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SUMMARY 

Radiation hybrid mapping is a somatic cell technique for ordering human loci along a 
chromosome and estimating the physical distance between adjacent loci. The present paper 
considers a realistic model of fragment generation and retention. This model assumes that  
fragments are generated in the ancestral cell of a clone according to  a Poisson breakage process 
along the chromosome. Once generated, fragments are independently retained in the clone with 
a common retention probability. Based on this and less restrictive models, statistical criteria 
such as minimum obligate breaks, maximum likelihood, and Bayesian posterior probabilities 
can be used to dcride order. Distances can be estimated by either maximum likelihood or 
Bayesian posterior means. The model also permits rational design of radiation dose for optimal 
statistical precision. A brief examination of some real data illustrates our criteria and 
computational algorithms. 

INTRODUCTION 

In  the mid-seventies Goss & Harris (1975) developed a new method for mapping human 
chromosomes. This method was based on irradiating human cells, rescuing some of the 
irradiated cells by hybridization to rodent cells, and analysing the hybrid cells for surviving 
fragments of a particular human chromosome. For various technical reasons, few geneticists 
followed up on this promising technique, and it lay dormant for several years until revived by 
Cox et al. (1990). The more sophisticated and successful version of radiation hybrid mapping 
introduced by Cox et al. ( 1990) and discussed below raises many fascinating statistical 
problems. These problems run the gamut from computation and optimization of complicated 
likelihoods to  Bayesian inference for locus orders and optimal design of radiation dose levels. 
The present paper summarizes these issues arid offers some tentative solutions. 

In the hands of Cox et al. (1990), a radiation hybrid experiment starts with a human-rodent 
hybrid cell line. This cell line incorporates a full rodent genome and a single copy of one of the 
human chromosomes. To fragment the human chromosome, the cell line is subjected to an 
intense dose of X-rays, which naturally also fragments the rodent chromosomes. The repair 
mechanisms of the cell rapidly heal chromosome breaks, and the human chromosome fragments 
are typically translocated or inserted into rodent chromosomes. However, the damage done by 
irradiation is lethal to the cell line unless further action is taken to  rescue individual cells. The 
remedy is t o  fuse the irradiated cells with cells from a second unirradiated rodent cell line. The 
second cell line contains only rodent chromosomes, so no confusion about the source of the 
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human chromosome fragments can arise for a new hybrid cell created by the fusion of two cells 
from the two different cell lines. 

The new hybrid cells have no particular growth advantage over the more numerous unfused 
cells of the second cell line. However, if cells from the second cell line lack the enzyme 
hypoxanthine phosphoribosyl transferase (HPRT), both the unfused and the hybrid cells can 
be grown in HAT medium, which kills the unfused cells (Cox et al. 1990). The selection process 
leaves a few hybrid cells, and each of the hybrid cells serves as a progenitor of a clone of identical 
cells. 

Each clone can be assayed for the presence or absence of various human genes on the original 
human chromosome. In practice, the cells of a clone generally contain from 20 to 60% of the 
human chromosome fragments generated by the irradiation of its ancestral human-roden t 
hybrid cell (Cox et al. 1990; Burmeister et al. 1991). The basic premise of radiation hybrid 
mapping is that the closer two loci are on the human chromosome, the less likely that 
irradiation will cause a break between them. Thus, close loci will tend to be concordantly 
retained or lost in the hybrid cells, while distant loci will tend to be independently retained or 
lost. The retention patterns from the various hybrid clones therefore give important clues for 
determining locus order and for estimating the distances between adjacent loci for a given 
order. 

A t  this point we offer some guidance for reading the remainder of the paper. Because of the 
necessary, but heavy mathematical machinery developed, many readers may wish to peruse the 
next modelling section and then skip directly to the applications section and the discussion. 
These last two sections illustrate our methods and contain general conclusions. Of course, we 
invite the mathematically inclined to  read the whole paper. 

MODELS FOR RADIATION HYBRIDS 

The breakage phenomenon for a particular human chromosome can be reasonably modelled 
by a Poisson process. The preliminary evidence of Cox et al. (1990) suggests that this Poisson 
breakage process is roughly homogeneous along the chromosome. For their data on human 
chromosome 21, Cox et al. (1990) found that 8000 rad of radiation produced on average about 
four breaks per cell. The intensity h characterizing the Poisson process is formally defined as the 
breakage probability per unit length. Assuming an estimated length of 4 x lo4 kb for 
chromosome 21, h x 4/(4 x lo4) = breaks per kb when a cell is exposed to 8000 rad (Cox 
et al. 1990). 

For any two loci the simple mapping function 

( 1 )  1-0 = eA8 

relates the probability 0 of at least one break between the loci to the physical distance S between 
them. When AS is small, 0 x A&. This is analogous to the approximate linear relationship 
between recombination fraction and map distance for small distances in genetic recombination 
experiments. Indeed, except for minor notational differences, equation ( 1 )  is Haldane’s (1919) 
classical mapping function for recombination without interference. 

In addition to breakage, fragment retention must be taken into account when analysing 
radiation hybrid data. A reasonable assumption is that  different fragments are retained 
independently. For the purposes of this exposition, we will make the further assumption that 
there is a common fragment retention probability r. Boehnke et al. (1991) consider at length 
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more complicated models for fragment retention. For instance, the fragment bearing the 
centromere of the chromosome may be more often retained than other fragments. This is 
biologically plausible because the centromere is involved in coordination of chromosome 
migration during cell division. However, these more complicated models appear to  make little 
difference in ultimate conclusions. 

In  a radiation hybrid experiment, a certain number of clones are scored at several loci. For 
example, in the Cox et al. (1990) chromosome 21 data, 99 clones were scored at 14 loci. In  some 
of the clones, only a subset of the loci were scored. One of their typical clones can be represented 
as (0, O , O ,  0, O , l , O , O , O , O ,  2 ,  0, 0 , l ) .  A ‘ 1 ’ in a given position of this observation vector indicates 
that  the corresponding human locus was present in the hybrid clone, a ‘0’ indicates tha t  the 
locus was absent, and a ‘ 1 ’ indicates that  the locus was untyped in the clone. 

Computing the minimum number of obligate breaks per order allows comparisons of different 
orders (Boehnke et ul. 1991; Roehnke, 1992; Bishop & Crockford 1992; Weeks et al. 1992). If 
the order of the loci along the chromosome is the same as the scoring order, then the above clone 
requires three obligate breaks. These breaks occur whenever a run of 0’s is broken by a 1 or vice 
versa ; untyped loci are ignored in this accounting. The minimum number of obligate breaks for 
each clone can be summcd over all clones to give a grand sum for a given order. This grand sum 
serves as a criterion for comparing orders. Boehnke et al. (1991) discuss how this criterion can 
be minimized by a stepwisc ordering algorithm or by standard combinatorial optimization 
techniques such as branch-and-bound (Reingold et al. 1977) and simulated annealing (Press 
et al. 1989). 

MAXIMUM LIKELIHOOD METHODS 

= ( l - & ) ( l - r )  
P r ( X , =  1 , X 2 = 0 ) = 8 r ( 1 - r )  
Pr(X, = O , X ,  = 1) = Pr(X, = 1,X2 = 0) 
Pr(X,  = 1,X, = 1) = ( 1 - O ) r + 8 r 2  

The advantagc of the minimum breaks criterion is tha t  it depends on almost no assumptions 
about how breaks occur and fragments are retained. The disadvantage of this nonparametric 
criterion is that  it provides neither estimates of physical distances between loci nor comparison 
of relative likelihoods for competing orders. Maximum likelihood obviously remedies the latter 
two defects, but at the expense of introducing some of thc explicit assumptions mentioned 
earlier. We will now briefly discuss how likclihoods are computed and maximized for a given 
order. Different orders can be compared on the basis of their maximum likelihoods. 

Because different clones are independent, it suffices to demonstrate how to compute the 
likelihood for a single clone. Let X = (X , ,  ..., X m )  be the observation vector for a clone 
potcntially typed at m loci. The component X, is defined as 0, 1, or T ,  depending on what is 
observcd a t  thc ith locus. We can gain a feel for computing the likelihood of X by considering 
two simple cases. If m = 1 and X, + 1 ,  then X, follows the binomial distribution 

(2) Pr (X,) = rxl (1 - r)l-xl 

1 (3) 
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For instance, Pr  (X, = 1,X, = 0) is the product of the probability 8 of breakage between the loci 
times the probability r( 1 - r )  that the fragment containing the first locus is retained and the  
fragment containing the second locus is lost. Note the substitution throughout (3) of 8 for 
l-e-AR. This substitution has the advantage of allowing the Poisson breakage process to be 
nonhomogeneous. In any case, only the product ha of the two parameters h and S is identifiable. 

Generalization of the above likelihood expressions to more loci involves two subtleties. First. 
the sheer number of terms accounting for all possible breakage and retention patterns quickly 
becomes unwieldy. Second, missing data can no longer be ignored. The key to efficient 
likelihood computation is to recognize that the likelihood splits into simple factors based on a 
hidden Markov property of the underlying model. To expose this factorization property, 
assume that the loci 1,  ..., m occur in numerical order along the chromosome. Let 8, be 
the breakage probability on the interval connecting loci i and i+  1, and suppose only lori 
1 < t ,  < t ,  < . .. < t, < m are typed. Then 

fl 

Now Pr ( X t l )  is immediately available from (2). In the degenerate case ?z = 1,  the product in (4) 
is taken as 1. Otherwise, the ith term in the above product satisfies the Markov property 

Pr  (Xti I Xtlj . . . > = Pr @ti I (5) 

Indeed when Xti = X t t - l ,  

ti-1 ti-1 

x = 1 -  n (1-e r ~ t r ( i - - ) l - ~ f t +  n ( 1 - q .  (6) Pr(XtlIXtl, * * . ,  ti-1 [ 3-ti-1 3 ) l  3-ti-1 

The first term on the right of (6) involves conditioning on at least one break between loci t t - l  
and ti.  Here the retention fate of locus t, is no longer tied to that of locus t iPl .  The second term 
involves conditioning on the complementary event. When Xti + Xtl-,, we have the simpler 

since a break must occur somewhere between the two loci. These factorization results generalize 
to what Boehnke et al. (1991) call left-end point retention models. 

Boehnke et al. (1991) also show how to implement the EM algorithm (Dempster et al. 1977) 
for maximum likelihood estimation of the m parameters 01, ..., BmP1 and r .  Let yi = Bi for 
i = 1, . . . , m - 1 and ym = r .  All of these parameters can be viewed as success probabilities for 
binomial trials. As a consequence (Weeks & Lange, 1989), the EM updates take either of the 
equivalent generic forms 

E(no. of successes I obs, y") 
E (no. of trials I obs, y") 

yt+1 = 

rt ( 1  - y t )  a In m o b s )  I Yfl)l/ar, 
= y:+ E (no. of trials I obs, yfl) ' 

where obs denotes the observations X over all clones, and L is the likelihood function. The 
second form of the update requires less thought since only mechanical differentiations are 
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involved in forming the score. If the number of clones is H ,  then the expected number of trials 
appearing in the denominator is H for Oi and H (  1 +EFT1 0;") for r .  (Note that the formula in 
Boehnke et al. (1991) for the expected number of fragments erroneously employs Or instead of 
Or".) Since the amount of missing data can be relatively small, the EM algorithm makes for 
very fast optimization. On a 486 25 MHz computer, it takes about 0.5 s to maximize a 14-locus 
likelihood for the 99 clones of the Cox et al. (1990)  data under a specific order. 

Asymptotic standard errors for the parameter estimates are available as a by-product of the 
EM algorithm. Meng & Rubin (1991)  show how to compute the observed information matrix 
by numerically differentiating the EM algorithm map. When there is no missing data, it is 
possible to compute explicitly the expected information matrix J ; according to classical large 
sample theory, J-' provides approximate variances and covariances for the maximum 
likelihood estimates (Rao, 1973) .  In the case of two loci, denote Pr (X, = i, X, = j )  by pij  for 
brevity. Then a typical entry J ,  of J for a single clone is given by 

Straightforward, but tedious, calculations based on (3) and (7)  yield the entries 

r ( 1 - r )  (2-8) 
( 1  -Or) O( 1 - O+Or) J", = 

J,r = Jr, 

- ( 1 - 2 r ) ( l - O )  - 
(1-Or) (1-O+Or) 

1 Jrr=-+O[ r(1  - r )  ( 1  l - r  -8r)r  + (1  - r )  ( 1  -O+Or)  
1 r 

The expected information from H independent clones is H x J. 
Note that the presence of the factor 1 - 2r in J,, renders the expected information matrix 

diagonal when r = g. The above expression for J ,  also allows us to verify the intuitive notion 
that information on O is maximized when r = t .  It is obvious that J ,  -+ 0 as r + 0 or 1.  To prove 
that J,, assumes its maximum a t  r = when O is fixed, it suffices to  show that In J,, has a unique 
stationary point a t  r = t .  But this fact follows from 

alnJ,,- 1 1 e 8 +-- - - 
ar r 1 -r  1-Or l - O + B r  

1 -2r  
r(1 - r )  

(1  - 2r) ( 1  -0) 
r(1 - r )  ( 1  -Or)  (1  - B + O r )  ' 

(1  - 2r)  O2 
( 1  -Or)  ( 1  -O+Or) 

=-- 

- - 

As a rather crude bound we also have 
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Thus, the asymptotic standard error for 8 will be at  least 1/2 x 1.4 times greater than that 
calculated for a simple binomial experiment with success probability 8. 

For more than two loci, the likelihood factorization (4) and the Markovian property (5) lead 
to a more or less transparent generalization of the two locus results for J. If in a given clone all 
m loci are typed, then the loglikelihood of the observation vector X = (XI, . . . , X,) for the clone 
becomes 

m-1 

i-1 
In [Pr (X)] = In [Pr (X1)] + E ln [Pr (Xi+l I Xi)]* 

Now Pr (X,) depends only on r ,  and Pr (Xi+l I Xi) depends only on r and the breakage probability 
8, for the ith interval. In fact, Pr (Xi+, IX,) assumes exactly one of the four forms in (3), except 
that a factor of r or 1 - r  is missing in each instance. Upon taking logarithms and partial 
derivatives, it is clear that in computing J,,,, and J,,, only the factor Pr (Xi+l IX,) is relevant. 
Thus, our previous expressions for J,, and J,, carry over from the two locus case. From the 
representation 

we also deduce that the 8 portion of J is diagonal. This makes it possible to  invert J explicitly. 
For brevity we omit displaying J-'. In any event, the maximum likelihood estimates 6, of the 
various di are asymptotically uncorrelated, and hence independent, as long as r = t or r is not 
jointly estimated with the 8,. Finally, our previous expression for J,, must be amended to 

r 1 m-1 

(1-r)(1-8,+Oir) 

A BAYESIAN METROPOLIS ALGORITHM 

The maximum likelihood method provides no easily interpretable measure of the certainty 
that the order identified as best is, in fact, the correct order (Guerra et al. 1992). If the likelihood 
ratio comparing the best order to the next best order exceeds 1000, we might feel very 
comfortable in declaring the best order to be the correct order. However, this likelihood ratio 
does not translate into a significance test since one order is not a smoothly parametrized 
subhypothesis of the other order. Moderate likelihood ratios fall into a grey zone and leave us 
uncertain about the correct order of the loci. From a Bayesian perspective, these conceptual 
issues disappear. Specification of posterior probabilities for order is a natural consequence of 
adopting the Bayesian perspective. 

In this section we will illustrate the application of a Metropolis algorithm (Metropolis et al. 
1953; Kalos & Whitlock, 1986) for computing the posterior probability of locus order and the 
posterior mean distances between loci. Although the Metropolis algorithm predates the Gibbs 
sampler, it is not as well known in statistical circles. This is a pity since it complements other 
Monte Carlo techniques such as the Gibbs sampler (Geman & Geman, 1984), data augmentation 
(Tanner & Wong, 1987), and importance sampling (Rubin, 1988). The Metropolis algorithm is 
generally considered the inspiration for simulated annealing (Kirkpatrick et al. 1983). In 
common with simulated annealing, it involves setting up a Markov chain. However, instead of 
being used for combinatorial optimization, the Metropolis algorithm is tailored to sampling 
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from the equilibrium distribution of the Markov chain. If by construction the Markov chain is 
ergodic, then in the limit sample averages tend to expected values. With the correct definition 
of the chain, the equilibrium distribution will also coincide with the posterior distribution of the 
parameters given the data. This constructiori should be relevant to other Bayesian models. 

As a prelude to our particular concrete problem, consider the following abstract scheme. We 
are given a parameter space r, whose typical point is denoted by y. On this parameter space 
we impose a prior densityf(y) with respect to some measure y .  In  our particular example with 
m loci, r will be the m-dimensional unit cube [0, lIm, f(y) will be identically 1 ,  and y will be 
Lebesgue measure. The component yz of y gives the position of the ith locus. Note that confining 
the m loci to the unit interval [O,1] entails a rescaling of distance for the postulated region 
occupied by the loci. This rescaling must be matched by a corresponding rescaling of the 
intensity h of the underlying Poisson process. The Poisson process we now take to be 
homogeneous. 

Returning to the abstract scheme, denote the observations upon which we base inferences by 
obs. These observations can be summarized by a likelihood function L(obs I y)  depending 
jointly on obs and y. To define a Metropolis algorithm on r we divide transitions into two 
stages, a proposal stage and an acceptance stage. For the proposal stage we postulate the 
existence of a proposal density t (y*  I y) relative to y for choosing the next point y* given the 
current point y. The density t (y*Iy) should satisfy t (yIy*)  > 0 whenever t ( y * I y )  > 0. This 
requirement is intimately tied to the crucial property of detailed balance that will be discussed 
shortly. The acceptance stage determines whether a proposed move is actually taken. 
Acceptance occurs based on comparing the acceptance probability a(y*  I y) to a random number 
uniformly drawn from 10 11. If the random number is less than a(y* I y), then the proposed move 
is taken ; otherwise the Markov chain declines the proposed move and remains in the current 
state. A t  the next step of the chain a new destination point is proposed, and the cycle of 
proposal and acceptance/non-acceptance is repeated. Eventually enough steps of the Markov 
chain arc taken to permit accurate approximation of expectations by sample averages. 

Properly defining a(y* I y) is the key to compelling the equilibrium distribution of the Markov 
chain to be the posterior density. Our definition is 

The posterior density of y given obs amounts to 

It is straightforward to show that p ( y  I obs) satisfies the law of detailed balance : 

P(Y I obs) d Y *  I Y )  = P(Y* I obs) d Y  I Y * L  (9) 

where d Y * I Y )  = t ( Y * I Y ) 4 Y * I Y )  

is the transition density from y to y*. Detailed balance says that at equilibrium, the rate of 
probabilistic flow from y to y* matches the rate of probabilistic flow in the reverse direction 
from y* to y. In proving detailed balance, we can assume without loss of generality that 

~(obslY*)f(Y*)t(YlY*) G L (ObSIY)f(Y)t(Y*lY). 
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Then invoking (8) yields 

= P(Y * I obs) t(Y I Y *) 

= P(Y*lObS)dY l Y * L  

proving detailed balance. 
From detailed balance it is easy to deduce that p ( y  I obs) is an invariant distribution for the 

Markov chain. (Some authors use the equivalent term stationary instead of invariant.) Indeed, 
integrating (9) against a bounded, continuous function g(y*) gives 

s j S ( Y * ) d Y *  I Y ) W Y * ) P ( Y  IObS)dP(Y) = I ~ Y ( Y * ) I ( Y I Y * ) 4 ( Y ) p ( Y * l o b s ) ~ ~ ( Y * ) .  

I 
JY(Y)C(Y)P(Y IObS)&4Y) 

(10) 

C ( Y )  = 1- d Y * I Y ) @ ( Y * )  Now let 

be the probability of rejecting the proposed move from the current point y. Adding 

to both sides of (10) yields the equality 

If U, is the position of the Markov chain at step k, then (11) can be restated in terms of 
expectations as 

E[S(U,+,)I = E(E[S(U,+,) I U,l) 

But this last equality demonstrates that Uk+l and U, have the same distribution, and this is 
precisely what invariance means. 

The above brief description of the Metropolis method does not specify the nature of the 
proposal density t (y *  I y). In our experience, it is crucial that  the Markov chain be able to break 
away from a local maximum of p(y1obs) and move across a deep valley to another local 
maximum. In the simulated annealing solution to the travelling salesman problem (Press et al. 
1989), new permutations are proposed by taking an existing permutation, choosing at random 
a block of cities from it, and then inverting the order of cities within the block. For example, 
if the current permutation mandates visiting ten cities in the order 7-3-4-5-1-9-2-8-10-6, we 
might propose to invert the cities between positions 3 and 7 to give the new permutation 
7-3-2-9-1-54-8-10-6. We will adopt the same tactic here with one minor modification. 
Because locus position is important as well as locus order, we also propose new positions for the 
inverted loci. If we decide to move n loci, the simplest scheme for doing this in a fashion 
consistent with their inverted order is to sample uniformly points between the two flanking 
loci for the block - loci 3 and 8 in the above cities example - and position the inverted loci 
according to the order statistics of this uniform sample. If one end of the inverted block is the 
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first or last locus of the existing order, then the sampling interval extends to  either 0 or 1, 
whichcver is appropriate. 

One could justifiably complain tha t  the above proposal mechanism is ad hoc. Furthermore, 
unless the proposal block encompasses all loci, the  proposal density is not even a legitimate 
density with respect t o  Lebesgue measure. We deal with this latter concern in the Appendix. 
Xote that  if the two endpoints of the inversion block coincide, we are simply repositioning the 
single locus chosen between its two flanking neighbours. Because of the wide variation in block 
size permitted, our proposal mechanism does effect a range of readjustments of the loci. One 
could contcmplate other proposal mechanisms. For instance, one might randomly resample one 
locus a t  a time, but not restrict its new position to  be consistent with the current order. This 
simpler resampling tactic would make it difficult to  achieve the large scale rearrangements 
necessary to  pass between the competing orders having large posterior probabilities. Once the 
chain reaches a favourable order, almost all proposed one locus rearrangements of the order will 
be insufficiently radical to  be acceptcd. 

Invariance of the posterior density is not enough. The further condition of ergodicity must 
be imposed to  insure that  sample averages taken over many consecutive steps of the Markov 
chain tend to cxpected values with respect to  p ( y  I obs) (Rosenblatt, 1971 ; Karlin & Taylor, 
1975). The chain is crgodic if every invariant set of states has equilibrium probability 0 or 1, 
and a set of states is invariant if escape from the set is impossible under the transition 
mechanisms of the chain. Thus, ergodicity rules out all but trivial invariant sets. Now a 
sufficient condition for crgodicity can be stated by defining the n-step transition probability 
W n ) ( y , A )  (Rosenblatt, 1971). Starting from the point y, this is the probability tha t  the chain 
occurs in the set A after n steps. If for each A with p ( A )  > 0 it is possible to  choose for p-almost 
all y an integer ny such tha t  P r ( V ( y , A )  > 0, then the chain is ergodic for the invariant density 
p(y I obs). This condition is the analogue of complete communication among states for a discrete 
state Markov chain. Intuitively spcaking, i t  requires that  the transition mechanisms of our 
continuous state Markov chain sufficiently stir up  the points. Par t  of the Appendix will be 
devoted to vcrifying this condition for ergodicity . 

In  our simulations of the posterior density, we hold the retention probability r fixed. 
Presumably, we could also put  a prior on r and include it in the Metropolis procedure. However, 
r tends to be fairly well estimated by maximum likelihood, and no compelling evidence suggests 
a reasonable prior for r .  In  the Cox et al. (1990) data ,  r is close to  0.5, with some decline in 
progressing from the centromere to  the telomere of the chromosome. In  other data sets, r more 
often ranges from 0.2 to  0.3 (Burmeister et al. 1991 ; D. Cox, personal communication). The 
starting position of the Metropolis algorithm is also probably not critical. If the algorithm 
works well, equilibrium should be reached quickly. The best maximum likelihood order 
furnishes a possible starting point, but  we might wish to  avoid biasing the early steps of the 
chain toward the answer we wish to  confirm. 

ANOTHER BAYESIAN APPROXIMATION 

The Monte Carlo approach of the last section is not the only method of computing the 
requisite integrals for posterior probabilities. A direct attack is possible if some simplifying 
approximations are made to  reduce the complicated dependencies of the various integrands. 



128 K.  LANGE AND M. BOEHNKE 

This direct method permits computation of the joint probability of the observations and of a 
particular order for the loci. Consequently, two competing orders can be compared by the ratio 
of their posterior probabilities. Unless the number of loci m is fairly small, and these joint 
probabilities can be summed over all orders, the direct method does not yield the normalizing 
constant for the posterior probability of any given order. Of course, if only a few orders have 
substantial posterior probability, then the normalizing constant can be well approximated by 
the sum over just these most likely orders. 

To compute a joint probability Pr (obs, order), we note that the prior probability of the order 
is Pr (order) = l/m!. Thus, it suffices to compute the conditional probability Pr (obs I order), 
and this can be accomplished by integrating over the possible distances between adjacent pairs 
of loci for the order. Without loss of generality, we again take this order to match the order of 
the recorded observations for each clone. We also again let S, be the distance between loci i and 
i+ 1 .  The Ss are spacings from a uniform sample of m points on LO, 13. Such spacings have been 
thoroughly studied (Shorack & Wellner, 1986). For instance, the 6, are known to be 
exchangeable random variables with common density m( 1 - S)"-l on [0,1] and common mean 
l / (m+ 1). The correlation of any pair 6, and 6,,j $: i, is just - l/m. These facts suggest that for 
large enough m, the 6, are approximately independent with common approximate density 
(m+ 1) e-(m+l)d. The mean of this exponential density obviously equals l / (m+ 1 ) .  

Under these approximations, 

L (obs 16) x density (6) d6 
{b,+ +a,-, s 1 t 

m-i 

3-1 

I 
x Iom . . . IOm I; (obs I 6) n (m + 1 )  e-(m+l)dj dSl . * - dS,-, , 

Pr (obs I order) = 

(12) 

where 6 = (Sl, ..., Sm-J and d6 = dS;..dSm-,. 
To make further progress, we note that the likelihood L(obs 16) factors into separate 

likelihoods for the independent clones. These clone likelihoods in turn factor in Markovian 
fashion according to (4) and ( 5 ) .  A t  this juncture it is helpful to introduce more manageable 
notation. Recall that for each clone only some of the loci are typed. In particular, suppose loci 
t,,, ..., thnh are typed for clone h. The triples (h,t,k,th,k+l) play a key role in what follows. We 
cnumeratc the set of triples 

H 

(J { (h ,  t,,, Lh,k+ l )  : k = 1 ,  ..., n,- 1) 
h-1 

in some order from i = 1, . . ., N .  Now suppose (h ,  t,,, th ,  k + l )  is the ith enumerated triple. Call the 
right locus t,, f + l  of this triple right, ; define left, similarly. We will require that the enumeration 
satisfy right, < right,,,. We can also characterize the span of the ith triple by introducing a row 
vector v' having m- 1 components and j t h  component defined by 

v;={ 1 if left, < j  < right, 
0 otherwise. 

Finally, to simplify the notation for the conditional probabilities appearing in ( 5 ) ,  define 

a,, = r X h f h .  k+l (1 - T ) l - X h f h .  k+l 
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where X,,,, and Xhth.k+l are the two relevant observations for the triple and x is an indicator 
function. 

This glut of notation is actually useful. For instance for the ith triple, equation ( 5 )  and its 
immediate aftermath reduce via equation (1) to 

and the likelihood becomes 

H N 

L (obs 16) = n Pr (Xhthl n [aio +a,, ~ ~ ~ ~ ~ ’ “ ~ ~ j ] .  

h-1 i-1 

We can insert this representation of L (obs 18) into our approximation (12) of Pr  (obs, order). 
1 ,  

it is possible to evaluate all the 1-dimensional integrals explicitly. Indicating the first choice by 
ji = 0 and the second choice by j, = 1, the integral over S, can be evaluated as 

m - l v i 6  
Using the distributive law to choose for each i either the factor a,, or the factor a,, e-Azj-l 

This yields the approximation 

where the leading constant is 

H 

b = (m+ l)m-l n Pr(Xhthl). 
h-1 

The formidable multiple sum (13) can be evaluated by recursively evaluating the intermediate 
sums 

1 1 n right,-1 1 

Before we specify 
product of S,, 

an algorithm, let us clarify some of the issues involved. First, the second 

extends only from 1 to right,- 1. This limited range is motivated by our desire to involve as 
few loci as possible in each intermediate sum and accounts for the convention right, < 
in enumerating triples. Second, t,he displayed indices j l ,  . . ., j , do not fully determine the sums 
ACElji 2); + m + 1 in the denominators of the product ; the partial sums w, = C E n + l j i  v: depend 
on the Unspecified indices jn+l, . . ., j N .  Let w be the vector with components the partial sums 
wk = E:n+lji vt, k + 1, . . . , right, - 1, generated by a specific choice of the indices ( j n + l ,  . . . , j N ) .  It 
often happens that two different choices of the unspecified indices determine the same vector w. 
For instance, an index j i ,  i > n, is irrelevant if all v: = 0 for k < right, - 1. The crux of the 
matter is that S, depends only on the partial sums w, that are the components of w and not 
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the particular indices (j,+,, ...,j,) generating these partial sums. We will write S ,  (w) to  
emphasize this dependence. Now denote by V, the collection of distinct vectors w arising from 
one or more choices of (j,+,, . ..,j,). At each stage n, we will need to calculate and store S ,  (w) 
for each WE%,. The cardinality of V, generally should be far less than the number 2 N - n  of 
index sets (j,,,, ...,j,). 

Let us next consider how the collections V, might be constructed efficiently by a backwards 
recurrence. In  this process, we will construct the V n  in groups, with each group corresponding 
to a different valuc of right,. First we construct Wl and all remaining V, having right, = 

right, = 2, then we construct the group of W, having right, = 3, and so forth. Note here we 
implicitly assume that  all numbers from 2 to  m are represented among the values of right,. 
If this were not the case, then some locus would never be typed, or if it were, then it would 
never be typed simultaneously with any other locus. Obviously, it would be impossiblc. to  
order such a locus relative to the other loci. 

Now suppose n = 1 or right,-, < right,. To obtain V, and all other VJ with right, = right,, 
observe that  among the triples from n+ 1 t o  N ,  there is some subsequence k,, ..., k, defined by 
the requirement leftkj < right,. Exactly these triples contribute to  %, since the corresponding 
spanning vectors vkj have 1’s entry right,- 1. Truncate vkl by deleting all but its first right. - 1 
entries. The resulting vector, ukj, is an  element of V,. We begin the recurrence with gkt = {0}, 
where now 0 is the 0 vector with right,- 1 entries. We then recursively define the further 
collections 

g k j - ,  = g k j  u {ukf + w : w E g k j } ,  

where uk]+w denotes the obvious vector sum. We can keep a single list of vectors for the 
collections gk1 by adding the new vectors of gk,-, to the bottom of the list for gk,. All 
intermediate collections are then readily available in the final list gk0, which coincides with W,,. 
Proweding forward from V,, the collections Wk,  and gkj  coincide as long as right does not jump. 
For instance, (en+, coincides with 9,+, provided right,,, = right,. Once right jumps, W k j  and 
gak, contain vectors of different lengths. It is also clear from this construction tha t  within the 
group the inclusion W j  c Vj+, always holds. Subsequent groups can be constructed by the same 
backwards recurrence until VN = {0} is reached. 

To give a concrete illustration of the above construction, suppose that there are m = 3 loci 
and H = 4 clones. Taking the same order for observations and loci, suppose the cloncs are 
(1, ! , O ) ,  (0, 1 ,  l ) ,  (1,1,  l ) ,  and ( ? , O ,  1). Clones 1, 2, and 4 generate 1 spanning vector each. These 
are respectively, v‘ = (1, l ) ,  v3 = (1, I ) ,  and v5 = (0 , l ) .  Clone 3 generates the 2 spanning vectors 
v1 = ( 1 , O )  and v4 = (0 , l ) .  The collections generated by the backward recurrence relations are .  

%l = { ( O ) ,  ( I ) ,  (2))  

W2 = { ( O , O ) ,  (0,1),  (0,2),  (1,1), (1,2), (1 ,3))  

%3 = { ( O ,  O ) ,  (0, I ) ,  (0,2)1 

W 5  = {(0,0)}. 

= ((0, O ) ,  (0,1)) 

The initial sum S,(w) is trivial to  compute for each w € V 1  since it involves only one 
summation. To define a forward recurrence relation between the sets of sums #,-, and S,, 
suppose first that  right,-, = right,. Then V,-, and V, are collections of vectors of equal 
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lengths. As above, let un be the vector of length right, - 1 agreeing with the first right, - 1 
entries of the spanning vector vn, If w belongs to V,, then both w and un + w belong to %n-l. 

The recurrence relation 

Sn (w) = a n O S n - 1  ( w ) + a , l S n - l  (u"+w) 

follows immediately from the distributive law. 
When right, = right,-, + 1 ,  the vectors in V, have one more entry than vectors in Vn-,. Also 

the product (14) has the extra factor for k = right, - 1 lacking in the corresponding product for 
Sn-l .  These considerations dictate the recurrence relation 

(15) 

where WE%, and where w* and [u"+w]* are w and un+w, respectively, truncated to 
right, - 2 components. It is important to note that the denominators in this recurrence relation 
are correct since i):ight,-l = 0 for 1 < i < n, and hence 

a n o f J n - 1  (w*) + a n l S n - 1  ([un +wI*) 
AWright,-l + m + 1 h( 1 + Wright,-l) + m + 1 ' 

Sn (w) = 

j i V t i g h t , - l  = O. 
i = l  

Continuing the above simple example with rri = 3 loci and H = 4 clones, the initialization of 
S, arid the two forms of the recurrence can be illustrated by: 

'3 ( (O,  ' ) )  = ( ( O ,  1 ) ) + a 3 1 S 2  ( ( l ,  2))' 

The major barrier to computing with the above recurrence relations is the size of the 
cdlcc.tions %,,. If thcrc are no missing data, then V, has at most cardinality H .  In this case, each 
spanning vector has exactly one non-zero entry, and the number of triples k,, ..., k, in the 
backwards construction of V, is a t  most e = H -  1. Each vector WE%, has the form w = 

(0,. . ,, 0, i )  for 0 < i < H - 1 .  With a modest amount of missing data, assessing the maximum 
cardinality of V, is more complex, but it is still possible to carry out the recursive 
computations. 

Note finally that the above recurrences can easily be adapted to computing approximate 
moments of the Si conditional on the observations and a given order. For instance, to 
approximate the conditional mean of a,, note that 

This dictates substituting the factor 

1 
(ACElj6 w; + m + 1)2  



132 K. LANCE AND M. BOEHNKE 

for the factor 
1 

wherever it occurs in the multiple sum S, and the intermediate sums S,. In particular, the 
denominators in the recurrence (15) should be squared when right,- 1 = k. Whcn k = 1. the 
initial sums rather than the recurrences must be changed correspondingly. These substitutions 
yield a new final sum that can be normalized by the original S, to produce the approximate 
conditional mean. 

OPTIMAL DESIGN OF RADIATION LEVELS 

Our earlier computation of the expected information matrix was based on breakage 
probabilities 8, rather than physical distances 8,. To convert an information matrix entry from 
the 0 parameterization to the 6 parameterization, it is simplest t o  employ the equality 

For instance, 

with y, = AS,. (The quantity y, measures distance in expected numbers of breaks.) If r = f or r 
is not estimated, the standard error 1/[Var ($)I of the maximum likelihood estimate $, of 6, is 
asymptotically ( Because this asymptotic standard error does not depend on the 
particular locus i chosen, it is convenient to drop the subscript i in the following arguments. 

The primary concern of most geneticists will be to find the correct order of the loci. The order 
of a locus relative to nearby loci will be poorly resolved if its estimated distance to one of its 
two flanking neighbours is small compared with the asymptotic standard error of the estimated 
distance. This argues that minimizing the asymptotic coefficient of variation v'[Var (&)I/& x 
(8 J,)-i over the likely range of 6 is more appropriate than minimizing the asymptotic standard 
error over the same range. 

For the moment let us take Si as approximately known. The function S2 J,, which depends 
only on y = A6 and r ,  is somewhat easier to deal with than the asymptotic coefficient of 
variation (S2JJ6Jf. Suppose the maximum of S2 J,, as a function of y occurs at ymax ( T ) .  Then the 
optimal intensity h for a given distance 6 and retention probability r is ymax(r)/6. Figure 1 
depicts a numerical solution for ymax ( r ) .  Evidently from this figure, ymax ( r )  is a rather flat 
function of r symmetric around r = i. At  r = +, ymax = 080,  and as r --f 0 or 1, ymax + 1.21. At 

any reasonable choice of A should satisfy 04/6 < A < 0.9/6, corresponding to the restriction 
0 5 5  < B < 0.59. Since in the Cox et al. (1990) data r x t ,  and this choice of r renders 
the joint information matrix for the 8, and r diagonal, we will feature the lower value 0*8/S 
for h in the remaining arguments. 

For m randomly distributed loci on [0, 13, the optimal choice of A is a more subtle problem. 

r = I o r a  4 r  ymax = 0.85. These considerations suggest that  if we know S approximately, then 
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0.0 0.2 0.4 0.6 0.8 1 .o 

r 
Fig. 1 .  The optimal pxperted number of breaks ymaX between two adjacent loci as a function of the 

fragment retention probability T .  The physical distance 6 between the loci is assumed known. 

The average distance between adjacent pairs of loci is l / (m+ l ) ,  and one might be tempted to  
take h z 0.8 (m+ 1). However, the average distance between adjacent loci may be far from the 
maximum and minimum distances between adjacent loci. Standard arguments from geometric 
probability theory show that  the average maximum distance between adjacent loci is 

In (m- 1 )  " 1 +;+ ... +- - 
m+ 1 m- 1 1-  m+l 

(Read, 1988). This is not too alarming, but the average minimum distance is only 
[(m+ 1 )  ( m -  1)I-l (Read 1988). Thus, to  estimate the minimum distance between adjacent 
loci well, it would be better to take A z 0.8 (m+ 1) (m- 1).  Such a large value of h would 
generate many small fragments in a typical clone, and order for the more distantly spaced 
loci would be hard to  resolve. Clearly, some balance must be struck if a single intensity A is 
used in irradiating all clones. 

One possibility might be to  choose h to  minimize the average value of the coefficient of 
variation z/[Var ($)]/8. As noted earlier, if m points are chosen randomly from [ O ,  11, then the 
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Table 1. Minima of the average coegicient of variation ( 1 7 )  and average standard error (18)  for 

single-dose designs 

Pu’umber of 
loci m 

3 
4 
5 
6 
8 

I 0  
I 2  

I4 
1 6  
18 

3 0  
40 
50 

20 

Minimum value 
of (17 )  

3’54 
3’62 
3.68 
3‘72 
3‘77 
3.8 1 

3.86 
3.88 

3’90 
3’94 

3‘97 

3’84 

3.89 

3.96 

Optimal A 
for (17) 

3.26 
400 

473 
5’44 
6.86 
8.27 
9.66 

1 1 ’ 1  

I 2.4 
I 3.8 
I 5.2 

28.9 
35’7 

22’0 

Minimum value 
of (18) 
0.692 
0.560 
0’47 1 
0.406 
0319 
0263 
0 2 2 3  

0194 
0’ I 72 
0’ I54 
0.140 
0.095 
0072 
0.058 

Optimal A 
for (18) 

I a98 
2.36 
2’74 
3.12 

4’62 
5‘37 
6.1 I 

6.86 
7.60 
8.34 

15’8 

3.87 

1 2 ’ 1  

19.5 

spacing 6 between any two adjacent points has density m( 1 - ~ ? ) ~ - l .  Further, when r = a and 
y = As,  

- Y2 - a2 (e2‘- 1) ‘ 

Minimizing the average coefficient of variation consequently requires minimizing 

Note that the integrand of (17) behaves like a constant times 6-4 for 6 near 0. To tame this 
singularity, one can make the change of variable s = d in (17 ) .  Once this is done, the required 
integrations and minimization can be done by standard numerical techniques. Table 1 lists the 
optimal intensity A for numbers of loci m between 3 and 50 and retention probability r = t .  It 
is evident from the table that the optimal A is nearly a linear function of m for moderately large 
m. The regression equation Aopt = 1.333+0*689 m provides an excellent fit. For comparison to 
the previously suggested value A = 0 8  (m+ l ) ,  the best fitting linear regression for Aopt with 
equal slope and intercept is Aopt = 0.7 1 (m + 1). One should also bear in mind that (17)  is a rather 
flat function of A in the vicinity of the optimal A. For instance, the integral (17) is within 10 % 
of its optimum for m = 5 loci throughout the interval (2*7,68).  For 10 loci and 20 loci, the 
corresponding intervals are (4.9, 11.6) and (9.2, 20.8), respectively. 

For the sake of comparison, the optimal intensity A to minimize the average standard 
deviation of ŝ , 

is also listed in Table 1. Again the optimal A is nearly linear in m; Aopt = 0884+0373 m 
provides a very close fit. As anticipated, the optimal intensity A for (17) tends to be quite a bit 
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l'ahlc 2 .  Arcirr(iC!j of the m i x i m u m  likelihood critwion for  ordering ten random loci on  [0 ,  I ]  
when thP retention probability r = 0.5 

(Results based on 500 trials per intensity.) 

Empirical probability of Stanrlard error of 
correct identification empirical probability Intensity A 

0 '505  
0.8 I 7 
0.908 
0'9 I4 
0.924 
0'924 
0.89 I 
0.864 
0.820 
0817 

0022 
0.0 I 7 
0.0 I 3 
0'0 I 3 
0'0 I 2 
0'0 12 

0.0 I 4 
0'0 I 5  
0'0 I7 
0'0 I7 

1 '0  

2'0 

3'0 
4'0 
5'0 
6.0 
7'0 
8.0 
9.0 
10'0 

larger than that  for (18). Surprisingly, the> optimal h for (17) is slightly smaller than the 
0.8 (m+ 1 )  value associated with thc average interval length l / ( m +  1).  We expected that  small 
distanccs 6 would predominate over large distances S in determining the optimal A.  

Since there are sizable differences between the optimal intensities determined by the two 
criteria. and since our analytic results are limited to  pairs of loci, we undertook a simulation 
study to compare the criteria. Wc simulated experiments using either four or ten loci and 
retention probat)ilitic,s of either 0.2 or 0.5. For the  four-locus experiments, it was possible to  
(valuate the maximum likelihood for all 4'/2 = 12 locus orders for a given sirnulation trial. For 
the ten-locus experiments. th r  maximum likelihood orders were obtained using a stepwise 
locus-ordering algorithm (Barker d n l .  1987 ; Boehnke et al. 1991). In  this algorithm locus orders 
are built one locus a t  a time, with a partial locus order discarded whenever its maximum 
likelihood is a t  least k times smaller than the most likely partial order constructed from the 
same set of loci. For thc simulation study, we set k = lo5. In  those trials in which the true order 
was onc off  orders ticd for the maximum likelihood, credit l / t  was given t o  thc true order. 

Results of the simulation form = 1 0  loci and retention probability r = 0.5 are shown in Table 
2. These results suggest that  maximum ordering accurac~y is obtained for 3.0 < h < 7.0. but 
that  thew is little differcncc in accuracy of ordering throughout the interval 3 4  < A < 7.0. 
Thc optimal intensity lies between the intensities 4.61 = 0.88+0-373 x 10 arid 8.22 = 

1.33+0*689 x 10 suggcsted by the minimum standard crror and the minimum coeficient of 
variation criteria. rcqwtively.  Contrary to  what we anticipated, the optimal intensity h from 
the minimum standard error critcrion is somewhat closer to the optimal simulation intensity A.  
For retention probability r = 0.2, the optimal intensity and the acceptable intensity rangc uwe  
essentially the same as for r = 0.5; however. probabilities of correct ordering were substantially 
rcduccd. bcing in  no case greater than 0.77. Results for four loci were qualitatively thc same. 
The optimal intcnsity h w a s  intcrmediate between the values predicted by minimum standard 
crror and coefficicmt of variation caritwia, but closer to  the former, and there was a broad range 
of intcnsitics that  gave cssent ially equal probabilities of accurate ordering. 

I n  designing experiments, onc can usually do better with a mixture of experiments than with 
any one sitnplc experiment (('hcrnoff, 1979). Let us therefore consider the effect of two radiation 
doses. A fraction a of all clones could be exposed t o  a lower dose A,, and the remaining fraction 
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Table 3.  Minima of the average coeficient of variation (19) for two-dose designs 

Number of 
loci m 

3 
4 
5 
6 
8 

I 0  

I2 

I 4  
1 6  
18 

30 
40 
50 

20 

Minimum value 

3'43 
3'50 
3'54 
3'57 
3.61 
3'63 
3'65 
3.66 
3'67 
3.68 
3'69 
3'7 1 

3'72 
3'72 

of (19) 
Optimal A, 

for (19) 
3.00 
3'63 
4 2 4  
485 
605 
7.22 
8.39 
9 5 5  
1 0 7  
I 1.9 
I 3.0 
I 8.7 
244 
30' I 

Optimal A, 
for (19) 

99'5 
98.8 

I 0 4  
I 13' 
123. 
I 3 4  
145' 
I 5 6  
I 68. 
179' 
238. 
298. 
358. 

101' 

Optimal a 
for (19) 
0922 
0906 
0 8 9 4  
0 8 8 3  
0 8 6 6  
0 8 5 4  
0 8 4 4  
0 8 3 7  
0 8 3 0  
0.825 
0 8 2 1  
0.806 
0.797 
0 7 9 2  

1-a could be exposed to a higher dose A,. For this two-dose experiment, the average 
information entry JJ8 over all H clones becomes 

Minimizing the average coefficient of variation of S now amounts to  minimizing 

relative to the admixture parameter a and the two intensities A, and A,. Our results for this 
delicate optimization problem are displayed in Table 3. The entries in this table suggest that 
the low dose be about 5 YO less than that prescribed by the single-dose optimal design. The high 
dose should be more than an order of magnitude higher and should be applied to 1G20% of 
the clones. Both the low dose and the high dose are nearly linear in m. Unfortunately from a 
comparison of Tables 1 and 3, it appears that only modest gains of about 5% in ordering 
efficiency can be expected from two-dose radiation designs. Major gains in ordering efficiency 
from three or four-dose designs are unlikely. Perhaps sequential designs would yield better 
results, but rigorous mathematical proof of their superiority would be formidable. 

The above pessimistic conclusions about two-dose designs are reinforced by parallel 
computations for the average standard deviation of cf. Minimizing this criterion with respect to 
the admixture parameter a and the two intensities A, and A, yields the same results as the 
single-dose designs. The parameter a is driven to 1, and the intensity A, is driven to  the values 
displayed in the rightmost column of Table 1.  

APPLICATION 

We applied the two Bayesian methods for computing posterior probabilities of locus order to 
the radiation hybrid data of Richard et al. (1991). These data for the proximal long arm of 
human chromosome 11 involve m = 16 markers typed on H = 101 hybrids. The data are nearly 
complete with each marker typed on a t  least 99 hybrids. The markers MTC, P l l E H ,  HSTF1, 
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Table 4. Best locus order compared by  likelihood (L)  and Posterior probability ( P )  ratios using 
the abbreviations from Table 5 

(Rank refers to  the maximum likelihood rank. The symbol * indicates that  the order was never visited 
by the Metropolis algorithm. Single underlines indicate block inversions with respect to the most likely 
locus order ; double underlines indicate more complex rearrangements.) 

Maximum 
Rank Locus order likelihood L J L ,  

I 1 2 3 4 5 6 7 8  9 1 0 1 1 1 2  I 

2 1 2 3 4 5 6 7 8  9 1 0 ~  90 
3 1 2 3 4 5 6 7 9 1 0  8 1 1 1 2  

4 1 2 3 4 5 6 7 8 ~ 1 1 1 2  
I37 
774 

~~ 

5 1 2 3 4 5 6 7 8 1 1 1 2 1 0  9 3 184 
6 1 2 3 4 5 6 8 7  9 1 0 1 1 1 2  3 796 
7 1 2 3 4 5 6 7 8 1 2 1 1 1 0  9 5 492 
8 1 2 3 - 6 7 8  9 1 0 1 1 1 2  12599 
9 1 2 3 4 5 6 7 9 1 0  8 1 2 1 1  21 I 5 5  

10 1 2 3 4 5 6 7 8 1 0  9 1 2 1 1  24939 
11  1 2 3 4 5 6 8 7  9 1 0 ~  339680 
12 I 2 3 6 7 8 9 10 1134400 

Metropolis 
Pl /Pi 

458 
138 

1650 

5823 

I 

* 

* 
* 
* 
* 
* 
* 

Approximate 
Metropolis integral Approximate 

p,  P l / P i  integral P ,  
0.9899 I 09849 
0'0022 138 00072 

00072 1.51 00065 
00006 I253 00008 
0'0000 5 533 00002 

00000 9 7-09 0000 I 

00000 15 577 0'000 I 

00000 34535 0'0000 

0'0000 724223 00000 

00002 5 266 0'0002 

0'0000 64 166 00000 

o'oooo 2141181 I 00000 

Table 5 .  Locus positions for the best locus order in the Richard et al. (1991) data 
Map lengths for the Metropolis and approximate integral methods have been normalized to  2666 

R,,,,, the maximum likelihood map length. 

IAOCUS 

CINH 
OSBP 
CD5 
PGA 
FTHBL 
COX8 
PYGM 
SEA 
K R N l  
MTC 
UST3 
P P l a  

Abbrev. 
I 

2 

3 
4 
5 
6 
7 
8 
9 

I 0  
I 1  

I2 

Cox el al. 
position 

050 

073 
0.87 

I '42 
1.65 
1.85 

2.26 
2.63 
2.77 

0'00 

1'01 

2'12 

Max. likelihood 
position 

041  5 
0622 
0.749 
0.876 
1.258 
1.489 
1'694 
I ,968 
2108 
2'5 I7 
2.666 

0000 

Metropolis 
position 

0395 
0.608 
0.747 
0.887 
1'252 
1.486 
1.696 
1.967 

0000 

2' I20 

2.505 
2.666 

Approx. integral 
position 

0374 
0 5 8 2  
0722 
0866 
1'235 
1'474 
1.695 
1.967 
2.123 
2'503 
2,666 

0000 

and INT2 were concordant in all hybrids. Since such markers cannot be ordered relative to one 
another, all but MTC were excluded from our analysis. Markers CD5 and CD20 also were always 
concordant ; CD20 was excluded. Thus, we analysed data on m = 12 markers. 

To obtain a set of locus orders for Bayesian analysis, we use the stepwise algorithm described 
above and in more detail in Boehnke et al. 1991. With k = lo2', we identified 12 locus orders 
with maximum likelihoods no more than 1O'O times smaller than that of the best maximum 
likelihood order. The best maximum likelihood order coincides with the one arrived a t  by 
Richard et al. (1991) using the two-point method-of-moments ordering strategy of Cox et al. 
(1990). Table 4 presents the 12 best maximum-likelihood orders identified, together with their 
likelihood ratios relative to the best order. For example, the second ranked maximum likelihood 
order - obtained from the best ranked order by inverting loci GST3 and P P l a  -had maximum 
likelihood 90 times smaller than that of the best order. Table 5 displays the estimated locus 
positions under the best maximum likelihood order. 



K. LANCE AND M. ROEHNKE 

To prime the Metropolis method, we started with a randomly chosen locus order and then 
ignored the results of the first lo5 steps. We estimated locus order probabilities as sample 
proportions of their occurrences in the next los steps. Table 4 presents the posterior 
probabilities for the various orders as well as the ratios of these posterior probabilities relative 
to the posterior probability of the best order. 

The best maximum likelihood order also was the most probable order under the Metropolis 
method with an estimated posterior probability of 99.0%. The next three most likely locus 
orders were the same as under maximum likelihood, although the relative ranks of the second 
and third best orders were reversed. These three orders together had an estimated total 
posterior probability of 1.0%. Only one other locus order had an estimated posterior 
probability greater 0. The fact that seven of the most likely locus orders were never visited 
suggests that the Metropolis algorithm may need to sample far more than lo6 iterates if 
accurate posterior probabilities beyond the first few locus orders are desired. For the locus 
orders visited, posterior probability ratios were not strikingly different from the corresponding 
maximum likelihood ratios (Table 4). Carrying out  the Metropolis analysis required about 16 h 
on our 486 33 MHz computer. 

The results for the approximate integral method also are summarized in Tables 4 and 5 .  In 
Table 4 the ranks of the 12 best orders coincide with those under maximum likelihood. I t  is 
noteworthy that the posterior probability ratios are uniformly larger than the maximum 
likelihood ratios. Thus, the approximate integral method provides stronger support for the best 
order then does maximum likelihood. The most probable order has approximate posterior 
probability of 98*5%, and in contrast to the Metropolis analysis, no posterior probability is 
estimated as 0. The posterior map positions for both Bayesian methods are similar and agree 
well with the maximum likelihood map positions after normalization to the total maximum 
likelihood map length (Table 5). Agreement with the map given by the method-of-moments 
estimates (Cox et al. 1990) is less striking. 

DISCUSSION 

Radiation hybrid mapping as refined by Cox et al. (1990) is potentially one of the most 
powerful tools in the arsenal of gene mappers. It offers a level of resolution intermediate 
between that of linkage analysis and in situ hybridization on one hand and pulsed-field gel 
electrophoresis on the other. Radiation hybrid mapping is inherently a statistical technique. 
Avoiding the uncertainties of fragment generation and retention is impossible since these are 
a t  the heart of the technique. The logical response to these uncertainties is to bring modern 
statistical methods to bear on the problems of locus ordering and distance estimation. The 
current paper discusses in depth a variety of statistical methods. With the exception of the 
minimum breaks criterion for ordering, all of these methods depend on a precise model for 
fragment generation and retention in the individual clones. While the model discussed here and 
elsewhere (Boehnke et al. 1991; Bishop & Crockford, 1992; Boehnke, 1992; Chakravarti & 
Reefer, 1992; Green, 1992) is undoubtedly false in minor details, it  does lead to  reasonably 
robust conclusions and does provide a conceptual framework for examining subtle quantitative 
issues such as optimal design of radiation dose and posterior probabilities for order. 



Design for gene mapping by radiation hybrids 139 

Minimum obligate breaks provides an attractive criterion for locus ordering (Boehnke et al. 
1991; Bishop & Crockford 1992; Boehnke, 1992; Weeks et al. 1992). I ts  main virtue is 
conceptual and computational simplicity. Many of the concrete assumptions necessary for 
maximum likelihood and Bayesian methods are never explicitly invoked for the minimum 
obligate breaks criterion. Barrett ( 1992) has recently shown the minimum obligate breaks 
criterion to be statistically consistent as the number of fully typed clones tends to infinity. 
However, implementation of even this simple criterion encounters difficulties when the number 
of loci reaches about 10. The sheer number of locus orders rules out exhaustively evaluating all 
orders. Fortunately, short cut techniques such as branch and bound, stepwise locus ordering, 
and simulated annealing can identify the best orders without actually visiting all orders (Barker 
rt (11. 1!H7 ; Eochnkc rt nl. 1991 ; VC'eeks et al. 1992). The real value of the minimum obligate 
breaks criterion is the ease with which it can be combined with these search techniques to 
identify good orders for further analysis. Other nonparametric methods are discussed by Falk 
(1991) and Weeks el al. (1992). 

Maximum likelihood and Bayesian methods have the advantage of providing distance 
estimates as wcll as criteria for ordering. These methods are naturally more model dependent 
and more computationally intensive than minimum obligate breaks. Maximum likelihood 
estimation is familiar to all geneticists involved in linkage analysis. Boehnke et al. (1991) show 
how maximum likelihood can be carried out with reasonable computational speed via an E M  
algorithm. In the current paper we have stressed the nature of the expected information matrix 
J. (Explicit expressions for the entries of J are available in our section on maximum likelihood.) 
The inverse of J gives the asymptotic standard errors and correlations of the parameter 
estimates for a given order. When the fragment retention probability r = f or when r is not 
estimated along with the breakage parameters, then the breakage parameter estimates are 
asymptotically uncorrelated. There is also maximal information on the breakage parameters 
when r = f. 

Guerra et al. (1992) have emphasized the importance of computing posterior probabilities for 
locus orders. Posterior probabilities offer the most logically satisfying criterion for determining 
order. In the present paper we have adopted a different Bayesian prior from that of Guerra 
et al. (1992). We offer two techniques for computing posterior probabilities for locus orders under 
our prior. The Bayesian Metropolis algorithm is a generic technique for computing expectations 
with respect to posterior probabilities. Since this algorithm is not well known even in statistical 
circles, we have developed the necessary theory in detail. At this juncture the algorithm appears 
feasible and furnishes reasonable posterior probabilities. Computation times on a personal 
computer are in hours rather than in microseconds for minimum obligate breaks or seconds for 
maximum likelihood. With minor modifications the Bayesian Metropolis algorithm is applicable 
to locus ordering by linkage analysis of pedigree data. However, the longer computation times 
per likelihood in linkage analysis may render the method impractical for ordering large numbers 
of loci a t  this time. 

Our second algorithm for computing posterior probabilities for locus orders is specific to the 
radiation hybrid problem. With no missing data, it is even faster than maximum likelihood. 
However, the presence of untyped loci in the hybrid clones drastically slows the algorithm. For 
the Cox et al. (1990) data, which have about 17 YO missing observations, computation times 
range from 8 h to 3 days per order on our 486 computer. The Metropolis algorithm with lo6 
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steps takes about 17 h for these data. One possible source of incomplete data is the natural 
tendency of geneticists to add more loci over time. If some of the original clones are no longer 
available for typing, then there is no avoiding missing observations. Perhaps the substitution 
of typing by the polymerase chain reaction for typing by Southern blots will lead to  more nearly 
complete typing. In the presence of nearly complete typing, our second algorithm will probably 
be the algorithm of choice for comparing candidate locus orders. 

Our analysis of optimal radiation dose does suggest a simple rule of thumb. Given the range 
of retention probabilities 0.2 < r < 0.5 typical of recent radiation hybrid experiments, it 
appears that the optimal expected number of breaks per hybrid between two adjacent loci 
should be about 055. This translates into a breakage probability between the loci of about 0.42. 
We base this rule partly on simulation evidence, and partly on minimizing the average 
coefficient of variation and the average standard error of the maximum likelihood estimate S 
of the distance 6 between the loci. (The coefficient of variation is the standard error of s^ divided 
by 6.) At this time the rule should be considered tentative. Better theoretical criteria or more 
extensive simulations may suggest improved rules. We do wish to emphasize that a broad range 
of dose levels lead to essentially the same probability of correctly determining locus order. 

Goss & Harris (1975) estimate that the expected number of breaks between two loci is 
proportional to D1'6, where D is dose. It is fairly straightforward to directly count the number 
of breaks B per human chromosome by in situ hybridization (Cox et al. 1990) for a given dose 
D .  Thus, if we assume m loci reside in a chromosome region that is a fraction n of the total 
chromosome length, then the expected number of breaks between two adjacent loci of the group 
will be nB/(m+ 1). To achieve 0.55 expected breaks between two adjacent loci, the dose D that 
results in B breaks per chromosome should be multiplied by ([OM (m+ l)]/nB)0""25. 

It is tempting to subject the cells to more than one level of radiation. Our analysis of two- 
dose optimal designs suggests that this will not be extremely helpful. The average value of the 
coefficient of variation for the distance estimates is diminished by only about 5% when some 
cells are irradiated at a low dose and other cells at a high dose. Two-dose designs under the 
average standard deviation criterion give no improvement over the best single-dose designs. 
Possibly if irradiation is done in two rounds, with the dose for the second round chosen after 
analysis of the first round of typing, results would be more favourable. There may also be more 
definitive criteria for locus ordering that would show two-dose designs in a better light. 
However, it makes a certain amount of sense to use a single dose for mapping the majority of 
loci, leaving the order of closely spaced loci to be resolved by pulsed-field gel electrophoresis 
(Cox et al. 1990). Furthermore, there is some evidence that raising radiation dose decreases 
fragment retention probability (D. R.  Cox, personal communication). Perhaps, the longer 
irradiation periods necessary for higher dose levels somehow interfere with the biological 
mechanisms for fragment retention. We have not taken these complications into account, but 
they certainly argue against using extremely high dose levels. 

In summary, radiation hybrid mapping is destined to play a major role in improving the 
speed and resolution of human gene mapping. Forging the best statistical tools for the design 
and analysis of experiments is just as crucial to radiation hybrid mapping as it is to 
conventional pedigree methods of linkage analysis. We hope the partial solutions offered here 
will help our laboratory colleagues as well as stimulate our fellow statisticians to further 
research. 
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APPENDIX 

The text relegated two tasks to the appendix. First, we need to check that the posterior 
density p(y I obs) is invariant under the specific transition scheme outlined for the Bayesian 
Metropolis algorithm. Recall that the problem is that the proposal density t ( y *  I y) is not a 
legitimate density with respect to Lebesgue measure ,u on r = [0, lIm. In fact, unless we choose 
to invert all loci simultaneously, the proposal density lives on a subspace of [0,1]". Let 2 c 
{ 1, . . . , m} define the loci we choose to  invert and resample. We can project any point YE r onto 
the point yz corresponding to the coordinates of the loci in 2. We can likewise index the 
proposal density t, (yz I yz) and transition density qz (yz I yz) by 2 and indicate their dependence 
on the relevant coordinates. This notation makes it clear that the proposal density is a density 
with respect to the product measure 

Pz = n P Z ?  
Z S Z  

where the pz are copies of l-dimensional Lebesgue measure. (Our semirigorous arguments will 
omit technical details of measurability.) 

To prove invariance we again integrate the detailed balance relation (9) against a bounded, 
continuous function g(y*). However, now instead of integrating with respect to the product 
measure p(y*)  x ,u(y), we integrate with respect to a more complicated product measure. Let Y 
be the complement of the set 2. If the projected point y y  and the measure py are defined in the 
obvious manner, then y ( y )  = pz(yz) x y y ( y y ) .  Also let wyy be the unit point measure a t  y y .  With 
this notation, we integrate with respect to 

wy* (Y:) X P Z  (Yz)  X P Z  (Yz) X P ( Y Y ) *  

The first factor of this product measure simply forces y: = yy. Integration of g(y*) against the 
left hand side of the detailed balance equation (9) gives 
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Let uz be the probability that  we choose the set Z of loci to invert and resample. Multiplying 
the above quadruple integral by a, and summing on Z produces 

Let 

be the probability of rejecting the proposed move from the current point y conditional on 
selecting the set Z of loci to  invert and resample. Adding 

to (20) yields the equality E[g(U,+,)] = E(ELg(U,+,) I U,]) in disguised form, where U, is the 
current state of thc Markov chain and Uk+l is the next state. 

Now choose a particular Z and integrate g(y*) against the right hand side of the detailed 
balance equation (9). Taking into account that  

w y , . ( Y : ) x P Y ( Y Y )  = w y ; , ( Y Y ) X P Y ( Y * y ) ,  

integration against the right hand side gives 

Multiplying this second quadruple integral by az and summing on 2 in turn yields 

cQZJ J J g ( Y * ) q z ( Y z ~ ~ ; ) d ~ ~ , g  ( Y ~ ) ~ P Z  (Y~)P(YZ I O ~ ~ ) ~ P ( Y * ) .  

If we add (21) to  this, the final result for the right hand side of the detailed balance equation 
is 

Z 

SVIY)P(Y I obs) WY). 

Once again we have demonstrated tha t  E[q(U,+,)] = E [  g(U,)], and this proves invariance. 
Our second task is to check that  the Bayesian Metropolis algorithm is ergodie. As discussed 

in the text, it suffices to  prove the mixing condition Pr("r)(y,A) > 0 for all sets A with 
&A) > 0, for p-almost all y, and for some positive integer ny. In  general, the conforming points 
y will depend on A and the integer ny will depend on both y and A .  First we observe tha t  there 
is some permutation cr of { 1, . . . , m} such that A n {y* : y&) < . . . < y$(,,} has positive p-measure. 
Without loss of generality, we can assume that  cr is the identity permutation and tha t  
A c {y* : y: < . . . < y:}. Now the likelihood satisfies L(obs I y)  > 0 provided no two coordinates 
of y are equal. Equality of two coordinates implies two  loci coincide, and this condition is 
incompatible with the data  if there is a t  least one obligate break between the two loci. Thus, 
p-almost all points proposed from the current point will be acceptable with positive probability. 
The ambiguous situation of some coordinates being equal is almost never reached, and it is 
sensible not to start the chain in it. 
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To verify ergodicity we first argue that, starting a t  any y, it is possible to bring the loci into 
the reverse order m, . .., 1 in a finite number of steps. (Our reason for choosing the reverse order 
will be clear in a moment.) In fact, it is obvious that the order of the loci implied by the 
coordinates of y can be rearranged to the order m, . . ., 1 by a finite number of pairwise inversions 
of adjacent loci. This is just a consequence of the fact that  any permutation can be written as 
a composition of pairwise transpositions. Since the probability of choosing to invert a given 
adjacent pair is positive, and there always is a positive probability of accepting a proposed 
rearrangement of a pair once it is chosen, there is a positive probability of success for all steps 
of the required sequence of pairwise inversions. 

Once the reverse order m, ..., 1 has been achieved, one additional step of the chain will land 
us in the set A with positive probability; we merely need to  invert all loci simultaneously. This 
particular inversion produces the order compatible with A .  By the nature of selecting order 
statistics from [0,1], the transition density for resampling the m loci is 

where y* is the destination point and yX is the initial point. Integrating this positive density 
over A with respect to ,u gives a positive probability of landing in A .  This proves ergodicity. 


