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Exocrine pancreatic secretion is largely controlled by the

autonomic nervous system. We and other investigators

have clearly demonstrated that the vago-vagal reflex plays

a crucial role in the mediation of postprandial pancreatic

enzyme secretion. Previous studies in the rat showed that

cholecystokinin (CCK) (Li & Owyang, 1993b, 1994; Li et
al. 1997) and luminal non-CCK-dependent factors (Li &

Owyang, 1996b) such as osmolality, disaccharides, and

mechanical stimulation evoke pancreatic secretion via

intestinal vagal mucosal afferent fibres. We recently

demonstrated that 5-HT released from intestinal

enterochromaffin cells acts as a paracrine substance to

mediate luminal non-CCK-stimulated pancreatic secretion

(Li et al. 2000). Although pancreatic secretion can be

mediated by vago-vagal reflexes located within the

brainstem, these reflexes may be modulated by input from

higher centres (Rogers et al. 1996).

It has been recognized since Pavlov’s time (Pavlov, 1910)

that the CNS exerts considerable control over the cephalic

phase of pancreatic secretion (Sarles et al. 1968). The

hypothalamus receives a wide variety of convergent afferent

inputs from the viscera and regulates autonomic activities

by modulating neuronal input to autonomic preganglionic

neurons. With the exception of the pioneering work of

Gilsdorf et al. (1966), which suggested the involvement of

the hypothalamus in regulating pancreatic secretion,

the physiological significance of forebrain input in the
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The vago-vagal reflex plays an important role in mediating pancreatic secretion evoked by

cholecystokinin and non-cholecystokinin-dependent luminal factors. We hypothesize that the

vago-vagal reflex mediating pancreatic secretion in the rat is under central control and regulated by

cholinergic pathways in the hypothalamus. To test this hypothesis, we demonstrated that chronic

decerebration decreased basal pancreatic enzyme secretion from 318 ± 12 to 233 ± 9 mg h_1 and

reduced the net increase in pancreatic secretion stimulated by intraduodenal infusion of 5 %

peptone and hypertonic NaCl by 54 % and 45 %, respectively. Intracerebroventricular

administration of methscopolamine (MSCP, 50 nmol (5 ml)_1), a blood–brain barrier-impermeant

cholinergic muscarinic receptor antagonist, evoked results similar to those achieved by chronic

decerebration. To localize the sites of action, we demonstrated that microinjection of MSCP

(20 nmol) into the lateral hypothalamic nucleus or the paraventricular nucleus resulted in

inhibition of both basal pancreatic protein secretion and luminally stimulated pancreatic secretion

by 48 % and 52 %, respectively. Intracerebroventricular injection of hemicholinium-3 at doses

known to deplete the endogenous ACh store produced similar inhibitory results. In addition,

microinjection of ACh (5 pmol) or the muscarinic M1 receptor agonist McN-A-343 (30 ng) into the

lateral hypothalamic nucleus increased pancreatic secretion over basal levels by 46 % and 40 %,

respectively. Selective lesions of lateral septal cholinergic neurons decreased basal pancreatic

secretion and inhibited peptone-induced pancreatic secretion by 30 %. Destruction of the lateral

parabrachial nucleus produced a 44 % inhibition of peptone-induced pancreatic section. Finally,
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vagal pancreatic efferent nerve firings from a basal level of  0 ± 0.5 impulses (30 s)_1 to 4.5 ± 0.5 and
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basal levels. Administration of MSCP to the paraventricular nucleus eliminated these effects. These

observations suggest that cholinergic neurons of the lateral septum and lateral parabrachial nucleus

regulate pancreatic secretion. Further, cholinergic input from the lateral parabrachial nucleus to the

hypothalamus plays a major role in the modulation of vagal pancreatic efferent nerve activity and

pancreatic secretion evoked by the vago-vagal reflex.
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mediation of postprandial pancreatic secretion has

remained largely unexplored.

Muscarinic receptors are widely distributed in the brain,

including the hypothalamus and the vagal nucleus, and

central muscarinic actions are potentially widespread

(Whittaker, 1988). Previous studies have shown that the

central cholinergic pathway contributes significantly to

the regulation of digestive functions, including salivation

(Tomic-Beleslin & Beleslin, 1986), gastric secretion (Grill

& Norgren, 1978), gastric dysrhythmias (Hasler et al.
1995), emesis (Pedigo & Brizzee, 1985), and the

oesophagomotor response (Lu & Bieger, 1998). Endocrine

pancreatic polypeptide (PP) cells within the pancreatic

islets and scattered throughout the exocrine tissue

synthesize and release PP (Taylor, 1989). The plasma PP

response is a reliable index of vagal cholinergic input to the

pancreas. Infusion of atropine into the lateral cerebral

ventricle is known to abolish fluctuations of basal PP levels

and also PP secretion stimulated by hypoglycaemia or food

intake (Okita et al. 1997), which suggests involvement of

the central muscarinic cholinergic system in the regulation

of vagal efferent input to the pancreas.

We have shown that peripheral cholinergic blockade

completely abolishes pancreatic secretion (Li & Owyang,

1993b, 1994). The role of central cholinergic neurons in

the regulation of pancreatic secretion, however, is unknown.

Choline acetyltransferase immunoreactivity is abundant

in the CNS, including the septal nuclei, parabrachial

nucleus (PBN), bed nucleus, amygdala, and hypothalamus

(Ruggiero et al. 1990). We hypothesize that involvement of

the vago-vagal reflex in mediating pancreatic secretion is

under central control and regulated by cholinergic pathways

in the hypothalamus. In this study, we performed in vivo
pancreatic secretion studies in the conscious rat and

investigated the effects of chronic decerebration on basal

and stimulated pancreatic enzyme secretion. To localize

the sites of action, we examined the effects of micro-

injection of methscopolamine (MSCP) into the dorsal

motor nucleus of the vagus (DMV), the lateral hypothalamic

nucleus (LH) and the paraventricular nucleus (PVN) on

pancreatic secretion evoked by luminal stimuli. In addition,

we investigated the role of endogenous ACh on basal and

stimulated pancreatic secretion by administration of intra-

cerebroventricular (I.C.V.) injections of hemicholinium-3 at

doses known to deplete the endogenous ACh store. To

identify the sites of cholinergic neurons responsible for

modulating pancreatic secretion, we examined the effects

of selective destruction of cholinerginc neurons on

pancreatic secretion: immunotoxin 192 IgG-saporin-

induced lesion of the cholinergic basal forebrain neurons

and ibotenic acid-induced lesion of the PBN. To determine if

lateral septal or lateral PBN (LPBN) stimulation activates

the vagal pancreatic efferent nerve, electrophysiological

activity of the vagal pancreatic nerve was recorded.

METHODS 
Materials
Peptone, (_)scopolamine methyl nitrate (MSCP), hemicholinium-
3, and McN-A-343 were purchased from Sigma-Aldrich (St Louis,
MO, USA). Ibotenic acid was obtained from Research Biochemicals
International (Natick, MA, USA). 192 IgG-saporin was purchased
from CHEMICON International, (Temecula, CA, USA).

Animal preparation
All protocols used in this study were approved by the University
Committee on Use and Care of Animals at the University of
Michigan. After an overnight fast, male Sprague-Dawley rats
weighing 250–300 g were anaesthetized with a mixture of xylazine
and ketamine (13 and 87 mg (kg body weight)_1, respectively,
I.M.). One-third of the initial anaesthetic dose was given every
90 min thereafter to maintain surgical anaesthesia. This
anaesthetic procedure was used to prepare rats for all studies
described, including chronic decerebration, brain cannulation,
brain nuclei lesion, and re-anaesthetization of the rats for
pancreatic efferent nerve recording. At the end of each
experiment, the rats were killed with a barbiturate overdose
(70 mg kg_1, I.V.).

Chronic decerebration. To quantify pancreatic secretion
contributed by the rat forebrain, we performed chronic
decerebration, a classical method designed to remove the
influence of the forebrain. The procedure involves placing the rat
in a stereotaxic frame, removing the dura, and then transecting the
brain at the supracollicular level in a two-stage procedure using a
handheld spatula (Grill & Norgren, 1978; DiRocco & Grill, 1979).
Chloramphenicol (1 % solution) was applied to the exposed scalp
prior to closure to limit local infection. Completeness of the
transection was verified histologically in all cases.

Nursing care. The decerebrate rats were incapable of effective
thermoregulation or spontaneous feeding or drinking, but they
were capable of consuming orally administered fluids (Steiner,
1973). Body temperature was maintained between 34 °C and
37.5 °C by warming or evaporative cooling. Rectal temperature
was recorded 3 times daily. The decerebrate rats and the controls
were tube fed three 12-ml meals daily consisting of equal parts
sweetened condensed milk and water (with a multiple vitamin
supplement). The animals were housed individually and
subjected to a 12-h day : 12-h night cycle. Pancreatic secretion
studies were performed 7–10 days after decerebration.

Intracerebroventricular cannulation. The animal was placed in a
stereotaxic unit with the upper incisor bar placed 3 mm above the
interaural line. A small hole was drilled into the skull, through
which a 15-mm-long stainless steel cannula (24 gauge) was
introduced perpendicularly into the middle of the left cerebral
ventricle. The cannula was secured with two screws inserted into
the surface of the parietal bone and fixed with cranioplastic
powder (Plastics One). Coordinates from the bregma were as
follows: anteroposterior, 0.6 mm; lateral, 2 mm; and ventral,
4 mm.

DMV cannulation. Brain nuclei microinjection in conscious rats
was accomplished by implanting a unilateral guide cannula into
the DMV using an adaptation of a technique described by
Michelini & Bonagamba (1988) and Callera et al. (1997). A small
window was opened caudal to the lambda, through which a 15-
mm-long stainless steel cannula (24 gauge) was introduced
perpendicularly, 14 mm caudal to the bregma, 0.5 mm lateral to
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the midline, 8.3 mm below the skull surface. The guide cannula
was fixed to the skull with methacrylate and watch screws and
closed with an occluder until the time of experimentation. The
33-gauge needle used to administer microinjections into the
DMV measured 1.5 mm longer than the guide cannula and was
connected by polyethylene tubing to a microinfusion pump for
intracranial drug delivery.

Hypothalamic nuclei cannulation. The guide cannula was
introduced into the hypothalamic region at the following
coordinates: LH: 2.2–2.8 mm posterior, 1.6–1.9 mm lateral,
7.2–7.8 mm below the skull surface; PVN: 1.8 mm posterior to the
bregma, 0.8 mm lateral to the midline, and 8.0 mm below the
skull surface. For the control treatment, the cannula was inserted
in the vicinity of the PVN and LH but outside their borders.

After 3–4 days, pancreatic enzyme secretion studies were
performed in conscious rats. We observed that brain nucleus
cannulation did not alter feeding and drinking behaviour and the
rats gained an average of 6.1 g in 7 days.

Septal nuclei and LPBN cannulation. To perform septal nuclei
and LPBN microinjection during electrophysiological recording
of vagal pancreatic efferent nerve, unilateral guide cannulas were
inserted at the following coordinates: lateral septal nucleus (LS):
1.0 mm rostral to the bregma, 0.8 mm lateral to the midline, and
5.7 mm below the skull surface; the lateral PBN: 9.4 mm caudal to
the bregma, 2.2 mm lateral to the midline and 4.1 mm below the
skull surface. On completion of each experiment the rats were
killed with a barbiturate overdose (70 mg kg_1, I.V.). The brain was
removed and fixed in a formalin–20 % sucrose solution for 2 days.
Serial coronal sections (30 mm) were cut, stained by the Nissl
method, and examined microscopically. The location of the
microinjection was determined to be the point of termination of
the cannula track and marked on the plates reproduced from the
atlas of the rat brain by Paxinos & Watson (1998).

Immunotoxic lesions of cholinergic neurons by 192 IgG-
saporin. Wiley et al. (1992) developed an excellent tool for
selectively lesioning cholinergic basal forebrain neurons. Previous
studies have shown that injection of 192 IgG-saporin (10 ng) into
the nucleus basalis magnocellularis (NBM) provided the greatest
loss of cholinergic cells that project to the cortex, without loss of
hippocampal afferents and with limited loss of striatal cholinergic
cells (Wenk et al. 1994). Injection of 192 IgG-saporin at a dose of
0.22 mg into the medial septum (MS) resulted in no apparent loss
of parvalbumin, a calcium-binding protein that serves as a marker
for GABAergic projection neurons in the MS (Johnson et al.
2002), which suggests the selective destruction of cholinergic
neurons. In the current study, we used 192 IgG-saporin (10 ng in
0.03 ml) in sterile PBS, a concentration known to induce the
greatest loss of cholinergic cells (Wenk et al. 1994). A micropipette
tip (outside diameter 40–60 mm) was placed in the MS
(coordinates: 0.45 mm anterior and 0.2 mm lateral to the bregma,
and 5.7 mm below the skull surface), the lateral septum (LS)
(1.0 mm anterior and 0.8 mm lateral to the bregma, and 5.7 mm
below the skull surface), and the NBM (0.9 mm posterior to the
bregma, 2.8 mm lateral to the midline, and 7 mm below the skull
surface). A 0.03 ml solution was delivered for 2 min at each site.

The lesioned animals generally took longer to recover from the
effects of the anaesthetic than the sham-lesioned controls. They
appeared more lethargic and were less inclined to eat or drink after
surgery. Postoperative weight loss was universal, but 3 days after
surgery, sham- and MS-, LS-, NBM-cholinergic ablated animals

showed a daily weight gain. Experimentation began on the 10th
postoperative day.

Immunohistochemistry. After pancreatic secretion studies, at
least two rats from each group were used for histological studies.
The rats were deeply anaesthetized with sodium pentobarbital
(100 mg kg_1) and perfused transcardially with saline followed by
10 % formalin. The brain was quickly removed. Serial coronal
sections (40 mm) were cut through the basal forebrain. The
sections were incubated in polyclonal mouse anti-choline
acetyltransferase (MAB 305, 1:600, CHEMICON International,
Temecula, CA, USA) in PBS-TX containing 0.1 % BSA (PBS-
TX–BSA) for 12 h at 4 °C. The specimens were rinsed three times
with PBS-TX–BSA, then incubated for 60 min at 35 °C with a
secondary antibody (donkey-mouse Cy3) (1:200) in PBS-
TX–BSA. The specimens were examined with a fluorescence
microscope (Nikon Optiphot-2) using appropriate excitation
wavelengths (550–570 nm). One set from each of the brains was
counterstained with neutral red to facilitate identification of the
neurons. Brain tissue from unoperated rats was processed in
parallel as a positive control.

Ibotenic acid lesions of the PBN. Cholinergic neurons in the
parabrachial nucleus send direct input to the hypothalamic
nuclei, including the LH and PVN (Saper & Loewy, 1980). PBN
cholinergic neurons do not display nerve growth factor receptor
(NGFr) staining and are unaffected by 192 IgG-saporin injections
(Heckers et al. 1994). In this study, we used the neurotoxin
ibotenic acid to lesion the PBN. It has been shown in rodents that
viscerosensory neurons are located in the LPBN (Fulwiler &
Saper, 1984; Herbert et al. 1990), and the gustatory responsive
neurons are found in the medial subdivisions of the PBN (MPBN)
(Halsell & Frank, 1991). After a scalp incision, two holes were
drilled into the skull to provide access to the bilateral LPBN at the
following coordinates: 9.4 mm caudal to the bregma, 2.2 mm
lateral to the midline, and 6 mm below the surface of the skull.
Access to the MPBN was achieved at the following coordinates:
11.5 mm posterior to the bregma and 1.0–1.5 mm lateral to the
midline. A micropipette was back-filled with ibotenic acid
immediately prior to injection; a 0.15-ml dose (20 mg ml_1) was
infused over 10 min. To minimize spread of the neurotoxin along
the track, the micropipette remained in situ for an additional
10 min before the procedure was repeated on the contralateral
site. At the completion of the surgical procedure, the scalp incision
was closed with wound clips. The experiment was started after
3 weeks’ postoperative recovery.

Histology. Serial coronal sections (50 mm) were cut at on a
cryostat, mounted on gelatin-coated slides, and stained with cresyl
violet. The extent of the lesions was determined by examining the
sections under a light microscope, and reconstructions were made
on charts derived from the atlas of Paxinos & Watson (1998).

Postoperative care
Sterile isotonic saline (10 ml, subcutaneous) was administered to
prevent dehydration during recovery, and bicillin (0.5 ml,
300 000 U ml_1, intramuscular) to prevent infection. On
completion of surgery, rats were placed on a warm recovery pad
and their general condition was monitored. After recovery from
the anaesthesia, the rats were returned to the animal quarters and
their body weight and general behaviour were monitored daily.
Lidocaine (lignocaine) was applied locally to the scalp to reduce
discomfort. Diluted Tylenol (50 mg kg_1, cherry flavoured) was
available for 24 h after surgery.

Hypothalamic cholinergic regulation of pancreasJ Physiol 552.2 573
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Pancreatic secretion studies in conscious rats. For the
physiological studies, we used a conscious rat model in which a
chronic pancreatic and duodenal catheter was passed through a
modified plastic housing (Li et al. 1997) sutured to the abdominal
ventral wall. One end of the tubing (PE-10 or PE-50, Clay-Adams,
Becton, Dickinson and Company, Sparks, MD, USA) was inserted
into the common bile-pancreatic duct, and the other end was
placed in the duodenum through a cannula (PE 60 or PE 190)
fixed in the housing. After surgery, the animals were returned to a
regular cage for 4 days to recover until the experiments were
performed. During the experiment, the pancreatic catheter was
gently disconnected from the duodenal cannula for the collection
of bile–pancreatic juice.

After a 30-min stabilization period, combined biliary–pancreatic
secretions were collected every 15 min. The volume was measured
and an aliquot was taken and diluted with distilled water for
protein determination. The remaining undiluted bile–pancreatic
juice was pumped back into the rat through the duodenal cannula
during the next collection period at the secretion rate of the
preceding collection period. Protein in the bile–pancreatic juice
was measured spectrophotometrically using the assay method of
Bradford (Li et al. 2000). In a previous study, we confirmed that
the increase in protein output in the bile–pancreatic juice after
CCK-8 and non-CCK luminal stimulation (authors’ unpublished
observations) reflected protein from the pancreatic source. Biliary
juice protein did not increase in response to CCK stimulation.

Duodenal perfusion studies. Previous research (Li et al. 1996b)
showed that pancreatic secretion in response to intraduodenal
perfusion of peptone is mediated by endogenously released CCK.
We have also shown that intestinal 5-HT released from
enterochromaffin cells mediates pancreatic secretion stimulated
by luminal hypertonic NaCl solution (Li et al. 2000). Both CCK
and 5-HT act via stimulation of vagal afferent pathways to evoke
pancreatic secretion. In the present study these methods were
used to examine the role of the CNS in mediating pancreatic
secretion evoked by the vago-vagal reflex. After a 45-min basal
period, 5 % peptone or hypertonic NaCl (600 mosmol l_1) was
perfused into the duodenum at a constant rate of 3 ml h_1 by a
peristaltic pump. The vehicle and two test solutions were
administrated separately in random order, each for 75 min, with a
45-min resting period between each test to allow pancreatic
secretion to return to basal level. In the first group of rats prepared
with I.C.V. cannulas, after a 30-min basal collection of
bile–pancreatic juice, I.C.V. infusion of vehicle solution (6 ml) was
followed by intraduodenal infusion of peptone and hypertonic
NaCl. The next day, the same rats received an I.C.V. infusion of the
blood–brain barrier-impermeant cholinergic muscarinic receptor
antagonist MSCP (5 or 50 nmol (6 ml)_1). To determine if
endogenous acetylcholine plays a physiological role in the
mediation of pancreatic secretion, we examined the effects of I.C.V.
infusion of hemicholinium-3 (20 mg in 6–8 ml, dissolved in saline,
delivered over 1 min) in a separate group of rats, The internal
cannula was kept in position for 45 s before being retracted.
Pancreatic secretion studies were performed. Immediately before
killing the rats, 2 ml of methylene blue was administered by I.C.V.
injection to verify the injection site. Data from animals that did
not display the dye throughout the ventricular system were
excluded from analysis. To localize the sites of action of MSCP, we
performed brain nucleus microinjection studies. In separate
groups of rats prepared with DMV, LH, or PVN cannulas,
vehicle or MSCP (40 nl (15 s)_1) was delivered by a
microinjector (David Kopf Instruments, Tujunga, CA, USA).

Intraduodenal perfusion studies were performed after the
injection.

Pancreatic secretion studies were also conducted in rats 10 days
after septal nuclei and NBM cholinergic lesion by 192 IgG-
saporin, and in rats 3 weeks after PBN lesion by ibotenic acid. In
the another series of experiments, after a 30-min basal collection,
vehicle or ACh (5 pmol) or the muscarinic M1 receptor agonist
McN-A-343 (20 pmol) was microinjected into the DMV, LH, and
PVN, and pancreatic secretion studies were performed.

On completion of each experiment, minimal changes were
observed in the animals’ general behaviour, such as locomotor
activity, grooming, and rearing to the side or in the centre of the
cage, suggesting that microinjection of various agents did not
cause distress.

Electrophysiological recording of vagal pancreatic efferent
nerve
After 5 days of recovery, the rats prepared with LPBN or LS
cannulas were re-anaesthetized, and prepared with a tracheal tube
that permitted artificial ventilation with room air. Body
temperature was maintained with a special heating pad. The
pancreatic nerve of the vagus running along the side of the splenic
artery was isolated from the central cut end, and efferent nerve
activity was recorded using bipolar platinum electrodes. A strip of
connective tissue was wrapped around the second indifferent
electrode. Multi-unit efferent recordings were thus obtained from
the vagal pancreatic nerve. The electrophysiological signal was
amplified by an A-M system, high-input impedance that was
preamplified and monitored with an oscilloscope and audio
monitor. The discharges were displayed and stored electronically
using Axon tape software (Axon Instruments) and a 166-MHz
Pentium processor for off-line computer analysis. After 5 min of
recording the vagal pancreatic nerve firings to confirm the
stability of the firing frequency, basal discharge was monitored for
5 min. Discharge frequency after microinjection of glutamate
(30 nmol (50 nl)_1) into the LPBN was measured over 20 min. At
the completion of the electrophysiological study, the same rats
were subjected to the pancreatic secretion study in response to
glutamate injection into the LPBN.

At the end of each experiment, the rats were killed with a
barbiturate overdose (70 mg kg_1, I.V.). The brain was removed,
and stored in formalin–20 % sucrose solution for 2 days, and serial
coronal sections (20 mm) were cut and stained by the Nissl
method. Histological sections were examined microscopically.
The location of the microinjection site was determined to be the
point of termination of the cannula track and was marked on the
plates reproduced from the rat brain atlas of Paxinos & Watson
(1998).

Data analysis. Off-line single-unit analyses were performed using
the Datapac software system 2000 (Run Technologies, Laguna
Hills, CA, USA), and the spike sorting module software (Li et al.
1999). Time histograms were constructed for all final 30 s
recordings. The basal discharge frequency and the stimulus-
induced discharge frequency were determined by calculating the
average volume of all 30 s periods in 3 min. The results were
compared with those obtained after I.C.V. injection of MCSP.

Statistical analysis
Results were expressed as means ± S.E.M. Multivariate ANOVA
was used to evaluate the effects of repeated measurements over
time, the effects of treatment, and the interaction between these
two variables. Basal output was determined to be the average of
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two 15-min periods. The cumulative net increase in protein
output was calculated as the sum of protein output during the
final 30 min of intestinal infusion of peptone or hypertonic NaCl
minus the basal output. Zero cumulative output was considered
to reflect 100 % inhibition. Subsequent comparisons were made
with the Newman-Keuls test (InStat Biostatistics 2.01. Graphpad
Software, Inc.).

RESULTS
Effects of chronic decerebration on pancreatic
secretion in conscious rats
The chronically decerebrate rats were sufficiently

coordinated to groom their fur. Although they exhibited

relative immobility, they often overreacted with well-

coordinated movements such as running and jumping

(Tang, 1955). Previous studies have shown that chronically

decerebrate rats retain the capacity to increase plasma

glucose concentration in response to 2-deoxyglucose

(DiRocco & Grill, 1979). In this study, both sham-

operated (n = 4) and decerebrate rats (n = 6) showed a

weight gain: 245 ± 6 g (sham-operated) and 248 ± 8 g

(decerebrate) before surgery to 262 ± 6 and 260 ± 10 g on

the 10th day after surgery. Basal pancreatic secretion rates

averaged 318 ± 12 mg h_1 in conscious rats. Duodenal

infusion of 5 % peptone or hypertonic NaCl at 3 ml h_1

increased protein secretion in sham-operated rats to

588 ± 9 and 569 ± 13 ml h_1, respectively, an 85 % and

79 % increase in protein output over basal (Fig. 1A and B).

The cumulative net increases in protein output were

130 ± 15 and 122 ± 12 mg (30 min)_1, respectively. Chronic

decerebration caused a reduction in basal pancreatic

protein output to 233 ± 9 mg h_1. In response to duodenal

infusion of 5 % peptone or hypertonic NaCl, the

pancreatic protein output in decerebrate rats increased to

354 ± 11 and 301 ± 14 mg h_1, respectively, representing

50 % and  36 % increases over basal (Fig. 1A and B). The

cumulative net increases in protein output were 60 ± 7

and 50 ± 9 mg (30 min)_1, respectively (Fig. 1C). Thus,

compared to controls, chronic decerebration resulted in

46 % and 40 % less pancreatic protein secretion in

response to luminal perfusion of, respectively, peptone

and hypertonic NaCl.

Effects of I.C.V. administration of MSCP on
pancreatic secretion stimulated by peptone and
hypertonic NaCl
An I.C.V. injection of 5 nmol MSCP had no effect on basal

pancreatic protein output, whereas a dose of 50 nmol

decreased basal pancreatic protein output from 320 to

210 mg h_1 (Fig. 2A). I.C.V. infusion of MSCP produced a

partial inhibition of pancreatic secretion stimulated by

luminal peptone and hypertonic NaCl (Fig. 2B). The

cumulative net increases in protein output were

70 ± 6 mg (30 min)_1 after infusion of peptone, and

57 ± 4 mg (30 min)_1 after infusion of hypertonic NaCl

(Fig. 2B and C). Compared to controls, these results

represent a 47 % and 56 % reduction in response to,

respectively, intestinal peptone and hypertonic NaCl

stimulation.

Effects of microinjection of MSCP into the LH on
basal and pancreatic secretion in response to
luminal stimulation in conscious rats
Bilateral LH injection of MSCP at a dose of 5 nmol resulted

in a significant decrease of basal pancreatic secretion from

Hypothalamic cholinergic regulation of pancreasJ Physiol 552.2 575

Figure 1. Effects of chronic decerebration on pancreatic secretion in conscious rats
Chronic decerebration induced a decrease in basal pancreatic enzyme secretion from 318 ± 12 to
233 ± 9 mg h_1 and a reduction in pancreatic secretion stimulated by intraduodenal infusion of 5 % peptone
(A) and hypertonic NaCl (B) by 54 % and 45 %, respectively. C, cumulative net increase in pancreatic protein
output (i.e. the sum of protein output during the final 30 min of intestinal infusion of peptone or hypertonic
NaCl minus basal output in sham-operated and decerebrate rats). These observations indicate that the
forebrain plays an important role in maintaining basal pancreatic secretion and in modulating vagal afferent-
stimulated pancreatic secretion. Values are means ± S.E.M. for 4 sham-operated and 6 decerebrate rats.
* P < 0.05 compared with sham operation.



Jo
u

rn
al

 o
f P

hy
si

ol
og

y

320 ± 11 to 219 ± 17 mg h_1 (n = 4) (Fig. 3A). The

inhibitory effect lasted 60 min. This observation indicates

that cholinergic tone in the hypothalamus regulates basal

pancreatic secretion. Bilateral microinjection of MSCP into

the LH reduced the cumulative net increase in protein

output in response to duodenal perfusion of peptone from

120 ± 6 to 71 ± 8 mg (30 min)_1 (Fig. 3B and C). Injection of

MSCP near but outside the LH, specifically into the magno-

cellular preoptic nuclei (n = 1) and the anterior hypo-

thalamic area (n = 1) did not affect the pancreatic protein

secretion. These rats were excluded from the statistical

analyses. These observations suggest that muscarinic

cholinergic receptors in the LH are involved in regulating

pancreatic secretion evoked by the vago-vagal reflex.

Y. Li, X. Wu, J. Zhu, J. Yan and C. Owyang576 J Physiol 552.2

Figure 2. Effects of intracerebroventricular administration of the cholinergic antagonist
methscopolamine on pancreatic secretion in conscious rats
A, intracerebroventricular (I.C.V.) administration of methscopolamine (MSCP) at a dose of 5 nmol had no
effect on basal pancreatic protein output, whereas a 50-nmol dose induced a decrease in basal pancreatic
protein output from 320to 210 mg h_1. B, intraduodenal infusion of peptone and hypertonic NaCl increased
protein secretion by 100 % and 70 %, respectively. We have previously shown that these responses are
mediated by a vagal mucosal afferent pathway. I.C.V. MSCP administration partially inhibited pancreatic
protein output stimulated by peptone or hypertonic NaCl. C, cumulative net increase in pancreatic protein
output in response to intraluminal peptone or hypertonic NaCl was significantly reduced in decerebrate rats
compared to controls. Values are means ± S.E.M. for 4 rats in each group. * P < 0.05 compared with sham
operation.

Figure 3. Effects of bilateral microinjection of methscopolamine into the lateral hypothalamic
nucleus on pancreatic secretion in conscious rats
A, microinjection of methscopolamine (MSCP) into the lateral hypothalamic nucleus (LH) resulted in a
significant decrease in unstimulated pancreatic secretion, indicating that basal cholinergic tone in the
hypothalamus regulates basal pancreatic secretion. B, time course of peptone-induced pancreatic secretion
in the presence and absence of MSCP. C, cumulative net increases in pancreatic protein output. MSCP
injection into the LH significantly reduced basal pancreatic protein secretion and peptone-stimulated
pancreatic protein secretion, suggesting that muscarinic cholinergic receptors in the hypothalamus are
involved in mediating pancreatic secretion. Values are means ± S.E.M. for 4 rats in each group. 
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Effects of microinjection of hemicholinium-3 into
the lateral cerebral ventricle on pancreatic secretion
A decrease in basal protein output from 308 ± 12 to

220 ± 7 mg h_1 (Fig. 4A) was observed 45 min after acute

injection of hemicholinium-3 (20 mg) into the lateral

cerebral ventricle of unanaesthetized rats. This treatment

also resulted in significant inhibition of luminally

stimulated pancreatic secretion (Fig. 4B). The respective

cumulative net increases in protein output were 70 ± 5

and 61 ± 3 mg (30 min)_1 in response to intraduodenal

peptone or hypertonic NaCl stimulation; reductions of

47 % and 51 % compared to controls (Fig. 4C).

Effects of microinjection of ACh into the LH, PVN,
dorsomedial hypothalamic nucleus (DMH), and
DMV on pancreatic secretion in conscious rats
Six rats were used for each nucleus injection study.

Microinjection of ACh at a dose of 5 or 50 pmol into the

DMH (n = 4) had no significant effect on pancreatic

secretion (Fig. 5F). Similarly, ACh injection outside the

DMH (perifornical nucleus and ventromedial hypothalamic

nucleus) (n = 2) had no effect on pancreatic secretion.

Microinjection of ACh at a dose of 5 pmol into the LH

(n = 5) (Fig. 5A) or PVN (n = 4) (Fig. 5B) induced an

increase in protein output from 318 ± 12 to 481 ± 10 and

475 ± 7 mg h_1, respectively. The increase was observed

after the 3-min injection and peaked within 15 min.

Microinjection of the M1 muscarinic receptor agonist

McN-A-343 (50 pmol) into the LH or PVN (Fig. 5C and

D) mimicked the stimulatory effects of ACh on pancreatic

secretion. Injection of ACh near, but outside the LH

(i.e. anterior hypothalamic area), or outside of the PVN

(i.e. reuniens nucleus or anterior hypothalamic area), did

not cause a significant increase in pancreatic secretion.

These observations indicate that stimulation of muscarinic

receptors in the hypothalamus evokes pancreatic protein

secretion. Microinjection sites in the hypothalamus are

shown in Fig. 6. Previous studies in which a similar

cannula injection technique was used showed that after

microinjection of [3H][3-methyl-His2]-TRH (50 nl) into

the preoptic nucleus more than 75 % of the radioactivity

was measured within a 600-mm diameter of the injection

site (Siren et al. 1991). Microinjection of ACh (5 or

50 pmol) into the DMV had no effect on pancreatic

secretion (n = 4) (Fig. 5E). In two rats, the injection sites

were found near the border of the hypoglossal nucleus. No

change in pancreatic secretion was observed.

Effects of selective lesion of cholinergic neurons in
the basal forebrain by 192 IgG-saporin
Immunohistochemistry confirmed that areas of the MS

(Fig. 7), LS, and NBM were nearly completely depleted of

ChAT-immunopositive neurons. No tissue necrosis or

nonspecific damage was observed. MS lesion and NBM

lesion had no effect on either basal pancreatic protein

secretion or pancreatic secretion stimulated by intra-

duodenal perfusion of peptone (Fig. 8A). In contrast, the

LS lesion resulted in a decrease in basal protein output

from 310 ± 7 to 212 ± 7 mg h_1 (Fig. 8A), and reduced the

cumulative net increases in protein output stimulated by

peptone from a control rate of 118 ± 6 mg (30 min)_1 to

80 ± 4 mg (30 min)_1, representing a 30 % inhibition

(Fig. 8B). These observations suggest that cholinergic

neurons in the LS are involved in modulating pancreatic

tone and protein secretion evoked by the vago-vagal reflex.

Hypothalamic cholinergic regulation of pancreasJ Physiol 552.2 577

Figure 4. Effects of microinjection of hemicholinium-3 into the lateral cerebral ventricle on
pancreatic secretion in conscious rats
Acute injection of hemicholinium-3 (HC-3, 20 mg) into the lateral cerebral ventricle of unanaesthetized rats
induced a decrease both in basal pancreatic secretion and in pancreatic secretion stimulated by
intraduodenal perfusion of peptone (A) and hypertonic saline (B). C, cumulative net increase in pancreatic
protein output in response to intraluminal peptone or hypertonic NaCl was significantly reduced after HC-3
administration. Values are means ± S.E.M. for 4 rats in each group. * P < 0.05 compared with vehicle.
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Effects of PBN lesion on pancreatic protein secretion
in conscious rats
In five of nine rats, the neurotoxin ibotenic acid caused

well-placed, bilaterally symmetrical lesions of the LPBN.

Depictions of lesion damage in LPBN are shown in Fig. 9.

The locus and extent of the lesions were determined by the

loss of neurons and the presence of gliosis. The lesions

included the central, external, and to a lesser extent, the

dorsal and medial subnuclei of the LPBN (Fulwiler &

Saper, 1984). In two of the four remaining rats, the lesion

extended far enough ventrally to cause significant

unilateral damage to the MPBN. Of the remaining two

Y. Li, X. Wu, J. Zhu, J. Yan and C. Owyang578 J Physiol 552.2

Figure 5. Effects of microinjection of ACh and muscarinic M1 receptor agonist McN-A-343 into
the lateral hypothalamic nucleus, paraventricular nucleus, dorsomedial hypothalamic
nucleus, or dorsal motor nucleus of the vagus on pancreatic secretion in conscious rats
Microinjection of ACh (5 pmol) into the lateral hypothalamic nucleus (LH) (A) (n = 5) or the
paraventricular nucleus (PVN) (B) (n = 4) induced a marked increase in protein secretion. Similar results
were obtained after microinjection of McN-A-343 into the LH (C) or the PVN (D). In contrast,
microinjection of ACh at doses of 5 pmol or 50 pmol into the dorsal motor nucleus of the vagus (DMV) (E)
(n = 4) or the dorsomedial hypothalamic nucleus (DMH) (F) (n = 4) had no effect on pancreatic secretion.
Values are means ± S.E.M. for 4 rats in each group. * P < 0.05 compared with basal.
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rats, one had incomplete damage to the external lateral

subnucleus on both sides, and the other was in poor health.

Functional data from these four rats were excluded from

statistical analyses. In four of six MPBN-lesioned rats, the

ibotenic acid infusions produced well-placed lesions

located in the gustatory area of the PBN. In two rats,

damage to the gustatory area on both sides was

incomplete. Accordingly, data from these rats were

excluded from functional analyses. Neither MPBN nor

LPBN lesions significantly affected basal pancreatic

secretion in the conscious rat (Fig. 10A). MPBN lesion also

had no effect on pancreatic protein output stimulated by

duodenal perfusion of peptone. However, LPBN ibotenic

acid lesion caused a reduction in pancreatic protein

secretion stimulated by intraduodenal perfusion of

peptone (Fig. 10A). The cumulative net increase in protein

output was decreased from the control rate of

102 mg (30 min)_1 to 64 mg (30 min)_1 (Fig. 10B).

Effects of microinjection of glutamate into the LS
and LPBN on pancreatic vagal efferent nerve activity
and pancreatic protein secretion in anaesthetized
rats
We used glutamate as an agent for chemical stimulation.

This agent only activates the cell bodies without activating

the passing fibres. The vagal pancreatic efferent nerve

displayed low spontaneous activity. Microinjection of

saline had no effect on pancreatic nerve firings (Fig. 11A).

Microinjection of glutamate (30 nmol) into the LPBN

produced a marked increase in pancreatic nerve firings

(Fig. 11B) from a basal level of 0 ± 0.5 impulses (30 s)_1 to

14 ± 2 impulses (30 s)_1 in five rats tested. The response

reached a plateau 1 min after injection, and gradually

returned to baseline after 10 min. The distribution of

cannula placements in LPBN is shown in Fig 11E. Injection

into the LPBN was histologically confirmed in five of six

rats used in this study. LPBN injection sites were centred in

the central lateral and dorsal lateral portions of the LPBN

(Fulwiler & Saper, 1984). Injection reaching the ventral

lateral and external lateral portions were observed in some

rats; data from these rats were included in the analysis.

In one rat, the injection sites were located in the

mesencephalic nucleus and in the MBPN (Fig. 11E).

Glutamate injection had no effect on pancreatic nerve

firing in these rats.

In a separate study, injection into the LS was histologically

confirmed in all six rats. The LS injection sites were found

in both the rostral and caudal part of the lateral septal

nucleus. Microinjection of glutamate (30 nmol) into the

LS produced a mild increase in vagal pancreatic efferent

firings from a basal level of 0 ± 0.5 impulses (30 s)_1 to

4 ± 0.5 impulses (30 s)_1.

Given the fact that ACh did not act on DMV neurons to

stimulate pancreatic secretion, we tested the hypothesis

that ACh released from the LPBN activates neurons of the

hypothalamus, which in turn stimulates pancreatic

preganglionic motor neurons, and increases vagal efferent

activities. We showed that microinjection of 5 nmol

MSCP into the PVN significantly inhibited pancreatic

nerve firings evoked by LPBN injection of glutamate

(Fig. 11C). After pancreatic nerve recording studies, the

same anaesthetized rats were subjected to a pancreatic

Hypothalamic cholinergic regulation of pancreasJ Physiol 552.2 579

Figure 6. Location of microinjection sites of ACh in the
hypothalamus
Coronal sections adapted from the atlas of the rat brain by Paxinos
& Watson (1998) showing the ACh microinjection sites in the
hypothalamus. Numbers to the right of each section indicate the
distance from the bregma. Black circles, squares, and triangles
indicate the sites within the dorsomedial hypothalamic nucleus
(DMH), lateral hypothalamic nucleus (LH), and periventricular
hypothalamic nucleus (PVN), respectively. The grey symbols
indicate injection sites outside these target nuclei. AHP, anterior
hypothalamic area (posterior); VMH, ventromedial hypothalamic
nucleus; MPA, medial oreoptic area; DMH, dorsomedial
hypothalamic nucleus; DA, dorsal hypothalamus area; Te, terete
nucleus.
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Figure 7. Effect of 192 IgG-saporin on choline acetyltransferase-immunopositive neurons in
the medial septum
A, choline acetyltransferase (ChAT)-immunopositive neurons in a section of the medial septum (MS) from
sham-operated control rats. B, fewer ChAT-positive neurons are visible in a section of the MS region after
injection of 192 IgG-saporin. C and D, higher magnification of images depicted in A and B, respectively. Scale
bar B = 0.25 mm; D = 0.125 mm.

Figure 8. Effects of selective lesion of basal forebrain cholinergic neurons on pancreatic
secretion in conscious rats
The selective cholinergic toxin 192 IgG-saporin was used to lesion the neurons of the medial septum (MS),
the lateral septum (LS), and the nucleus basalis magnocellularis (NBM).  A, time course of peptone-induced
pancreatic secretion in control rats and in rats with lesions. MS or NBM lesions had no effect on basal
pancreatic output, nor did they affect pancreatic protein secretion stimulated by luminal perfusion of
peptone. In contrast, LS lesion resulted in a significant decrease in basal pancreatic output from 310 ± 7 to
212 ± 7 mg h_1, and a reduction in the cumulative net increase in protein output evoked by peptone from
118 ± 6 to 80 ± 4 mg (30 min)_1 (B), suggesting that cholinergic LS neurons play a role in regulating basal
and stimulated pancreatic secretion. Values are means ± S.E.M. for 4 rats in each group. * P < 0.05 compared
with basal levels in A, and compared with control in B.
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protein secretion study. Microinjection of glutamate into

the LPBN resulted in a correlated increase of pancreatic

protein output from a basal level of 123 ± 5 mg h_1 to

226 ± 11 mg h_1. PVN pretreatment with MSCP (5.0 nmol)

eliminated pancreatic protein secretion evoked by LPBN

injection of glutamate (Fig. 11D).

DISCUSSION
Exocrine pancreatic secretion is largely controlled by the

autonomic nervous system. We and other investigators

have clearly demonstrated that the vago-vagal reflex plays

a crucial role in the mediation of postprandial pancreatic

Hypothalamic cholinergic regulation of pancreasJ Physiol 552.2 581

Figure 9. Coronal sections through the dorsal pons
A, coronal section from a rat that received a PBS injection into the lateral parabrachial nucleus (LPBN).
B, coronal section after a well-placed injection of ibotenic acid into the LPBN. Scale bar = 0.8 mm. C and
D, higher magnification of images depicted in A and B, respectively. Sections were stained with cresyl violet.
MPBN, medial parabrachial nucleus; BC, brachium conjuctivum.

Figure 10. Effects of lateral or medial parabrachial nucleus lesions induced by ibotenic acid
on pancreatic secretion in conscious rats
A, time course of peptone-stimulated pancreatic secretion in control rats and in rats with lateral parabrachial
nucleus (LPBN) or medial PBN (MPBN) lesions. B, cumulative net increases in protein output stimulated by
peptone. Ibotenic acid treatment had no effect on basal pancreatic secretion. Lateral parabrachial nucleus
(LPBN) lesion significantly reduced pancreatic protein secretion in response to intraduodenal perfusion of
peptone, suggesting that LPBN neurons are involved in mediating pancreatic secretion evoked by the vago-
vagal reflex. Values are means ± S.E.M. for 4 rats with MPBN lesion and 5 rats with LPBN lesion. * P < 0.05
compared with basal in A and with control in B.
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Figure 11. Responses of the vagal pancreatic efferent nerve to microinjection of glutamate
into the lateral parabrachial nucleus, and the correlated pancreatic protein secretion in the
anaesthetized rat
Original action potentials are presented. A, vagal pancreatic efferent nerve displayed low spontaneous
activity. Microinjection of saline had no effect on pancreatic nerve firings. B, microinjection of glutamate
(30 nmol) into the lateral parabrachial nucleus (LPBN) produced a marked increase in pancreatic nerve
firings. The response reached a plateau 1 min after injection, and gradually returned to baseline after 10 min.
C, methscopolamine (MSCP, 5 nmol) injection into the periventricular hypothalamic nucleus (PVN)
abolished pancreatic nerve firings evoked by the LPBN injection of glutamate. D, glutamate microinjection
induced a correlated increase of pancreatic protein output in the anaesthetized rats. Pretreatment with
MSCP abolished pancreatic protein secretion evoked by LPBN injection of glutamate. Values are
means ± S.E.M. for 5 rats. * P < 0.05 compared with basal. E, coronal sections of the rat brain adapted from
the atlas of the rat brain by Paxinos & Watson (1998) showing the sites of glutamate microinjection in the
parabrachial nuclei. Black circles indicate injection sites within the LPBN; black squares indicate sites in the
medial parabrachial nucleus (MPBN) or the mesencephalic trigeminal tract (Me5). LPBC, lateral
parabrachial nucleus central; LPBD, lateral parabrachial nucleus central, dorsal; LPBE, lateral parabrachial
nucleus central, external; LPBI, lateral parabrachial nucleus, internal; 4V, 4th ventricle; MBP, medial
parabrachial nucleus; SCP, superior cerebellar peduncle; DR, dorsal raphe nucleus.
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enzyme secretion. Previous studies in the rat have also

shown that CCK (Li & Owyang, 1993b, 1994; Li et al. 1997)

and luminal non-CCK-dependent factors (Li & Owyang,

1996a) such as osmolality, disaccharides, and mechanical

stimulation evoke pancreatic secretion via intestinal vagal

mucosal afferent fibres. We have demonstrated that 5-HT

released from intestinal enterochromaffin cells stimulates

both firing of vagal primary afferent neurons and

pancreatic secretion evoked by luminal non-CCK-

dependent factors (Li & Owyang, 1996a; Li et al. 2000; Zhu

et al. 2001). Although pancreatic secretion can be

mediated by vago-vagal reflexes located within the

brainstem, these reflexes may be modulated by input from

higher centres (Rogers et al. 1996). CNS control over the

cephalic phase of pancreatic secretion has been recognized

to be considerable since Pavlov’s time (Pavlov, 1910; Sarles

et al. 1968). Microinjection of thyrotropin-releasing

hormone or PP into the DMV has been shown to stimulate

or inhibit pancreatic secretion (Okumura et al. 1995a,b).

We have demonstrated that calcitonin gene-related

peptide and somatostatin inhibit pancreatic secretion at a

central vagal site (Li et al. 1998; Li & Owyang, 1993a). The

physiological importance of input from the forebrain on

postprandial pancreatic secretion, however, remains

largely unknown.

The hypothalamus plays a vital role in the processing and

integration of neurohumoral information arising from the

viscera. Gilsdorf et al. (1966) reported that electrical

stimulation of the ventromedial anterior hypothalamus of

conscious dogs induced an increase, whereas activation of

the posterior hypothalamus caused a decrease, in

pancreatic secretion. Mine et al. (1985) discovered that

electrolytic lesions of various nuclei in the amygdaloid

body in the rat affected pancreatic secretion in different

ways. To investigate the role of the forebrain in pancreatic

secretion, we conducted pancreatic secretion studies using

unanaesthetized chronic decerebrate rats that had

survived transection for an average of 14 days, a classical

method of removing forebrain influence. We showed that

chronic decerebrate rats are capable of retaining about

65 % of basal pancreatic protein output, and about 60 % of

pancreatic protein secretion stimulated by luminal

perfusion of peptone. These observations clearly indicate

that the caudal brainstem contains the neural network

sufficient to mediate the major part of basal pancreatic

tone and protein secretion stimulated by luminal agents.

However, the forebrain also plays an important role in

modulating the vago-vagal reflex in the brainstem.

Peripheral cholinergic blockade completely abolishes

pancreatic secretion evoked by CCK and non-CCK-

dependent luminal factors (Li & Owyang, 1993b, 1994,

1996a,b; Li et al. 1997, 2000). However, the site(s) of action

of peripherally administrated atropine is not clear.

Choline acetyltransferase immunoreactivity is abundant

in the nodose ganglia and the CNS; for example, in the

DMV, septal nuclei, PBN, bed nucleus, amygdala, and

hypothalamus (Quirion & Boksa, 1986; Portillo et al.
1996). Previous studies have shown that the central

cholinergic pathway contributes significantly to the

regulation of digestive functions including salivation

(Tomic-Beleslin & Beleslin, 1986), gastric secretion (Grill

& Norgren, 1978), gastric dysrhythmias (Hasler et al.
1995), emesis (Pedigo & Brizzee, 1985), and the

oesophagomotor response (Lu & Bieger, 1998). In the

current study, we showed that in conscious rats, I.C.V.

infusion of MSCP, a blood–brain barrier-impermeant

cholinergic muscarinic receptor antagonist significantly

decreased basal pancreatic protein output and reduced

pancreatic protein output stimulated by peptone and

NaCl, supporting the importance of the central

cholinergic pathway in the mediation of basal and

pancreatic secretion stimulated by luminal agents.

Surgical decerebration interrupts the entire descending

neural input to the brainstem. MSCP infused into the

lateral cerebral ventricle may flow into the third and fourth

ventricle and act on the vagal nuclei in the brainstem. In

this study, we demonstrated that MSCP microinjection

into the LH produced inhibitory effects similar to those

observed with surgical decerebration. Microinjection of

ACh into the LH or PVN stimulated pancreatic secretion.

However, injection of the same or higher doses of ACh into

the DMV did not affect pancreatic secretion. We have

shown that, in contrast to ACh, microinjection of

neuropeptide Y or substance P into the DMV markedly

increased pancreatic efferent nerve firings (Wu et al. 2002).

These observations suggest that the central cholinergic

pathway appears to function at the hypothalamus rather

than at medullary preganglionic motor neurons.

Viral retrograde transneuronal labelling has been used to

show that CNS cell groups project to the pancreatic

parasympathetic neurons (Loewy & Haxhiu, 1993).

Labelled neurons were evident in the PVN as well as in the

LH nucleus. The dorsal hypothalamic nuclei also

contained labelled neurons. A few labelled cells were found

in the peripheral DMH, but none in the ventromedial

hypothalamic nucleus. The DMH plays an important role

in the control of feeding, drinking, and body weight

(Bellinger & Bernardis, 2002). Our studies, however,

showed that microinjection of ACh into the DMH had no

significant effect on pancreatic protein output.

To investigate the role of endogenous ACh in the CNS on

basal and luminally stimulated pancreatic protein

secretion, the rats were pretreated with hemicholinium-3,

which selectively inhibits the high-affinity choline uptake

system and demonstrates specific binding to the

cholinergic regions of the rat brain (Rainbow et al. 1984),

Hypothalamic cholinergic regulation of pancreasJ Physiol 552.2 583
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apparently at presynaptic terminals that release ACh

(Quirion, 1985). The dose of hemicholinium-3 used in

this study caused maximum depletion of brain ACh in

spontaneous hypertensive rats (Brezenoff & Rusin, 1974;

Freeman et al. 1979). I.C.V. injection of hemicholinium-3

evoked a selective depressor response in unanaesthetized

spontaneous hypertensive rats, but not in normotensive

controls (Brezenoff & Caputi, 1980). In the present

study, we showed that 15 min after the injection of

hemicholinium-3 into the lateral cerebral ventricle, basal

pancreatic protein output was significantly decreased.

This treatment also produced partial inhibition of

pancreatic secretion stimulated by intraduodenal perfusion

of 5 % peptone and 600 mosmol l_1 NaCl. These

observations suggest that tonic cholinergic neuro-

transmission in the hypothalamus regulates basal

pancreatic tone and cholinergic mechanisms are involved

in modulating pancreatic secretion stimulated via the

vago-vagal reflex.

Autoradiographic studies have shown that dense areas of

muscarinic receptor binding sites occur throughout the

CNS, including the hypothalamus (Quirion & Boksa,

1986). The role of central muscarinic receptors in

pancreatic enzyme secretion has not been investigated.

The present study demonstrates that direct stimulation of

the hypothalamus by ACh causes an increase in pancreatic

secretion in conscious rats. Furthermore, microinjection

of the muscarinic M1 receptor specific agonist, McN-

A-343 (de Vries et al. 2001), produces a 40 % increase in

pancreatic secretion, suggesting that the M1 receptor in the

CNS is involved in the ACh-induced pancreatic secretion.

Efferent parasympathetic output originates from the DMV.

The hypothalamus has direct descending projections to

the dorsal vagal complex. Fluorescent tracer labelling

studies have shown that that hypothalamobular neurons

projecting to the DMV are most abundant in the ventral,

medial and lateral parts of the PVN (Portillo et al. 1996).

Electrophysiological studies have shown that the

hypothalamus plays an important role in the regulation of

the dorsal vagal complex. Stimulation of the LH excites

DMV neurons (Nishimura & Oomura, 1987) and

increases the activity of the axons in the hepatic branch of

the vagus (Yoshimatsu et al. 1988). Stimulation of the PVN

was shown to cause an increase in the spontaneous activity

of 59 % of PVN-sensitive DMV neurons and to cause a

decrease in the basal activity of 66 % of cells of the nucleus

of the solitary tract (Zhang et al. 1999). We recently

studied the DMV neural circuitry responsible for vagal

efferent signalling to the pancreas. We showed that

neuropeptide Y and substance P stimulated, while

somatostatin inhibited, pancreatic DMV preganglionic

neurons (Wu et al. 2001). Retrograde transneuronal viral

tracing studies provided strong anatomical evidence that

hypothalamic neurons project to the pancreas. After

injection of Bartha pseudorabies virus into the rat

pancreas, labelled transneuronal cell bodies were seen in

four hypothalamic nuclei: PVN, LH, and the dorsal and

dorsomedial hypothalamic nuclei (Jansen et al. 1997).

PVN labelling was restricted to the parvicellular subnuclei.

Within the LH area, infected neurons were found in the

perifornical area and in the caudal area at the level of

the subthalamic nuclei. These anatomical observations

support our current findings, and suggest that under

physiological conditions, the hypothalamic cholinergic

system may tonically stimulate preganglionic DMV

neurons projecting to the pancreas.

Cholinergic cell bodies are distributed throughout the

brain, and cholinergic axons innervate most regions of the

CNS. There are two major sources of cholinergic neurons

in the basal forebrain, the septal nuclei and the nucleus

basalis of Meynert (Butcher & Woolf, 1984; Kimura et al.
1984), which project to the cortex, hippocampus,

amygdala, thalamus and brainstem (Butcher & Woolf,

1984).

The LS is a large cell mass located in the rostrodorsal septal

region. Study of the connections of the rat lateral septal

complex has demonstrated that this nucleus receives

major descending input from the hippocampal formation,

which converges with ascending input from many parts of

the hypothalamus and brainstem. LS projections are

known to innervate the hypothalamus (Risold & Swanson,

1997). Electrophysiological recordings have shown that LS

stimulation evokes an increase in the excitability of rat

hypothalamic neurons (Blume et al. 1982; Kendrick,

1983). Ablation of the lateral septum with ibotenate

decreased choline acetyltransferase concentrations in the

PVN, suggesting that cholinergic innervation of these

areas is septal in origin (Oorjitham et al. 1989). The NBM,

which is analogous to the nucleus basalis of Meynert in

humans, is another source of cholinergic neurons in the rat

basal forebrain. Many cholinergic neurons in the basal

forebrain express high levels of the low-affinity p75 NGFr

(Gage et al. 1989). When 192 IgG, the monoclonal

antibody to p75 NGFr, is coupled to the ribosomal-

inactivating protein saporin, it selectively destroys

neurons bearing NGFr in in vivo rats (Book et al. 1992;

Wiley, 1992). It has been reported that a septal injection of

this immunotoxin selectively destroys cholinergic cells but

spares NGFr-negative noncholinergic neurons within the

basal forebrain (Wenk et al. 1994; Lee et al. 1994). In the

current study, we performed a series of experiments to

identify the sites of cholinergic neurons that are responsible

for the modulation of basal and stimulated pancreatic

secretion. We showed that MS or NBM cholinergic

neuronal lesions had no effect on either basal pancreatic

protein secretion or pancreatic protein secretion

stimulated by intraduodenal perfusion of peptone. In

contrast, lesion of the LS resulted in a decrease of basal

Y. Li, X. Wu, J. Zhu, J. Yan and C. Owyang584 J Physiol 552.2
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protein output, and a 30 % reduction of the cumulative net

increase in protein output stimulated by peptone.

There is another conspicuous zone of cholinergic

neurons in the lateral tegmental area of the rostral

rhombencephalon (Butcher & Woolf, 1984; Kimura et al.
1984; Rye et al. 1987), including the pedunculopontine

(e.g. parabrachial nucleus) and laterodorsal tegmental

nuclei. The PBN sends direct input to the hypothalamic

nuclei, including the LH and PVN (Saper & Loewy, 1980;

Fulwiler & Saper, 1984). This anatomical evidence raises

the possibility that the pontine nuclei may be involved in

the activation of the LH and PVN via cholinergic

pathways. Further, it is possible that afferent inputs from

the gastrointestinal tract reach the LPBN. (Herbert et al.
1990). In situ hybridization autoradiography has shown

that 45 min after intragastric HCl challenge, many

neurons in the NTS, LPBN, and hypothalamic PVN

express c-fos mRNA (Michl et al. 2001). Immuno-

histochemical studies have shown that intestinal perfusion

of dietary glucose induces c-fos expression in the NTS,

area postrema, and LPBN (Wang et al. 1999). More

recently, neurophysiological recording studies have

suggested that oral and gastrointestinal sensory signals

converge to activate the neurons in the LPBN (Karimnamazi

et al. 2002). In the present study, we showed that neither

MPBN lesion nor LPBN lesion had a significant effect on

basal pancreatic secretion in the conscious rat. Further,

MPBN lesion did not affect pancreatic protein output

stimulated by duodenal perfusion of peptone. LPBN

ibotenic acid lesion, in contrast, inhibited peptone-

induced pancreatic protein by 40 %. Electrophysiological

studies showed that microinjection of glutamate into the

LS and the LPBN stimulated vagal pancreatic efferent

nerve firing, and these responses were blocked by

microinjection of a cholinergic antagonist into the PVN.

Considered together, these observations suggest that

cholinergic neurons in the LS are responsible for

maintaining pancreatic tone. These neurons also are

involved in modulating stimulated pancreatic secretion.

LPBN cholinergic input to the hypothalamus plays a major

role in the modulation of vagal pancreatic efferent nerve

activity and pancreatic protein secretion stimulated by the

vago-vagal reflex.

REFERENCES
Bellinger LL & Bernardis LL (2002). The dorsomedial hypothalamic

nucleus and its role in ingestive behavior and body weight

regulation: lessons learned from lesioning studies. Physiol Behav
76, 431–442.

Blume HW, Pittman QJ, Lafontaine S & Renaud LP (1982). Lateral

septum-medial hypothalamic connections: an electrophysiological

study in the rat. Neuroscience 7, 2783–2792.

Book AA, Wiley RG & Schweitzer JB (1992). Specificity of 192 IgG-

saporin for NGF receptor-positive cholinergic basal forebrain

neurons in the rat. Brain Res 590, 350–355.

Brezenoff HE & Caputi AP (1980). Intracerebroventricular injection

of hemicholinium-3 lowers blood pressure in conscious

spontaneously hypertensive rats but not in normotensive rats. Life
Sci 26, 1037–1045.

Brezenoff HE & Rusin J (1974). Brain acetylcholine mediates the

hypertensive response to physostigmine in the rat. Eur J Pharmacol
29, 262–266.

Butcher LL & Woolf NJ (1984). Histochemical distribution of

acetylcholinesterase in the central nervous system: clues to the

localization of cholinergic neurons. In Handbook of Chemical
Neuroanatomy, ed. Björklund A, Hökfelt T & Kuhar MJ, pp. 1–50.

Elsevier, Amsterdam.

Callera JC, Bonagamba LH, Sevoz C, Laguzzi R & Machado BH

(1997). Cardiovascular effects of microinjection of low doses of

serotonin into the NTS of unanesthetized rats. Am J Physiol 272,

R1135–1142.

de Vries B, Roffel AF, Zaagsma J & Meurs H (2001). Effect of

fenoterol-induced constitutive beta(2)-adrenoceptor activity on

contractile receptor function in airway smooth muscle. Eur J
Pharmacol 431, 353–359.

DiRocco RJ & Grill HJ (1979). The forebrain is not essential for

sympathoadrenal hyperglycemic response to glucoprivation.

Science 204, 1112–1114.

Freeman JJ, Macri JR, Choi RL & Jenden DJ (1979). Studies on the

behavioral and biochemical effects of hemicholinium in vivo.

J Pharmacol Exp Ther 210, 91–97.

Fulwiler CE & Saper CB (1984). Subnuclear organization of the

efferent connections of the parabrachial nucleus in the rat. Brain
Res 7, 229–259.

Gage FH, Batchelor P, Chen KS, Chin D, Higgins GA, Koh S, Deputy

S, Rosenberg MB, Fisher W & Björklund A (1989). NGF receptor

reexpression and NGF-mediated cholinergic neuronal

hypertrophy in the damaged adult neostriatum. Neuron 2,

1177–1184.

Gilsdorf RB, Pearl JM & Leonard AS (1966). Central autonomic

influences on pancreatic duct pressure and secretory rates. Surg
Forum 17, 341–342.

Grill HJ & Norgren R (1978). The taste reactivity test. II. Mimetic

responses to gustatory stimuli in chronic thalamic and chronic

decerebrate rats. Brain Res 143, 281–297.

Halsell CB & Frank ME (1991). Mapping study of the parabrachial

taste-responsive area for the anterior tongue in the golden

hamster. J Comp Neurol 306, 708–722.

Hasler WL, Kim MS, Chey WD, Stevenson V, Stein B & Owyang C

(1995). Central cholinergic and alpha-adrenergic mediation of

gastric slow wave dysrhythmias evoked during motion sickness.

Am J Physiol 268, G539–547.

Heckers S, Ohtake T, Wiley RG, Lappi DA, Geula C & Mesulam MM

(1994). Complete and selective cholinergic denervation of rat

neocortex and hippocampus but not amygdala by an

immunotoxin against the p75 NGF receptor. J Neurosci 14,

1271–1289.

Herbert H, Moga MM & Saper CB (1990). Connections of the

parabrachial nucleus with the nucleus of the solitary tract and the

medullary reticular formation in the rat. J Comp Neurol 293,

540–580.

Jansen AS, Hoffman JL & Loewy AD (1997). CNS sites involved in

sympathetic and parasympathetic control of the pancreas: a viral

tracing study. Brain Res 766, 29–38.

Johnson DA, Zambon NJ & Gibbs RB (2002). Selective lesion of

cholinergic neurons in the medial septum by 192 IgG-saporin

impairs learning in a delayed matching to position T-maze

paradigm. Brain Res 943, 132–141.

Hypothalamic cholinergic regulation of pancreasJ Physiol 552.2 585



Jo
u

rn
al

 o
f P

hy
si

ol
og

y

Karimnamazi H, Travers SP & Travers JB (2002). Oral and gastric

input to the parabrachial nucleus of the rat. Brain Res 957,

193–206.

Kendrick KM (1983). Effect of testosterone on medial

preoptic/anterior hypothalamic neurone responses to stimulation

of the lateral septum. Brain Res 262, 137–142.

Kimura H, McGeer PL & Peng JH (1984). Choline acetyltransferase

containing-neurons in the rat brain. In Handbook of Chemical
Neuroanatomy, ed. Björklund A, Hökfelt T & Kuhar MJ,

pp. 51–67. Elsevier, Amsterdam.

Lee MG, Chrobak JJ, Sik A, Wiley RG & Buzsaki G (1994).

Hippocampal theta activity following selective lesion of the septal

cholinergic system. Neuroscience 62, 1033–1047.

Li Y, Hao Y & Owyang C (1997). High-affinity CCK-A receptors on

the vagus nerve mediate CCK-stimulated pancreatic secretion in

rats. Am J Physiol 273, G679–685.

Li Y, Hao Y, Zhu J & Owyang C (2000). Serotonin released from

intestinal enterochromaffin cells mediates luminal non-CCK-

stimulated pancreatic secretion. Gastroenterology 118, 1197–1207.

Li Y, Jiang YC & Owyang C (1998). Central CGRP inhibits pancreatic

enzyme secretion by modulation of vagal parasympathetic

outflow. Am J Physiol 275, G957–963.

Li Y & Owyang C (1993a). Somatostatin inhibits pancreatic enzyme

secretion at a central vagal site. Am J Physiol 265, G251–257.

Li Y & Owyang C (1993b). Vagal afferent pathway mediates

physiological action of cholecystokinin on pancreatic enzyme

secretion. J Clin Invest 92, 418–424.

Li Y & Owyang C (1994). Endogenous cholecystokinin stimulates

pancreatic enzyme secretion via vagal afferent pathway in rats.

Gastroenterology 107, 525–531.

Li Y & Owyang C (1996a). Pancreatic secretion evoked by

cholecystokinin and non-cholecystokinin-dependent duodenal

stimuli via vagal afferent fibers in the rat. J Physiol 494, 773–782.

Li Y & Owyang C (1996b). Peptone stimulates CCK-releasing

peptide secretion by activating intestinal submucosal cholinergic

neurons. J Clin Invest 97, 1463–1470.

Li Y, Zhu JX & Owyang C (1999).  Electrical physiological evidence

for high- and low-affinity vagal CCK-A receptors.  Am J Physiol
277, G469–477.

Loewy AD & Haxhiu MA (1993). CNS cell groups projecting to

pancreatic parasympathetic preganglionic neurons. Brain Res 620,

323–330.

Lu WY & Bieger D (1998). Vagal afferent transmission in the NTS

mediating reflux responses of the rat esophagus. Am J Physiol 224,

R1436–1445.

Michelini LC & Bonagamba LG (1988). Baroreceptor reflex

modulation by vasopressin microinjected into the nucleus tractus

solitarii of conscious rats. Hypertension 11, I75–I79.

Michl T, Jocic M, Heinemann A, Schuligoi R & Holzer P (2001).

Vagal afferent signaling of a gastric mucosal acid insult to

medullary, pontine, thalamic, hypothalamic and limbic, but not

cortical, nuclei of rat brain. Pain 92, 19–27.

Mine K, Tsuruta N, Nakai Y, KataokA, Y, Fujiwara M, Ueki S &

Nakagawa T (1985). Effects of small amygdaloid lesions on

pancreatic exocrine secretion. Brain Res 340, 9–18.

Nishimura H & Oomura Y (1987). Effects of hypothalamic

stimulation on activity of dorsomedial medulla neurons that

respond to subdiaphragmatic vagal stimulation. J Neurophysiol 58,

655–675.

Okita M, Inui A, Baba S & Kasuga M (1997). Central cholinergic

regulation of pancreatic polypeptide secretion in conscious dogs.

J Endocrinol 154, 311–317.

Okumura T, Pappas TN & Taylor IL (1995a). Pancreatic polypeptide

microinjection into the dorsal motor nucleus inhibits pancreatic

secretion in rats. Gastroenterology 108, 1517–1525.

Okumura T, Taylor IL & Pappas TN (1995b). Microinjection of TRH

analogue into the dorsal vagal complex stimulates pancreatic

secretion in rats. Am J Physiol 269, G328–334.

Oorjitham EG, Godfrey DA, Ross CD & Dunn JD (1989). Effect of

septal ablation on choline acetyltransferase in the paraventricular

nucleus. Brain Res Bull 22, 277–282.

Pavlov IP (1910). The Work of the Digestive Glands. C. Griffin and

Company, London.

Paxinos G & Watson C (1998). The Rat Brain in Stereotaxic
Coordinates. Academic Press, San Diego.

Pedigo NW Jr & Brizzee KR (1985). Muscarinic cholinergic receptors

in area postrema and brainstem areas regulating emesis. Brain Res
Bull 14, 169–177.

Portillo F, Carrasco M & Vallo JJ (1996). Hypothalamic neuron

projection to autonomic preganglionic levels related with glucose

metabolism: a fluorescent labelling study in the rat. Neurosci Lett
210, 197–200.

Quirion R (1985). Comparative localization of putative pre- and

postsynaptic markers of muscarinic cholinergic nerve terminals in

rat brain. Eur J Pharmacol 111, 287–289.

Quirion R & Boksa P (1986). Autoradiographic distribution of

muscarinic [3H]acetylcholine receptors in rat brain: comparison

with antagonists. Eur J Pharmacol 123, 170–172.

Rainbow TC, Schwartz RD, Parsons B & Kellar KJ (1984).

Quantitative autoradiography of nicotinic [3H]acetylcholine

binding sites in rat brain. Neurosci Lett 50, 193–196.

Risold PY & Swanson LW (1997). Connections of the rat lateral

septal complex. Brain Res Brain Res Rev 24, 115–195.

Rogers RC, McTigue Dm And Hermann GE (1996). Vagal control of

digestion: modulation by central neural and peripheral endocrine

factors. Neurosci Biobehav Rev 20, 57–66.

Ruggiero DA, Giuliano R, Anwar M, Stornetta R & Reis DJ (1990).

Anatomical substrates of cholinergic-autonomic regulation in the

rat. J Comp Neurol 292, 1–53.

Rye DB, Saper CB, Lee HJ & Wainer BH (1987). Pedunculopontine

tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and

some extrapyramidal connections of the mesopontine

tegmentum. J Comp Neurol 259, 483–528.

Saper CB & Loewy AD (1980). Efferent connections of the

parabrachial nucleus in the rat. Brain Res 197, 291–317.

Sarles H, Dani R, Prezelin G, Souville C & Figarella C (1968).

Cephalic phase of pancreatic secretion in man. Gut 9, 214–221.

Siren AL, Vonhof S & Feuerstein G (1991). Hemodynamic defense

response to thyrotropin-releasing hormone injected into medial

preoptic nucleus in rats. Am J Physiol 261, R305–312.

Steiner E (1973). The gustofacial response: observation on normal

and anencephalic newborn infants. Symp Oral Sens Percept 4,

254–278.

Tang PC (1955). Levels of brain stem and diencephalon controlling

micturition reflux. J Neurophysiol 18, 583–595.

Taylor IL (1989). Pancreatic polypeptide family: pancreatic

polypeptide, neuropeptide Y, and peptide YY. In Handbook of
Physiology, ed. Rauner BB, Maklouf GM & Schultz SG,

pp. 475–543. American Physiological Society, Bethesda, MD.

Tomic-Beleslin N & Beleslin DB (1986). Salivation mediated by

central M-2 muscarinic receptors in the cat. Brain Res Bull 17,

279–281.

Wang L, Cardin S, Martinez V, Tache Y & Lloyd KC (1999).

Duodenal loading with glucose induces fos expression in rat brain:

selective blockade by devazepide. Am J Physiol 277, R667–674.

Y. Li, X. Wu, J. Zhu, J. Yan and C. Owyang586 J Physiol 552.2



Jo
u

rn
al

 o
f P

hy
si

ol
og

y

Wenk GL, Stoehr JD, Quintana G, Mobley S & Wiley RG (1994).

Behavioral, biochemical, histological, and electrophysiological

effects of 192 IgG-saporin injections into the basal forebrain of

rats. J Neurosci 14, 5986–5995.

Whittaker VP (1988). The cholinergic synapse. In Handbook of
Experimental Pharmacology, ed. Whittaker VP, pp.125–165.

Springer Verlag, New York.

Wiley RG (1992). Neural lesioning with ribosome-inactivating

proteins: suicide transport and immunolesioning. Trends Neurosci
15, 285–290.

Wu XY, Zhao Y, Owyang C & Li Y (2001). Neural circuitry in the

dorsal motor nucleus of vagus modulating efferent signalling to

the pancreas. Digestion 63, 260 (abstract).

Wu YX, Zhao Y, Owyang C & Li Y (2002). Characterization of the

neuronal circuitry in the dorsal motor nucleus of the vagus

modulating vagal efferent signalling to the pancreas:

electrophysiological and immunocytochemistry studies.

Gastroenterology 122, A-37 (abstract).

Yoshimatsu H, Nijima A, Oomura Y & Katafuchi T (1988). Lateral

and ventromedial hypothalamic influences on hepatic autonomic

nerve activity in the rat. Brain Res Bull 21, 239–244.

Zhang X, Fogel R & Renehan WE (1999). Stimulation of the

paraventricular nucleus modulates the activity of gut-sensitive

neurons in the vagal complex. Am J Physiol 277, G79–90.

Zhu JX, Wu XY, Owyang C & Li Y (2001). Intestinal serotonin acts as

a paracrine substance to mediate vagal signal transmission evoked

by luminal factors in the rat. J Physiol 530, 431–442.

Acknowledgements 
The investigation was supported by National Institute of Diabetes
and Digestive and Kidney Diseases Grants RO1-DK-51717 (Y. Li)
and RO1-DK-48419 and P30-DK 34933 (C. Owyang), and by
Michigan Life Sciences Corridor Grant 1635 (Y. Li). The authors
wish to thank Dr Harry Yao for providing the technical expertise
in immunocytochemistry required to prepare Figure 8.

Hypothalamic cholinergic regulation of pancreasJ Physiol 552.2 587


