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Summary. Many hormones are secreted into the circulatory system in a pulsatile manner and are cleared
exponentially. The most common method of analyzing these systems is to deconvolve the hormone concen-
tration into a secretion function and a clearance function. Accurate estimation of the model parameters
depends on the number and location of the secretion pulses. To date, deconvolution analysis assumes the
number and approximate location of these pulses are known a priori. In this article, we present a novel
Bayesian approach to deconvolution that jointly models the number of pulses along with all other model
parameters. Our method stochastically searches for the secretion pulses. This is accomplished by viewing
the set of parameters that define the pulses as a point process. Pulses are determined by a birth-death
process which is embedded in Markov chain Monte Carlo algorithm. This idea originated with Stephens
(2000, Annals of Statistics 28, 40–74) in the context of finite mixture model density estimation, where the
number of mixture components is unknown. There are several advantages that our model enjoys over the
traditional frequentist approaches. These advantages are highlighted with four datasets consisting of serum
concentration levels of luteinizing hormone obtained from ovariectomized ewes.
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1. Introduction
Serum concentration levels of many hormones, such as
luteinizing hormone, show distinct pulsatile patterns (see
Figure 3). Clearance of the hormone, via mechanisms such
as cellular binding, emzymatic cleavage, and glomerular fil-
tration, has typically been modeled using the one- or two-
compartment pharmacokinetic model for elimination (i.e., ex-
ponential or biexponential decay) and it has been shown that
these elimination models fit experimental data (e.g., Veldhuis
et al., 1986).

In principle, one can reconstruct the serum concentration
levels of the hormone over time through the convolution of the
(known) secretion and clearance functions. Deconvolution is
the inverse problem: determine the parameters of the func-
tional forms of the secretion events and the hormonal clear-
ance given the concentration. Many aspects are of interest
to the endocrinologist, including pulse frequency, the average
hormone mass released per event, and the hormone clearance
rate. Reasonable estimates of these parameters in healthy in-
dividuals can assist investigators in determining causes of
disease processes that affect hormone levels and secretion
patterns.

Deconvolution of serum concentration levels of hormone
into a secretory input function and a clearance function has
been used for over a decade since its introduction by Veldhuis,
Carlson, and Johnson (1987) (see also Veldhuis and Johnson,
1992). Veldhuis et al. (1987) use nonlinear least squares

to perform the deconvolution conditional on the number
and locations of the secretory inputs (a separate program,
or prior knowledge, must be used to determine the num-
ber and approximate location of secretion events). Alter-
natively, one could fit a small subset of models with a
different number of secretion events and use generalized
cross-validation or Akaike’s information criteria (AIC) to
select the “best” model, as do O’Sullivan and O’Sullivan
(1988).

Several other model-based approaches for the analysis of
pulsatile hormone data have been proposed, including works
by O’Sullivan and O’Sullivan (1988), Diggle and Zeger (1989),
Kushler and Brown (1991), Komaki (1993), Keenan, Veldhuis,
and Yang (1998), and Guo, Wang, and Brown (1999). How-
ever, these have not been as extensively used in the field of en-
docrinology as deconvolution—a five-minute literature search
revealed over 100 published journal articles using deconvo-
lution in the analysis of pulsatile hormone data. We do not
claim that the deconvolution model is superior to these other
models, but only that a method that jointly models the num-
ber (and location) of secretion pulses and the other param-
eters of the deconvolution model would make a significant
contribution to the analysis of pulsatile hormone data and,
in particular, to the deconvolution model. (Through personal
communication, Dr Veldhuis, arguably the world’s preemi-
nent authority on neurohormonal secretion, agrees with this
conclusion.)
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We present a novel Bayesian method for jointly model-
ing parameters of the deconvolution model and the number
and location of the pulsatile secretion events. The idea is to
stochastically search for the secretion events, embedding the
search in a Bayesian analysis of the deconvolution model, con-
ditional on the number of events, via Markov chain Monte
Carlo (MCMC). The stochastic search is performed using a
birth-death process proposed by Stephens (2000a), who uses
this methodology in mixture models with an unknown num-
ber of components. The method in Stephens (2000a), birth-
death MCMC (BDMCMC), is an alternative to the reversible
jump Markov chain Monte Carlo (RJMCMC) algorithm de-
veloped by Green (1995) and extended to mixture models by
Richardson and Green (1997). BDMCMC was chosen over
RJMCMC because of its ease of implementation relative to
RJMCMC.

Our approach to this problem offers several advantages over
the traditional deconvolution approach. First, it provides a
way to select the “best” model out of a much larger set of
models than the typically few competing models using gen-
eralized cross-validation. Second, it provides a coherent way
to combine results over different models. For example, sev-
eral competing models may fit the data equally well and
we may want to “model average” over a subset of models.
Third, we can assign probabilities that secretion events are in-
deed events and not noise. Fourth, a secretion event does not
have to assume a particular parametric form. Our approach
allows for secretion events to be a mixture of component
functions.

We present our Bayesian deconvolution model with an un-
known number of secretion events in Section 2. The birth-
death process is introduced in Section 3 and we outline how
we simulate from the posterior of the joint model in Section 4.
We then demonstrate our method on luteinizing hormone
sampled from ewes, in Section 5. A small simulation study
is presented in Section 6, and we end the article with a brief
discussion in Section 7.

2. The Bayesian Model
Suppose the concentration C of a substrate is the convolution
of an input (secretion) function S(t) and a clearance (elim-
ination) function E(t), where the convolution of S and E is
defined by S ∗E =

∫ ∞
−∞ S(v)E(t− v) dv.

We model the secretion profile S(t) as the superposition
of k component functions, fi (t), where k is given. That is,

S(t) =
∑k

i=1 fi(t). The component functions all come from a
parameterized family and we assume that their parameters
can be subdivided into a set of parameters, η, common to
every component, and a set of component specific parameters
θi, i=1, . . . , k. We set θ= {θ1, . . . , θk}. The elimination
function will be parameterized by a set of parameters φ. Let
f(t; θi, η) denote the ith component and let E(t; φ) denote
the clearance function. Then the concentration at time t is
the sum of the convolutions of the f(t; θi, η) and E(t; φ) plus
a baseline concentration level, µ, and is given by

C(t;µ, θ, η, φ, k)

= µ+

∫ t

−∞

{
k∑

i=1

f(v; θi, η)

}
E(t− v;φ) dv (1)

= µ+

k∑
i=1

∫ t

−∞
f(v; θi, η)E(t− v;φ) dv. (2)

We digress here for a moment to explain that for
the most commonly used deconvolution program (Veldhuis
et al., 1987), secretion events take a parametric form, typically
Gaussian, and k represents the number of secretion events. In
our representation, k is the number of component functions
that make up the entire secretion profile over time, and k may
be larger than the number of secretion events. A secretion
event may be the superposition of two or more component
functions. We will see this below in Section 5.

Veldhuis et al. (1987) assumes that the observed val-
ues y(t) are equal to the concentration plus error, y(t)=
C(t; µ, θ, η, φ, k)+ εt, with εt

i.i.d.∼ N(0, σ2). The errors in-
clude biological and measurement errors. However, hormone
levels are strictly nonnegative, as are the assays that measure
the observed concentrations. Hence, an observed value less
than zero is impossible. Further, the error in the concentra-
tion profile is a combination of several different sources of er-
ror, including assay, biological, and dilution errors. A normal,
or any symmetric, error structure is inappropriate (Rodbard,
Rayford, and Ross, 1970). We therefore assume a multiplica-
tive error structure and model the log of the observed values,
y(ti ), i=1, . . . ,n at times ti ∈ [0, T ] (the range of the data):

ln{y(ti)} = ln

[{
µ+

k∑
i=1

∫ ti

−∞
f(v; θi, η)E(ti − v;φ) dv

}
εti

]

= ln{C(ti;µ, θ, η, φ, k)} + ln(εti), (3)

where ln(εti )∼N(0,σ2) independently of one another and in-
dependently of the log concentration ln{C(ti ; µ, θ, η, φ, k)}.
Thus,

ln{y(t)} ∼ N [ln{C(t;µ, θ, η, φ, k)}, σ2]. (4)

Alternatively, one may use a constant coefficient of variation
model.

We further assume that some of the model parameters de-
pend on a set of hyperparameters ω. We factor the conditional
prior according to

p(µ, θ, η, ω, φ, σ2 | k) = p(θ | k, η, ω)p(µ, φ, σ2, η, ω). (5)

3. The Birth-Death Process
Thus far, we have specified the likelihood (4) and the condi-
tional prior (5) of our joint model. Now we define the virtual
birth-death process that is embedded in the MCMC algo-
rithm. Stephens (2000a) proposed an alternative to the re-
versible jump MCMC algorithm developed by Green (1995).
Stephens (2000a) views the components of a mixture model
as point processes in an appropriate parameter space. Then,
using the theory of point processes, he shows how to con-
struct a virtual birth-death process, combining it with stan-
dard fixed-dimension MCMC updates to create a Markov
chain whose stationary distribution is the desired posterior
distribution. Stephens (2000a) also shows how the algorithm
can be adapted to change-point models and how it can be used
for variable selection in regression models. Here, we show how
his method can be adapted to deconvolution analysis.
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Before proceeding, we point out that our model is not a
mixture of distributions. The secretion components are not
distributions and the observations are not samples from a
mixture of distributions. Rather, one should think of the se-
cretion over time as a superposition of the secretion compo-
nent functions.

We require that the posterior distribution of (k, θ |y, η, ω)
be exchangeable and thus ignore the labeling of the compo-
nents in θ. The posterior will then be a point process on the
appropriate parameter space and, given the following con-
ditions on the birth and death rates, we have a continuous
time Markov birth-death process with stationary distribution
p(k, θ |y, η, ω). It is essential for the theory developed in
Stephens (2000a) that this conditional posterior be exchange-
able. For our particular application (see Section 5), θ is the
collection of the k component-specific parameters. We believe
the exchangeability assumption is reasonable for our appli-
cation. Secretion of luteinizing hormone is not dependent on
time over the 6-hour period in which data were collected,
and there is no evidence that secretion events are dependent
on past secretion events. On a time scale of a month or so,
luteinizing hormone depends on time, due to the menstrual
cycle in animals with intact ovaries. However, the data pre-
sented in Section 5 were collected on ovariectomized ewes,
thus removing the negative feedback loop of the sex steroid
hormones released from the ovaries, which change in accord
with the menstrual cycle.

Let p(k | η, ω) be the prior of k given η and ω. We factor
the full prior according to

p(k, µ, θ, η, ω, φ, σ2) = p(k | η, ω)p(θ1, θ2, . . . , θk | η, ω)

× p(µ, φ, σ2, η, ω). (6)

In order for the posterior distribution, p(k, θ |y, η, ω), to
be exchangeable, it is necessary that p(θ1, θ2, . . . , θk | η, ω)
be invariant with respect to random permutations of the la-
bels for any k. Henceforth, we assume that this assumption is
satisfied.

Births of secretion components will occur at a constant
rate λb according to density b(θ | η, ω). Deaths of secretion
components occur independently of one another. The death
rate for component j, given k ≥ j components currently in
the model, is

δj = λb

L(−j)

L

p(k − 1 | η, ω)

kp(k | η, ω)

p(θ1, . . . , θj−1, θj+1, . . . , θk | η, ω)

p(θ1, . . . , θj−1, θj , θj+1, . . . , θk | η, ω)

× b(θj | η, ω), (7)

where L is the full likelihood, including all k components, and
L(−j) is the likelihood with the jth secretion component re-
moved. ∆ =

∑
j
δj is the total death rate. Next, we simulate

the waiting time, τw, to the next birth or death from an ex-
ponential distribution with mean (λb +∆)−1. A birth occurs
at τw with probability λb/(λb +∆) and a death occurs with
probability ∆/(λb +∆). If a birth is to occur, we draw a point
θ from b(θ | η, ω). If a death is to occur, we remove a secre-
tion component according to probabilities δj/∆, j=1, . . . , k.
This process is performed iteratively, conditional on η and ω.
The resulting birth-death process has stationary distribution

p(k, θ |y, η, ω), since the conditions of Theorem 3.1 in
Stephens (2000a) are satisfied.

4. Simulating from the Joint Model
Given the current state, {k, θ, η, ω, µ, φ, σ2}j , of the model
at iteration j, simulate a value for {k, θ, η, ω, µ, φ, σ2}j+1 at
iteration j+1 according to the following steps:

Step 1: Sample {k, θ}j+1 by running the virtual birth-death
process for a fixed time t0 with η and ω fixed.

Step 2: Sample {µ, φ, η, ω, σ2}j+1 by Gibbs, Metropolis-
Hastings, or any other appropriate, fixed-parameter
space MCMC algorithm.

Step 3: Sample θj+1 by the appropriate MCMC algorithm.
(Note this step is not necessary for convergence, but
improves mixing (Stephens, 2000a).)

The parameters sampled in steps 2 and 3 above may be jointly
sampled or sampled one at a time. In either case, they are
sampled conditional on all other parameters in the model not
currently being sampled.

5. Application: Luteinizing Hormone in Ewes
Luteinizing hormone (LH) is a gonadotropic hormone that
regulates growth, development, reproductive processes, pu-
bertal maturation, and sex steroid hormone secretion of the
gonads in both of the sexes (Berne and Levy, 1993). We ana-
lyze the data collected from four ovariectomized ewes. Blood
samples were drawn from the jugular vein of the ewes ev-
ery 5 minutes for approximately 6 hours. The samples were
then assayed for LH concentration by radioimmunoassay. (See
Midgley et al. (1997) for details.)

We assume that hormone elimination follows exponential
decay:

E(t;φ) = e−φt, (8)

where the parameter set φ is now a single parameter. The se-
cretion components can, in theory, be any nonnegative func-
tion. We assume a Gaussian form as do Veldhuis et al. (1987).
Our algorithm is not dependent on this particular form of the
secretion components and, under a Bayesian framework, it is
not difficult to incorporate any nonnegative function that is
deemed appropriate.

Let βj1 denote the hormonal mass secreted from component
j, βj2 denote its scale parameter, and τ j denote its center of
mass. Continuing with our notation from Section 2, we set
θj ={βj1, βj2, τ j} and η= {∅}. Further let βj =(βj1, βj2)

T.
Then

f(t; θj) = βj1 exp
{
−0.5β−1

j2 (t− τj)
2
}/√

2πβj2. (9)

Substituting (8) and (9) into (1), performing a little algebra
and a change of variable, the concentration at time t can be
written as

C(t;µ, φ, θ, k)

= µ+ 0.5

k∑
j=1

βj1 exp
{
(τj − t)φ+ 0.5φ2βj2

}
{1 + erf(xj)}

(10)

where erf(z)= (2/π1/2)
∫ z

0 exp(−v2) dv and xj =(t−τ j −φβj2)/

(2βj2)
1/2. The error function, erf(z), is a special
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case of the well-known incomplete gamma function:∫ x

0 exp(−t)ta−1dt/Γ(a) (set a=1/2, make the change of
variable z= t2, and let x2 = z). This integral can rapidly be
approximated (see Press et al. (1990) for details).

5.1. Priors and Initial Values
We believe that each component, f(t; θj), should be some-
what similar in size and shape, so we adopt a random effects
model for the mass and scale of each component. A priori, the
random effects βj are given a truncated multivariate student-t
distribution with four degrees of freedom, t4(β, Σ). The dis-
tribution is restricted, or truncated, to the first quadrant of
two-dimensional Euclidean space, R

2+ = {(x, y)T : x > 0, y >
0, x, y ∈ R}. We chose the t4 distribution as a robust alter-
native to the normal distribution. The multivariate ts dis-
tribution can be obtained as a scale mixture of the multi-
variate normal distribution (Kleinman and Ibrahim, 1998).
If x |κ∼N (µ, κ−1Σ) and κ∼Gamma(r/2, r/2), then the
marginal distribution of x is the multivariate tr .

Let ω= {β, Σ, κ} with κ= {κ1, . . . ,κk}. We further decom-
pose our prior (6) into:

p(k)p(µ)p(φ)p(σ2)p(β)p(Σ)p(τ1, . . . , τk | k)

×
k∏

j=1

p(βj |β,Σ, κ)p(κj).

In this section, we set up two prior models on the number
of components, k, their locations, τ j , and on the random ef-
fects prior precision matrix, Σ−1. These priors are displayed
side by side in Table 1. The first prior model reflects the be-
lief that each secretion event is Gaussian-shaped and there-
fore there is a one-to-one correspondence between component
functions and secretion events. The prior random effects co-
variance structure is diagonal (a priori independent random
effects) with relatively small common variance, 5, which re-
flects our belief that each event should be similar in size. The
prior on k is Poisson with a mean of 10, which reflects the
belief that there are about 10 distinct secretion events. We
also believe that the events are somewhat spread apart in
time and more or less periodic. Thus, our prior for the event
locations, given k, are the (3j)th, j=1, . . . , k, order statis-
tics, randomly permuted, from 3k+2 i.i.d. uniform random
variates over the interval of interest, (−40, T +10). For both
prior models we extended our search for secretion components
outside the range of the data (by 40 minutes prior to data col-

Table 1
Priors on k, τ j , and Σ−1 for the two prior models considered
in our analysis. All other priors are common to both prior

models.

Parameter Prior 1 Prior 2

k P(10), Uniform on {1, 2, . . . 60}
τ j (3j)th order statistics, U[−40,T+10]

j=1, . . . , k
from 3k+2 i.i.d.
U [−40, T +10],
randomly permuted

Σ−1 Wishart4[S ] Wishart4[S ]
S−1 diag(5, 5) diag(25, 25)

lection and 10 minutes past data collection) so that we can
detect a secretion event whose center occurs before collection
of data or whose center occurs after collection of data. Let
p(τ (1), . . . , τ (k) | k) denote the conditional density of these or-
der statistics; then the secretion event locations have joint
density

p(τ1, . . . , τk | k) =
1

k!
p(τ(1), . . . , τ(k) | k)

=
1

k!

(3k + 2)!

2k+1(T + 50)2(k+1)

×
(
τ(1) +40

)2(
τ(2) − τ(1)

)2 · · ·
(
T +10− τ(k)

)2
,

which is invariant to any relabeling of the components, as
required.

The second prior we consider reflects a belief that secre-
tion events may not be Gaussian-shaped and, hence, we allow
each event to be a superposition of an unknown number of
component functions. The random effects variance structure
is again diagonal; however, we increased the common variance
from 5 to 25. The prior on k is now uniform on the integers
from 1 to 60, and the prior on the component function lo-
cations is now i.i.d. U(−40, T +10). With this i.i.d. uniform
prior on the component function locations, the conditional
posterior distribution of (k, θ) is exchangeable, as the theory
requires.

All remaining parameters are given priors that are
common to both prior models. Let b=(15, 15)T , F =
diag(10,000, 10,000). We adopt the following heirarchical
structure for our priors on the random effects:

p(βj |β,Σ, κ) ∝
∣∣κ−1

j Σ
∣∣−1/2

× exp
{
−0.5κj(βj − β)TΣ−1(βj − β)

}
IR2+(βj),

p(β) ∝ |F |−1/2 exp
{
− 0.5(β − b)TF−1(β − b)

}
IR2+(β),

κj ∼ Gamma(2, 2),

where Gamma(α, β) is the gamma distribution with mean
α/β and variance α/β2, and IA(x) is the indicator function
equal to 1 if x ∈ A and 0 if x �∈ A. Thus, the βj are ran-
dom effects heirarchically centered on β with dispersion ma-
trix κ−1

j Σ. The remaining priors are µ∼Expon(1000), t1/2 ≡
ln(2)/φ∼Expon(1000) and σ−2 ∼Gamma(0.0001, 0.0001).
The baseline concentration µ and the half-life, t1/2 = ln(2)/φ,
have a priori exponential distributions with a mean of 1000.
This gives quite a flat prior over the range of values expected.
The model precision, σ−2, is given a vague gamma prior with
mean 1 and variance 10,000.

Death rates are given in (7). The virtual simulation time
t0 and the birth rate λb are inversely proportional to one an-
other. Without loss of generality, then, we set t0 =1. The birth
rate was chosen to be λb =1. We also investigated larger birth
rates and found that the posterior distribution did not depend
on the birth rate (as indeed it should not). However, more
time was spent searching for components in the birth-death
process.

We started the MCMC algorithm by setting k=1. We also
found that the initial values for µ, t1/2, and β, which all
have vague priors, must be near the mode of the posterior
distribution. When we tried extreme values, the number of
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component functions got stuck at 1 with a mass near 0 and an
extremely large variance. The baseline secretion rate rose to
the overall mean of the data and the decay rate was driven to
zero. So, for each dataset, we set µ equal to the mimimum ob-
served concentration, t1/2 =15 and β=(15, 15)T. These num-
bers were obtained from subject-specific knowledge. Without
this knowledge, we recommend an initial run conditional on
the number of secretion events (derived empirically) and their
approximate locations (i.e., skip the search for location and
number of events/component functions) and use the posterior
mean of the parameter values. All other parameter values were
drawn from their prior distributions.

5.2. Posterior Simulation
We simulated the parameters, steps 2 and 3 of Section 4, in the
following order: µ, t1/2, β, Σ, κj , βj , τ j , and σ2. We sampled
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Figure 1. Marginal posterior distributions of the number of secretion events: prior 1.

σ2, κj , and Σ directly from their posterior distributions:

σ−2 ∼ Gamma

[
aσ + 0.5k, bσ + 0.5

n∑
i=1

{ln(yi) − ln(Ci)}2

]
,

κj ∼ Gamma
[
0.5(r + 1), 0.5

{
r + (βj − β)TΣ−1(βj − β)

}]
,

Σ−1 ∼ Wishartn+k

[{
S−1 +

k∑
j=1

κj(βj − β)(βj − β)T

}−1]
,

All other parameters were sampled using a Metropolis-
Hasting step. The chain was run for 275,000 iterations with
the first 25,000 iterations discarded as a burn-in. Every 25th
iteration was kept (for a total of 10,000) to reduce storage re-
quirements. Convergence was assessed graphically. Each sim-
ulation took approximately 50 minutes to run.
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5.3. Results
We now present the results and show that the two prior mod-
els considered can give quite different posterior distributions
for k, the number of component functions. With regard to
the first prior model, inference on k is necessary, since there
is a one-to-one correspondence between component functions
and secretion events (i.e., k is the number of secretion events).
Thus, our analysis using the first prior is conditional on the
mode of k. With regard to the second prior model, k does
not directly correspond to the number of secretion events and
may not have any physical interpretation. Thus, inference on
k is not of direct interest and so we perform a marginal anal-
ysis, integrating over k. Identification of the actual secretion
events in the second prior model requires appropriate post-
simulation processing. In particular, we allocated component

Ewe 1
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Figure 2. Marginal posterior distributions of the number of secretion component functions (left panels) and the number of
secretion events after postprocessing (right panels): prior 2.

functions to secretion events, thus allowing estimates of the
marginal posterior distribution of the number of secretion
events, as well as their masses. Aside from k, the param-
eters of interest are insensitive to our two choices of prior
information, including inference on the number of secretion
events.

The posterior distributions of k for each animal are shown
in Figure 1 (prior 1) and Figure 2 (prior 2). One can see
that the posterior distribution of k is more variable for prior
2, but that the center of the distribution is not much af-
fected. In fact, given our interpretation of the second prior
in Section 5.1, we can allocate component functions to se-
cretion events (see the Appendix for details). Figure 2 also
shows the posterior distribution of the number of events un-
der prior 2 after postprocessing. Comparing Figure 1 with
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Figure 3. Expected concentration and secretion rate profiles. Top panels: concentration profiles. Bottom panels: secretion
profiles. Solid profiles correspond to prior 1 and the dashed profiles to prior 2.

Figure 2, one sees that there are only minor differences in the
distribution of the number of secretion events. Posterior
means and standard deviations of the other parameters of
interest are given in Table 2. The secretion events’ masses
were computed after conditioning on the mode of the number
of secretion events. The events were sorted in ascending order
according to their locations. We note here that the events are
separated far enough apart in time that very little, if any, la-
bel switching occurs, as it does when one is using a mixture
model to estimate a density. Other, more sophisticated, meth-
ods that deal with label switching have been developed (see,
for example, Celeux, Hurn, and Robert (2000) and Stephens

(2000b)), but we feel that they are unnecessary here because
of the distance between events.

Figure 3 shows the conditional (on the mode of the number
of secretion events) expected values of the concentration

E{C(t;µ, φ, θ, k) | y, k}

=

∫
C(t;µ, φ, θ, k)p(µ, φ, θ | y, k) dµ dφdθ

and secretion profiles

E{S(t; θ, k) | y, k} =

∫
S(t; θ, k)p(θ | y, k) dθ
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Table 2
Posterior means and standard deviations (in parenthesis) for model parameters under the

two different prior models. Masses are per secretion event.

Ewe 1 Ewe 2

Prior 1 Prior 2 Prior 1 Prior 2

µ 2.40 (1.18) 2.80 (1.24) 5.82 (1.39) 5.33 (1.82)
t1/2 19.82 (3.49) 18.56 (3.68) 13.36 (2.69) 14.1 (3.60)
σ2 4.11 (0.86) 4.20 (0.91) 1.94 (0.48) 1.92 (0.46)
# events 9 9 10 10
Event 1, mass 11.05 (2.49) 12.33 (3.32) 25.84 (1.59) 26.32 (1.77)
Event 2, mass 14.16 (1.06) 14.52 (1.27) 16.90 (1.52) 16.99 (1.87)
Event 3, mass 10.62 (0.99) 10.77 (1.15) 17.19 (1.46) 17.32 (1.71)
Event 4, mass 15.83 (1.15) 16.16 (1.37) 20.18 (1.46) 20.36 (1.76)
Event 5, mass 14.59 (1.21) 14.96 (1.47) 12.60 (1.06) 12.67 (1.21)
Event 6, mass 13.87 (1.21) 14.23 (1.44) 22.42 (2.02) 22.50 (2.53)
Event 7, mass 12.11 (0.99) 12.31 (1.19) 14.43 (1.18) 14.58 (1.35)
Event 8, mass 8.08 (0.84) 8.06 (0.96) 16.55 (1.19) 16.79 (1.32)
Event 9, mass 10.86 (1.52) 11.51 (2.87) 10.28 (0.94) 10.52 (1.01)
Event 10, mass 15.57 (4.62) 18.15 (7.36)

Ewe 3 Ewe 4

Prior 1 Prior 2 Prior 1 Prior 2

µ 3.71 (0.98) 3.43 (1.26) 1.69 (0.95) 2.06 (0.95)
t1/2 16.41 (4.78) 17.59 (6.41) 21.77 (2.55) 20.66 (2.53)
σ2 3.61 (0.85) 3.5 (0.83) 1.64 (0.38) 1.57 (0.35)
# events 10 10 9 9
Event 1, mass 8.42 (1.35) 11.00 (2.75) 10.64 (1.60) 11.87 (1.90)
Event 2, mass 5.93 (0.84) 5.96 (1.07) 14.74 (0.57) 14.93 (0.57)
Event 3, mass 5.54 (0.65) 5.58 (0.70) 10.87 (0.50) 10.96 (0.49)
Event 4, mass 6.23 (0.69) 6.27 (0.76) 10.80 (0.48) 10.84 (0.47)
Event 5, mass 8.27 (0.92) 8.36 (1.21) 13.71 (0.57) 13.87 (0.57)
Event 6, mass 7.83 (1.02) 7.94 (1.40) 16.55 (0.70) 16.76 (0.73)
Event 7, mass 6.74 (0.83) 6.80 (1.02) 11.41 (0.55) 11.56 (0.56)
Event 8, mass 5.14 (0.64) 5.13 (0.70) 11.69 (0.51) 11.82 (0.51)
Event 9, mass 6.36 (0.74) 6.47 (0.89) 10.02 (0.47) 10.06 (0.47)
Event 10, mass 5.83 (2) 6.86 (3.71)

corresponding to prior 1 and the marginal expected value of
the concentration

E{C(t;µ, φ, θ, k) | y}

=

∫
k

{∫
C(t;µ, φ, θ, k)p(µ, φ, θ | y, k) dµ dφdθ

}
p(k | y) dk

and secretion profiles

E{S(t; θ, k) | y} =

∫
k

{∫
S(t; θ, k)p(θ | y, k) dθ

}
p(k | y) dk

corresponding to prior 2 for each of the four datasets. The
concentration profiles are shown only within the range of the
data, whereas the secretion profiles extend out to the left by
40 minutes and the right by 10 minutes. The expected concen-
tration profiles corresponding to the two priors are virtually
indistinguishable, as are the secretion profiles, except for per-
haps the first and last events, where there are some minor
differences.

Figure 4 shows a comparison, for one of the datasets, of
our method and that of Veldhuis et al. (1987). The concen-

tration profile is similar between the two methods, with one
noteworthy exception. The last two data points appear to
define the beginning of a secretion event. Our algorithm de-
tected this as an event, whereas the nonlinear least-squares
algorithm did not (to be precise, the algorithm used to locate
secretion events prior to the nonlinear least-square fit did not
detect this as a secretion event). This is a consequence of our
search for component functions outside the range of the data.
Thus, we are able to estimate secretion events and masses
based on partial pulse information.

6. Simulation Study
The reader may note that the four datasets analyzed above
are quite clean and the question arises about the performance
of our method on noisier data. To answer this, we simulated
20 datasets. Four hundred minutes of data were simulated
at 5-minute intervals. Nine secretion event positions per data
set were simulated from the 3rd-, 6th-, up to the 27th-order
statistics, from 29 uniform random variates on [0, 400]. The
mass of each event was simulated from a t4 distribution with
mean 12 and scale 5. The width, or scale, of each event was
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Figure 4. Comparison of our BDMCMC model and the de-
convolution method of Veldhuis et al. (1987). Our method is
the solid line.
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Figure 5. Two simulated concentration profiles. The dashed line is the simulated data with noise. The solid black line is
the simulated data and the dotted line is the expected concentration. The vertical lines at the bottom of each graph show the
secretion event location (truth is solid) and the expected location from our model (dotted).

simulated from a t4 distribution with mean 15 and scale 5.
The baseline concentration was taken to be 3 and the removal
half-half was 15 minutes. These parameters are comparable
to those obtained from the real datasets above. Noise was
added according to equation (4) above. The largest mean scale
parameter, σ2, from the four real datasets analyzed above was
0.004. In our simulated data, we increased this by a factor of
10 to 0.04. This gives us quite noisy data, but not so noisy
that the signals are lost in the noise.

Two of the 20 simulated concentration profiles, along
with estimates of the concentration profile, are displayed in
Figure 5. We chose to show the simulated concentration pro-
file in the top panel of Figure 5, because there appears to be
only one large pulse between 200 and 300 minutes. However,
there are two secretion events close in time at 221.1 and 235.1
minutes that, when convolved with exponential decay, result
in a unimodal concentration profile. Our method detected
both of these secretion events. The other 18 results were
similar to the two shown. The MCMC output from these 20
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datasets were pooled together and 78% of these detected the
nine secretion events. The mean baseline concentration was
2.82 (s.d. 0.63), the mean fixed effects event mass was 12.52
(s.d. 2.11), the mean fixed effects event scale was 16.52 (s.d.
8.89), the mean half-life was 15.55 (s.d. 3.33), and the model
mean variance was 0.0398 (s.d. 0.01)—all quite close to the
true parameter values.

7. Discussion
We saw above that the posterior distribution of k is dependent
on the prior model chosen. For the particular datasets ana-
lyzed above, we would recommend using the first prior model,
based on parsimony alone. We showed that the parameters of
interest are not sensitive to the priors; however, the second
prior requires postsimulation processing where the first does
not. For other datasets, we would strongly recommend either
using prior information elicited from an expert in endocrinol-
ogy or trying several different prior models and investigating
parameter sensitivity to prior information.

For the second prior, we used the posterior distribution to
allocate component functions to events, where we defined an
event as a mixture of the component functions with a unique
maximum. An alternative, more principled, approach would
be to search for event locations and masses in a birth-death
process, then nest a second birth-death process that, condi-
tional on a particular event, would determine the mixture of
Gaussian component functions that make up that event. The
search for the location of component functions would neces-
sarily be on a smaller scale (centered on the event locations)
than the scale on which to search for the event location. With
this approach, we would expect to have better mixing over the
number of component functions that make up each event. We
would also expect event locations to be more evenly spread
over the observed time interval, and thus the i.i.d. uniform
prior would not be appropriate for event locations. Rather,
some type of inhibition process would be more appropriate,
for example, the mth, 2mth, . . . , kmth order statistics from
km +(m− 1) i.i.d. uniform random variates.

We have assumed in this article that the model errors are
independent of one another. If this is not an appropriate as-
sumption, one may wish to impose a correlation structure on
the error terms. In this case, care must be taken in assuring
that the exchangeability assumption is satisfied. If it is not,
then RJMCMC should be used instead of BDMCMC.

We have demonstrated how one can jointly model pulsatile
hormone data when the number of secretion events is un-
known (which is the typical situation) using a Bayesian ap-
proach. The strengths of our model are: (1) It jointly models
the number of events and parameters of interest. Other de-
convolution models to date use statistical methods external
to the model to determine the number of events and thus do
not have the coherence of the Bayesian framework. (2) The
subset of competing models is much larger than practically
allowed using cross-validation or AIC. (3) It provides a coher-
ent way to model average when one particular model is not
substantially better than another. (4) We can estimate the
probabilities of the number of events. (5) One can easily in-
vestigate any functional form (including generalized functions
such as the Dirac delta function) for the secretion events. (6)
Specific events may be more complex than Gaussian and, un-

der the model used here, single events can assume Gaussian
shape or be a superposition (mixture, if you will) of two or
more Gaussian-shaped functions.
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Résumé

De nombreuses hormones sont sécrétées dans le système
circulatoire de façon pulsatile, et sont éliminées exponen-
tiellement. La méthode la plus habituelle pour analyser ces
systèmes est de faire une déconvolution entre une fonction de
sécrétion et une fonction d’élimination. L’estimation précise
des paramètres du modèle dépend du nombre et de la position
des pulses sécrétoires. A ce jour, l’analyse par déconvolution
suppose connus a-priori et le nombre et la position approx-
imative de ces pulses. Dans cet article nous présentons une
approche bayésienne de déconvolution pour un modèle joint
pour le nombre de pulses avec tous les autres paramètres du
modèle. Notre méthode effectue une recherche stochastique
des pulses sécrétoire. Pour cela nous envisageons l’ensemble
des paramètres comme un processus ponctuel. Les pulses sont
déterminés selon un processus de naissance-et-mort inséré
dans un algorithme MCMC. Cette idée tire son origine de
Stephens (2000a) dans le contexte de l’estimation d’un modèle
de mélange fini de distributions où le nombre de composants
du mélange est inconnu. Notre modèle présente plusieurs
avantages par rapport aux approches fréquentistes tradition-
nelles. Ces avantages sont mis en évidence par quatre ensem-
bles de données relatifs aux niveaux de concentration sérique
de l’hormone LH, obtenus à partir de brebis ovariectomisées.
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Appendix

Postsimulation Processing

We can find the marginal posterior distribution of the number
of secretion events if we are willing to accept that an event
is the superposition of r≤ k components functions if this su-
perposition has a unique maximum. Note that this precludes
two events occurring too close in time. Since the entire se-
cretion rate function S(t) is the superposition of all k com-
ponent functions, we can search S(t) for local maxima. Each
local maximum will be considered the location of a secretion
event, or pulse. Let NE denote the number of local maxima
(number of secretion events) in S(t) and let ti denote the
position of the ith local maximum of S(t). The posterior dis-
tribution of the number of secretion events can be estimated
by

p(NE = n |, y) ≈
∑

I{n}
(
N

(i)
E

)/
M

where the summation is over all saved iterations and M is
the number of saved iterations. The superscript in parenthe-
sis indicates the iteration number. The distributions of the
number of secretion events for each ewe are presented in Fig-
ure 2. There are nine secretion events for the hormone from
ewes 1 and 4 and 10 events for ewes 2 and 3.

Given the number of secretion events, NE , we can estimate
the mass of hormone released per event. Let Mi denote the
hormone mass released during secretion event i. To compute
Mi , we must allocate the component functions to secretion
events.

For each j≤ k, draw t∼ p(τ j | y, NE ). Then fj is a compo-
nent of event Ei if

argmax� {g�(t | y,NE)} = i, (A.1)

where gi (t | y, NE ) is the density of the location of event Ei .
Let Ai = {/ : (A.1) holds}. Then Mi =

∑
j∈Ai

βj1 and

E(Mi | y,NE) ≈
∑

�∈INE

M
(�)
i

/∣∣INE

∣∣,
where |S| denotes the cardinality of the set S and INE

is
the set of iteration indices in which there were NE secretion
events.


