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SUMMARY. This article is motivated by an application where subjects were dosed three times with the 
same drug and the drug concentration profiles appeared to be the lowest after the third dose. One possible 
explanation is that the pharmacokinetic (PK) parameters vary over time. Therefore, we consider population 
PK models with time-varying PK parameters. These time-varying PK parameters are modeled by natural 
cubic spline functions in the ordinary differential equations. Mean parameters, variance components, and 
smoothing parameters are jointly estimated by maximizing the double penalized log likelihood. Mean func- 
tions and their derivatives are obtained by the numerical solution of ordinary differential equations. The 
interpretation of PK parameters in the model and its flexibility are discussed. The proposed methods are 
illustrated by application to  the data that motivated this article. The model's performance is evaluated 
through simulation, 
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1. Introduction 
The main purpose of a clinical pharmacokinetic (PK) study is 
to understand the pharmacokinetics of a drug, in particular, 
the absorption phase and the disposition phase of an orally 
administrated drug in the human body, where the disposition 
phase includes two subprocesses, elimination and distribution. 
The drug's pharmacokinetics is described by multicompart- 
ment models. 

Two-compartment models for the amounts of drug in the 
gut, blood, and tissue are standard in pharmacokinetic stud- 
ies. In our motivating example, there is strong evidence that a 
two-compartment model with time-varying rates was consid- 
ered, but its parameters proved to be essentially nonidentifi- 
able. As an alternative, we consider a one-compartment mod- 
el combining the blood and tissue compartments of the two- 
compartment model. We show that a one-compartment model 
with time-varying rates, which we call the SEPK model (spline 
enhanced pharmacokinetic model), can mimic the behavior 
of a two-compartment model but with fewer parameters. The 
SEPK model fits our example well and all parameters can be 
estimated reasonably accurately. 

We now provide some background. Let us assume that sub- 
ject i takes an oral dose and the pharmacokinetics follow a 
one-compartment model (Figure la). At time 0, all the drug 
is in the gut. Let Al,+(t) and Az,+(t) represent the amount of 

drug in the gut and the rest of the human body at time t, re- 
spectively, with initial value {Al,i(O), A2,i(0)} = {1,0}. The 
absorption rate ka,i and the elimination rate ke,i for subject i 
are assumed to  be constant over time. The one-compartment 
model is 

In a two-compartment model (Figure lb) following oral ad- 
ministration, let Al,i(t), Az,i(t), A3,i(t) represent the amounts 
of drug in the gut, blood, and tissue at time t, respectively, 
withinitialvalue {Ai,i(O),A2,i(O),A3,i(O)} = {l,O,O}. Unlike 
the one-compartment model, the two-compartment model has 
both elimination and distribution phases in the drug disposi- 
tion. We assume that all parameters (ka , i ,  ke,i, k23,i, k32,i) are 
constant over time, where k23,i and k32,i are the distribution 
rates for subject i. The two-compartment model is 
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Figure 1. Pharmacokinetic models. a. One-compartment 
model. b. Two-compartment model. c. Spline-enhanced PK 
model. 

In a population PK study, we observe drug plasma con- 
centrations with some noise for each of i = 1,. . . , m sub- 
jects. The concentration for subject i is Az,i(t)/V,, where V, 
is the subject-specific volume of distribution. The concentra- 
tion measurement is usually log transformed to render the 
measurement error homogeneous. Let the true log concentra- 
tion be f(Pi, t )  = log{Az,i(t)/V,}, where pi is a PK param- 
eter vector for subject i. For example, pi = ( V , , l ~ ~ , i , k , , i ) ~  
when the PK model is the one-compartment model (1). The 
classical population PK models are yi j  = f(&, ti j)  + tij and 
log(&) = Xia + Zibi, where yij is the observed log plasma 
drug-concentration for subject i at time t i j  and e i j  is the 
noise. In particular, Xi and Zi are design matrices for the 
fixed effect CY and random effect bi, respectively, and repre- 
sent baseline covariates for subject i. These matrices are time 
independent because f(&, t )  is derived from multicompart- 
ment models with a constant PK parameter assumption. This 
model is a nonlinear mixed effects model (NLMM) (Davidian 
and Giltinan, 1995). Estimation and inference procedures for 
the model, such as first-order linearization (Sheiner and Beal, 
1980) and conditional first-order linearization (Lindstrom and 
Bates, 1990), assume that the subject-specific PK parameters 
are linearly related to the covariates. 

If a drug follows a constant PK parameter assumption and 
the drug is administrated repeatedly (multiple doses), the 
concentration should superimpose each time, i.e., the over- 
all concentration profile for multiple doses is equivalent to 
the summation of the profiles from the individual doses. This 
is referred to as the superposition principle. This principle is 
important in establishing the bioequivalence (BE) between a 
controlled-release drug formulation and an immediate-release 
drug formulation, as illustrated in the example below. Viola- 
tion of the superposition principle means that the drug does 
not follow the constant PK parameter assumption. 

Figure 2a is a plot of S-oxybutynin plasma concentration 
(on the log scale) from 40 patients in a Ditropan (ALZA 
Corporation) study with three doses and 8 hours per dose. 

S-oxybutynin is a major active component of Ditropan. It is 
commonly prescribed to treat symptoms of urge incontinence, 
urgency, and frequency of urination arising from overactivity 
of the detrusor muscle. Following oral administration of S- 
oxybutynin, absorption from the gut is rapid, and it appears 
to be metabolized by cytochrome P450 3A4 in the liver and 
the gut wall. Based on Douchamps et al. (1988), S-oxybutynin 
has two-compartment kinetics. There are two orally admin- 
istrated drug formulations: immediate-release product and 
controlled-release product. Immediate-release S-oxybutynin 
must be given frequently (three times a day), while the con- 
trolled-release drug has the advantage of convenience, i.e., 
only one dose a day. This PK study was designed to eval- 
uate the bioequivalence (BE) between two drug formulations. 
In this article, we do not discuss the BE analysis but rather 
the implication of this BE study. Each formulation of the drug 
can have different dose levels. FDA guidelines grant waivers 
for higher dose BE studies if BE can be demonstrated at a 
lower dose level, provided that the drug satisfies several re- 
quirements, one of which is the superposition principle. Hence, 
verification of this assumption is crucial in order to save time 
and money during the drug development. 

We focus on the immediate-release drug here. In the study, 
it was administrated three times at 8-hour intervals, and 25 
plasma concentrations were sampled in a 2-day time period 
for each subject. The sampling time points are 0.5, 1, 1.5, 2, 
3, 5, 8, 8.5, 9, 9.5, 10, 11, 13, 16, 16.5, 17, 17.5, 18, 19, 21, 24, 
27,30, 36, and 48 hours after the initial dose. If the superposi- 
tion principle holds, we expect the three peak concentrations 
(Cmax)  to be nondecreasing, and similarly for the AUC(O,~) , 
where AUC(O,~)  represents the area under the plasma con- 
centration curve from time 0 to 8 hours after each dose. We 
performed an initial noncompartment analysis (PK analy- 
sis without a model assumption). The subject-dose-specific 

the trapezoidal rule (Rowland and Tozer, 1995, p. 469), where 
the final subscript denotes dosing interval. The subject-dose- 
specific {Cmax,l, Cmax,g, Cmax,3} are the maximum con- 
centrations within each dosing interval. Based on Figure 2b 
and 2c, the AUC(o,8) and Cmax for dose 3 appear to be lower 
than those of dose 1 and 2. The paired Wilcoxon signed-rank 
one-sided test suggests that there is strong evidence against 
the null hypotheses of AUC(o,8) for dose 3 being equal to or 
higher than those of dose 1 or 2. The pvalues are 0.003 and 
0.00001, respectively. The average AUC ratio between dose 3 
and 1 is 0.92 with standard error 0.03, and the ratio is 0.83 
with standard error 0.03 between dose 3 and 2. Cmax fol- 
lows the same pattern, and the pvalues based on the paired 
Wilcoxon signed-rank one-sided test are 0.00001 and 0.00001, 
respectively. The average Cmax ratio between dose 3 and 1 
is 0.81 with standard error 0.05, and the ratio is 0.75 with 
standard error 0.06 between dose 3 and 2. Hence, neither the 
superposition principle nor the constant-PK parameter as- 
sumption hold for this drug. In another PK study, Sathyan, 
Chancellor, and Gupta (2001) presented a similar finding. 

An immediate therapeutic consequence of time-dependent 
PK is its effects on the Cmax and AUC because both of 
them are important criteria to evaluate the drug’s efficacy. 
For example, the Cmax of S-oxybutynin can be much lower 
after several days or weeks of repeated oral administration 

{Auc(0,8),x1> AUC(0,8),t2i Auc(0,8),x3} are calculated using 
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Observed oxybutynin concentration, AUC and Cmax. a. Observed oxybutynin concentration. b. Subject-dose- 

than that of the first dose, based on the results of this study. 
There are two ways in which we can try to maintain the Cmax 
at the target level. One way is to modify the dose levels for the 
multiple doses, and the other is to change the drug’s kinetics. 
However, without a proper model, it is not possible to under- 
stand the time-dependent kinetics, thus, neither approach is 
feasible. The multicompartment models are not proper mod- 
els as they are based on a constant-PK parameter assumption. 
Thus, we need a modified model. 

In order to search for the evidence of time-dependent PK 
parameters during drug absorption and disposition phases, let 
the model be (Figure lc) 

where k, , i ( t )  is an absorption process function and kd,i(t)  is 
a disposition process function for subject i. Unlike multicom- 
partment models, we use two arbitrary functions instead of 
a few parameters t o  describe the absorption and the dispo- 
sition phases of the drug. Practically, the disposition process 

continues all the way through the PK study, while the absorp- 
tion process usually finishes very quickly and the plasma sam- 
ples later on in the study are not informative with respect to 
ka , i ( t ) .  Hence, k, , i ( t )  can only be modeled as a step function 
with a few steps, and kd, i ( t )  can be modeled as a natural cu- 
bic spline function. We call this model a spline-enhanced PK 
model. An alternative way is to model some PK parameters 
in the two-compartment model (2) as arbitrary functions of 
time, e.g., { k a , i ( t ) ,  k e , i ( t ) ,  k23,i(t)}. Apparently it has a better 
interpretation than (3) does because it has both elimination 
and distribution processes while model ( 3 )  cannot distinguish 
them in k d , i .  However, they are not statistically identifiable, 
and we experienced extremely high collinearity during the es- 
timation. One reason is that both k,,i(t) and k23,i(t) tend 
to explain the same drug disposition process if either one of 
them is allowed to be an arbitrary function of time. Hence, 
we focus on model (3) in this article. 

There are statistical, numerical, and pharmacokinetic chal- 
lenges in fitting and interpreting this model. In Section 2, 
model specification, estimation, and inference are developed; 
it allows subject-specific PK parameters to be time-depen- 
dent and the nonparametric functions are incorporated di- 
rectly into the differential equations. Models (1) and (2) have 
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constant PK parameter assumptions, while (3) does not. Al- 
though (3) is more flexible than (1) and (a), it is necessary to 
clarify the connections among model (l), (a), and (3) in or- 
der to establish the interpretation of the parameters in model 
(3). Section 3 discusses the interpretation and performance of 
model (3) when the true models are (1) and (2). Data analysis 
is presented in Section 4, simulation results are described in 
Section 5, and conclusions are presented in Section 6. 

2. Statistical Method 
2.1 Model Speczfication 
We choose the natural cubic spline to model the nonparamet- 
ric function because the smoothing parameter can be treated 
as a variance component and can be jointly estimated with 
the mean parameters. Zhang et al. (1998) and Lin and Zhang 
(1999) successfully implemented this approach in the linear 
additive mixed models and the generalized linear additive 
mixed models (GAMM), respectively. 

Let us start with ordinary differential equations (3) for 
subject i and rewrite them as 

(4) 

where Ai(t) = {Al,i(t),  A ~ , i ( t ) } ~ ,  Az,i(t) is the amount 
of drug in the blood at time t and the true plasma drug 
concentration is Az,i(t)/I$. G is a 2 x 2 matrix and &(t) = 
{ k a , i ( t ) ,  kd, i ( t )}T is a subject-specific time-dependent PK 
vector. 

Because the measurement error of the drug concentration 
often has a constant coefficient of variation, a log transform- 
ation can make the variance homogeneous. Davidian and 
Carroll (1987) provided detailed discussion of noncoristant 
variance. Let 

T 
Pi ( t )  = { &t), K} = {ka , i ( t ) ,  kd , i ( t ) ,  KIT,  

and let 

f { P i ( t ) ,  = W A Z , i { 4 i ( t ) ,  t) lW 
(we use Az,i{#i(t), ( t ) }  and Az,i(t) interchangeably for the 
convenience, and they represent the same function). Although 
V, can also be treated as I$( t )  in general, there is no scientific 
reason to believe that it is time dependent. Hence, the spline- 
enhanced PK model (SEPK) is 

Y i j  = f { P i ( t i j ) , t i j }  + tij, (5) 

( 6 )  

log{Pi(tij)) = Xija + Sijg(tij) + Zijbi,  

= Xija + Nijg + Zijbi,  

where yij is the observed log plasma drug concentration 
for subject i at time t i j .  The first-stage model (5) 
describes the relationship between subject-time-specific PK 
parameters P i ( t i j )  and log drug concentration. The function 
f {P i ( t i 3 ) ,  t i j }  can be evaluated through a numerical solution 
of (4) (Section 2.3). The second-stage model (6) describes 
a semiparametric relationship between subject-time-specific 
parameters and time-dependent covariates. I t  may be 
expressed more explicitly for (3) as 

log(V2) = X l p l  + Zl , ib l i ,  
log{ka,i(tij)) 1 X 2 , i j ~  + Zz,ijbzi, 

lW{kd,i(tij)) = x3,ija3 + d t i j )  + Z3,ijb3ir 

= x3,ija3 + N3,ijg+ Z3,ijb3i, 

where Xij = diag(Xl,i,XZ,ij,X3,ij) is a 3 x pdimensional 
time-dependent design matrix for the pdimensional fixed 
effect vector a = (aT,c~:,a:)~,  Zij = diag(Zl,i, Zz,ij, 
Z3,ij) is a 3 xqi-dimensional time-dependent design matrix for 
the qi-dimensional random effect vector bi = (b;, bz ,  b$)T, 
~ i j  is i.i.d. N(O,o;), and bi is i.i.d. N(0, Di). S i j  = ( O , O ,  l)T 
in (6) is an indicator matrix for the spline function g(tij). Let 
1 be the total number of distinct sampling time points t i js ,  
g be an 1 x 1 vector of the function g at those points, and 
Nij = (0, 0, N&j)T be a 3 x 1 indicator matrix for g. Note 
that we use only one spline function in model (6). More spline 
functions can be similarly defined. When tk 5 t < t k + l ,  g(t) 
has the following expression: 

gk = g(tk)i 
g i  = g”(tk), k = 1,. . . , 1 - 1. (7) 

(8) 
log{P(t)) = Xa + Ng + Zb, (9) 

where Y is an n-dimensional vector, P is a 3n-dimensional 
vector, x = (x:,, . . . , xTJ,, . . . , xZl, . . . , xEJ, )T is a 3n x 

3n x 1 indicator matrix for the spline function g, Zi = 
( Z z , .  . . , ZTJJT, Z = diag(Z1,. . . ,Zm)  is a 3n x q matrix, 
q = E y  qi ,  and m is the total number of subjects. 

We can rewrite the models as 

y = f{P(t), t )  + € 1  

p matrix, N = (N,,, T . . . ,NTJ1,. . . ,Nlnl,.  T . . ,NEJm)T is a 

The double penalized log likelihood for Y and b is 

M a ,  g ,  6 I y ,  b) 
n 1 
2 

= --log (0;) - log ID1 

n 1 
2 

= --log (0;) - 5 log ID/ 

(10) 

where X 2 0 is a smoothing parameter controlling the balance 
between the goodness of fit and the roughness of the estimated 
g ( t ) .  Ti and Tz specify the range oft ,  and K is the nonnegative 
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definite smoothing matrix defined in equation (2.3) of Green 
and Silverman (1994). 8 consists of 0; and the unique 
elements of D = diag(D1, . . . ,  Dm). We use f{P(t),t} 
and f ( a ,  g ,  b) interchangeably. Although they have different 
functional forms, they represent the same true log concentra- 
tion. 
2.2 Estimation of Semiparametric Function and Variance 

Following Green and Silverman(1994), Zhang et al. (1998), 
and Lin and Zhang (1999), it is convenient to reparameterize 
the spline functions using mixed model representation. This 
provides a foundation for the joint estimation procedure for 
the variance and smoothing parameters. Let g = TS + Ba, 
where T is an 1 x 2 matrix, B is the 1 x ( I  - 2) matrix, 
B = L(LTL)-', K = LLT, LTT = 0, and gTKg = aTa. 
Both T and B are full rank matrices. T represents basis 
vectors for the constant and linear terms in the cubic spline g, 
while B represents the higher order terms; they are orthogonal 
to each other. In addition, because the penalty term is the 
second derivative of the spline function] the constant and 
linear terms disappear and it penalizes only the higher order 
terms. Therefore, I,, can be rewritten as 

Components 

r 

- 1 I bTD-'b + XaTa 
2 

L 

I 1 

0 0  
+ +y - (7, a, b)ITW - f(7, a, b)) , (11) 

where y = ((I',S~)~ represents the fixed effect, the cubic 
term a is treated as a random effect, and c = (eT,A)T 
represents the variance components. We use f{P(t), t}, 
f (a ,  g, b), and f ( y , a ,  b) interchangeably. Although they have 
different functional forms, they represent the same true log 
concentration. 

The main problem is how to estimate y, a, and b. Maximiz- 
ing l p  = log{jexp(lpp)db} is our goal (O'Sullivan, Yandell, 
and Raynor, 1986), but this involves a high-dimensional 
intractable integral. Thus, we compromise by maximizing 1, 
instead. Maximizing 1, is equivalent to maximizing a second- 
order Laplace approximation of 1, (Lin and Zhang, 1999). 

Given the variance and smoothing parameters, I,, can be 
maximized by iteratively fitting a linear mixed model with the 
design matrix representing the tangent plane of the nonlinear 
function at the current estimate y*, a*, b*. When g is not 
included in the model, the model reduces to an ordinary 
NLMM and the algorithm is the pseudodata step of Lindstrom 
and Bates (1990), although they did not express the problem 
in a linearization form. Specifically, we repeatedly fit the 
linear mixed model, 

W = Xy + Ca+ Zb + e ,  (12) 

where X = F(X,NT) 17*,a.,b*r C = FNB 17*,a*,b*, Z = 
FZ 17*,a-,b*, w = (Y - f + Xy + Ca + Zb) 17*,a*,b*, and 
F = af/ap x apla( logp) .  

Let MI = (x,C,Z) at convergence] H = { M T M ~  + 
diag(0, a;XI, a;D-l)}-', and Ho = MTM1. The covariance 

matrix of the best linear unbiased predictor (BLUP) is 

Hastie and Tibshirani (1990) proposed several estimates of 
the degrees of freedom (d.f.) for linear additive models that 
include splines. Here we extend one of them to the SEPK 
model. Let C? = ZDZT/a; + I. After some derivation 
(Appendix l), the d.f. can be expressed as the trace of the 
following matrix: 

C O V ( ; / ~ ,  aT, bT) = H - ~ H ~ H - ~ .  

(13) 

1 -l XTfi-12 XTn-lC 
CTfi-lX CTn-1C + 0;XI 

XTn-12 XTfi-lC) 
CTn-IX CTn-IC . 

( 
x (  

In order to estimate the smoothing parameters and va- 
riance components, we use restrictive maximum likelihood 
(REML). Wahba (1985) initially developed REML to choose 
a smoothing parameter for a natural cubic spline. The key 
feature of this approach is to treat the smoothing parameters 
as variance components and regard the penalty functions as 
normal densities of random effects. The mixed model repre- 
sentation (12) fulfills these conditions. Harville (1974) gave a 
Bayesian interpretation of REML. Following Wolfinger (1993) 
and assuming a flat prior for y, we obtain 

l T ( < )  = log elppdydadb s 
zz -1 { log IV, + log IXTv-'X/ 

2 

+ (W - XT)TV-l(W - X?) , (14) i 
where V = CACT + ZDZT + ~$1. Here again we use 
the second-order Laplace approximation expanded not only 
around b but also around + and a. The scores and the 
elements of the information matrix for < = (8T,XT)T are 
given by 

1 - (W - xT)Tv- 1av -v -1 (W - XT) 
acj 

= 0, (15) 

where p = V-' - v-lX(XTv-lX)-lXTV-l.  

2.3 Numerical Methods 
For the estimation of the nonparametric function] we not only 
have to know the mean profile f { P ( t ) ,  t} but also the first 
derivative af{P(t),t}/a@. (In this section, we use P( t )  = 
{4(t), V} = { k , ( t ) ,  k,j(t), V} to represent any particular 
subject-specific parameter vector Pi(t) for convenience and 
so is A for Ai). Because f {p(t), t }  is a log transformation of 
A2{c$(t), t} /V or AZ(t)/V, where Az(t) is the amount of drug 
in the blood and tissue, it is enough to show how to estimate 
A(t)  and A,#,(t) = aA(t)/&. Take the derivative with 
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respect to 4 on both sides of (4), 

where G' = aG/d4. Hence, both A and A' can be solved 
jointly with (4) and (17). The initial value, A+(O), is always 
zero because changing PK parameters, 4 , will not affect the 
initial value of A(0). 

The numerical solution (18) of the differential equation is a 
fifth-order RungeKutta formula (Press et al., 1992, p. 711), 

PI = hG{+(tn),tn}An, 
PZ = hG{4(tn + hh),  (tn + bh)} 

x (An + WZlPl), 

p3 = hG{4(tn + l3h), (tn + l3h)) 
x (An + w31P1+ W32P2), 

p4 = hG{4(tn + h h ) ,  ( tn + hh)}  
x (An + w41P1 f w42P2 f w43P3)7 

p5 = hG{+(tn + l5h), (tn + l5h)) 

x (An f w51P1 f w52P2 + w53P3 + w54P4)> 

P6 = hG{4(tn + l6h), ( tn  + l6h)) 

x (An + w61P1 + w62P2 + w63P3 + w64P4 + w65P5)f 

An+1 = An + ~ 1 ~ 1  + ~ 2 ~ 2  + ~ 3 ~ 3  + ~ 4 ~ 4  + ~ 5 ~ 5  

+ VSP6 + o(h6)i 
A;+I = An + Gpl+  d p 2  + G P ~  + v/;p4 + V;PS 

+ VzP6 + 0(h5), (18) 

where is a fourth-order formula and {Zs, wsIs2, us, 
u~}fi ,s l ,sz=l  are the known coefficients. Let the error estimate 
be b = maxIAn+l - A;+,[, which is of order h5. If we 
take a step hi and produce an error 61, the step ho that 
would have given some other value 60 is readily estimated as 
ho = h1160/611°.2. Henceforth, we let 60 denote the desired 
accuracy. We have implemented the numerical solution of 
the differential equation in Fortran 77, and the functions are 
modifications of those proposed by Press et al. (1992). 

3. Interpretation and Flexibility of SEPK 
The interpretation of the SEPK is simple when the true model 
for the data is one compartment since ka , i ( t )  represents ka,i 
and k d , i ( t )  represents k e , i .  However, the interpretation of 
SEPK is not so obvious when the true model for the data is 
two compartment. Let us reformulate the two-compartment 
model (2) as follows: 

r 

k23,i + k32,i + ke,i 

(19) 

where A2,i is the analytic solution of the two-compartment 
model (2) and (al , i ,  a2,i) are two phases of drug disposition. 
We call a1,i and a2,i the fast phase and slow phase of the 
drug disposition, respectively. ( k a , i ,  k e , i ,  k23,ir k32,i) and 
(ka , i ,  k32,i, ul , i ,  a2,i) are two sets of equivalent parameteri- 
zations. Let the true model be 

+ eij, 

l O g ( b , i ,  k32,ij al,i, a2,i) = h d k a ,  k32, al,  a2) 

= ( a l r Q 2 , 0 3 , a 4 ) ,  

log(&) = log(V x b f )  = a0 + bi, (20) 

where V, is the subject-specific volume of distribution and 
V = eao is the mean. bi = log(bf) N N(O,O.3), eij N N(O,O.2), 
i = 1 , . . . ,  20, j = 1, . . . ,  10, and t = 0.1, 0.3, 0.5, 1, 2, 3, 
4, 6, 8, and 12 hours. Let (V,ka,k321al ,a2)  = (0.2, 4, 0.1, 
1.43, 0.06) be a set of PK parameters to be estimated. In 
the simulation model (20), we treat only log(&) as a mixed 
effect because of the simplicity of the computation. Although 
more mixed effects can be specified for all the PK parameters, 
it does not make a difference because we are only interested 
in the connection between a two-compartment model and an 
SEPK. Let the differential equations be (3). The SEPK is 

?iij = log[Az{ka,i, kd, i ( t i j ) ,  tij)/Vi] + eij, 

M k a , i ,  kd,i(tZj))  = (a1, N i j e ) ,  
log(V,) = CYO + bi ,  

where k,,i is treated as a constant over time and k d , i ( t )  

models the drug disposition process. Nij is a 10 x 1- 
dimensional indicator matrix for the spline vector g.  k d , i ( t )  
can be visualized as a blending of a1,i and a2,i. During the 
early phase of drug disposition, k d , i ( t )  is dominated by the 
fast phase of drug disposition, al , i ,  while it is mainly a2,i at 
the end of drug disposition, as our simulation demonstrates. 

In the simulation, we ran 500 replications. In each repli- 
cation, both models are fitted. In order to compare the per- 
formance of PK parameter estimates, the root mean square 
error (RMSE) was calculated. We obtained V2PK = 0.2(0.02), 
where 0.02 is RMSE, the subscript 2PK refers to the two- 
compartment model, and VSEPK = 0.19(0.02). Hence, V2PK 
and psEPK are close, as are 

k2PK = 4.03(0.44) 

and 

kaSEPK = 3.74(0.38). 
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Although 

{ &yEPK, 6zEPK = {1.55(0.23), O.OS(0.04)) 1 
have larger RMSEs than 

= {1.44(0.12), 0.06(0.02)}, 

they are acceptable. Thus, SEPK is flexible in estimation 
because we do not have to specify the number of the compart- 
ments and it provides robust PK parameter estimates even if 
SEPK is a misspecified model. Particularly, the absorption 
rate estimate based on SEPK is very comparable with that 
based on the true two-compartment model, and the early and 
later phases of kd(t) can be used to estimate the fast and slow 
phases of the disposition process (a1 and a ~ ) ,  respectively. 
The simulation establishes a connection between the SEPK 
and the two-compartment model. A similar simulation could 
be carried out to compare a three-compartment model and 
the SEPK, and we expect similar results. 

4. Data Analysis 
In the Ditropan study introduced in Section 1, there was 
evidence that the constant PK assumption was violated. We 
thus apply the SEPK model to these data. 

We use a piecewise natural cubic spline to model the 
disposition phase. It is composed of three spline functions, 
gl(t) ,  g2(t), and g3(t). The discontinuity points among them 
represent the gaps between the slow disposition phase of the 
prior dose and the fast disposition phase of next dose. Also, 
we choose a step function to model the absorption phase. Let 
A2,i(ka,i(t), kd,i(t),t) be the amount of drug in the blood and 
tissue. Let the differential equations be (3). Then the SEPK 
is as follows: 

Y i j  = log[AZ,i{(ka,i(&j), kd,i(tij), (tij)}/&1 + Eij, 
lOg(K) = lOg(V x b;i) = (YO + bli ,  

log{ka,i(tij)} = b2i f I { t i3  <8}  lOg(ka1) 

+ I{8<tZj<i6} lodkaz) 
+ I{16<tt3} 

- - b2i + 1{ti,<8}a1 + 1{8<t,,<16}a2 
+ 1{16<t,3}(Y3, 

log{kd,i(tij)} = b3i + I{tij<8}{g1(tij) + b4i(8 - tij)} 
+ I{8<tij<16}{g2(ti:, - 8, + b4i(16 - t i j ) }  

+ I{16<tij<24}{g3(tij - l6) -k b4i(24 - tij)} 
+ 1{~4<~,~}{g3(ti j  - 16) + b4i x 8 } ,  (21) 

where 
~ i j  N i.i.d. N(0, a:), 

( b l i ,  bzi, b3i, b4i) - i.i.d. N(0, DO), 

Do = {oslSz} is a 4 x 4 general covariance matrix, and 
gl(t), g2(t), and g3(t) are defined as (7). (Here gl(tij) 
represents the spline function at time t i j  in dose 1, while 
g(tij) represents the general spline function at time t i j  in 
model (6)). Because only the last dose has plasma samples 8 
hours after oral administration, the model for the i th subject’s 
log{kd,i(tij)} in (21) allows three doses to share the same 
random intercept b3i and random slope b4i within 8 hours 

after each dose. The fifth term in lOg{kd,,(t,:,)} ensures that it 
is continuous. More general models, such as each dose having 
its own random intercept, slope, or spline function within each 
subject’s log{kd,+(ttl)}, were also tried. However, due to the 
high collinearity among those parameters, the estimation pro- 
cedures did not converge. Because model (21) has enough 
random structures to describe within- and between-subject 
variation, we consider it first. Figure 3a shows the fitting 
of the model. Figure 3b and Table 1 display the estimates 
of the drug absorption and disposition processes. It appears 
that the absorption rate is decreasing and the early phase 
of the drug disposition process for dose 2 is lower than the 
other two, although all the later phases are comparable. The 
within-subject variance estimate is 6: = 0.12, the between- 
subject variance due to  the log(V,) is estimated as 0.21, the 
variance of the log(ka,,) is estimated as 0.05, and the estimate 
of the variances of the random intercept and random slope for 
log{kd(tz3)} are 0.02 and 0.001, respectively. 

We performed some Wald tests and approximate F- 
tests (Hastie and Tibshirani, 1990) to test the time-varying 
behavior of drug absorption and disposition. The degrees of 
freedom for an approximate F-test is calculated based on 
(13). Our first null hypothesis is ka, = ka, = ka,. The Wald 
statistic is W = 5.95 and p = 0.051 with d.f. = 2, and the 
F-statistic is F = 3.83 and p = 0.022 with d.f. = (2,956.33). 
Both suggest that the absorption process is time dependent. 
Our second null hypothesis is gl(t,) = g2(t,) = g3(t,), where 
t:, = 0.5,1.0,1.5,2.0,3.0,5.0, and 8.0 are distinct sampling 
time points after each dose. Here W = 14.54 and p = 0.41 
with d.f. = 14, and F = 1.78 and p = 0.067 with d.f. = 
(8.98,956.33). Although both tests do not provide enough 
evidence of difference among three disposition processes for 
three doses during the first 8 hours after oral administration, 
we do observe some difference among the early phases of drug 
disposition processes in Figure 3b. We thus remodeled the 
disposition functions as 

gl(t)  = g3(t) = g2(t) + log(l+ A) x (1 - t / 8 ) ,  0 < t < 8. 
(22) 

In model (22), doses 1 and 3 have different early phase drug 
disposition than dose 2, which is denoted by A. Its effect on 
the disposition process exponentially diminishes after 8 hours. 
We obtained W = 5.69 and p = 0.017 with d.f. = 1 and F = 
7.06 and p = 0.008 with d.f. = (1,964.21). Although both 
tests show evidence that the early phases of drug disposition 
process are time dependent among three doses, we should be 
aware that this test is based on the finding from model (21), 
so there is likely an inflation of the type I error. However, in 
this exploratory data analysis, we are searching for possible 
reasons for time-dependent PK behavior; therefore, we think 
the test based on model (22) i s  informative. It at least provides 
some evidence for a time-dependent pattern of kd(t), which 
can be further compared with the other features of the study, 
e.g., blood pressures or heart rates. Theoretically, high kd 
leads to low AUC and Cmax, and high ka leads to  high AUC 
and Cmax. In this PK study, dose 1 has higher ka and higher 
early phase of kd than does dose 2. Dose 2 has higher AUC 
and Cmax than dose 1, probably because the effect of kd is 
greater than that of ka. Similarly, dose 2’s AUC and Cmax 
are higher than those of dose 3 because dose 3 has higher kd 
and lower ka. 
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Figure 3. Observed oxybutynin concentration, model fitting, and estimation. a. Spline-enhanced PK model fitting; the solid 
line is the fitted log concentration (f)  and the dashed lines are the 95% pointwise confidence interval. b. Spline estimates of 
kd( t )  = exp{l{t<8}gl(t) +I{8<t<16)g2(t) +1{16,,}g3(t)} for the oxybutynin data; MPLE represents the maximized penalized 
likelihood estimate; the solid line is the MPLE, i d ,  and the dashed lines are the 95% pointwise confidence interval. 

In order to compare the performance of SEPK with that of Table 1 
a multicompartment model, we carried out an approximate F -  
test between SEPK (22) and a two-compartment model giv- Estimates of fixed effects for  the Ditropan data 

~ 

en by Parameter Model (21) Model (22) 

Y i j  = log{A2,i(ka,i, k32, i ,  al,i, a2, i r  t i j) /&) + eij, 
log(&) = "0 + b l i ,  

log(ka,i) = + b2i,  

log(a~,i)  = a 2  + b3i ,  

l%(a2,i, k32,i) = ( a 3 ,  "4). (23) 

The F-test is F = 2.94 and p = 0.011 with d.f. = (5.22, 
964.21). It is clear that SEPK (22) outperforms (23). 

5. Simulation 
In order to verify the validity of pvalues of the tests for 
Ha: kal = ka2 = k,,, data were generated based on model 
(21) under Ho with parameter values from Table 2, except 
ka = 4.1. Each of the 500 replicated data sets had 40 sub- 
jects and 25 observations per subject. The 500 Wald statistics 

0.20 f 0.02 
6.41 f 1.41 
2.55 f 0.61 
1.42 f 0.23 

0.12 
0.20 
0.05 
0.02 
0.001 
0.08 
0.04 
0.002 
0.03 
0.002 
0.004 

0.21 k 0.02 
6.12 f 1.23 
2.43 f 0.49 
1.49 f 0.19 
0.19 * 0.08 

0.13 
0.19 
0.05 
0.02 
0.001 
0.09 
0.03 
0.002 
0.03 
0.002 
0.004 
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Table 2 
Estimates of fixed effects b y  simulation 

Empirical Estimated 
Parameter True MPLE SE (MPLE) SE (MPLE) 

V 0.20 0.22 0.02 0.01 
kal 5.50 5.97 1.32 1.23 
ka2 2.65 2.79 0.49 0.47 
ka3 1.54 1.55 0.18 0.17 
A 0.20 0.20 0.08 0.07 

were ranked after simulation, and the empirical pvalue was 
calculated as the percentage of those simulated Wald statis- 
tics larger than the one based on the S-oxybutynin data. The 
empirical pvalue for the approximate F-test was obtained 
similarly. The empirical pvalue for the Wald test is 0.035, 
which is smaller than the one based on chi-square distribution 
(0.051). The empirical pvalue for the approximate F-test is 
0.037, which is larger than the one based on the F-distribution 
(0.022). 

Similarly, 500 replications were produced based on the av- 
erage of g l ( t ) ,  g2( t ) ,  g 3 ( t )  and other parameters in Table 2 to 
test Ho: g l ( t j )  = g 2 ( t j )  = g 3 ( t j ) ,  where t j  = 0.5,1.0, 1.5,2.0, 
3.0,5.0, and 8.0 are distinct sampling time points after each 
dose. The empirical pvalue for the Wald test is 0.31 (0.35 
based on the chi-square distribution). The empirical p-value 
for the approximate F-test is 0.22 (0.067 based on the F dis- 
tribution). The same 500 replications are also used to test 
Ho: A = 0 in the reduced model (22). The empirical pvalue 
for the Wald test is 0.009 (0.017 based on the chi-square dis- 
tribution). The empirical pvalue for the approximate F-test 
is 0.011 (0.008 based on the F-distribution). 

According to these simulation results, the Wald tests tend 
to be conservative and the approximate F-tests tend to be 
liberal. When the null hypothesis is to test some fixed pa- 
rameters (e.g., ka, = ka, = kas or A = 0), both tests show 
that the significance level (pvalues) based on the distribution 
are comparable with the empirical ones. However, when the 
null hypothesis is to test the nonparametric functions, e.g., 
g l ( t j )  = g 2 ( t j )  = 9 3 ( t j ) ,  the Wald test gives more reliable 

v, 
- True kd 7 

- -  -~ 
0 5 10 15 20 25 30 

Time(hour) 

(b) 
t 

.----- Estimated SE 0 

~ Empirical SE 

0 5 10 15 20 25 30 

Time (hours) 

Figure 4. Spline estimates of kd( t )  = exp{ l i t<8}gl ( t )  + I{8<t<16)92(t) + 1{16<t}93(t)} by simulation. a. MPLE represents 
the maximized penalized likelihood estimate; the solid line is the true kd( t )  and the dashed line is the MPLE, &,j(t). b. The 
solid line is the empirical SEs of &(t) and the dashed line is the estimated SE of kd( t ) .  
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pvalue than the approximate F-test does. The simulation 
result of the approximate F-test between SEPK (22) and a 
two-compartment model shows the same pattern: the empir- 
ical pvalue 0.044 is much large than the one (0.011) based 
on the F-distribution, although both pvalues suggest that 
SEPK provides a better fit than a two-compartment model 
does. 

In order to evaluate the performance of SEPK, the 500 sets 
of estimates generated by model (22) are used to calculate 
mean and empirical and estimated standard errors. Table 2 
and Figure 4a and 4b present the results. 

6. Conclusion and Discussion 
The spline-enhanced population PK models are able to quan- 
tify the drug concentration over time and describe time-depen- 
dent behavior for the drug absorption and disposition pro- 
cesses. The Wald tests and approximate F-tests verify that 
both absorption and disposition processes are changing over 
time and that SEPK performs better than a two-compartment 
model that is based on a constant PK parameter assumption. 
The simulation demonstrates that SEPK is almost as good as 
a two-compartment PK model in estimating absorption and 
disposition rates when the trne model has two compartments, 
and it establishes an interpretation for SEPK’s parameters. 

We are asked frequently why we model the whole dispo- 
sition process as an arbitrary function of time k d ( t )  instead 
of modeling a subprocess as a spline. For example, letting 
k e ( t )  be an arbitrary function in a multicompartment model 
can definitely make the model easy to interpret. We did try 
this idea initially; however, k,(t) is highly correlated with 
the other intercompartment PK parameters because the flex- 
ibility of k e ( t )  tends to explain the same thing as the other 
parameters. That is the reason why we cannnot distinguish 
the elimination process from the distribution process during 
the drug disposition through the SEPK. One possible way to 
solve this problem is to put some constraints on the elimina- 
tion process and distribution processes when we model them. 
But how to restrict them needs more scientific input, and it 
is a potential research area in the future. 

On the other hand, modeling k ,  as a spline function will 
not be as easy as that for k d .  We know that k ,  is usually 
much larger than k d .  As a result, the absorption phase is 
almost finished after 4-5 half-lives (the time at  which half 
of the drug has been absorbed). It is difficult to estimate k ,  
after that, and the estimation of that part of the spline will 
be extremely unstable. Hence, k, is defined as a step function 
in our model. 

The biases of PK parameter estimates in the SEPK are 
not large (between 5% and 10%). This may be a problem 
for small sample sizes. Lin and Zhang (1999) discuss the bias 
correction for the generalized linear additive mixed model, 
and their methods can be extended to our situation. 

Although S-oxybutynin has been used in the clinical set- 
ting for over 10 years, its time-dependent kinetics are not well 
understood. Potentially, A U C  and C m a x  may be greatly de- 
creased following multiple-dose administration over a period 
of time. Based on our SEPK analysis, one major reason is the 
decreased absorption rate, which is possibly related to the sat- 
urability in the transport mechanism for passage across the 
gastrointestinal membranes. There is some mild evidence for a 
time-dependent disposition process, too. If this is due to the 

elimination process, the time-dependent kinetics are proba- 
bly associated with the saturability in metabolism during the 
drug’s first pass through the gut wall and the liver or the in- 
duction of metabolism of coadministrated drugs producing a 
drug interaction (autoinduction). Additional PK studies need 
to be done in order to verify these results. If this is confirmed 
by additional PK studies, it may be desirable to reformulate 
the drug in order to alter this pattern of absorption and elim- 
ination. In clinical practice, the individual dose level can be 
calibrated based on the estimated subject-specific PK param- 
eters and SEPK through continuous monitoring and simula- 
tion in order to keep the drug at the target C m a x  or AUC.  
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R ~ S U M E  

Cet article tire sa motivation d’une ktude oii des sujets, aprits 
avoir requ trois doses identiques d’un mdme produit, mon- 
traient des concentrations sanguine apparemment plus basses 
aprks la troisihme dose. Une explication possible Btait la vari- 
ation au cours du temps des parametres pharmacocinetiques 
(PK). Cette variation a k tk  modklishe par des fonctions splines 
cubiques naturelles introduites dans des Bquations diffkrentiel- 
les ordinaires. Les valeurs moyennes des paramktres, les coni- 
posantes de la variance et  les parametres de lissage ont ktB 
estimks conjointement par la maximisation d’une double log- 
vraisernblance p6naliske. Les fonctions moyennes et leurs 
d6rivkes ont kt6 obtenues via la r6solution numbrique des 
kquations diffkrentielles. L’interprktation des paramktres du 
modiile et de leur flexibilitk est discutke. Les mBthodes pro- 
poskes sont illustrkes par leur application au cas ayant motivk 
leur ktude. Les performances des modkles sont Bvalukes par 
des simulations. 
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APPENDIX 1 

At convergence, the solution of (11) is equivalent to the maxi- 
mization of a second-order Laplace approximation of 1,. 
Hence, we calculate the d.f. based on (12). Write 

W = M a a + e ,  (24) 
where M 2  (X, C), a = (7, a),  cov(a) = A, and cov(e) = 
~$2 = ZDZT/ui + I  = QTQ. QTQ is a Q-Q decomposition 
of n. If we take a linear transformation of W, we have 

where cov{(QT)-'e} = I&. Hastie and Tibshirani (1990) 
proposed several estimators for d.f. for the linear additive 
model with independent observations. We extend one of them, 
which is based on the trace of smoothing matrix S, given by 

tr(S) = t r  [ { (Q') -' M2M;Q-l (Q') -' M2 

(26) 

Expression (26) can be more explicitly written as (13). 


