.71 0.55 0.54 (0.27, 2.61) (0.21, 1.92) (0.12, 3.05) 0.95 0.96 0.96 
7 0.42 0.48 0.20 0.41 0.48 0.19 (0.20, 0.73) (0.23, 0.87) (-0.15, 0.64) 0.96 0.97 0.96 

tion criterion, which requires P(T I S , Z )  to be equal to 
P(T 1 S). Freedman et al. (1992) raise the concept of PE 
in surrogacy validation and propose a quantitative measure 
of the role a surrogate marker plays in the therapeutic path- 
ways of a treatment. Both of these two approaches focus on 
the conditional distribution [T I S , Z ]  in the assessment for 
surrogate endpoints. Daniels and Hughes (1997) and Buyse 
et al. (2000) develop a different concept. Let BT denote the 
treatment effect on the primary endpoint and 0 s  the treat- 
ment effect on the surrogate marker. &- is based on [T I 21 
and is 0 s  based on [S I 21. In their approaches, the main con- 
cerns are the relationship between BT and Bs, the prediction 

of BT based on Bs, and the precision of the prediction. The 
concept of assessing surrogacy by precision of predicting OT 
based on the relationship between 0~ and 0 s  is a useful one. 
However, in this approach, the therapeutic pathways through 
which treatment takes effect is not a major concern as long as 
the statistical association between OT and 0s is strong. Also, 
this type of approach is appropriate only if there arc multiple 
trials available on the same or similar treatments so that the 
relationship between OT and 0s can be studied. 

In this article, we focus on the situation of a single trial and 
the validation of biomarkers by estimating PE. The underly- 
ing motivation for PE comes from thinking of the therapeutic 

Table 4 
95% Confidence intervals based on  Fieller's Theorem are constructed for each scenario. Shown are 

the numbers of times (out  of 500) that the confidence intervals lie between [O, 11, that lower bounds are 
greater than or equal to  zero, and that upper bounds are less than or equal to one for F ,  F ' ,  and P .  

CIS CIS with lower CIS with upper 
within [0,1] bound 2 0  bound 51 

Scenario Cases F F' P F F' P F F' P 

Perfect 1 
2 
3 

Useless 1 
2 
3 

Partial 1 
2 
3 
4 
5 
6 
7 
8 

14 
12 
9 
3 
0 
0 

33 
85 

101 
74 

293 
114 
360 
42 

8 
11 
10 
0 
0 
0 

37 
86 
73 
35 

206 
103 
265 
43 

4 
12 
1 
0 
0 
4 
1 

20 
41 
2 

55 
67 
52 
24 

299 
453 
375 

8 
0 
0 

430 
428 
376 
134 
443 
409 
447 
330 

293 
45 1 
369 

2 
0 
0 

419 
402 
323 
78 

389 
318 
408 
226 

207 
439 
223 

1 
0 
8 

134 
195 
243 
25 
152 
244 
109 
233 

16 
12 
10 

224 
328 
349 
34 
96 

128 
275 
332 
135 
404 
49 

10 
11 
11 

216 
328 
344 
42 

102 
119 
265 
285 
181 
343 
104 

17 
15 
15 

22 1 
326 
351 
46 

119 
128 
281 
334 
185 
397 
73 
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pathway. In particular, it is an attempt to construct a scalar 
summary that captures the concept that the measure should 
be one if all of the effect of Z on T is through S, zero if either 
there is no effect of 2 on S or S is not associated with T ,  and 
between zero and one if part of the effect of Z on T is through 
S.  P E  is a useful concept for surrogacy validation and F (F’) 
are proposed as statistical measures for it. 

The measure Freedman et al. (1992) proposed has been 
shown to be problematic. In this article, we propose alterna- 
tive measures F and F’ and have compared and contrasted 
them with P. The new measures F and F’ are estimated based 
on the distributions [S 1 Z] and [T 1 2, S], which we think is a 
logical approach because of the temporal relationship between 
the marker and the primary outcome. F is based on a factor- 
ization of the joint distribution [T,S I 21 into [S I Z] and 
[T I S, 21, whereas the measure P is based on consideration 
of [T I S , Z ]  and [T I 21, which together do not necessarily 
specify the joint distribution [T,S 1 21. It  also seems nat- 
ural for a measure of surrogacy to depend directly on how 
treatment affects the marker. In addition, unlike P ,  estima- 
tion for F is not tied to linear models and can be estimated 
with more flexibility and fewer assumptions. We think these 
differences will give F and F” better properties and allow for 
generalizations. In the case of binary T ,  our results from the 
ophthalmology data and the simulation studies suggest that 
F is less variable than P. In the partial surrogate scenarios, 
which are most likely to happen in practice, the lower confi- 
dence bounds for F and F’ are more likely to be greater than 
zero than the confidence bounds for P and hence suggests that 
the new measures are more useful for surrogacy validation. 

In cases with repeated measurement of markers, it is often 
the case that there are dependent censoring or dropouts dur- 
ing the trial. Fitting model [T I 21, as required for P ,  will 
yield a biased estimate for the treatment effect. However, for 
F (F’),  by joint modeling of [T I S, Z] and [S I Z], we may 
reduce the bias in the estimates of treatment effect. 

We have proposed two complementary forms of the measure 
of PE, i.e., F and F‘. An alternative measure based on these 
two, ( F  + F‘)/2, can be used. Although population quantities 
F and F‘ do not equal each other in all situations, ideally, they 
would be close to each other. It would be interesting to further 
investigate the meaning of the difference between F and F’ 
in different settings and the properties of their averages. 

A drawback for both F (F’) and P is in the interpretation 
of the estimated values. While values of zero and one have 
clear interpretations, it is not so easy to understand the exact 
meaning of an intermediate value. The relative size of F for 
two different biomarkers in a trial does give an indication of 
their relative usefulness as a surrogate. The graphical inter- 
pretation in Figure 1 is also a useful aid to the interpretation. 
We recommend the approach suggested by Freedman et al. 
(1992) and judge a potential surrogate by whether the lower 
bound of a confidence interval for F is above a certain value. 

Although the variability of F (F‘) is smaller than P ,  the 
results suggest that the confidence intervals for F (F’) are still 
wide. The relatively large variability of F (F’), like P,  is most 
likely due to its inherent limitation as a ratio of estimates. 
If the denominator is not clearly different from zero, then 
calculation of the ratio is problematic. It is likely that, for 
F (F’) to be useful in validating a surrogate endpoint, a strong 
treatment effect of Z on T would be needed. 

In this article, we have focused mainly on the situations 
of a binary endpoint and a binary surrogate. For future re- 
search, extensions of F (F’) to more complex situations will 
be required. For example, multiple biomarkers or repeated 
measurements of biomarkers can be considered as the surro- 
gate endpoint. Meta-analysis that combine data across studies 
may also be used to increase power and also to examine the 
consistency of the underlying proportion F (F’) across similar 
studies. 
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RESUMO 
Les essais randomisks impliquant des critkres principaux dont 
l’occurrence est rare, ou dont la mesure est pknaliske par des 
temps de survenue importants, s’avkrent onkreux. C’est la 
raison de l’int6ret croissant port6 aux mkthodes consistant a 
remplacer le veritable critkre clinique par un critbre de substi- 
tution, disponible plus pr6cocement. Cependant, ces critkres 
de substitution doivent 6tre correctement validks. A cet kgard, 
une mesure quantitative-spkcifique ?i chaque essai-de la 
proportion de l’effet traitement expliquke par le crithre de 
substitution s’avkre un concept utile. Freedman et  al. (1992) 
ont ainsi suggkrk de mesurer la qualitk de la substitution 
en calculant le rapport des coefficients de regression associks 
B l’effet traitement dans deux modkles skparks, ajustks ou 
non par le critkre de substitution. Cette mesure se rkvhle 
hklas extrgmement variable, sans compter qu’il n’y a aucune 
garantie que chacun des deux modhles soit approprik. En 
nous inspirant d’une id6e formulke par Tsiatis et al. (1995), 
nous proposons, pour le calcul de cette proportion expliquke, 
des mkthodes alternatives qui requikrent moins d’hypothbses 
sous-jacentes au niveau de l’estimation et permettent davan- 
tage de flexibilitk au niveau de la modklisation. A partir de 
donnkes issues d’un essai en ophtalmologie, et en utilisant 
6galement un certain nombre de simulations, nous comparons 
les estimations obtenues B l’aide de ces nouvelles mesures, 
lesquelles semblent de fait prksenter moins de variabilitk. 
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