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SUMMARY. Structural time series models have applications in many different fields such as biology, eco- 
nomics, and meteorology. A structural time series model can be represented as a state-space model where 
the states of the system represent the unobserved components and the structural parameters have clear in- 
terpretations. This paper introduces a class of structural time series models that incorporate feedback from 
the latent components of the history. An iterative procedure is proposed for estimation. These models allow 
flexible and robust feedback mechanisms, have clear interpretations, and have a computationally efficient 
estimation procedure. They are applied to hormone data to characterize hormone secretion and to explore 
a potential feedback mechanism. 
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1. Introduction 
Hormone concentrations in the blood regulate many processes, 
including the secretion of other hormones. It is believed that 
there is a feedback mechanism such that, when the second 
hormone attains sufficient concentration in the blood, the se- 
cretion of the first hormone will be turned off. This pattern 
may cause a regularity in the pattern of secretion to be ob- 
served in either of the hormones in this feedback relationship. 
Often one of the two hormones may not be observable be- 
cause its concentration in the blood is too low to be assayed. 
Therefore, the goal is to model the feedback relationship as 
observed in only one hormone. For example, Figure 1 presents 
the luteinizing hormone data studied by Midgley et al. (1997). 
The estimated results will be further explained in Section 5. 
Blood samples were drawn from the jugular vein of each of 
the six ewes every 5 minutes for 6 hours ( N  = 72)  and as- 
sayed for the concentrations of luteinizing hormone (LH). LH 
is released from the pituitary in a pulsatile pattern and has a 
central role in regulating the reproductive cycle. It is known 
that the release of LH is regulated by gonadotropin releas- 
ing hormone (GnRH) produced by the hypothalamus. It is 
also believed that many hormones such as LH, cortisol, pro- 
gesterone, and estradiol may provide feedback to GnRH. In 
spite of this complicated feedback system, the regularity in 
LH secretion is visible. The connection between regularity and 
negative feedback will be further explained in Section 6. Also, 
in the human, it is not possible to measure GnRH. When only 

LH is observed, we can still use a probabilistic feedback rela- 
tionship to model the feedback mechanism of LH on itself. 

Feedback mechanisms, especially negative feedback, exist in 
many time series applications across different fields, including 
biological signals. The feedback mechanism helps maintain a 
regularity that may still be visible even when the feedback 
system involves many intermediate factors. By modeling the 
feedback mechanism, we gain a better understanding of the 
underlying process and obtain more efficient estimates. In this 
article, we introduce a class of structural time series models 
that incorporate feedback from the history. The time series is 
modeled by a structural model and the structural parameters 
of interest are modeled as functions of the latent signals of 
the history. These models allow flexible and robust feedback 
mechanisms, have clear interpretations, and have a computa- 
tionally efficient estimation procedure. 

A structural model can be written as a state-space model 
with the state of the system representing the various unob- 
served components and the parameters (structural parame- 
ters) having clear interpretations. Discussion of the method- 
ological and technical ideas underlying the structural time 
series models can be found in Harvey (1989) and Harvey and 
Shephard (1992). A Bayesian view of structural models can 
be found in West and Harrison (1997). Guo and Brown (2000, 
in press) introduced a bivariate structural time series model 
called cross-related time series models (CRSMs), where the 
connection across different time series is modeled through the 
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Figure 1. Upper panels: the observed (solid line) and fitted 
(dotted lines) values of LH from six ewes. Lower panels: the 
posterior probabilities of the pulse indicators. 

cross-regression level. Their model has the advantage of flex- 
ibility and robustness as a result of the use of a probabilistic 
relationship. In this article, we adopt a similar idea but in 
a univariate setting. We extend the feedback mechanism to 
allow the feedback signal to be a linear combination of the 
latent components (state vector). 

Similar to the CRSMs, our models are conditionally Gaus- 
sian in general, and the multimover simulation technique 
(Shephard, 1994) or the approximate method by Harrison and 
Stevens (1976) can be extended to them. However, these es- 
timation methods are usually computationally intensive and 
require special software. In this article, we propose a straight- 
forward approximate estimation method that only uses the es- 
timated mean of the latent history in the feedback equation. 
Conditional on the estimated latent signal, the conditional 
model is a regular state-space model with time-changing pa- 
rameters and can be fitted by many existing programs. Our 
proposed method can therefore be implemented by iteratively 
calling these programs. This approach is computationally ef- 
ficient and yields satisfactory results in our applications and 
simulations. 

Diggle and Zeger (1989) introduced a first-order autoregres- 
sive model, AR( 1), with a feedback mechanism from the pre- 

vious observation for LH. Our model differs from theirs in that 
(1) the AR(1) is a special case of our state-space model, (2) 
our model allows feedback from any previous time point(s), 
and (3) our model allows feedback from the latent history, 
which can be the latent concentration or a function of the 
latent signal such as the rise from the baseline. The use of the 
latent history has two advantages, efficiency (not subject to 
measurement errors) and flexibility (any latent component). 

In Section 2, we introduce an autofeedback structural time 
series model where we add a feedback equation to a Gaussian 
state-space model. In Section 3, we discuss some basic ideas 
in estimation but leave most of the technical details to the 
Appendix. In Section 4, we extend our model to the case in 
which the structural time series model itself is conditionally 
Gaussian. We then illustrate our models using the LH data in 
Section 5. Some simulation results are presented in Section 6. 
Discussion and remarks are in section 7. 

2. The Model  
The general model is specified as an observation-level equa- 
tion, a system-level equation, and a feedback equation. The 
first two are essentially a statespace model with its structure 
specified so that the structural parameters all have clear in- 
terpretations. The state vector represents various unobserved 
components of the system, and the system-level equation de- 
fines the transition of these components. The feedback equa- 
tion models the structural parameters of interest as functions 
of the latent history, which can be any linear combination of 
the state vector; therefore, the feedback signal may or may 
not be the same as the observation. 

The model can be written as follows. 
(A) The observation-level equation is 

Y(t)  = F ( t ) z ( t )  + 4 t ) ,  44 "O,&t ) ) .  (1) 

(B) The system-level equation is 

z(t)  = H ( t ) z ( t  - 1) + ~ ( t ) ,  w(t)  N N(z,W(t)), (2) 

where y ( t )  (t = 1 ,2 , .  . . , N )  is the observed time series and 
z(t) is the state vector, which can include dummy variables to 
allow more general model structures. The observational ma- 
trix F ( t )  and the transition matrix H ( t )  are of corresponding 
dimensions. All the matrices F ( t ) ,  H ( t ) ,  and W ( t )  can con- 
tain unknown parameters. These parameters along with &t) 
are called structural parameters, which are denoted as O ( t ) .  

The feedback equation can model either all or a subset 
of the structural parameters O ( t )  as functions of the latent 
history. Without loss of generality, we assume that O ( t )  = 
{ y ( t ) ,  ~$( t )} ,  where y ( t )  is a scalar and the structural param- 
eter of interest and 4(t) denotes the rest of the structural pa- 
rameters. We denote the latent signals in the feedback system 
as ~ ( t )  = G(t)z ( t ) ,  where G(t)  defines the feedback signal as 
a linear combination of the latent states and can be the same 
as F ( t ) ,  the observation matrix. 

(C) The feedback equation is 

y ( t )  = d(. + M t  - T I } ,  (3) 
where T is the lag and can take values in (1, . . . , k} with k < N 
and g{ . } is a link function and can be viewed as a transfor- 
mation function to get rid of the domain restriction for the 
structural parameter y( t ) .  It should be chosen so that the pa- 
rameters {a,  p}  have nice interpretations. The new unknown 
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parameters are T and 0 = {4(t ) ,a,p}.  When p = 0, the 
model is reduced to  a regular state-space model because o is 
then a reparameterization of y ( t ) .  

3. Estimation 
In Gaussian state-space models, the likelihood can be effi- 
ciently calculated by the Kalman filter in O(n)  operations. 
The Kalman filter is characterized by one-step-ahead predic- 
tion and filtering steps. The likelihood is numerically maxi- 
mized to produce maximum likelihood estimates for the un- 
known parameters. conditioned on the estimates of the un- 
known parameters, a smoothing (signal extraction) algorithm 
is applied based on the intermediate results of the Kalman 
filter to produce the posterior estimate of the latent signals 
(the state vector). The classical Kalman filter and smooth- 
ing algorithms can be found in Anderson and Moore (1979). 
Some modifications of the smoothing algorithm were given by 
Koopman (1993) and De Jong (1989). 

First, to simplify the discussion, let us assume T is known. 
When the latent history is known in the feedback model, the 
model is reduced to a regular state-space model with time- 
changing parameters. The estimation of the parameters and 
the state vector can be efficiently calculated by the Kalman 
filter and the smoothing algorithm. The latent history can 
then be updated from the posterior estimate of the state vec- 
tor. We therefore only need to iterate back and forth between 
the two steps. 

First, we denote Y = {y(l), . . . ,y (N)}  and 2 = {~( l ) ,  . . . , 
z ( N ) } .  The outline of the iterative algorithm is as follows: 

(1) Start with an initial estimate of 2. 
(2) Obtain 6 that maximizes the likelihood L ( 0  I Y ,  Z), 

(3) Calculate (2 I Y ,  Q )  using the smoothing algorithm. 
(4) Iterate between (2) and (3) until convergence. 

This algorithm is a first-order approximate EM algorithm, 
where Z is treated as missing data. The ith step of the EM 
is as follows: 

E step. 

which only involves the Kalman filter. 

x f ( Z  I 02, Y ) d Z  
= l ( 0  I Y ,  2). (5) 

M step. Obtain OZ+' that maximizes Q(O I 02, Y ) .  
Ideally, one can use simulation techniques (e.g., De Jong 

and Shephard, 1995) to implement equation (4). However, 
because of the large dimension of 2, it is usually too com- 
putationally intensive to achieve the needed accuracy for the 
maximization step. In the non-Gaussian state-space model 
setting without feedback, Durbin and Koopman (1997) and 
Shephard and Pitt (1997) used importance sampling to re- 
duce the simulation errors in calculating the simulated log 
likelihood. Their methods rely on the ability to derive an ac- 
curate approximate Gaussian model, which is difficult in our 
feedback model. Although the theoretical property of the first- 
order approximation in equation (5) requires further study, it 
produced satisfactory results in our simulations. 

The initial estimate 2 in step 1 is important since a good 
initial value can lead to rapid convergence and avoid getting 
trapped in a local maximum. We propose estimating the ini- 
tial value 2 using the model without feedback, which is a 
regular state-space model. This initial estimate worked well 
in our simulation. 

So far, we have treated the lag as known. The lag can be 
estimated by maximizing the profile likelihood, Z(T I Y )  = 
supB 1 ( ~ ,  0 I Y ) .  In practice, researchers usually have a rough 
idea about the range of the lag. A grid search can be used to 
obtain the maximum likelihood estimate .i. 

4. Models with Mixture of Normals 
We extend the model to allow the perturbations v( t )  and w(t) 
in equations (1) and (2) to follow a mixture of normal distri- 
butions. Because of the similarity among these models, we 
will not formally introduce the general structure. An example 
is given in the next section in the context of hormone time se- 
ries with pulses, where the system perturbation is modeled by 
a mixture of normals characterizing the two secretory stages 
(with and without a pulse in the previous interval). 

The structural time series model itself is called a condition- 
ally Gaussian model (Shephard, 1994) because, conditioned 
on the mixture parameters, the conditional model is a Gaus- 
sian state-space model. When the underlying structural time 
series model is conditionally Gaussian, the resultant feedback 
model is still conditionally Gaussian. If we condition on the 
latent history and the mixture parameters simultaneously, the 
conditional model is a Gaussian state-space model. Because of 
the conditionally Gaussian structure of the feedback model, 
the block Gibbs sampling and normal approximation methods 
described in Guo and Brown (2000, in press) can be extended 
here. 

In the current paper, we focus on a straightforward iter- 
ative estimation procedure because it is easy to implement 
and yields satisfactory results. The iterative algorithm is es- 
sentially the same as the one outlined above except that we 
use a Harrison-Stevens approximation (Harrison and Stevens, 
1976) at each filtering step, which approximates the mixture 
of normals by a single normal with the same first two mo- 
ments. Details of the algorithm can be found in Harrison and 
Stevens (1976) and Guo, Wang, and Brown (1999). 

5. Application to the LH Data 
We apply our model to the LH data described in the introduc- 
tion. LH is released as pulses into the blood system, which are 
important in regulating biological processes (cf., Weiss et al., 
1990). A pulse can be modeled as a sudden jump followed by 
an exponential decay toward a baseline (Kushler and Brown, 
1991). Bolstad (1988) and Guo et al. (1999) used multiprocess 
dynamic linear models (Harrison and Stevens, 1976) to model 
pulsatile hormone time series. This is equivalent to modeling 
the pulse locations and pulse amplitudes as random effects 
where the posterior probabilities of the process indicators pro- 
vide estimates of pulse locations and the posterior estimates of 
the system-level input measure the amount of secretion. This 
approach has the advantage of having a clear interpretation 
and taking into account the uncertainty in classifying a pulse. 
We extend this approach to allow feedback from the history 
in order t o  test whether the rise in LH concentration provides 
negative feedback to  the release of LH. Because pulses may 
be more important than the absolute level in triggering the 
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Table 1 
Point estimates of the parameters with their 95% bootstrap confidence intervals 

ewe1 ewe2 ewe3 ewe4 ewe5 ewe6 

Lag 
Half-life 

U e  

P 

ff 

P 

ow 

b 

MSEl 
MSE2 
MSEl/MSE2 

3 
24.61 

(15.30, 32.85) 
0.67 

(0.50, 0.83) 
-2.06 

(-9.12, -1.07) 
13.92 

(9.07, 81.61) 
3.09 

(2.47, 3.71) 
1.11 

(0.36, 1.58) 
2.02 

(0.11, 4.42) 
0.154 
0.236 
65% 

3 
20.18 

(13.19, 25.59) 
0.44 

(0.28, 0.59) 
-1.18 

(-4.05, -0.61) 
13.74 

(8.81, 61.68) 
3.29 

(2.62, 4.03) 
1.85 

2.72 
(0.09, 6.27) 

0.120 
0.153 
78 % 

(1.20, 2.22) 

3 
19.05 

(14.69, 24.11) 
0.65 

(0.45, 0.91) 
-0.26 

(-0.62, -0.12) 
2.26 

(0.99, 8.35) 
4.73 

(3.00, 7.28) 
4.06 

(2.19, 5.13) 
3.20 

(0.39, 5.98) 
0.223 
0.226 
98% 

3 
14.14 

(11.09, 17.78) 
0.44 

(0.32, 0.55) 
-2.54 

(-5.77, -1.12) 
10.58 

(10.74, 51.66) 
3.05 

(2.27, 3.98) 
1.90 

(1.13, 2.41) 
5.10 

(3.83, 6.31) 
0.078 
0.103 
76% 

3 
17.85 

(9.07, 28.80) 
0.90 

(0.33, 1.24) 
-3.47 

(-13.40, -0.37) 
23.06 

(12.66, 146.18) 
4.22 

(2.23, 5.48) 
2.21 

(0.77, 2.88) 
5.33 

(0.82, 10.27) 
0.182 
0.205 
88% 

3 
17.07 

(7.38, 34.81) 
0.38 

(0.26, 1.25) 
-4.54 

(-10.26, -1.10) 
15.32 

(8.39, 67.28) 
1.33 

(0.80, 1.95) 
0.93 

3.98 
(0.12, 7.50) 

0.063 
0.101 
62% 

(0.12, 1.21) 

response, we use the rises from the baseline instead of the 
estimated concentrations in the feedback equation. The model 
can be written as follows. 

(A) The observation-level equation is 
0 N 

d t )  = z ( t )  + b + ~ ( t ) ,  ~ ( t )  N (0, ~ e " )  , (6) 

where b is the baseline, which can be changing over time (Guo 
et al., 1999), z( t )  is the pulsatile component, and v ( t )  is the 
measurement error. 

(B) The system-level equation is z 

Ln 

z( t )  = az(t  - 1) + w( t ) ,  (7) 

with the system-level input being modeled by a mixture of 

Beta= 0 Beta= -0.5 

- 

normal distributions, 0 20 40 60 80 100 0 20 40 60 80 100 

w( t )  N ( p j ,  uj") if i(t) = j ,  j = 0, 1, 

where a is the decay factor, which is a function of the half- 
life, and i ( t )  = 1 indicates a pulse at time t while i( t)  = 0 
indicates no pulse. With PO and a: set to zero, w ( t )  is zero 
with probability one when i( t)  = 0; p1 and u f  are the mean 
pulse amplitude and its associated variance. The system-level 
perturbation w(t) has the interpretation as the net input (se- 
cretion minus removal) during the time interval [t - 1, t] .  E 

z (C) The feedback equation is 

n(t)  = dff + p 4 t  - T)}, (8) 

where r(t) = p( i (2 )  = 1) is the prior probability of being a 
pulse, the function g{ . }  = exp( . ) / { l+  exp( .)}, and z ( t )  = 
z( t )  in this case. The interpretation of the feedback model is 

(D 

* 

Time 

Beta= -1 

that the rise of the concentration level may trigger (P > 0) or 
shutdown ( p  < 0) the secretion. 

0 20 40 60 80 100 

Time 

Beta= -2 

0 20 40 60 80 100 

The unknown parameters besides r are 0 = {b,  a ,  ue, p1, 
GI, a,  P} .  The initial state z(0) is numerically given a diffuse 
prior N(0, 10,000). When the z ( t  - T) is not yet available in 
the first few values, we assign n(t) to its average value, which 

Time 

Simulated series with different levels of negative 

Time 

Figure 2. 
feedback. 
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Figure 3. Boxplots of the parameter estimates. The dot- 
ted lines indicate the true values, { o e ,  p }  = (1, -0.5), (1, -l), 
(1,-2), (2,-0.5), (2,-l), and (2,-2), for settings 1-6, re- 
spect ively. 

is obtained by running the univariate model without feedback 
(p  = 0). The estimate of Z ( N )  for the model without feedback 
also serves as the initial values for Z ( N )  to start the iteration. 
A grid of one to eight (in terms of observations) is used to 
search for the optimal lag .i using the approximate maximum 
profile likelihood. 

The upper panels of Figure 1 show the observed (solid lines 
with dots) versus fitted concentrations (dotted lines). The 
lower panels show the posterior probabilities P{i( t )  = 1 I Y}. 
Because the signals are very clean, the fitted and the ob- 
served curves overlay each other very well and the posterior 
probabilities are almost all zeros and ones. Table 1 summa- 
rizes the estimates from the six ewes. We present half-life 
(= -log{2}/log{a}) instead of the decay parameter a be- 
cause half-life is more meaningful to endocrinologists. Because 
we use the Harrison-Stevens approximation and only use the 
estimated means of the latent history in the feedback equa- 
tion, the likelihood is an approximation. The standard errors 
cannot be directly obtained from the naive Fisher information 
matrix. We use a parametric bootstrap procedure to produce 
95% confidence intervals for 0, i.e., we simulate the data from 
the estimated parameters and re-estimate them. The 95% con- 
fidence intervals are based on 1000 bootstraps. Theoretically, 

an empirical distribution for T can also be obtained using the 
same parametric bootstrap procedure. Since the estimates of 
.i = 3 are the same for all six ewes, which indicates that there 
is little variability in the lags, we choose to report the point 
estimates only. 

The feedback parameter 0 is negative in all cases, and their 
95% confidence intervals do not include zero. This indicates a 
significant feedback relationship. The confidence intervals for 
a and /3 are wide and not symmetric because we use a logit 
link that has a flat plateau at each end, which can also be 
seen in Figure 3 for the simulation. 

In order to show that the estimates with feedback mech+ 
nism are more efficient than the ones without, we fitted both 
models to each ewe and calculated the mean square errors 
(MSE) of the estimated signal z ( t ) .  In Table 1, MSEl is the 
mean square error without feedback and MSES is the mean 
square error with feedback. In all cases, MSES is smaller than 
MSEl and the amount of reduction is proportional to the level 
of feedback indicated by the magnitude of 0. 
6. Simulations 
In order to illustrate the connection between regularity and 
negative feedback, we plot in Figure 2 four simulated series 
with different levels of negative feedback ( p  = 0,-0.5,-1, 
-2). The rest of parameters are p = 5 , b  = 5 , ~  = 3 , o e  = 
1, ow = 1, a = 0, a = 0.84. It can be seen that the regular- 
ity increases with the level of negative feedback. The pulses 
are almost periodic in the last series, where the feedback is 
very strong. This indicates that biological regularity may be 
explained by a feedback mechanism, which needs to be con- 
firmed by controlled experiments. 

In order to assess the performance of our method, simula- 
tions were carried out using the hormone model (6)-(8). We 
set p = 10, b = 10, T = 3, ow = 2, a = 0, a = 0.84 (half-life = 
4) and varied o e  = 1 , 2  and 0 = -0.5, -1, -2. For each set- 
ting, we generated 1000 series with length N = 100. Figure 3 
shows the boxplots of the estimates. All the parameters except 
ow are estimated reasonably well. The variance parameter ow 
is slightly overestimated. 

7. Discussion 
We have presented a new class of structural time series models 
with flexible and robust feedback mechanisms. These mod- 
els can provide an understanding of the underlying system 
if they are appropriately parameterized. In the current pa- 
per, we have focused on a straightforward iterative estimation 
procedure because it is easy to implement, is computation- 
ally efficient, and produces satisfactory results. More sophis- 
ticate methods can be adapted from Guo and Brown (2000, in 
press). The probabilistic feedback relationship in our model 
does not imply causality. Because of potential confounding 
with intermediate factors, the existence of the feedback rela- 
tionship needs to be confirmed by controlled experiments. 

For simplicity, we have presented the model with a sim- 
ple feedback structure. Extensions to allow multiple feedbacks 
and feedbacks from multiple previous points are immediate. 
These models can be estimated by the same iterative estima- 
tion procedure. However, as in any model, the time to con- 
verge will increase with the expansion of unknown parameters. 
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RESUME 
Les moditles structuraux de series temporelles sont appliques 
dans differents domaines tels que la biologie, l’economie et la 
m6t6orologie. Un moditle structure1 de serie temporelle peut 
Btre envisage comme un modhle espace d’etats oh les Btats 
du systitme representent les composantes non observees, les 
parametres structuraux ayant des interpretations concrittes. 
Cette article une classe de modkles structuraux de series tem- 
porelles, incorporant le r6trocontrGle a partir des composantes 
latentes du passe. On propose une procbdure iterative pour 
l’estimation. Ces moditles prennent en compte des mecanismes 
de rktrocontr6le flexibles et robustes, ont des interpretations 
claires, avec une prockdure d’estimation efficace du point de 
vue du calcul. 11s sont appliques a des donnees hormonales 
pour caracteriser la secretion hormonale, et pour explorer un 
mecanisme de retrocontr6le potentiel. 
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