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Summary. Noncompliance is a common problem in experiments involving randomized assignment of treat-
ments, and standard analyses based on intention-to-treat or treatment received have limitations. An attrac-
tive alternative is to estimate the Complier-Average Causal Effect (CACE), which is the average treatment
effect for the subpopulation of subjects who would comply under either treatment (Angrist, Imbens, and
Rubin, 1996, Journal of American Statistical Association 91, 444–472). We propose an extended general lo-
cation model to estimate the CACE from data with noncompliance and missing data in the outcome and in
baseline covariates. Models for both continuous and categorical outcomes and ignorable and latent ignorable
(Frangakis and Rubin, 1999, Biometrika 86, 365–379) missing-data mechanisms are developed. Inferences
for the models are based on the EM algorithm and Bayesian MCMC methods. We present results from
simulations that investigate sensitivity to model assumptions and the influence of missing-data mechanism.
We also apply the method to the data from a job search intervention for unemployed workers.

Key words: Causal inference; EM algorithm; General location model; Missing data; Noncompliance.

1. Introduction
Inferences for treatment effects are relatively straightfor-
ward in randomized trials with perfect compliance with
the assigned treatments. However, for scientific experiments
involving human participants, noncompliance and partial
compliance are very common in practice. Compliance often
varies according to participant characteristics, and may be
associated with effects of the treatments. For example, in a
clinical trial to test the efficacy of a new drug, severe side
effects may result in the lack of compliance. Misleading con-
clusions are likely to result if compliance information is ig-
nored in such settings. Missing values in the outcome or the
covariates further complicate the data analysis. This article
concerns methods for analyzing data from a clinical trial with
all-or-nothing compliance and missing values in the outcomes
and covariates.

Intent-to-treat and as-treated methods provide simple esti-
mates of treatment effects and are widely applied in practice,
but both these methods have limitations. The intent-to-treat
analysis compares the outcome distributions of the treatments
as randomized, ignoring compliance information. It provides a
valid estimate of the effect of the treatment assignment, but a
potentially biased estimate of the effect of the treatment itself,
which is often of more interest. The as-treated analysis com-
pares the outcome distributions between the treatments actu-
ally received. It focuses more directly on the treatment effect
itself, but is subject to selection bias when there is noncom-
pliance, since the randomization is compromised. Alternative
analysis methods for noncompliance in clinical trials have re-
ceived considerable attention recently, and largely focus on

two different problems. One concerns inference for the average
treatment effect that would have been observed if partic-
ipants had all fully complied with the treatment regimen,
assuming that obstacles such as side effects of drugs could
be overcome (Robins and Tsiatis, 1991; Mark and Robins,
1993; Robins, 1998). The second problem is to estimate the
Complier-Average Causal Effect (CACE), defined by AIR as
the average causal effect for the subpopulation of subjects
who would comply with either of the treatments if assigned
to them, using the randomization indicator as an instrumental
variable (Bloom, 1984; Sommer and Zeger, 1991; Goetghebeur
and Shapiro, 1996; Imbens and Rubin, 1996, 1997; Baker,
1998; Frangakis and Rubin, 1999, 2002; Yau and Little, 2001).
We call compliance under both treatments “principal com-
pliance” to distinguish it from “observed compliance,” since
it is a form of principal stratification (Frangakis and Rubin,
2002) for correct causal inference with posttreatment vari-
ables. Unlike observed compliance, principal compliance is
incompletely observed since compliance under the treatment
not assigned is unknown. Building on this work, we propose an
extended general location (EGL) model for the CACE for data
with noncompliance and missing values. Our model extends
methods in Little and Yau (1998) to accommodate discrete as
well as continuous outcomes, missing values in baseline covari-
ates as well as in outcomes, and two alternative assumptions
about the compliance and missing-data mechanisms.

We motivate and illustrate our model using data from the
JOBS II (Vinokur, Price, and Schul, 1995), a randomized
trial at the University of Michigan to test a job search in-
tervention for unemployed workers. In this trial unemployed

598



Extended General Location Model for Causal Inferences 599

individuals were randomly assigned to a control treatment
consisting of a booklet describing job search methods and
tips, or an experimental treatment group consisting of the
same booklet and five 4-hour job search seminars. Follow-up
questionnaires were mailed periodically to all the participants,
and measures of outcomes such as depression, financial strain,
and re-employment were obtained. We focus here on a binary
outcome, re-employment at a fixed date after the interven-
tion, but we also consider models for a continuous outcome.
The JOBS II data have missing values, and only about one
half of the individuals assigned to the experimental treatment
complied, in the sense that they attended at least one of the
seminars. Since “compliance” with the control treatment is
not an issue here, it is assumed that individuals would com-
ply with the control treatment, but may or may not comply
with the experimental treatment. Thus compliance (in the
CACE sense) is known for participants assigned to the ex-
perimental group, but is not known for participants assigned
to the control group, since their participation if assigned the
intervention is not observed.

The primary outcome in application is thus not medical,
but our methods provide alternatives to existing approaches
of analysis in any clinical trial with the following character-
istics: (a) an active treatment is compared with a control
treatment; (b) there is noncompliance with the active treat-
ment, and partial compliance effects are either not present
or ignored for simplicity; (c) interest concerns “as-treated”
effects, specifically the treatment effect in the subgroup of
individuals who would comply with both control and active
treatment; and (d) there are missing data in the covariates
or outcome. The main limiting feature is that partial compli-
ance effects are ignored, since in treatments involving admin-
istration of drugs partial compliance is common. Thus ex-
tensions of our methods to handle this situation would be
beneficial.

Section 2 presents our EGL model for inferences about
the CACE, and inferences based on the EM algorithm and
Bayesian MCMC methods. An alternative approach based
on instrumental variables is given in Section 2.4. Section 3
presents simulation studies that compare our likelihood-based
approach with instrumental variable methods for causal in-
ference (Bloom, 1984; Heckman and Hotz, 1989; Sommer and
Zeger, 1991; Zeger and Liang, 1991). In Section 4 we apply
our methods to JOBS II data. Section 5 contains conclusions
and discussion.

2. Extended General Location Model
2.1 The Complete-Data Model
We define the following variables for each participant i in a
randomized clinical trial:

xi = (xi1, . . . , xip)
T = p continuous baseline covariates.

While these might be treated as fixed in a complete-
data analysis, we assign them a normal distribution to
allow cases with missing values in these variables to
be included in the analysis. Transformations may be
needed to improve the normality assumption.

bi = discrete baseline covariates. For simplicity, we assume
bi is scalar and binary, although the extension to more
than two levels is immediate.

ri = randomization indicator for the treatment assigned. In
the JOBS II application, ri = 1 for the intervention,
ri = 0 for the control treatment.

yi = an outcome variable, which we initially assume is con-
tinuous and normal. Extensions to vector outcomes
are outlined in Section 5.

ci = principal compliance indicator, taking the value 1 if
participant i would comply with either treatment, and
0 otherwise. As noted above, in the JOBS II setting
ci is observed for participants assigned to the experi-
mental group, taking the value 1 for individuals who
attended the seminars and 0 otherwise. There was a
small amount of partial compliance in JOBS II in that
a few individuals attended a subset of the seminars but
not all of them; for the purposes of our analysis these
participants are treated as compliers. For individuals
assigned to the control group, ci is missing since we do
not know whether they would have attended the sem-
inars if they had been assigned to the experimental
group.

We write [A |B] to denote the distribution of A given B, N
for a univariate normal and Np for a p-variate normal distribu-
tion. We assume observations are independently distributed
given the randomization indicator ri . Independence is vio-
lated when potential outcomes for each unit are related to
the treatments assigned and the treatments actually received
by the other units. Thus we make the stable unit treatment
value assumption (SUTVA) that potential outcomes for each
unit are unrelated to the treatments assigned and the treat-
ments actually received by the other units (Angrist, Imbens,
and Rubin, 1996). While this assumption is almost universally
invoked, it is somewhat suspect in the JOBS II setting, since
the experimental treatment takes place in a group setting. For
a Bayesian approach to modeling noncompliance under group
randomization, see Frangakis, Rubin, and Zhou (2002).

We factor the joint distribution [yi , xi , ci , bi | ri ] as
[yi ,xi , ci , bi | ri ] = [ci , bi | ri ] · [xi | ci , bi , ri ] · [yi |xi , ci , bi , ri ]. We
then model the components of this factorization as follows:

[ci, bi | ri] ∼ Multinomial(α), (1)

[xi | ci = c, bi = b, ri = r] ∼ Np(µcb,Σ), (2)

[yi |xi, ci, bi, ri] ∼ N
{
g(xi, ci, bi, ri;β), τ 2

}
, (3)

where

g(xi, ci, bi, ri;β) = β0 + βCci + βCRciri + βBbi + βXxi

+βBCbici + βXCxici

+βBCRbiciri + βXCRxiciri. (4)

The parameters of the model are thus: θ = (α,µcb, Σ,β, τ 2),
where µcb is a (p × 1) vector, Σ = (σij ) is a (p × p) matrix,
and βT = (β0, βC , βCR, βB , βX , βBC , βXC , βBCR, βXCR). The
parameterization of this model embodies the following impor-
tant assumptions, described in more detail in AIR:

(1) Parameters (α, µcb, Σ) do not depend on ri because that
randomization of treatments ensures that ri is indepen-
dent of ci , bi , xi .
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(2) The mean structure in (4) omits the effects of ri , bi ri ,
and xi ri , because we assume that for noncompliers
(ci =0) the effect of treatment is the same whether sub-
ject i is randomized to control (and has no access to the
treatment) or randomized to the treatment (and fails to
comply). This is the crucial exclusion restriction (ER)
assumption discussed in AIR. Equation (4) implies that
the mean of yi for the noncompliers with baseline co-
variates (bi = b, xi = x) is g(x, 0, b, r; β) = β0 + βBb +
βXx, and the CACE for compliers with covariates
(bi = b, xi = x) is then CACE (b, x)= g(x, 1, b, 1; β) −
g(x, 1, b, 0; β) = βCR + βBCRb + βXCRx. An overall
CACE can be defined by averaging over the distribu-
tion p(b, x | c = 1) of B and X for compliers:

CACE =

∫
b,x

CACE(b, x)p(b, x | c = 1) dx db. (5)

We call this an extended general location (EGL)
model because the distribution of the continuous variables
[yi ,xi | ci , bi , ri ] is normal with a covariance matrix that de-
pends on the discrete variables (ci , bi , ri ), rather than being
a constant as in the standard general location model (Olkin
and Tate, 1961; Little and Rubin, 2002, Section 14.2). Restric-
tions can be imposed on the EGL model, either by assuming
a log-linear model for [ci , bi | ri ], or by constraining the means
µcb of the normal model for [xi | ci , bi , ri ]. Restrictions are par-
ticularly helpful in reducing the number of parameters when
the sample size is small. The distinctness of the parameters of
the models for [ci , bi | ri ] and for [xi | ci , bi , ri ] is preserved, so
estimation procedures are not radically different than those
for unrestricted models. With appropriate restrictions on the
model parameters (α , µcb, Σ) of [xi , ci , bi | ri ], the EGL model
yields [ci |xi , bi , ri ] similar to those in Little and Yau (1998)
after reparameterization (Peng, 2001).

Equation (3) of the EGL model can also be adapted to a
binary outcome, say y∗i . We assume there is an underlying
latent continuous variable yi for y∗i , where y∗i = I(yi > 0).
The distribution [yi |xi , ci , bi , ri ] is given by equation (3) with
τ 2 = 1. This implies a probit model for y∗i , namely,

Pr
(
y∗i = 1 |xi, ci, bi, ri

)
= Φ{g(xi, ci, bi, ri;β)}, (6)

where Φ(·) is the standard normal cumulative probabil-
ity function. When the outcome of interest is binary,
Φ{g(x, 1, b, 1; β)} − Φ{g(x, 1, b, 0; β)} is the CACE for sub-
jects with covariates (bi = b, xi = x), and the overall CACE
can be calculated as in equation (5). The probit model (6) for
[y∗i |xi , ci , bi , ri ] is proposed rather than the more common
logit model because it is more convenient for computation, as
discussed in Section 2.3.

2.2 Missing-Data Mechanisms
We now suppose there are missing values of (xi , bi , yi ) in the
data set, in addition to the missing values of ci in the control
group. The validity of methods for handling the missing data
depends on assumptions about mechanisms that create miss-
ing values. For subject i, let wi = (xi , bi , yi ) denote the set
of values if they were fully observed, and write wobs,i for the
observed values of wi and wmis,i for the missing values. Also,
let mi be the vector of missing-data indicators for wi , with
entries 1 if the corresponding entries of wi are missing and
0 otherwise. The missing-data mechanism for wi is specified

via a distribution Pr(mi |wi , ci , ri ; φ) for mi given wi and
compliance and randomization indicators (ci , ri ), indexed by
unknown parameters φ. We consider two alternative assump-
tions about the missing-data mechanism.

Ignorable missing-data mechanism (IMD). The missing-data
mechanism of wi is said to be ignorable if the data are missing
at random (MAR; Rubin, 1976; Little and Rubin, 2002), that
is: Pr(mi |wi , ci , ri = 1; φ) = Pr(mi |wobs,i, ci , ri = 1; φ), for
all wmis,i, Pr(mi |wi , ci , ri = 0; φ) = Pr(mi |wobs,i, ri =0;φ),
for all wmis,i, ci , and the parameters φ are distinct from the
parameters θ of the complete-data model. ML and Bayes es-
timation under this assumption does not require a term for
the missing-data mechanism to be included in the likelihood.

Note that the mechanism is allowed to depend on ci for ex-
perimental subjects (ri = 1) since ci is observed for these sub-
jects, but is not allowed to depend on ci for control subjects
(ri = 0) since ci is missing for these subjects. The latter may
not be realistic, since the probability of nonresponse for non-
compliers may be systematically higher than that for compli-
ers, regardless of treatment. To handle such cases, Frangakis
and Rubin (1999) propose an instrumental variable estimator
for an alternative missing-data mechanism, which they call
latent ignorability.

Latent ignorable missing-data mechanism (LIMD). The
missing-data mechanism of wi is said to be latent ignorable
if the data are latent MAR (LMAR) within each level of the
latent compliance status, that is: Pr(mi |wi , ci , ri = 1; φ) =
Pr(mi |wobs,i, ci , ri =1; φ), for all wmis,i, Pr(mi |wi , ci , ri = 0;
φ) = Pr(mi |wobs,i, ci , ri = 0; φ), for all wmis,i, and the pa-
rameters φ are distinct from the parameters of the complete-
data model (see also Barnard et al. [2002]). Note that LMAR
is weaker than MAR since the mechanism is allowed to de-
pend on ci for control as well as experimental subjects. This
missing-data mechanism is in general nonignorable, because
ci is unknown in the control group.

As LIMD is weaker than IMD, a stronger exclusion restric-
tion assumption is needed to identify the parameters when
the complete-data model is saturated, and inference may be
vulnerable to misspecification when the complete-data model
is unsaturated. Hence, in our LIMD models we replace the
ER assumption above by the following stronger assumption.

Compound exclusion restriction (CER). The joint distribu-
tion (yi , mi ) for a noncomplier randomized to the control
group is the same as the distribution (yi , mi ) for a non-
complier randomized to the treatment group.

Our LIMD model involves a particular form of LIMD where
missingness of yi is allowed to depend on missing values of ci ,
but missingness of (xi , bi ) is not. Accordingly, we write mi =
(mY

i , mXB
i ), where mY

i is the missing-data indicator for yi and
mXB

i is the vector of missing-data indicators for xi and bi ,
and assume for all wmis,i, ci , Pr(mY

i , mXB
i |wi , ci , ri = 0; φ)

= Pr(mY
i |wobs,i, ci , ri = 0; φ1) · Pr(mXB

i |mY
i , wobs,i, ri =

0, φ2), where φ = (φ1, φ2) are distinct from θ. By a straightfor-
ward extension of Rubin’s (1976) theory, only the component
mY

i of mi distribution needs to be modeled in this case. We
then factor [yi , xi , ci , bi , mY

i | ri ] = [ci , bi | ri ] · [xi | ci , bi , ri ] ·
[mY

i |xi , ci , bi , ri ] · [yi |mY
i , xi , ci , bi , ri ], where (a) [yi |mY

i ,
xi , ci , bi , ri ] = [yi |xi , ci , bi , ri ] because of the latent ignorabil-
ity assumption; (b) [ci , bi |ri ], [xi |ci , bi , ri ], and [yi |xi , ci , bi , ri ]
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can be modeled as in equations (1–3); and (c) [mY
i |xi = x,

ci = c, bi = b, ri = r] ∼ Bernoulli(φxcbr ). To model the latter
distribution, we assume there is an underlying continuous
variable xM

i for mY
i , such that mY

i = I(xM
i > 0). We then

assume that, given (xi , ci , bi , ri ), xM
i follows a normal distri-

bution with mean g(xi , ci , bi , ri ; ν) and variance 1, where g(·)
is defined in (4) with regression coefficients β replaced by ν.
This implies a probit model for [mY

i |xi , ci , bi , ri ]. The CER
assumption implies that the mean structure of xM

i does not
include the effects of ri , xi ri , bi ri , that is: E(xM

i |xi , ci = 0,
bi , ri ) = ν0 + νDbi + νXxi . This is also an extended general
location model for [yi , xM

i , xi , ci , bi | ri ]. The extension for
binary y∗i is carried out in the same way as before.

2.3 Maximum Likelihood and Bayes Estimation
Under IMD and ER, maximum likelihood (ML) estimates for
the parameters of our EGL model can be obtained via the EM
algorithm (Dempster, Laird, and Rubin, 1977), and is simi-
lar to EM for the general location model (Little and Rubin,
2002). We outline the EM algorithm for the unrestricted ex-
tended general location model of Section 3.1. Let di = (di1, di2,
di3, di4) be the vector of indicators for the discrete variables
(ci , bi ), with di1 = I(ci = bi = 0), di2 = I(ci = 1, bi = 0),
di3 = I(ci = 0, bi = 1), di4 = I(ci = bi = 1), with corresponding
probabilities α = (α1, α2, α3, a4). The complete-data likeli-
hood can be written as

Lcom(θ) ∝
∏
i

[{
4∏

j=1

(
α
dij
j

)}
· |Σ|−(p/2)

× exp

{
−1

2
(xi − µcibi)

TΣ−1(xi − µcibi)

}

· 1

τ
exp

{
− 1

2τ 2 (yi − g(xi, ci, bi, ri;β))2

}]
.

The logarithm of this likelihood is linear in complete-data
sufficient statistics

∑
i
ri,

∑
i
dij ,

∑
i
dijxi,

∑
i
dijyi,∑

i
dijxix

T
i ,

∑
i
dijxiyi,

∑
i
dijy

2
i ,

∑
i
ridij ,

∑
i
ridijxi,∑

i
ridijyi,

∑
i
ridijxix

T
i ,

∑
i
ridijxiyi, and

∑
i
ridijy

2
i ,

for j = 1, . . . , 4. The maximization step (M-step) of EM
calculates the parameter estimates that maximize the
complete-data likelihood given the sufficient statistics cal-
culated from the current E-step, and is straightforward.
Specifically, αj is estimated by the expected count in the
corresponding cell formed by the discrete variables, µcb by
the sample mean of X with subjects with (ci = c, bi = b), Σ
by the pooled within-cell covariance matrix of X, and β and
τ 2 by the regression yi on the components of (xi , ci , bi , ri )
included in the model.

The expectation step (E-step) of EM calculates the condi-
tional expectations of the complete-data sufficient statistics,
given the observed data and the current estimates of the pa-
rameters from the M-step. It is easier to calculate the condi-
tional expectations for the sufficient statistics

∑
i
di first, and

then calculate the conditional expectations of the sufficient
statistics that involve continuous variables (xi , yi ) and the in-
teraction terms between the discrete and continuous variables.
Calculations of the conditional expectations of the sufficient
statistics that contain continuous variables (xi , yi ) involve
the parameters of conditional distributions of the multivari-
ate normal. They are easily computed by the SWEEP opera-

tor (e.g., Little and Rubin, 2002). The E-step can be carried
out by missing-data pattern to avoid unnecessary SWEEP
computations.

The initial values for EM cannot be computed using data
from the set of complete cases, because the values of ci are
completely unknown in the control group. To avoid this, we
first estimate α by using only the data from the treatment
group subjects, and then impute values of ci for the control
group subjects by the estimated α. We then calculate the
sufficient statistics, ignoring those cases with missing values in
(xi , bi , yi ), and do an M-step based on the imputed sufficient
statistics to obtain initial estimates for β’s. The method of
moments can also be used to provide initial estimates after
imputing the compliance status for control group subjects.

The observed data likelihood is readily computed from by-
products of the E-step with each iteration, providing a check
of the computations. In addition, we can use the observed
data likelihood to perform likelihood-ratio tests for choosing
between models.

For Bayesian inferences, we assume α, (µ, Σ), and (β, τ 2)
are a priori independent with conventional noninformative
priors, [α] ∝

∏
4
j=1α

−0.5
j , [µ, Σ] ∝ |Σ| · exp{−(p + 1)/2},

and [β, τ 2] ∝ 1/τ 2. These distributions yield a complete-data
posterior distribution that is Dirichlet for α, inverse-Wishart
for Σ and multivariate normal for µ given Σ, scaled inv-χ2

for τ 2 and multivariate normal distribution for β given τ 2:
[α |Data] ∝

∏4
j=1{αj exp(

∑
i
dij − 0.5)}, [Σ |Data, α] ∼

W−1(N − 4, NΣ̂−1), [µcb |Data, α,Σ] ∼ N{µ̂cb,Σ/
∑

i
I(ci = c,

bi = b)}, [τ 2 |Data, α, µ,Σ] ∼ τ̂ 2/χ2
N−k, [β |Data, α,Σ, µ, τ 2] ∼

N{β̂, τ 2(ZTZ)−1}, where Z is the design matrix of the regres-
sion of yi on xi, ci, bi, ri, (µ̂, Σ̂, β̂, τ̂

2) are the ML estimates for
model parameters (µ, Σ, β, τ 2) based upon the complete-data
likelihood. The Gibbs sampler algorithm iterates between the
P-step and the I-step. The tth P-step of the Gibbs sampler
algorithm simulates random draws, {α(t),µ(t), Σ(t),β(t), τ 2(t)},
for the model parameters based on the complete-data
posterior distribution with missing data filled in from the
previous I-step. The I-step is very similar to the E-step of
EM. Instead of calculating the conditional expectations of
missing values in terms of the sufficient statistics, random
draws for the missing values in the data set are generated
from their predictive distribution, using current draws of the
parameters from the previous P-step. When the observable
outcome of interest is discrete, τ 2 = 1, and drawing values
of yi involves simulating random numbers from truncated
normal distributions, since we only observe the sign of yi .

We used the method of Gelman and Rubin (1992) to as-
sess convergence of the Gibbs sequences. To obtain reasonably
overdispersed random numbers for the starting points for the
Gibbs draws, m bootstrap samples were generated from the
original data set with a sample size of half the size of the
original data set. For each of the bootstrap samples, ML es-
timates are obtained via the EM algorithm and used as the
starting values for the Gibbs algorithm.

Quite straightforward modifications of these algorithms
yield ML and Bayes estimates for the LIMD/CER model
of the previous section. For the M-step of EM, everything
remains the same except that we need an additional step for
estimating ν. Because the regression models involving ν and
β have the same structure, the M-step for ν is the same as
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that for β, with xM
i replacing yi in expressions involving these

terms. For the E-step, conditional expectations also need to
be computed for complete-data sufficient statistics associated
with the model for xM

i , namely: {
∑

i
xMi ,

∑
i
(dijx

M
i ),∑

i
(xMi xi),

∑
i
(dijx

M
i xi),

∑
i
(rix

M
i ),

∑
i
(ridijx

M
i ),∑

i
(rix

M
i xi),

∑
i
(ridijx

M
i xi)}, j = 1, . . . , 4.

For Bayesian inference we assume a flat prior for ν , p(ν) ∝
constant, and the priors for the other parameters in the IMD
model. The P-step is as before except that we need additional
draws for ν from its posterior distribution N{ν̂, (Z ′Z)−1},
where ν̂ is the ML estimate of ν obtained via the EM algo-
rithm based on the imputed data set. For the I-step, we draw
the missing values in the discrete variables (ci , bi ) first, then
draw the missing continuous variables in (xi , xM

i , yi ) based
on the corresponding predictive distribution given the cur-
rent draws for the missing discrete variable and the observed
data.

2.4 Bloom’s Method and Extensions
We conducted simulation studies to compare the model-
based methods in Section 3 with Bloom’s (1984) instrumental
variable (IV) approach for continuous outcomes with non-
compliance, and extensions discussed below.

With complete data and no covariates, the standard IV es-
timator of the CACE is δ̂IV = (ȳ1 − ȳ0)/π̂c, where ȳj is the
mean outcomes of all subjects with ri = j, and π̂c is the
proportion of compliers in the experimental group, ri = 1.
When baseline covariates (xi , bi ) are available, Bloom’s (1984)
adjusted estimate is δ̂IV n = β̂P + {(1 − π̂c)/π̂c} · β̂NS , where
β̂P and β̂NS are the least square estimates from the regres-
sion model yi = β0 + βP (ri ci ) + βNSri (1 − ci ) + βBbi +
βXxi + εi. The estimator reduces to the standard IV esti-
mator in the absence of baseline covariates. We call δ̂IV n the
naive instrumental variable (IVn) estimator, as it implicitly
makes the strong assumption that the compliance rate πc is
constant for different covariates (x, b), i.e., the compliance is
independent of (x, b). A better estimator can be obtained by
first estimating the CACE δ(xi , bi ) for compliers with covari-
ates (xi , bi ) as, δ̂(xi, bi) = β̂P + {(1 − π̂ci)/π̂ci} · β̂NS , where
π̂ci is the estimated compliance rate for subjects with covari-
ates (xi , bi ), and then estimating the overall causal effect δ as
follows, δ̂IV =

∫
X,B

δ̂(x, b)p(x, b) dx db. The IV method in the

simulation is this estimator applied to the complete cases. We
also considered two IV estimators for the situation where the
missing-data mechanism for yi is latent ignorable. The naive
latent IV estimate is δ̂IV Ln = β̂P + [{(1 − π̂c)(1 − φ̂01)}/
{(1 − φ̂0) − (1 − π̂c)(1 − φ̂01)}] · β̂NS , where φ̂01 and φ̂0 are the
nonresponse rates in the treatment noncomplier and control
groups, respectively. With a homogeneous compliance rate,
this is a consistent estimate of the CACE given by Frangakis
and Rubin (1999) for LIMD. The IVL estimator with het-
erogeneous compliance rate δ̂IV L is obtained by replacing π̂c
in this expression by a predicted compliance rate π̂ci that
depends on the covariates (xi , bi ), and then integrating the
resulting CACE estimate over the covariates as before.

3. Simulation Study
3.1 Description of the Study
In the simulation, one binary baseline covariate was consid-
ered. Values of ri , ci , bi , and yi were generated as follows, [ri ]∼

Bernoulli(pR), [ci , bi | ri ]∼Multinomial(αCB ), [yi | bi , ci , ri ]∼
F (·) + 0.5 − 0.5ci − ci ri − 0.5bi + ci bi . To resemble the
JOBS II data, we choose (α00, α10, α01, α11) = (0.3, 0.35, 0.15,
0.20) and pR = 0.65. To test the sensitivity of the normality as-
sumption of yi , three distributions of F (·) are chosen: N(0, 1),
T (df = 4), and Γ (shape = 5, scale = 0.2). The random num-
bers from F (·) are recentered and rescaled so that they have
mean 0 and variance 1.

Let mB
i or mY

i be the missing data indicators for bi or
yi , respectively. We assume that mB

i and mY
i are indepen-

dent with each other. Four missing-data mechanisms are
considered: two of them (MAR1 and MAR2) are ignorable,
while the other two (LMAR and NMAR) are nonignorable.
Specifically,

(1) Missing at random (MAR1), where the probability of
missingness depends on observed values in the data set,
and the missing-data mechanism satisfies the latent ig-
norability conditions and the compound exclusion re-
striction in Frangakis and Rubin (1999): Pr(mY

i = 1 | ci ,
ri , bi , yi ) = Pr(mB

i = 1 | ci , ri , bi , yi ) = Φ(α0 + αCRci ri ),
where Φ(·) is the cumulative standard normal probabil-
ity function.

(2) Missing at random (MAR2), where the probability of
missingness only depends on the observed values in the
data set, and the missing-data mechanism satisfies the
latent ignorability conditions but not the compound
exclusion restriction in Frangakis and Rubin (1999):
Pr(mY

i = 1 | ci , ri , bi , yi ) = Pr(mB
i = 1 | ci , ri , bi , yi ) =

Φ(α0 + αRri + αCRci ri ). Hence Pr(mY
i = 1 | ci = 0, ri =

0, bi , yi ) = Φ(α0) �= Pr(mY
i = 1 | ci = 0, ri = 1, bi , yi ) =

Φ(α0 + αRri ).
(3) Latent missing at random (LMAR) (Frangakis and

Rubin, 1999), where the probability that yi is missing
depends upon the compliance status ci which is unob-
servable for the control group subjects. In addition, the
conditional distribution (yi , mi | ci , ri ) for never-takers
satisfies the CER assumption. The probability that bi is
missing depends only on ri : [yi , mY

i | ci =0, ri =0, bi ] =
[yi , mY

i | ci = 0, ri = 1, bi ], Pr(mY
i = 1 | ci , ri , bi , yi ) =

Φ(α0 +αCci +αCRci ri ), and Pr(mB
i =1 | ci , ri , bi , yi ) =

Φ(α0 + αRri ).
(4) Not missing at random (NMAR), where the probability

that yi is missing depends upon values of baseline co-
variate bi , which contain missing values: Pr(mY

i = 1 | ci ,
ri , bi , yi ) = Pr(mB

i = 1 | ci , ri , bi , yi ) = Φ(α0 + αXbi ).

For each of 250 generated data sets, the following methods
are applied for causal inferences: IVn and IV are the naive
IV and the IV estimators defined in Section 2.4, and IVnL
and IVL are the corresponding extended IV estimators assum-
ing latent ignorable mechanisms. For likelihood-based meth-
ods, estimates of the CACE as well as other model parame-
ters are obtained based on extended general location models.
Specifically, MLBD (for maximum likelihood before deletion)
is the ML estimate of the CACE of the data before generat-
ing missing values in bi and yi ; MLI and BYSI are the ML
and Bayesian estimates of the CACE assuming ignorable
mechanisms; MLLI and BYSLI are the ML and Bayesian es-
timates of the CACE assuming latent ignorable mechanisms;
and MLCC and BYSCC are the ML and Bayesian (posterior
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mean) estimates of the CACE of the data after deleting ob-
servations with missing values in bi or yi .

3.2 Results
Simulation results of the CACE parameter are summarized in
Tables 1 and 2. For each simulation condition, biases and root
mean square errors (RMSE) of the estimates of the CACE
from each method are reported, after being multiplied by
1000. In addition, confidence intervals for each parameter
are constructed from normal approximations based on esti-
mates for that parameter, specifically for the ith parameter,
the 100P% confidence interval is constructed as ESTi ± ZP ·
SEi , for P = 0.5, 0.6, 0.8, 0.9, ESTi and SEi are the sample
mean and standard error of estimates for the ith parameter,
and ZP is the {100(1 − P )/2}th quantile of the standard nor-
mal distribution. Standard errors are calculated as standard
deviations from the Gibbs draws for likelihood-based meth-
ods and as standard deviations from 200 bootstrap sample
estimates for instrumental variable methods. Coverage prob-
abilities of the confidence intervals of parameters are then
obtained and compared.

As expected, estimates from the MLBD are the best, with
the smallest RMSE, and estimates from IVn and IVnL are the
worst with the largest biases and RMSEs. Naive IV methods
assume a constant compliance rate for different values B and
this is not consistent with the data-generating process. Both
the IV method and the likelihood-based methods are robust
for the CACE estimates based on these simulation results.
We observe no evidence that the IV methods are more robust
to model misspecification than the likelihood-based methods.
The RMSEs from IV are slightly larger than those from the
likelihood-based methods. Probability coverages are good and
consistent with the corresponding point estimates in general.

For the likelihood-based methods, ML estimates agree
closely with the Bayesian estimates. RMSRs from the MLCC
and BYSCC estimates are larger than the RMSEs from MLI
and BYSI estimates. Also, estimates from models with the
correct mechanisms perform better than those with incorrect
mechanisms. Specifically, they are estimates from MLI, BYSI,
MLLI, and BYSLI under MAR1, from MLI and BYSI under
MAR2, and from MLLI and BYSLI under LMAR. When the
missing-data mechanism is NMAR, i.e., missingness depends
upon B, estimates from MLCC and BYSCC show no signifi-
cant biases for N(0, 1) and Γ(5, 0.2) cases.

For the N(0, 1) case, estimates from MLLI, BYSLI, BYSLI,
and IVL, which assume latent ignorable mechanisms, have
larger biases than those from MLI, BYSI, and IVI when the
latent ignorability conditions are not satisfied. Estimates from
MLLI, BYSLI, and IVL are significantly biased when the true
underlying missing-data mechanism is NMAR.

4. Application
As described in Section 1, the JOBS II (Vinokur et al., 1995)
intervention project developed at the University of Michigan
was to test a preventive intervention for unemployed work-
ers. In the JOBS (JOB Search) II intervention setting, re-
spondents were recruited from four offices of the Michigan
Employment Security Commission in southeastern Michigan.
Based on the screening questionnaire (T 0) data, only people
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Table 2
Probability coverage of the estimate of the CACE under different missing-data mechanisms of Y, different distributions for Y,

and different methods, with sample size 1000

Mechanism to generate missing data

Y ∼ N(0, 1) Y ∼ T (4) Y ∼ γ(5, 0.2)

Method MAR1 MAR2 LMAR NMAR MAR1 MAR2 LMAR NMAR MAR1 MAR2 LMAR NMAR

50% BYSI 51.6 48.0 53.2 54.8 57.2 48.0 46.0 44.4 46.0 50.0 49.2 54.0
BYSLI 50.4 48.4 50.0 40.4 54.8 45.6 48.0 42.4 44.4 49.6 48.4 54.8
BYSCC 52.4 49.6 48.8 56.8 57.2 44.8 44.4 43.6 55.2 49.6 49.2 57.2
IV 50.0 49.2 55.2 53.6 55.2 46.8 43.2 52.0 48.8 48.8 45.2 52.8
IVL 50.4 49.2 54.8 45.6 54.0 45.6 42.0 44.0 49.2 48.0 46.8 44.8

60% BYSI 58.8 58.0 59.6 64.8 62.8 57.6 56.0 56.8 55.5 60.8 62.4 63.2
BYSLI 57.6 57.2 63.6 52.8 63.6 54.4 56.4 54.0 57.2 60.4 59.6 64.0
BYSCC 62.0 57.6 59.6 65.2 63.6 55.6 55.6 55.6 62.4 59.6 58.4 66.4
IV 61.6 58.4 64.4 61.2 62.6 54.0 54.8 61.2 59.6 55.6 56.4 60.8
IVL 62.4 56.8 63.6 56.8 63.6 55.6 56.4 55.2 59.6 58.0 58.8 56.0

80% BYSI 79.6 80.0 82.8 80.8 79.2 78.0 76.0 76.0 76.8 78.4 77.2 81.6
BYSLI 79.6 79.2 84.8 73.2 79.2 76.4 76.0 75.6 76.8 79.6 76.4 81.6
BYSCC 81.6 76.8 79.6 84.0 78.0 80.8 78.8 76.4 82.0 81.6 80.8 84.4
IV 79.2 77.6 80.0 80.4 76.4 74.4 77.6 80.4 74.8 76.0 77.6 78.4
IVL 78.8 77.6 80.4 76.8 77.2 73.6 76.4 76.0 76.0 75.2 77.6 77.6

90% BYSI 90.4 92.8 94.8 92.0 89.6 88.0 86.4 87.6 88.8 88.0 88.0 91.6
BYSLI 92.0 91.6 90.8 84.8 89.6 89.2 88.0 86.8 88.4 89.2 89.2 91.2
BYSCC 90.4 88.4 90.0 90.8 87.2 88.8 89.2 87.2 91.2 90.0 91.6 92.4
IV 90.8 89.2 90.4 90.0 84.8 88.0 87.6 89.6 88.4 86.4 86.8 86.4
IVL 90.4 89.2 89.6 87.2 84.0 88.0 87.2 86.8 88.0 84.8 86.0 86.0

MAR1: ignorable and also satisfying the latent ignorable conditions. MAR2: ignorable but not satisfying the latent ignorable conditions.

who met the screening criteria were invited, randomized to
the field study, and mailed pretest (T 1) questionnaires.

A total of 1801 people returned their T 1 questionnaires
and were enrolled in the study. Each subject in the control
group was mailed a booklet describing job search methods and
tips, and each subject in the experimental treatment group
was mailed the same booklet and an invitation to partici-
pate in five 4-hour job search seminars. Follow-up question-
naires were mailed to all the respondents 2 months (T 2) and
6 months (T 3) after the week of the job search seminars. Mea-
sures of depression, financial strain, assertiveness, risk score,
distress symptom, role and emotional functioning, job search
self-efficacy, self-esteem, internal control orientation, mastery,
intervention process, re-employment, as well as demographics
variables were obtained through the questionnaires. The re-
employment outcome at T 3 is the outcome of interest here,
and it is binary.

Previous analyses (Vinokur and Price, 1995; Little and Yau,
1998) demonstrate that the intervention primarily benefited
the re-employment and the mental health outcomes of respon-
dents who are at high risk of experiencing depression in the
future. The analysis focuses on data from the high-risk group,
which includes 715 subjects. Because people who were ran-
domized to the control group are not allowed to attend some
of the seminars, there are only compliers and never-takers in
the study.

Table 3 presents the summary statistics of the covariates
measured at baseline for the high-risk group subjects, by the
randomly assigned treatment R and the compliance C (for

treatment group only, as C is unknown for control group sub-
jects). Comparison of the first two columns shows that the
randomization did a fair job in balancing the covariate distri-
butions across the two treatment groups.

To ensure enough participants in the high-risk group receiv-
ing the intervention, about two thirds of the high-risk group
subjects (481 out of 715) were randomized to the treatment
group. Among the 481 subjects in the treatment group, 58%
(280 out of 481) of them attended at least one job search sem-
inar and they are the compliers. The others did not attend
any seminar and they are the never-takers. Table 3 shows that
older subjects with more education, stronger motivation to at-
tend the intervention, higher income, and lower assertiveness
are more likely to be compliers.

Two models with exactly the same form are fitted, with dif-
ferent subjects included. While the “Partial” models include
only those observations with no missing values in the base-
line covariates, 600 subjects in the high-risk group, the “Full”
models include all 715 subjects in the analysis. The covariates
involved in the model fitting are: indicator of not married,
indicator for nonwhite, age, school grade completed, moti-
vation to attend, assertiveness, economic hardship, and atti-
tude toward job search. Because of the normality assumption
for the continuous variables in the extended general location
models, logarithm transformations are applied to school grade
completed.

Table 4 summarizes the estimation results of the probit
models assuming ignorable missing-data mechanism, where
the standard errors of the ML estimates are calculated from
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Table 3
Summary statistics of the covariates by treatment R and compliance C, high-risk group

R = 0 R = 1 R = 1 and C = 1 R = 1 and C = 0
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Covariate (n = 234) (n = 481) (n = 280) (n = 201)

Age 36.45 (10.08) 36.60 (10.33) 39.08 (10.18) 33.65 (9.73)
School 13.28 (2.01) 13.35 (2.02) 13.81 (2.04) 12.82 (1.86)
Motivation 5.32 (0.80) 5.31 (0.82) 5.43 (0.82) 5.16 (0.79)
Income 6.59 (3.72) 6.17 (3.84) 6.67 (4.01) 5.57 (3.54)
Assertiveness 3.05 (0.87) 3.11 (0.92) 3.01 (0.92) 3.23 (0.92)
Not married 0.58 (0.49) 0.65 (0.48) 0.66 (0.48) 0.64 (0.48)
Economic hardship 3.53 (0.93) 3.62 (0.85) 3.55 (0.84) 3.71 (0.84)
Nonwhite 0.21 (0.41) 0.22 (0.41) 0.18 (0.39) 0.25 (0.44)
Attitude 5.77 (1.12) 6.01 (1.06) 6.05 (1.06) 5.96 (1.06)
Social undermine 1.83 (0.78) 1.83 (0.80) 1.79 (0.78) 1.88 (0.82)
Risk (T 0) 1.68 (0.19) 1.68 (0.23) 1.67 (0.22) 1.69 (0.24)

250 bootstrap estimates. The 95% confidence intervals are es-
timated from the posterior distribution from the Gibbs draws,
by the 2.5th and the 97.5th percentiles. The CACEs are the
differences between the probability of being re-employed at T 3

for the compliers who participate in the job search seminars
and the same probability for compliers who do not partici-
pate in the job search seminars. These are evaluated at the
mean values of the continuous baseline covariates, and aver-
aged over the distribution of the discrete covariates. Table 4
shows that the ML estimates and the corresponding Bayesian
estimates are very similar for each model. Estimates from
the the “Full” models are similar to those from the “Partial”
model.

From the “Full” model that uses all the observations, the
ML estimate of the probability of being re-employed at T 3 is
increased by 16.1% by the intervention for a complier who has

Table 4
Model fitting for the high-risk group with the outcome of re-employment at 6 months after the intervention,
where “Full” indicates the results from data with all 715 observations, and “Partial” indicates the results

from the data excluding those observations with missing values in covariates, 600 observations

Parameter MLE ± SE Gibbs ± SE 95 CI∗∗

Intercept (Full) −1.549 ± 0.508 −1.551 ± 0.459 (−2.491, −0.694)
(Partial) −1.566 ± 0.485 −1.564 ± 0.498 (−2.530, −0.600)

C (Full) −0.446 ± 0.245 −0.406 ± 0.224 (−0.852, 0.030)
(Partial) −0.233 ± 0.267 −0.230 ± 0.235 (−0.692, 0.216)

CR (Full) 0.410 ± 0.194 0.379 ± 0.194 (0.010, 0.764)
(Partial) 0.268 ± 0.226 0.260 ± 0.206 (−0.139, 0.668)

School (Full) 0.079 ± 0.031 0.077 ± 0.027 (0.024, 0.132)
(Partial) 0.086 ± 0.030 0.086 ± 0.030 (0.025, 0.146)

Attitude (Full) 0.149 ± 0.053 0.151 ± 0.051 (0.052, 0.251)
(Partial) 0.135 ± 0.054 0.136 ± 0.054 (0.033, 0.243)

Nonwhite (Full) −0.220 ± 0.134 −0.218 ± 0.133 (−0.479, 0.038)
(Partial) −0.249 ± 0.167 −0.253 ± 0.148 (−0.546, 0.045)

CACE∗ (Full) 0.161 ± 0.075 0.148 ± 0.075 (0.004, 0.296)
(Partial) 0.104 ± 0.086 0.100 ± 0.079 (−0.051, 0.258)

∗CACE is calculated at the mean values of the school grade completed and the score of attitude toward the job
search, then averaged over the distribution of nonwhite.

∗∗95% CIs are calculated based on the 2.5th and 97.5th percentiles of the Gibbs draws.

average education (grade 13) and the average score of attitude
toward the job search. It is statistically significant with a 95%
confidence interval of (0.004, 0.296). However, the ML esti-
mate of the same CACE parameter from the “Partial” model
is only 10% with a 95% confidence interval of (−0.051, 0.258)
and it is not statistically significant. This difference is mainly
due to the differences of the parameter estimates of the CR
term, which is closely related to the CACE parameter. The
ML estimate of the coefficient for CR from the “Full” model
is 0.41 with a 95% confidence interval of (0.010, 0.764), while
the estimate of the coefficient for CR from the “Partial” model
is reduced to 0.268 with a 95% confidence interval of (−0.139,
0.668). Two sources may contribute to the difference between
the two estimates from the “Full” and the “Partial” models.
First, more information is utilized in the “Full” model than in
the “Partial” model and leads to smaller standard error of the
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estimate. This is demonstrated by both the ML inference and
the Bayesian inference. Second, the differences are also deter-
mined by the true underlying missing-data mechanism of the
baseline covariates. Our model assumes that the mechanism
is ignorable.

In addition, white people with more education and a higher
score of attitude toward job search have better chances to be
re-employed for both compliers and noncompliers. All 95%
confidence intervals for the regression parameters for School
and Attitude toward job search do not include zero from both
“Full” and “Partial” models. The effects of education and
attitude toward the job search are statistically significant at
a 95% confidence level.

5. Conclusions and Discussion
We have proposed an extended general location model to
make inference for the CACE for data subject to noncompli-
ance. The EGL model allows observations with missing val-
ues in the outcome or the baseline covariates to be included
in the analysis, and it yields the same conditional distribu-
tion for the outcome and compliance conditioning on ran-
domization and covariates as in Little and Yau (1998), thus
generalizing that analysis. Models were presented for both
ignorable and latent ignorable missing-data mechanisms, to-
gether with EM and Gibbs algorithms for computation. Sim-
ulations comparing the proposed methods with instrumental
variable methods suggest that the IV methods and likelihood-
based methods are reasonably robust to certain departures
from the model assumptions, and the likelihood-based meth-
ods are more efficient than the IV methods. An application to
the JOBS II data with a binary re-employment outcome was
presented.

Bloom’s naive method (1984), which assumes constant
compliance rate across different values of the covariates, may
provide very biased results when compliance varies across co-
variates. Also, estimates from our LIMD model with the com-
pound exclusion restriction did well when its assumptions
were satisfied, but yielded estimates that were more biased
than estimates from the IMD model for the nonignorable
missing-data mechanism, where missingness of the outcome
depended on a partially observed covariate. However, we em-
phasize that this finding is limited to our particular choice of
LIMD model and simulation conditions. We think the LIMD
assumption is likely to be more realistic than IMD in many
settings, so other models based on this assumption are worthy
of further study.

In this article we focused on a single outcome. The EGL
model is fairly readily generalized to repeated measures nor-
mal data, by replacing the normal distribution of equation (3)
by a multivariate normal with covariance structure suited to
the repeated measures. Repeated binary outcomes can be ac-
commodated by treating the outcomes in a normal model as
latent thresholds, as we have done in the univariate case. Com-
pliance is assumed all-or-none here. However, partial compli-
ance is possible in practice. For example, in the JOBS II inter-
vention trial, the treatment includes five job search seminars
and some participants only receive part of them. In a clinical
trial, patients may take only a fraction of the intended dosage
of medications because of side effects. Thus models that allow
for partial compliance are also worthy of future study.

Since our methods are based on parametric models, issues
of model misspecification arise, and models that make weaker
assumptions are worthy of consideration. Since compliance
is treated here as a missing covariate and other missing co-
variate data are allowed, methods for fitting semiparametric
models with missing covariates (Robins, Rotnitsky, and Zhao,
1994) could be applied to the problem, and compared with our
parametric approach.

Details of the EM algorithm for the general location model
and codes in Splus can be found at Little’s web page (http://
www.sph.umich.edu/∼rlittle/).
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Résumé

La noncompliance est un problème fréquent dans les
expériences avec attribution randomisée des traitements et
les analyses standards reposant sur l’intention-de-traiter ou
le traitement reçu ont des limitations. Une alternative attrac-
tive est d’estimer le Complier-Average Causal Effect (CACE),
qui est l’effet moyen du traitement pour la sous-population
des sujets qui seraient compliants à l’un ou l’autre des traite-
ments (Angrist, Imbens and Rubin, 1996, ci-après AIR). Nous
proposons une extension du modèle général de position afin
d’estimer le CACE à partir de données avec noncompliance et
données manquantes pour le critère d’évaluation et les covari-
ables. Des modèles sont développés pour des critères continus
ou catégoriels et des mécanismes de données manquantes ig-
norables ou latentes ignorables (Frangakis et Rubin, 1999).
Les inférences pour ces modèles reposent sur l’algorithme
EM et les méthodes bayésiennes MCMC. Nous présentons
les résultats de simulations qui étudient la sensibilité aux hy-
pothèses du modèle et l’influence du mécanisme des données
manquantes. Nous appliquons également la méthode aux
données d’une intervention pour la recherche d’emploi chez
des chômeurs.
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