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SUMMARY. To account for the correlation between failure and censoring, we propose a new frailty model 
for clustered data. In this model, the risk to be censored is affected by the risk of failure. This model 
allows flexibility in the direction and degree of dependence between failure and censoring. It includes the 
traditional frailty model as a special case. It allows censoring by some causes to be analyzed as informative 
while treating censoring by other causes as noninformative. It can also analyze data for competing risks. To fit 
the model, the EM algorithm is used with Markov chain Monte Carlo simulations in the E-steps. Simulation 
studies and analysis of data for kidney disease patients are provided. Consequences of incorrectly assuming 
noninformative censoring are investigated. 
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1. Introduction 
This article proposes a model to analyze clustered survival 
data with dependent censoring. There is a rich literature on 
the analysis of clustered or, more generally, correlated survival 
data. There are also many studies considering the problem of 
dependent censoring. However, these two problems, namely 
dependent censoring and the correlation introduced by clus- 
tering, are rarely considered simultaneously. Nevertheless, this 
type of data are very common in real practice. To illustrate, 
we present the following example. 

In the Dialysis Outcome and Practice Patterns Study 
(Young et al., 2000), there are 10,290 kidney disease patients 
from 152 centers. All of them received dialysis treatment. 
Dialysis practice patterns vary from center to center and can 
affect mortality. Some features of the data set are the fol- 
lowing. First, the survival outcomes of patients in the same 
center are correlated because they share the same service or 
practice patterns. Second, some patients withdraw during the 
study. Their withdrawal is very likely to be related to their 
health status. As an initial step to assess dependent censoring, 
we calculate the percentage dead and percentage withdrawn 
for each center. The correlation coefficient between these two 
groups of percentages is 0.25; that is t o  say, we cannot naively 
assume that all censoring is noninformative. 

One major objective of this study is to identify good and 
bad dialysis practice patterns. To do this, it is desirable to 
rank facilities according to patient mortality. The crude per- 
centages dead can only serve as a rough index to rank facilities 
because they do not take the effects of covariates into account. 
For example, some facilities may have higher mortality rates 
just because their patients are older. This article provides a 
method to rank those centers, taking into account covariate 
effects and the information provided by censoring. 

Various approaches have been proposed to identify and ac- 

count for dependent censoring. Emoto and Matthews (1990) 
assumed a bivariate Weibull model for failure and censoring 
times. Zheng and Klein (1995) used an assumed copula to 
study dependent competing risks. These articles include ex- 
cellent reviews of the literature. Some authors used data col- 
lected after censoring to identify dependent censoring (e.g., 
Lin, Robins, and Wei, 1996; Lee and Wolfe, 1998). If there 
are marker process data available, then the method devel- 
oped by Robins and Rotnitzky (1992) can be used to identify 
dependent censoring. However, all of these studies considered 
uncorrelated subjects only. 

To analyze survival data collected from correlated subjects, 
frailty models can be used. The term frailty, which means 
propensity to failure, was first introduced by Vaupel, Man- 
ton, and Stallard (1979) to model population heterogeneity. 
Frailty models assume that subjects in the same cluster share 
a common unobserved frailty. By doing this, the within-cluster 
correlation between failure times is taken into account. Clay- 
ton (1978) used it to study the familial tendency in chronic 
disease incidence. Houggard, Harvald, and Holm (1992) ana- 
lyzed the lifetimes of twins. Gray (1994) examined the insti- 
tutional effects in a multicenter cancer clinical trial. 

Either explicitly or implicitly, all of these studies made the 
assumption that censoring is noninformative for frailty. This 
assumption was First clearly stated by Nielsen et al. (1992). 
They emphasized that this assumption is “for mere validity of 
the inference, not just for possible efficiency.” However, this 
assumption may not be true in real life. As can be seen from 
the above example, a kidney center’s mortality rate is pos- 
itively correlated with its withdrawal rate. Therefore, with- 
drawal appears to be informative for failure. 

Link (1989) did a sensitivity analysis using a frailty model 
with informative censoring. His model assumes that censoring 
only occurs in a subpopulation defined by the frailty distri- 
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bution. However, he used data from independent subjects. 
Frailty models for independent subjects are overparameter- 
ized. Therefore, some parameters in his model are specified 
by prior knowledge rather than being estimated. Neverthe- 
less, his study produced ‘<a class of survival functions so that 
the potential effect of incorrectly assuming the independent 
censoring model can be assessed.” 

Our frailty model uses clustered data and is based on two 
assumptions. The first is that subjects in the same cluster 
share a common frailty. The second is that, within each clus- 
ter, censoring is independent of survival. These two assump- 
tions are common to all standard frailty models. The new 
feature of our model is that it allows the censoring rate to 
be associated with failure rate at cluster level so that cen- 
soring can be informative for failure. Previous frailty models 
assumed independence between a cluster’s censoring and fail- 
ure rates so that censoring is noninformative for failure. 

The proposed model allows censoring by some causes to 
be analyzed as informative while treating censoring by other 
causes as noninformative. It can also be applied to multi- 
ple competing risk problems. Moreover, when many medical 
facilities participate in the study, the new model can iden- 
tify facilities doing relatively better and those doing worse, 
with patient withdrawal information taken into account. This 
is more reasonable than assuming that patients’ withdrawals 
are independent of their survival outcomes. 

To fit frailty models, Nielsen et al. (1992) proposed using 
the EM algorithm (Dempster, Laird, and Rubin, 1977). Klein 
(1992) and Andersen et al. (1997) modified and improved the 
algorithm. When integrals are not available in closed form in 
the E-steps of the EM algorithm, many authors have used the 
Markov chain Monte Carlo (MCMC) method, e.g., Wei and 
Tanner (1990) and Chan and Ledolter (1995). In this article, 
we also use the EM algorithm with the MCMC method to fit 
the proposed model. We assume a log-normal distribution for 
frailty. Different distributions for frailty and their properties 
were discussed by Houggard (1984) and Oakes (1989), among 
others. 

The frailty model with informative censoring is described 
in Section 2. The model is fitted by the EM algorithm in Sec- 
tion 3 .  The simulation studies in Section 4 evaluate the finite- 
sample properties of the proposed method. A data analysis 
for kidney disease patients is given in Section 5. Consequences 
of incorrectly assuming noninformative censoring are investi- 
gated in these two sections. Some further discussions about 
the proposed model are given in Section 6. Detailed formulas 
are listed in the Appendix. 

2. Frailty Models with Informative Censoring 
In this article, we consider right censoring only. Suppose there 
are two types of censoring, namely dropout and administra- 
tive censoring. Dropout could be any type of potentially infor- 
mative censoring, such as initiating a nonrandomized therapy 
in the middle of a randomized trial. Administrative censoring 
is usually caused by the end of the study. 

Denote the failure, dropout, and administrative censoring 
time for a subject by T, C, and S, respective1 . Let X = 
min(T, C, S). Define A(T) = 1 if X = T and A(Ty = 0 other- 
wise. Similarly, define A(C). S is assumed to be independent 
of both T and C and will not be discussed in detail. From 
now on, censoring will be used to  mean dropout only. The 

end of the study is denoted by 7. dT) and .dC) are vectors 
of covariates associated with failure and censoring, with size 
p x 1 and q x 1, respectively. They may be completely dis- 
tinct or overlapping or even identical. They are assumed to 
be time independent in this article, but the method can also 
be applied to external time-dependent covariates (Kalbfleish 
and Prentice, 1980, p. 122). 

Suppose there are m clusters, n, subjects in the ith cluster. 
The total sample size is then N = CE.=, n,. Variables for the 
j t h  subject in the zth cluster are indicated by subscripts, e.g., 

T,j, At;”, etc. The corresponding lowercase letters are used 
to indicate realized values. 

Following Cox (1972), the baseline hazards for failure and 
censoring are nonparametric functions of time u, denoted by 

ter are assumed to share a common unobserved frailty eBa. 
The shared frailty introduces correlation among subjects in 
the same cluster. It is further assumed that, conditional on 
covariates and frailty, all N subjects are independent. More- 
over, B,, i = l , .  . . ,m, are assumed to be independent with 
identical normal distribution with mean zero and variance 8,  
i.e., 

A, (TI (.) and A, ( C )  (u), respectively. Subjects in the ith clus- 

B, N N(0,8),  i.i.d.,i = 1,. . . ,m. (1) 

The hazard functions for failure and censoring are then writ- 
ten as follows: 

( 3 )  

Note that T and C are independent conditional on covari- 
ates and Bi. The marginal dependence between T and C is 
solely due to the fact that the unobserved B; affects both 
failure and censoring. In this model, the risk of dropout for a 
subject with frailty ebi is inflated by a factor of ( e b t ) u ,  as op- 
posed to a subject with frailty e’ = 1. If a > 0, higher frailty 
will result in earlier dropout. On the other hand, if cy < 0, 
a subject with higher frailty will be more likely to stay (in 
the study, in hospital, etc.). Although typically we shall have 
a > 0 in real life, it is also possible that a < 0. In either case, 
frailty affects censoring, so censoring is informative for frailty. 
Conditional on covariates only, failure time T and censoring 
time C are dependent. The correlation between log(T) and 
log(C) introduced by this model does not have a closed form. 
To illustrate the relationship between this correlation and a,  

( T )  ( T )  we chose A, (u) = A, (u) = 0.1, no covariates, and a in 
the interval from -1.5 to 1.5 in (2) and (3). We estimated the 
correlation by simulation, and the results are plotted in Fig- 
ure 1. It can be seen that the correlation has the same sign as 
a and that, as /a /  increases, the magnitude of the correlation 
increases. 

On the other hand, the assumption for the traditional frailty 
model is that censoring is noninformative for frailty, i.e., a = 0 
in (3). By this assumption, frailty does not affect censoring, 
so censoring cannot provide any information about frailty. In 
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Figure 1. The relationship between a and the correlation 
coefficient between log(T) and log(C) when the hazard func- 
tions for T and C are the following: X(T)(u I B )  = 0.1 exp(B), 
X(’)(u I B )  = O.lexp(aB), and B - N(0, l ) .  

this case, a model for censoring does not need to be speci- 
fied because it does not affect the inference for P ( T )  and 8. 
By the traditional frailty model, failure time T and censor- 
ing time C are independent, conditional on covariates. The 
purpose of the traditional model is to account for the within- 
cluster correlation between failure times, not to account for 
the dependence between T and C. 

In the proposed model, censoring is independent (of failure) 
within each cluster but dependent (on failure) in the whole 
population. This means, e.g., within each kidney center, pa- 
tients withdraw randomly. However, those centers with higher 
failure rates also have higher withdrawal rates, i.e., a > 0 in 
(3). Hence, in the whole population, failure and withdrawal 
are positively correlated. For another example, let T and C de- 
note potential failure times due to heart attack and diabetes, 
respectively. The frailty term can be viewed as the presence or 
absence of some disease genes shared by family members that 
cause both heart attacks and diabetes. Within each family, 
these two risks are independent. However, those families with 
more heart attacks also have more diabetes. This corresponds 
to a > 0 in ( 3 ) .  Consequently, in the whole population, the 
two risks are positively correlated. These scenarios are the 
background for the proposed frailty model. 

The proposed model can be easily extended to deal with 
more than two competing risks. For example, we can assume 
the hazard functions for 7’1, T2, and T3 are the following, 
where T I ,  T2, and T3 are the potential failure times due to  
three different causes: 

Xl(u I z l , z2 ,23~B,T2 ,T3)  = Xl,o(u)exp(P:zi + B )  
X Z ( ~  I z l , z 2 , Z 3 , ~ , ~ l , T 3 )  = XZ,O(~J)~XP(P;Z~ 
X3(u I Z I , ~ Z , ~ ~ , B , T ~ , ~ ~ )  = X3,O(U)exp(P& +a3B).  

(4) 
{ 

This model will be used to analyze the data set for kidney 
disease patients in Section 5 .  More generally, we can assume 
that the three types of failures have frailty B1, B2, and B3 
and assume a multivariate normal distribution for them. 

3. Fitting the Model by the MCEM Algorithm 
We now study how to fit the proposed frailty model in (2) 
and ( 3 ) .  Its extended versions can be fitted similarly and are 
not discussed. Let A, (u) = J$Xo (v)dv and A, (u) = 
j$ Xic’(v)dv, the nonparametric baseline cumulative hazards 
for failure and censoring, respectively. For simplicity, denote 
parameters and data by single letters as follows (the letter o 
is used to denote observed data): 

(T) ( T )  ( C )  

( 5 )  

Then, conditional on Bi = bi, the likelihood term for subject 
( i , j )  is 

Lij (oij; 9, bi)  

Note the first two lines are for failure and the last two lines 
are for censoring. Usually the noninformative censoring as- 
sumption is made, which makes it appropriate to use only the 
first two lines and ignore the last two lines of (6) to make 
inference about failure risks. When censoring is informative, 
the last two lines cannot be ignored. Actually, there is a third 
part, which is for administrative censoring. However, it is as- 
sumed to be independent of both parameters of interest and 
frailty term bi. Therefore, the third part is ignored. When 
subject ( i ,  j) is administratively censored, both 6:;) and b jy )  
are zero. The marginal likelihood for the ith cluster is 

03 71% 

Pi(0i; Q) = f ( b i ;  8)  n Lij(0ij; Q, bi)dbi, (7) 

where f( .  ; 8) is the probability density function of the N(0,O) 
distribution. This integral does not have a closed form. The 
probability density function of B, conditional on observed 
data is 

L j=1 

71% 

f ( b i  ; 8)  n Lij (Oi j  ; Q l  bi) 

The marginal full likelihood is the product of (7) over i = 
1,. . . , m. It is very difficult to maximize it directly. 

However, if those bi,  i = 1,. . . ,m,  are known, then we 
can fit (2) and ( 3 )  separately. This feature makes the EM 
algorithm a good choice to fit the model. In the E-steps, 
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the density of Bi in (8) is used to generate Q random num- 
bers, b!”’, s = 1,. . . , Q, by the Metropolis-Hastings algorithm 
(Metropolis et al., 1953; Hastings, 1970). Then Bi and func- 
tions of Bi are estimated by their sample means conditional 
on observed data. For example, 

(9) 

Q 

Note that (10) gives an estimator for frailty that will be used 
later in Section 5 for data analysis. 

By the profile likelihood viewpoint of Johansen (1983), 
$I(.) and Ahc)(.) are allowed to be discrete. Then they 
have point masses at failure and censoring time points, respec- 
tively, and are equal to zero everywhere else. The following 
four profile score equations are used in the M-steps to update 
parameter estimates for /3(T), p(c), a ,  and 8, respectively: 

i=l 

where 

and where 

Note the first three equations have the same format as the Cox 
(1972) score equations. Once @(c), and a are obtained, 
baseline hazard estimates are updated by the Breslow (1972) 

formula, 

Xkl?x%~ 

The computation of the covariance matrix for parameter 
estimates is given in the Appendix. 

4. Simulation Studies 
Simulation studies are conducted to assess the performance of 
the method developed in the previous section. In all simula- 
tions, there are 40 clusters and 5 subjects in each cluster. Each 
subject has probability 0.5 of receiving a treatment (TR = 1) 
and probability 0.5 of being a control (TR = 0) .  Subject age 
after being centered has a uniform( -10,lO) distribution. All 
subjects are independent to each other with regard to covari- 
ate distributions. 

The true model used to generate data is a frailty model with 
informative censoring. Covariate effects are specified by the 
following scenario. The treatment is effective to lower failure 
risk but may also be toxic to some patients and make them 
drop out. Older people are more likely to fail and also more 
likely to drop out. Specifically, the model is 

Bi N N(0, l), i.i.d., i = 1,. . . ,m, 

X . .  (TI (u) = 0.2uexp(O.lAGEij - 1.4TRij + Bi), 
23 

XjF’(u) = 0.04uexp(O.PAGEij + 1.2TRij + l.OBi), 

i.e., var(Bi) = 8 = 1, pi:? = 0.1, Pi:) = -1.4, = 

0.2, o,’,“’ = 1.2, and a = 1.0. That a is positive indicates 
that clusters with higher frailty levels have higher dropout 
rates. The administrative censoring time Sij is generated by 
a uniform(a1, a2) distribution, where a l ,  a2 are chosen to get 
desired censoring rates. Five hundred data sets were gener- 
ated. Each data set was analyzed by two frailty models, one 
assuming informative censoring and the other assuming non- 
informative censoring. The results are summarized in Table 1. 

First, we can see that parameter estimates by our proposed 
model are consistent. The magnitudes of empirical bias are 
very small. Also, the estimated parameter standard errors 
are fairly close to the empirical standard errors. The cover- 
age probabilities of the 95% confidence intervals are close to 
the nominal level. Second, it can be seen that, if we misspecify 
censoring as noninformative, a frailty model can result in sub- 
stantial bias in parameter estimates. The coverage probabili- 
ties of the 95% confidence intervals are far from the nominal 
level. Each data set is also analyzed by a Cox model assuming 
independent subjects. Parameters are biased by about 30% 
toward zero (results not shown). 

To assess the bias directions by frailty models in different 
situations when informative censoring is ignored, we set (Y to 
-1.0 and keep everything else the same as previously. Again, 
500 data sets are generated and analyzed by both models. The 
results are listed in the bottom half of Table 1. It can be seen 
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Table 1 
Parameter estimates by frailty models; 500 replicates: 40 clusters with 5 
subjects in each cluster; 35% dropout, 20% administration censoringa3b 

Informative censoring Noninformative censoring 

True Mean Bias (%) SE SEM CP Mean Bias‘ (%) SE SEM CP 

lo&; 1.0 1.023 

/3,(T) -1.4 -1.423 
e 1.0 0.977 

lop@ 2.0 2.012 

Ptr (c) 1.2 1.225 
a 1.0 1.027 

10/3::2 1.0 0.996 

&? -1.4 -1.415 
e 1.0 1.001 

lO&i  2.0 2.052 

p p  1.2 1.199 
a -1.0 -1.034 

a = l  

2.3 0.251 0.256 ,952 0.887 -11.3 0.248 0.233 ,818 

1.6 0.288 0.291 .954 -1.510 +7.9 0.300 0.289 .940 
2.3 0.405 0.417 .930 0.813 -18.7 0.392 0.188 .482 
0.6 0.311 0.302 .942 

2.1 0.322 0.331 .960 
2.7 0.291 0.322 ,962 

Q = -1 
0.4 0.251 0.243 ,940 1.085 +8.5 0.263 0.257 .898 

1.1 0.276 0.289 .954 -1.335 -4.6 0.285 0.262 .908 
0.1 0.458 0.497 .928 0.846 -15.4 0.407 0.193 .510 
2.6 0.305 0.308 .956 

0.1 0.306 0.312 .952 
3.4 0.337 0.328 ,930 

a SE is the empirical standard error calculated from 500 parameter estimates; SEM is the mean of the 500 estimated 
standard errors of the parameters; CP is the empirical coverage probability of the estimated 95% confidence intervals. 

The ‘informative censoring’ columns are the results from the proposed model, which analyzes dropout as infor- 
mative censoring, specified as follows: 

Bi N N(O,O), i.i.d., i = 1,. . . ,m, 

The ‘noninformative censoring’ columns are the results from the following frailty model, which treats dropout as 
noninformative censoring: 

. .  Bi N N(0, O), I.I.d., i = 1,.  . . ,m,  

No model for censoring is specified except the assumption that frailty Bi does not affect censoring. Both models treat 
administrative censoring as noninformative. 
‘ + indicates overestimation, or bias away from zero, and - indicates underestimation, or bias toward zero. 

that the estimates are consistent when informative censoring 
is taken into account whereas ignoring informative censoring 
gives biased results. 

The consequences of falsely assuming noninformative cen- 
soring can be explained as following. These results are ver- 
ified by extensive simulations. When cy > 0, those subjects 
with higher failure risks are more likely to drop out before 
we observe their failures. Then the result is that failure risks 
are underestimated. In contrast, when Q < 0, failure risks are 
overestimated. The bias direction in the estimation of /?(T) is 
more complicated. It depends not only on cy but also on ,dC). 
Consider the estimation of treatment effect. When a > 0, the 
failure risks in both the treated and the control groups are un- 
derestimated. However, when /3(c)  > 0, the treated group has 

a higher censoring rate. Hence, the degree of underestimation 
for failure risks is more severe in the treated group than in the 
control group. Therefore, the reduction of failure risk by the 
treatment is inflated, i.e., /3(T) is overestimated when (Y > 0 
and ,dC) > 0. On the other hand, when a > 0 but p(c) < 0, 
/ 3 ( T )  is underestimated. The bias directions in other settings 
of a and p(c) can be similarly explained. In summary, ig- 
noring informative censoring causes bias in the estimation of 
survival probability. With unbalanced censoring rates across 
covariate groups, it causes bias in the estimation of covariate 
effects. When censoring rates are balanced across covariate 
groups, the bias in covariate effect due to ignoring informa- 
tive censoring is small. The estimation for 0 is severely biased 
when censoring is incorrectly assumed to be noninformative. 



Frailty Model f o r  Informative Censoring 515 

5. Example: Mortal i ty  at Kidney Dialysis Centers 
End-stage renal disease is a chronic condition of total and ir- 
reversible kidney failure. Dialysis is the treatment for patients 
before they receive kidney transplants. During the treatment, 
a tube is inserted into the patient’s arm. A special fluid in 
the tube is driven by a machine outside the patient’s body. 
It flows opposite to the patient’s vein blood. Toxin in the 
blood is filtered through the tube into the fluid and taken 
away. This treatment usually takes 3-4 hours. Patients are 
usually treated three times a week. The total volume of the 
fluid used in a treatment depends on the patient’s weight. 
However , different kidney dialysis facilities have different for- 
mulas to calculate the total volume. Many treatment charac- 
teristics, including treatment-time length, speed of the fluid 
flow, and type of dialysis machine, vary greatly from facility 
to facility. We refer to these factors as practice patterns. 

The Dialysis Outcomes and Practice Patterns Study 
(DOPPS) is a prospective, observational study for the as- 
sociations between dialysis treatment practices and patient 
outcomes (Young et a,l., 2000). Data were collected during 
1996-1999 in seven countries. Here we use only the subset of 
the data for the United States. It contains 10,290 patients 
from 152 dialysis facilities. The number of patients in a fa- 
cility ranged from 21 to 124. During the study, 3188 (31%) 
patients died, 424 (4%) withdrew from the study, 673 (6.5%) 
received transplants, and the rest remained in the study and 
on dialysis. It is suspected that the most common reason for 
withdrawal is worsened health status. Thus, withdrawal is 
likely to be an informative type of censoring. Transplantation 
may also be informative. Censoring by the end of the study 
is assumed to be noninformative. 

In this data set, each facility has a moderate or large num- 
ber of patients. Thus, we can calculate percentage dead and 
percentage withdrawn for each facility. Facility-level percent- 
ages of patients who died range from 0 to 48% (median = 
31%, mean = 29%, standard deviation [SD] = 12%). Per- 
centages withdrawn range from 0 to  20% (median = 2.9%, 
mean = 3.6%, SD = 3.7%). The percentages dead and with- 
drawn are positively correlated (Pearson correlation coeffi- 
cient T = 0.25). Percentages of transplant range from 0 to 
22% (median = 5.8%, mean = 6.l%, SD = 4.4%). The cor- 
relation coefficient between facility-level percentage dead and 
percentage of transplants is 0.17. This suggests that these two 
types of censoring, i.e., due to withdrawal and transplant, are 
informative. 

Because patients in the same facility share the same prac- 
tice patterns, their survival outcomes are likely to be corre- 
lated. Therefore, frailty models are used to do the analysis. 
Each facility is viewed as a cluster and its patients as sub- 
jects in the cluster. Four important patient-level covariates 
in kidney studies (Wolfe, 1994) are included in the models. 
They are age (in years), race (black = 1, other = 0), gender 
(male = 1, female = 0), and diabetes status (diabetes = 1, no 
diabetes = 0). The data set is analyzed by the frailty model 
with two types of informative censoring, specified in (4). It 
is also analyzed by a frailty model assuming noninformative 
censoring. Parameter estimates are reported in Table 2. If 
we use the informative censoring model as a gold standard, 
then the relative bias of the noninformative censoring model 
may be up to 30%. The effect of frailty on withdrawal is sub- 
stantial (a2 = 1.432, with SE = 0.321). That 0 2  is positive 

indicates that facilities with higher mortality rates also had 
higher withdrawal rates after being adjusted by covariates. 
Similarly, a3 = 0.745 (SE = 0.226) tells us that, in this data 
set, those facilities with higher mortality rates also had higher 
rates of transplantation. 

A major objective of this study is to identify good and bad 
dialysis practice patterns. To this end, we rank facilities ac- 
cording to patient mortality. The crude percentages of dead 
can only serve as a rough index to rank facilities because they 
do not take the effects of covariates into account. For example, 
some facilities may have higher mortality rates just because 
their patients are older. However, frailty models can be used 
to rank the performance of facilities. After adjustment by pa- 
tient covariates, the facility-level frailty estimated by (10) can 
be viewed as a score for facility performance. Higher frailty 
levels imply worse performance. Again, two frailty models are 
used, one assuming informative censoring and the other non- 
informative censoring, The correlation coefficient between the 
ranks by the two models is 0.88. The ranks are plotted in Fig- 
ure 2. Facilities are divided into two groups, high dropout and 
low dropout, by the median of their withdrawal percentages. 
The two groups are denoted by dots and circles. For simplic- 
ity, we do not show transplantation information in the plot. It 
can be seen that the disagreement between ranks by the two 
models has a pattern. Facilities with high withdrawal rates are 
penalized when informative censoring is taken into account. 
We believe this is more likely to be fair. 

Note that some facilities have withdrawal rates up to 20% 
while many other facilities have withdrawal rates near zero. 
Therefore, even though the overall withdrawal rate is as low 
as 4%, when ranking those facilities, withdrawal still plays an 
important role. Moreover, if we consider that only 31% died, 
the 4% of patients withdrawn could also have a substantial ef- 
fect on parameter estimates. For example, if those withdrawn 
patients had died immediately after withdrawal, then the per- 
centage of dead would have increased to 35%. Ignoring the 4% 
withdrawn would be ignoring one ninth of the total number 
of deaths. This could produce roughly an 11% relative bias 
on survival probability. This is another reason for considering 
informative censoring even though the overall withdrawal rate 
is low. Similar arguments can be applied to transplantation. 
Withdrawal and transplantation combined account for 10% 
of the patients. A 10% potentially informative censoring rate 
cannot be simply taken as noninformative. However, it is not 
appropriate to combine them as a single type of informative 
censoring. This article provides a method to  analyze this type 
of data. 

6. Discussion 
We view our contribution in this article as bias reduction, 
the ability to  estimate the correlation between failure and 
censoring, and more reasonable ranks for medical facilities 
(or physicians, geographic areas, etc.). 

In this article, for convenience, the distribution of frailty is 
chosen to be log normal. This assumption can be checked. 
This distributional assumption could influence the relative 
ranking of the facilities. Many other authors have used gamma 
frailty distributions, also for convenience. Shih and Louis 
(1995) and Glidden (1999) proposed methods to check the 
appropriateness of gamma frailty distributions. It should not 
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Table 2 
Parameter and standard error estimates for DOPP,!? 

Informative censoring Noninformative censoring 

Parameter Estimate SE Estimate SE Biasb (%) 

Failure 

Withdrawal 

Transplant 

0.0323 

-0.0988 

0.0184 

0.192 
0.0987 

-0.0272 

-0.473 

-0.143 

0.0220 
1.432 

-0.0411 

-0.754 

0.202 

-0.229 
0.745 

0.00138 0.0326 0.00138 +0.6 

0.0445 -0.132 0.0469 $33.6 

0.0361 0.0231 0.0362 $25.5 

0.0361 0.189 0.0363 -1.6 
0.0204 0.102 0.0113 +3.3 

0.00303 

0.115 

0.0979 

0.100 
0.321 

0.00236 

0.0923 

0.0799 

0.0834 
0.226 

a The ‘informative censoring’ columns are the results from the following frailty model, which analyzes withdrawal 
and transpIantation as two types of informative censoring: 

Bi N N(O,B), i.i.d., i = 1 , .  . . , m, 

The ‘noninformative censoring’ columns are the results from the following frailty model, which treats withdrawal and 
transplantation as noninformative censoring: 

Bi N N(O,O), i.i.d., i = 1 , .  . . ,m,  

No model for censoring is specified except the assumption that frailty Bi does not affect censoring. Both models treat 
censoring by the end of the study as noninformative. 

Bias is calculated using the results in the ‘informative censoring’ column as the gold standard. 

be hard to develop similar methods to check the appropriate- 
ness of the log-normal frailty distribution, but we have not 
yet seen any publications on this topic. Presumably it is more 
desirable to develop a method to find the right frailty distri- 
bution. 

The ability of clustered data to identify dependent censor- 
ing comes from the assumption that subjects in the same clus- 
ter are similar, i.e., after being adjusted by covariates, they 
have the same risks to  fail and the same risks to be censored. 
Subjects in the same cluster serve as replicates of each other. 

The frailty distribution assumption is not essential for iden- 
tifying dependent censoring. We expect other distributions 
lead to similar conclusions. We may even do it nonparamet- 

rically. If cluster sizes are large, the Bi’s can be reliably esti- 
mated as fixed intercept terms rather than random variables 
with a parametric distribution. Thus, both the conditional 
failure time distribution and the frailty values can be esti- 
mated nonparametrically. The model is parametric for the 
covariate effects and the effect of frailty on censoring, which 
is modeled through a in (3). These together yield a semipara- 
metric estimator for the marginal failure time distribution. 
When cluster sizes are small, this approach will give unsta- 
ble estimates for Bi’s and other parameters. In this case, a 
parametric distribution for Bi is useful, similar to the use of 
a prior in Bayesian analysis. Different distributions can lead 
to different inferences for small sample sizes but will give es- 
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0 50 1W 150 
Rank by lraiky model assuming ncn-infomretive censoring 

Figure 2. Facilities in the DOPPS study are ranked by 
the estimates of their frailty e B z .  The facility with the lowest 
frailty is ranked as the first. The ranks on the y-axis are ob- 
tained from the new frailty model assuming informative cen- 
soring. The ranks on the z-axis are from a frailty model with 
the same covariates, but censoring is assumed to be nonin- 
formative. The median of the dropout percentages of the 152 
facilities is used as the cutting point for high and low dropout 
rates. 

sentially the same inference when the sample size is large in 
each cluster. 

We assumed a common baseline hazard function for all clus- 
ters with a random effect for each cluster. Alternatively, when 
cluster sizes are large, a model with fixed cluster-specific ef- 
fects or cluster-stratified hazards could be used. These models 
have fewer parametric assumptions than our model but could 
be inefficient, especially when the number of clusters is large 
and the sample size is small in each cluster. Our proposed 
model is a proportional hazards model with random inter- 
cepts (Bi in (2) and aBi in (3)). It  has an added advantage 
because it can be easily extended to include random covariate 
effects, i.e., random slopes. Vaida and Xu (2000) provided ex- 
amples to show the usefulness of proportional hazards models 
with random slopes. 

In this article, we have assumed that there is a significant 
clustering effect, i.e., the parameter 0, variance of log frailty, is 
assumed to be greater than zero. If this is in question, the tests 
provided by Commenges and Andersen (1995), Gray (1995), 
and Andersen, Klein, and Zhang (1999) can be used. Our 
model can be applied only if significant clustering effects are 
found. 

Murphy (1994, 1995) and Parner (1998) derived the large- 
sample theory for the gamma-frailty model assuming non- 
informative censoring. Their proof may be modified to give 
asymptotics for our frailty model with informative censoring. 
This is still an open question, but our simulation results seem 
to point to the asymptotic validity of the proposed method. 

RESUME 

Nous proposons un nouveau modble de fragilitb qui prend en 
compte la corrklation entre censure et d6cbs pour des donnBes 

en grappe. Dans ce modkle, le risque d &tre censur6 est affect6 
par le risque de dkces. Ce modble s’adapte au sens et au degre 
de dkpendance entre dkcks et censure. Le modele de fragilitk 
traditionnel en est un cas particulier. Notre modkle permet de 
traiter la censure pour certaines causes comme informative, 
et la censure pour d’autres causes comme non-informative. I1 
permet aussi d’analyser des donnees avec risques compCtitifs. 
Pour ajuster le modble un algorithme EM avec simulations 
MCMC dans l’ktape E est utilisk. La mkthodes est illustrke 
par des simulations et une analyse de donnkes de malades at- 
teints de maladies du rein. Les conskquences d’une hypothese 
incorrecte de censure non-informative sont Btudikes. 
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APPENDIX 
Derivatives and Covariance Estimates 

Denote by the vector of the discrete baseline failure hazards on those death time points. Similarly, use A(c) to denote 
that for censoring hazards. Then let q = (p(T)’, X(T)’,p(C)‘,cr, If those frailty terms Bi,% = 1,. . . ,m, were known, 
then the logarithm of the likelihood for complete data (0 ,  b) is the following, where o denotes the observed data and b the 
unobserved frailty: 

20 
l ( o , b ; q ) = C ( ~ l o g O -  - 

m 

i=l 

Denote Z(o, b; q) simply by l(7).  Note that the second derivative matrix of l (q )  is riot the observed information matrix for q 
because the uncertainty about b has not been accounted for. The observed information matrix I(7j) is given by Louis (1982) 
as the following (Parner (1998) proved the consistency of this formula in nonparametric maximum likelihood estimation for 
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gamma-frailty models) : 

where expectations are taken with respect to frailty terms b. The components of d l (q ) /dq  are 

Solving (A.4) and (A.7) gives Breslow estimators for 
leads to score equations (11)-(13). The second derivatives are 

and A(c), respectively. Plugging them into (A.3), (A.5), and (A.6) 

(A.lO) 

(A. l l )  

(A.12) 

(A.13) 

(A.14) 

(A.15) 

(A.16) 
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(A.17) 

(A.18) 

All other off-diagonal elements of the second derivatives are zero. Using matrix techniques, we can avoid solving high- 
dimensional equations in the M-steps of the EM algorithm. 

The computation of the expectation in the first term of (A.2) is similar to that of the &steps. To compute that in the 
second term, we calculate (a1(77)/a77)(a1(0)/a7’) by letting bi = brs) in (A.3)-(A.8) for each s = 1 , .  . . , Q, and then take the 
average. The inverse of I(7j) gives the covariance matrix for <. 


