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THANOL is known to affect many areas of the brain. E A common assumption, based upon behavioral ob- 
servations in humans, is that it releases the neocortex from 
inhibitory control (disinhibition I ) .  Few neurophysiological 
data support this assumption, mostly because we know 
little about possible correlations between commonly meas- 
ured electrical events, such as evoked potentials and spe- 
cific cortical functions of excitation and inhibition. For 
example, an evoked potential recorded from the cortical 
surface or scalp is a field potential, representing in large 
part summations of populations of neuronal postsynaptic 
potentials. Unless the kinds and loci of the postsynaptic 
potentials are identified, it is not possible to say that a 
change in evoked potential amplitude under an experi- 
mental condition represents more or less excitation or 
inhibition. To a considerable extent this caution also 
applies to measures of neuronal unit activity. An extracel- 
lular spike can be from either an inhibitory or an excitatory 
cell. 
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Numerous studies have shown that acutely adminis- 
tered ethanol has mixed or inconsistent effects upon var- 
ious cortical evoked potentials and neuronal unit fir- 
i ~ ~ g . * - ~  More related to the results of our study is the work 
of NeStorosi0.'l who found in cat cortex that ethanol 
potentiated the inhibitory effect of surface stimulation 
upon neurons as well as y-aminobutyric acid-mediated 
inhibition. 

We selected a specific measure of cortical inhibition on 
which to test the effects of ethanol. The neocortex of 
mammals contains an inhibitory circuit that includes 
axon-recurrent collaterals of pyramidal tract and other 
corticifugal cells synapsing on inhibitory interneu- 
ron~.' '- '~ Electrical stimulation of the pyramidal tract 
produces an antidromically mediated complex field poten- 
tial recorded at the cortical surface. The largest wave of 
the potential is surface negative (SN) and likely represents 
a summation of inhibitory postsynaptic potentials.I2* 
The SN wave can be viewed as a measure of one kind of 
cortical inhibition (recurrent). The functional significance 
of cortical recurrent inhibition (RI) for motor behavioral 
expression has been studied. It was found that cortical RI 
tends to limit the spread of pyramidal tract neuronal 
activity as well as that of other cortical  cell^.'^ As in the 
spinal cord,18 cortical RI appears to have a neuronal 
discharge frequency-limiting f~ncti0n.I~ Cortical RI is 
likely important for controlling a major part of the output 
from the cortex. The hypothesis for the experiments re- 
ported here was that acutely administered ethanol could 
interfere with a specific cortical inhibitory mechanism, 
RI, as evaluated by the SN wave. 

METHODS 

Animals 

Data were obtained from experiments on 25 male Sprague-Dawley 
rats (Charles River) weighing between 410 and 560 g. They had been 
housed in the animal colony for at least 3 weeks with ad libitum water 
and standard rat pellet chow. In preliminary experiments it was found 
that a combination of ketamine HCI and xylazine gave the most phys- 
iologically stable preparations and had no discernible interactive effect 
with ethanol doses. An initial intramuscular dose of I3 mg/kg of xylazine 
was given 10 min prior to an injection of 90 m& of ketamine 
(intrapentoneally). Supplementary doses were: 13 mg/kg of xylazine 
every 4 hr and 30-50 mg/kg of ketamine every 1-1.5 hrs. Rats were 
placed in a stereotaxic apparatus and the dorsal cortical surface exposed 
under wann m i n e d  oil. Temperatures of the body and the cortical oil 
pool were maintained by a heating pad and heat lamp. 
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EIecmdes 
For antidromic stimulation of the motor projection pathway, a con- 

centric bipolar depth electrode was inserted at the level of the cerebral 
peduncle (CP) where the corticifugal fibers are farthest from the medial 
lemniscus (rostral, -1.8; lateral, 2.75; depth, 8.75; System B, Pellegrino 
et a l l 9 ) .  In larger animals like the cat, antidromic stimulation of cortici- 
fugal fibers is best done by isolating the pyramidal tract which prevents 
stimulating current spread to sensory atferent f i b  in the medial Iem- 
nixusm Such isolation is not routinely possible in the small brain of the 
rat and therefore it was assumed that CP stimulation could lead to some 
orthodromic effects and activate the somatosensory pathway. For this 
reason we chose to stimulate the somatosensory thalamic relay area 
deliberately to produce a thalamocortical (TC) response. This cortical 
potential could be interacted with the SN wave in a conditioning-test 
procedure in order to evaluate contributions of neurons commonly 
shared in the two pathways activated. 

For stimulating and recording from the somatosensory relay in the 
thalamus,2'~a a concentric bipolar electrode was aimed for the ventral 
nuclewposterior nucleus complex (rostral, -3.2; lateral, 2; depth, 
6.75).19 A platinum ball recording electrode was placed on the sensori- 
motor ~ o r t e x ~ ~ . ' ~  at the location of best antidromic response to stimula- 
tion of the ipsilateral CP. A reference electrode was attached to a screw 
in the rostral skull. Foot shock was via needles inserted in a foot pad. At 
the conclusion of each experiment, current was passed through the depth 
electrodes and loci were determined by histological examination (Wed 
stain) as necessary. 

Blood Alcohol h e 1  
The procedure for the enzymatic determination of blood ethanol 

(Sigma Chemcial Co. No. 332-UV) was modified to use small capillary 
tubes to collect blood samples from the cut end of a rat's tail. Each 
sample set for blood alcohol level (BAL) measurements was compared 
with a control standard. In preliminary experiments, BAL data from this 
procedure were equivalent to those from the Sigma procedure requiring 
0.5 ml for each blood sample. It was possible to take blood samples every 
few minutes without serious blood loss since only about I80 pl of blood 
were needed for each determination. Blood ethanol equilibrates rapidly 
with brain2' and we wanted to observe possible biphasic effects which 
could start within a few minutes after administration. Ethanol was usually 
administered in 2 g/kg amounts as a 66% (v/v) solution in order to keep 
the volume to about 2 ml since repeated doses would be given in some 
experiments. 

Experimental Procedure 
The response characteristics of the antidromically elicited surface 

negative wave, the cortical response to thalamic stimulation, the primary 
cortical potential evoked by foot shock, and the thalamic potential in 
response to foot shock were established in preliminary experiments. 
Input-output functions showed that the most reliable response data were 
obtained by using intensity of stimulation sufficient to produce near 
maximal responses. Electrical stimulation pulse durations were kept 
between 0. I and 0.5 msec and the intensity was varied as n-ry but 
kept constant after optimal responses were obtained in a particular 
experiment. For SN elicitation, repetitive shocks were sometimes more 
effective than single shocks. Standard electrophysiological equipment 
was used with computer averaging of responses during 50-200msec 
sweeps. The number of sweeps averaged was 5-15 depending upon 
response variability. Stimulation rate was 1 Hz. Since rate of ethanol 
uptake varied it was not possible to pool data and therefore individual 
response curves are presented. 

RESULTS 

In preliminary experiments response amplitudes, laten- 
cies, and durations were measured but only response 

amplitudes of the negative waves seemed to vary reliably 
with BAL and thus this was the exclusive measure. The 
three principal cortical field potentials are shown in Fig. 
1. Note that preceding the SN wave there are one or two 
positive deflections. These have been identified by others 
as probably representing pyramidal tract neuron responses 
(earliest positivitg5) and/or soma or postsynaptic activity 
(second positivity in cat'*). In only a few preparations 
could we identify two positive deflections as in Fig. 1B; 
more usually there was only one as in Fig. 1A. The TC 
and foot shock evoked potentials consisted of positive- 
negative components (Fig. IC). Other succeeding wave 
components were observed, especially in response to foot 
shock, but they were too variable for study. Amplitude 
measurements were made of the major negative wave 
peakmg at 8-10 mxx for the SN wave, 10-15 msec for 
the TC response, and about 15 msec for the potential 
evoked by foot shock. Since the thalamic response to foot 
shock was usually small and attenuated, it proved to be of 
little use in helping to determine if the thalamic-stimulat- 
ing electrode (central pole for recording) was in the so- 
matosensory relay area. 

Ethanol depressed the SN wave but the effect upon the 
positive deflection varied (compare Fig. 1A2 and Fig. 
IB2). Ethanol at 2 g/kg completely eliminated the poten- 
tial evoked by foot shock within 5-10 min and there was 
no, or only slight, recovery after about 1 hr (not illus- 
trated). This effect was in contrast to that seen on the SN 
wave and TC responses where negative potential ampli- 
tudes were more slowly depressed. Reduction of the SN 
wave depended upon the rate of ethanol uptake and BAL. 
Data in Fig. 2 were obtained from two separate experi- 
ments. BAL was measured five times during slow uptake 
after the initial intraperitoneal injection in one of the 

Fig. 1. Corbcal surface r m n g s  after smulatm of cerebral pedunde (A, 
WM. 8. ShOCk). malamus (c1), and foot (C2). n aMmals A, B. and C 
CP sbmulat101-1 control SN respu'tses are in A1 and B1 A2 is 11 mn after 2 gFg 
of ethenol (ntrapentondy) md B2,18 nun after ethand. Stmuhbon ntem%bes 

the peak of "egabve potenbals to ndcated bas&ne 
for Just maxlmel responses surface postnnty down AmphdeS measured frm 
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animals. A biphasic effect was seen. Below about 120 mg/ 
100 ml the SN wave amplitude increased, but following a 
second intraperitoneal injection, 35 min after the first, 
there was about a 55% amplitude decrease while BAL was 
increasing to 200 mg/100 ml. Following intravenous in- 
jection, where ethanol uptake into brain would be rela- 
tively rapid, there was a 50-60% reduction in SN wave 
amplitude for about 25 min following which the SN wave 
"recovered." Such recovery was frequently seen in about 
1 hr after a single intraperitoneal injection when the BAL 
had begun to fall toward 120 mg/ 100 ml. In some exper- 
iments there was an indmtion that "tolerance" could 
develop since amplitude of the SN wave showed an in- 
crease from its smallest point before the BAL began to 
decrease. 

In an experiment in which BAL was not determined, 
ethanol seemed to have an equal effect upon TC and SN 
responses (Fig. 3). However, when the responses were 
interacted, reciprocal blocking effects were not found. 

Prior to ethanol administration, thalamic stimulation 
seemed to facilitate the SN wave about 20% (TC-SN, Fig. 
3), but this is an artifact since it could be explained by this 
unusual TC response's long duration (more than 30 msec) 
which algebraically summated with the SN wave. In all 
experiments where the thalamic electrode was correctly 
located in somatosensory relay structures, thalamic con- 
ditioning stimulation had no significant effect upon the 
SN wave (Fig. 4). The weak effect of thalamic stimulation 
(conditioning) upon the SN wave (test) was totally differ- 
ent from that seen when CP stimulation preceded that to 
the thalamus. Prior to ethanol, CP stimulation reduced 
the TC response by about 50%; after ethanol, it blocked 
it completely from about 7-1 1 min (Fig. 3). 

Figs. 4 and 5 show the relationships between the effects 
of a single ethanol dose and electrophysiological responses 

7 DOSE-RESPONSE,  SN I N T E R A C T I O N S  

0 S N  
SN-SN 

D TC-SN 

10 20 0 40 50 
MIN 

220 

200 

1.0 

a 
160o 

uo 

110 

-I 

60 

Fig. 4. BAL and SN wave ampMudes aftera inbaperitoneal hjecticm of 2 
gFgdwng2 m i n e  totknezeco. Control SN amplitude taken as 100%. Rapid 
bkdc of SN wave OcCuTed wlth BAL rising above 180 Wl00 rnl within 8 min. 
The SN wave started to recoyer shghtty by 50 min even though BAL leveled off 
aKwnd 165 mg/100 ml. Dual shocks to CP (SN-SN), separated by 110 msec, 
resdted in 90% SN wave bkdc prior to ethand and total block after. Thelamic 
stinulation (TC) preceding CP sthndatim (SN) by 50 msec had 00 edditknal effect 
upon the SN wave. Doseresponse: see Fig. 2. 

D O S E -  RESPONSE,  TC I N T E R A C T I O N S  

0 T C  
m TC-TC 
0 S N - T C  

a 
w 

A BAL 

220 

100 1 160* 180 -I 

't---..F 00 M I N  

Fig. 5. Same experment as in Fg 4, krt TC response emphasued TC response 
decreased 32% 11 rnm after 2 gFg of ethanol (mtraperitonew However. TC 
response was greatiy faalttated when dual thalarnc shocks spaced 110 msecwere 
gwen C m d m m q  sttinulabon to CP precedng thalamc mulabon by 110 msec 
totaAybbdcedtheTCresponseby26mn Doswesponse -Fig 2 



NEOCORTICAL INHIBITION 509 

obtained during seven BAL determinations made over the 
same time period. Fig. 4 clearly shows the usual observa- 
tion of SN wave blockade by BAL above 160 mg/100 ml 
and that activation of the TC pathway with a conditioning 
shock had no additional effect upon the SN wave. Note 
the total refractoriness of the SN wave, after ethanol, when 
dual shocks to CP were given. In Fig. 5 two other consist- 
ent findings are illustrated. First, in nine experiments 
where histology verified the thalamic-stimulating location 
as being in or near the posterior nucleus, the ventral 
nucleus, or the medial lemniscus, 2 g/kg of ethanol re- 
duced the TC response amplitude an average of 45% 
within 11-25 min. Second, in contrast to the absence of 
TC effect upon the SN wave, stimulation of CP reduced 
the TC response to zero by 26 min. There were no excep 
tions to this nonreciprocal blocking relationship between 
TC and SN responses (Figs. 3, 4, and 5) .  In the majority 
of experiments, ethanol had a greater blocking effect upon 
the SN wave than it did upon the TC response. Also of 
note, in contrast to SN refractoriness with dual CP shocks 
(Fig. 4), dual stimulation of the thalamus resulted in 
facilitation of the TC response (Fig. 5) .  

DISCUSSION 

The hypothesis for these experiments was supported by 
finding a consistent relationship between BAL above 
about 120 mg/100 ml and the amplitude of a negative 
cortical potential which is a measure of recurrent inhibi- 
tion. BAL below above 120 mg/100 ml occasionally 
slightly facilitated the antidromically elicited SN wave, but 
always blocked it at higher BALs. This biphasic effect has 
been described for other ethanol effects on the brain.26 
The other cortical responses evoked by foot shock and 
thalamic relay stimulation also responded to ethanol. The 
potential evoked by foot shock was quickly blocked and 
showed little recovery, while the TC response could be 
reduced about 45% with marked recovery of tolerance 
even though BALs were not dropping. This apparent 
tolerance was also observed with the SN wave, but less 
frequently. Conditioning-test pairings revealed that 
ethanol had different effects on the two cortical systems, 
as represented by the TC response and the SN wave. 

CP stimulation (conditioning) producing the SN wave, 
strongly blocked the TC response (test), and even more so 
after ethanol. The reverse, TC block of the SN wave, was 
not found. These differential effects can be explained by 
assuming two different cortical circuits are involved. It has 
already been pointed out that the SN wave likely repre- 
sents summations of synchronous inhibitory postsynaptic 
potentials in a recurrent inhibitory The basis 
for the TC response is much less definite. Cortical surface 
potentials are field potentials, reflections of summations 
of synchronized postsynaptic potentials and fiber activity 
rather than neuronal action  potential^.'^*^'*^* It is theoret- 
ically possible to identify the loci of inhibitory and evoked 

postsynaptic potential generators associated with evoked 
field potentials and to draw conclusions about which 
components of an evoked potential represent excitation 
or inhibition. However, as pointed out by Humphrey” 
and Towe,28 experimental results are exceedingly difficult 
to obtain. Creutzfeldt et al.29 in experiments on cats, 
showed that the large, early surface negativity in response 
to stimulation of the ventral-lateral nucleus of the thala- 
mus, represents both excitatory and inhibitory postsyn- 
aptic potential activity at different locations on neurons 
in upper cortical layers (vertically elongated pyramidal 
cells). The TC negative wave, in our experiments, is likely 
a mixture of synchronized depolarizations in apical den- 
drites of pyramidal cells below the recording electrode and 
hyperpolarizations in the region of their somas. In the cat, 
Towe2’ implicated pyramidal cells in layers I1 and I11 as 
receiving somatosensory input from the thalamus. In our 
experiments, ethanol depressed the TC negative wave by 
45%, but there is no way of proving whether the block 
was on deep hyperpolarizations (block of inhibition) or 
on superficial depolarizations (block of excitation). How- 
ever, since ethanol also depressed the SN wave (above a 
BAL of 120 mg/loO ml) it is suggested that ethanol has 
only one kind of action on the TC and SN responses, a 
block of postsynaptic inhibition. That two different neural 
circuits are involved in mediating the SN wave and TC 
response is also supported by the observations that dual 
shock produced inhibition of the SN wave and facilitation 
of the TC response. 

Our observations and interpretations are based upon 
the use of ketamine-xylazine for anesthesia. Although we 
did note that SN wave depression after ethanol occurred 
without dependence upon the depth of anesthesia, the 
observations on the SN wave should be confirmed in other 
species and under different conditions, such as, without 
general anesthesia. The present data on ethanol block of 
the TC response and the potential evoked by foot shock 
do confirm similar studies by others on evoked potentials 
with and without anesthesia. 

Story et al.M found that 2 g/kg of ethanol, in unanes- 
thetized cats, blocked the large cortical negative wave 
(peak at about 10 msec latency) to thalamic sensory relay 
stimulation and the visual cortex response (not illustrated) 
to optic tract stimulation. Penin et al.4 observed that 
ethanol blocked the early (within about 25 msec) complex 
auditory-evoked cortical response in unanesthetized cats, 
but only if BAL reached about 50 mg/100 mi. Hetzler et 
a l . ” ~ ~ ~  studied positive and negative cortical potentials 
during about 300 msec, in response to photic stimulation, 
in unanesthetized rats. Late and early waves were de- 
pressed but one positive wave was enhanced by ethanol 
( 1.0-2.5 g/kg). BAL was not given. From a review of many 
studies26 it is obvious that ethanol has multiple loci of 
effects in the brain; some of these are in the neocortex. 

The previous reports of ethanol effects on evoked neo- 
cortical potentials have not considered the neuronal bases 
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for the observations. One does not know whether ethanol 
affected processes of excitation or inhibition in those 
experiments and thus conclusions about function cannot 
be made. As a result of relating the evoked TC response 
to the SN wave in the present experiments, it can be 
suggested that two different circuits were affected by 
ethanol in different degrees, both circuits contained some 
shared inhibitory interneurons, and the interaction be- 
tween activity in the circuits was in one direction only. It 
may be concluded that acutely administered ethanol above 
about 120 mg/100 ml blocks neocortical inhibitory proc- 
esses and this occurs via inhibitory interneurons. If BAL 
is low and rises slowly toward 120 mg/100 ml, an initial 
effect may be a slightly increased amount of recurrent 
inhibition, but since ethanol infrequently increased the 
SN wave amplitude we tend to discount this observation. 

Low doses of ethanol caused neocortical desynchroni- 
zation and high doses synchronization and delta waves.26 
These effects have been interpreted as evidence for cortical 
excitation and inhibition on the afferent side. Low doses 
of ethanol increased spontaneous locomotor activity and 
high doses inhibited it33; these are efferent effects. We view 
ethanol block of neocortical RI as one effect which could 
lead to increased motor discharge from the cortex. Al- 
though the hnction of RI in the cortex is unknown it may 
act to limit the frequency and the selectivity of discharge 
from cortical motor cells, analogous to its possible func- 
tion in the spinal cord.” Another effect of ethanol may be 
upon other inhibitory neurons35 which normally fine tune 
smaller cortical regions and circuits. The total effect could 
be a loss of selectivity of cortical motor control and an 
increased excitation of lower motor neurons. Although in 
the following paper,” we suggest that chronic ethanol 
treatment results in loss of inhibition upon cortical excit- 
atory processes, it seems too restrictive to explain the 
effect of acute ethanol upon the cerebral cortex as “dish- 
hibition.” Ethanol blocks FU in the hippocampu~,~’ a 
nonmotor structure. It is likely that RI in both hippocam- 
pus and neocortex may also function to control the proper 
distribution of neuronal activity initiated by afferent in- 
put? 
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