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SUMMARY. This research gives methods for nonparametric sequential monitoring of paired censored sur- 
vival data in the two-sample problem using paired weighted log-rank statistics with adjustments for depen- 
dence in survival and censoring outcomes. The joint asymptotic closed-form distribution of these sequentially 
monitored statistics has a dependent increments structure. Simulations validating operating characteristics 
of the proposed methods highlight power and size consequences of ignoring even mildly correlated data. A 
motivating example is presented via the Early Treatment Diabetic Retinopathy Study. 
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1. Introduction 
Paired designs with positively correlated outcomes have his- 
torically minimized variability in comparisons; hence, these 
designs gain power over similarly sized independent group 
studies. For paired uncensored times-to-event, tests such as 
Wilcoxon’s signed-rank test or the paired t-test are often used. 
But survival endpoints occurring after long intervals suffer 
from right censoring. An example of paired censored survival 
data is found in the Early Treatment Diabetic Retinopathy 
Study (ETDRS), which enrolled 3711 patients with mild-to- 
severe nonproliferative or early proliferative diabetic retinopa- 
thy in both eyes from April 1980 to July 1985 (ETDRS Re- 
search Group 1991a,b). One eye per patient was randomized 
to early photocoagulation and the other to deferral of photo- 
coagulation until detection of high-risk proliferative retinopa- 
thy. The survival endpoint was time to severe visual loss, with 
loss defined as visual acuity less than 51200 at two consecutive 
visits. Because patients were recruited and followed in the ET- 
DRS over 9 years, accumulating patient survival data was pe- 
riodically monitored to ensure timely detection of treatment 
effects. Analyses prepared roughly biannually were used by 
a Data Monitoring Committee (DMC) to determine whether 
the trial should end early or be continued. 

One popular strategy for monitoring patient treatment re- 
sponses while protecting overall type I error is to use group 
sequential methods with error spending functions of Lan and 
DeMets (1983) stylistically modeled as in Pocock (1977) or 
O’Brien and Fleming (1979). Group sequential methods for 
weighted log-rank tests with independent groups have been 
studied extensively (Tsiatis, 1981, 1982; Sellke and Siegmund, 
1983; Slud, 1984; Gu and Lai, 1991). However, little group se- 
quential methodology has been developed for paired censored 
survival data as in the ETDRS. Chang, Hsiung, and Chuang 

(1997) considered sequential methods for frailty models as- 
suming common pair entry times. A few authors have studied 
sequential designs for independent groups with multiple cor- 
related censored outcomes. Lin (1991) devised a nonparamet- 
ric weighted linear rank statistic for monitoring correlated 
nonidentically distributed censored outcomes across two in- 
dependent groups, while Mufioz, Bangdiwala, and Sen (1997) 
proposed parametric models for monitoring correlated pairs 
of similar censored outcome types across independent groups. 

This research presents an adaptation of Gill’s (1980) family 
of weighted log-rank tests, adjusted for correlation within the 
paired survival random variables and within the paired cen- 
soring random variables] and methodology for sequentially 
monitoring these nonparametric statistics. Related adapta- 
tions of rank-based tests in the case of a single analysis have 
been considered by Dabrowska (1989) and Huang (1999). Sec- 
tion 2 describes the paired weighted log-rank test (PWLR) 
for a single analysis, the joint sequential distribution of these 
tests, and related stopping boundaries. Simulations in Section 
3 verify the operating characteristics of the recommended se- 
quential monitoring procedure and show consequences of ig- 
noring the pairing in the censored survival outcomes. This 
section also revisits the ETDRS. A discussion follows in sec- 
tion 4. 

2. Joint Sequential Distribution of PWLR Statist ics 
To understand sequential theory with dependent times to 
event, an explanation of notation is required. Let g = 1 , 2  
denote treatment group and i = 1 , .  . . , n denote either an indi- 
vidual who experiences both treatments, as in the ETDRS, or 
a matched pair whose members receive opposing treatments, 
as in a sibling study. These n individuals or n matched pairs 
are accrued into the trial at times E,i for i = 1,.  . . , n and 
g = 1,2. In many cases, Eli = E2i is an individual’s en- 
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try time; otherwise, Eli and E2i denote potentially different 
times. Entry times are assumed to be bounded positive ran- 
dom variables that are identically distributed within group g 
with distribution function Gg(e) = P(Eg I e )  and Eglii inde- 
pendent of Egzi2 for il # i 2 .  Each individual or matched pair 
denoted by i has two internal correlated survival times Tgi, 

g = 1 , 2 ,  measured from their entry time. For instance, in the 
ETDRS, T1i and TzZ measure time to vision loss for eyes ran- 
domized to deferred and early photocoagulation, respectively, 
within individual i. For data analyzed at time t ,  outcomes 
with Tgi > t - Egi have not occurred prior to the analysis 
time and are censored. Let Vgi, g = 1 , 2 ,  i = 1 , .  . . , n, be po- 
tential censoring times due to random follow-up loss. Aside 
from potential dependence between Eli and Ezi, between T1i 

and Tzi, and between V1i and V2i, it is assumed that Egi, Vgi, 
and Tgi are independent for all g = 1 , 2  and i = 1,. . . , n. Ob- 
servable random variables for group g at analysis time i! are 
{Xgi ( t ) ,  Agi ( t ) } ,  for all i = 1,. . . , n such that Egi 5 t ,  where 
Xg,( t )  = min(Tgi, Vgi,t - Egi)  is the observed time on study 
at analysis time t and Agi(t) = I{Tgi 5 min(t - Egi, Vgi)> is 
the failure indicator at time t. Indices for calendar time me& 
sured from the start of the study and indices for internal pa- 
tient time measured from entry into the study will frequently 
be used in combination. The index t will denote calendar time 
of an analysis and 3: will index internal patient time. 

For each group g and calendar time t ,  define the number of 
events occurring no later than internal time z as N g ( t , z )  = 

I {Xgi ( t )  I z, Ag,(t) = 1) for 0 5 x 5 t ,  the number 
at risk at x as Yg(t ,z)  = Cry=, I { X g i ( t )  x}, and sample 
size enrolled ng(t)  = Cyyl f ( E g i  I t ) .  The number of entered 
correlated pairs across treatment groups g1,g2  for analysis 
times t 1 , t 2  is nglg2(t l , t2)  = C?=lI(Egli I t1,Egzi I t 2 ) .  
Often when outcome pairs are attributed to an individual, 
n ~ ( t )  = n2(t) = 7212( t , t ) .  If at the final analysis time all 
pairs have been entered, nl(t)  = n2(t) = nia(t,t) = n. 
However, this method allows individual pair members to re- 
main unentered at the final analysis if the number of en- 
tered complete pairs is approaching CO. Let J ( t , z )  = 1 if 
Yl(t,z)Y2(t,z) > 0 and J( t , z )  = 0 otherwise. Assume a 
weighting process, &(t, z), such that 

P 
sup 

XE[O, t )  
p ( t ,  z) - w(t, .)I + 0 

for constant w ( t , x )  and that vanishes for J ( t , z )  = 0. Let 
n*(t) = nl( t )np(t) /{nl( t )  +nz(t)}.  At each analysis time t ,  
consider the asymptotically normal family of test statistics 

{Yl( t ,u)}- ldNl( t ,u)  

extended to handle correlation in the paired censored survival 
times. For a paired log-rank test, 

and for a paired Gehan test, 

Variability of these PWLR tests is derived in the Appendix 
and requires notation for joint and conditional cause-specific 
hazards of the correlated endpoints. To reduce notation, the 
pair index, i, will be dropped in the following. Define 

A91 9 2  {( t l?  21 1, (t2,22) 1 
1. = lim __- 

Ax1 ,Axz-o Ax1 A X ~  
x P{,l I Xg,  ( t l )  < 2 1  + A ~ I ,  

2 2  I xg,(tz) < 2 2  + Ax2, 

A,, ( t l )  = 1, 
Agz ( t 2 )  = 1 1 Xgl (t l)  2 2 1 ,  

-7192 ( t 2 )  2.21 

as the joint cause-specific hazaxd for the correlated endpoints 
in groups g1 # 92  at internal times XI and 52, where outcomes 
related to g1 and g2 use data available at calendar times tl and 
t 2 ,  respectively, with (0 5 2 1  5 t 1 , O  5 22 5 t 2 ) .  Also define 
the cause specific conditional hazard of failure for treatment 
group g1 at study time z1 as 

Xg1lgz{(tl,z1) I ( t 2 7 z 2 ) )  

1 
= lim --P{xl 5 X g , ( t l )  < z1 + A z l ,  

Axl+O 

A g i  @I) = 1 I Xg,  ( t l )  L 
X g z ( t 2 )  222)r 

where outcomes related to  g1 and 92 use data available at 
calendar times t i  and t 2 ,  respectively, and where the risk set 
is restricted to patients with X,, ( t l )  2 z1 and X g z ( t 2 )  2 z2, 

(0 5 5 1  I t 1 , O  I 5 2  5 t 2 ) .  Let the marginal cause-specific 
hazard for group g at calendar time t and internal time z, 
0 5 x I t ,  be 

1 
X g ( t ,  x) = lim -P{z 5 X g ( t )  < z + Ax, 

~ x - 0  AX 
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g=1 \ 

where .rrg(t) is the probability at calendar time t of being 
entered into group g with estimate + g ( t )  = ng(t)/{ni(t) + 
nz(t)} and O ( t )  is the proportion of dependent observations 
in the two treatments at calendar time t with estimate e( t )  = 
2nlp(t,t)/{nl(t) +nz(t)). Pooled and unpooled estimates for 
u2(t) are given in the Appendix. In cases where individuals 
enter a study and immediately receive two competing treat- 
ments, as in the ETDRS, rg(t)  = 0.5 and e(t) = 1. When 
matched pairs have individual pair members with unentered 
counterparts at analysis time t ,  O ( t )  affects the degree to 
which u2(t)  deviates from the usual variance under indepen- 
dence. When censored time-to-event pairs are independent, 
u2 (t)  corresponds to the variance described by Gill. 

Further notation is required to describe the covariance of 
7 ( t l )  and 7 ( t ~ ) ,  where tl 5 t 2 .  Let 

Hg ( t ,  Z) = P(Eg 5 t - Z, Vg 2 z I Eg 5 t )  

be the censoring survival function among those in group g 
entered by t .  Define xg(t l  I t 2 )  as the probability of entry 
in group g by tl given entry in group g by t 2  with estimate 

tion of dependent observations in groups g1 and gz  at analysis 
times tl and t 2 ,  respectively, with estimate 

ffg(t1 I t 2 )  = ng(tl)/ng(tz) .  Let e g l g 2 ( t 1 , t 2 )  be the propor- 

69192 ( t l ,  t 2 )  = 2n9192 (tl 7 t2 ) / {7%1 ( t l )  + n g z  ( t 2 )  1. 
Let ygIg2 ( t l ,  t 2 )  be the proportion of observations at analysis 
time t l  from group g 1  among the total number of observations 
for group g1 at time t l  and for group 9 2  at time t z  with 
estimate rjlglg2 ( t i ,  t 2 )  = ngl ( t l ) / { n g ,  (t i)  + ngz ( t 2 ) ) .  Define 

+9192 (tl,  t 2 )  

An estimator, GgIg2 ( t l ,  t z ) ,  for Gglg2 ( t i ,  t z )  is constructed 
from the estimates of its components. Finally, the covariance 
of I ( t 1 )  and T ( t 2 )  is 

2 

ff(t1,tZ) = C{x~-gctl,.rr,_,(t2)*g(tl I t 2 ) ) i  
g=1 

2 

g=1 

as shown in the Appendix with pooled and unpooled esti- 
mates. If t l  = t 2  = t ,  u(t1, t 2 )  reduces to u2(t). Otherwise, 
with dependent endpoints, u(t1, t 2 )  does not directly relate 
to the variance of a single analysis. Dependence in paired 
censored survival times belies any possibility of an indepen- 
dent increments covariance structure of the repeated tests. 
This differs from the unpaired log-rank test, which has inde- 
pendent increments. To calculate sequential boundaries, sim- 
ulation techniques are used. A suitable spending function is 
selected such as the O’Brien-Fleming (OF) style function, 
aof = 2 - ~ Q ~ ( z , / ~ / v ~ / ~ ) ,  where v corresponds to the pro- 
portion of information collected at an analysis. Multivariate 
mean zero normal random variables with the observed co- 
variance of current and previously calculated 7 ( t )  statistics 
are simulated to estimate critical values giving spending func- 
tion allocated type I errors. The ETDRS example in Section 
3 provides additional instruction on how to construct these 
boundaries. 

3. Simulation Results and ETDRS Example 
To verify size of the proposed sequential monitoring strategy, 
1000 Monte Carlo simulations with no treatment difference 
using 150 failure time pairs were generated from the bivari- 
ate log-normal distribution for increasing values of correla- 
tion. Log scale means and variances were 0.3 and 1, respec- 
tively, for each treatment failure time. For each correlated 
pair, a common uniform(0,l) study entry time was simu- 
lated. Paired and unpaired analyses with log-rank and Gehan 
weights and pooled estimates for variances and covariances 
were conducted at years 3,  4, and 5 using calendar time as a 
surrogate for statistical information in the OF spending func- 
tion with overall type I error of 0.05. Observed sizes located in 
Table 1 for the unpaired sequentially monitored log-rank test 
verify the overly conservative nature of analyses that do not 
take advantage of the correlated failure time structure while 
PWLR tests give appropriate type I error rates. 

Simulations in Table 1 mirroring the above but under an 
alternative hypothesis with log-scale means of (0.5, 0.3) in 
the 150 failure time pairs indicate power gains with increas- 
ing positive correlation across treatment groups using PWLR 
tests. In all simulations conducted under the alternative hy- 
pothesis, the marginal distributions of the two groups un- 
der comparison remain unchanged. Not only do sequential 
monitoring strategies unadjusted for dependence fail to take 
advantage of extra precision afforded by the data structure, 
but power seems to diminish with rising correlation, an effect 
that can only partially be explained by the observed conserva- 
tive test sizes. This is likely an artifact of the two estimated 
weighted cumulative hazards tending to vary in tandem in 
the presence of positive correlation. The loss of power un- 
der comparable marginal distributions using unpaired tests 
provides further evidence that accounting for the dependent 
structure of the data is crucial. Table 1 results were essentially 
unchanged when unpooled variance and covariance estimates 
were used. 
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Table 1 
Size and power results f o r  paired and unpaired testsaib 

Pair-induced correlation (log scale) 

0% 30% 60% 90% 

Size results Paired log rank 0.053 0.051 0.055 0.055 
Paired Gehan 0.045 0.047 0.051 0.052 
Log rank 0.052 0.023 0.006 0.000 
Gehan 0.047 0.025 0.002 0.000 

Power results Paired log rank 0.333 0.433 0.643 0.979 
Paired Gehan 0.370 0.483 0.730 0.995 
Log rank 0.344 0.337 0.294 0.176 
Gehan 0.369 0.355 0.329 0.203 

a 1000 Monte Carlo simulations with 150 censored failure time pairs were generated. 
Empirical variance and covariance estimates for the test statist,& over 1000 simulations cor- 

responded closely with the average closed-form variance and covariance estimates. 

Table 2 
ETDRS observed integrated hazard digerences and 

critical values for  paired and unpaired analyses 

Spent Observed integrated Paired LR LR 
Analysis error hazard difference boundary boundary 

1 
2 
3 
4 
5 
6 
7 

- + 8  
9 

2 . 8 5 ~  

5 . 7 4 ~  

1.31 x 

1 . 3 3 ~  
2 x X  
8 . 2 9 ~  

1 . 4 2 ~  lop4 

1.18 x lop3 

2 . 3 4 ~  

0.010 
0.014 
0.021 
0.024 
0.022 
0.023 
0.021 
0.026 
0.027 

0.024 
0.023 
0.023 
0.025 
0.025 
0.025 
0.025 
0.025 
0.026 

0.028 
0.028 
0.029 
0.030 
0.030 
0.031 
0.032 
0.031 
0.032 

Similar messages appeared in the ETDRS introduced ear- 
lier. The DMC, which did not have access to this research, 
nevertheless recognized statistical issues relating to correlated 
data. Their exploratory analysis suggested “that not taking 
pairing into account led to conservative tests” (ETDRS Re- 
search Group, 1991a, p. 749). However, their trial was still 
able to detect a longer time to sight deterioration for the pho- 
tocoagulation group. To make this example more interesting, 
it is restricted to 999 patients (1998 eyes) entered prior to 
February 15, 1983, and taking placebo as part of a separate 
randomization, reducing the original study size by nearly 75%. 
The first analysis uses data available on April 8, 1985, when 
50 events had been observed, with analyses continued biannu- 
ally until April 8, 1989. An OF function is used to spend 1% 
type I error, where the ratio of deaths observed by the interim 
analysis compared to the total deaths on April 8, 1989, is used 
as a surrogate for the proportion of information collected. 

Table 2 displays the resulting type I errors, observed inte- 
grated hazard differences {n*  ( t ) } - ’ b ,  and estimated criti- 
cal values corresponding to paired and unpaired log-rank (LR) 
analyses. In obtaining boundaries, 10,000 multivariate mean 
zero normal random variables with the observed pooled co- 
variance corresponding to the observed integrated weighted 

hazard differences were simulated. Specifically, the first cut- 
point identifies the value that gives 2.85 x lop5 type I error 
in the tails of the first marginal normal distribution. The sec- 
ond cutpoint, which identifies the value giving 1.42 x lop4 
type I error in the tails of the second marginal normal distri- 
bution, is estimated among the multivariate normal variates 
that did not surpass the cutpoint at the first analysis. Using 
the PWLR tests, a treatment benefit for early photocoagu- 
lation is detected at the eighth analysis. Significance would 
not be achieved without accounting for the correlation in this 
smaller dataset. 

4. Discussion 
This research presents closed-form asymptotic distributions of 
PWLR tests along with nonparametric maximum likelihood- 
based estimates of relevant variances and covariances and 
group sequential monitoring procedures related to these statis- 
tics. Currently, many trials monitor paired survival endpoints 
.with study designs based on independent samples and ac- 
companying software while acknowledging conservativeness. 
However, taking advantage of positive correlation in paired 
outcomes gives large benefits in terms of both type I error and 
power. Simulations in Section 3 also indicate that, for paired 
censored survival data alternatives, power using independent 
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group design and analysis methods might not meet expecta- 
tions. This is a cause for concern in current practice that the 
proposed methods eliminate very nicely. Because this work 
extends a well-understood family of hypothesis tests used in 
sequential monitoring, the adjusted testing procedures should 
appeal to the average practitioner since the process of transi- 
tion to these more efficient tests would be essentially invisible 
to nonstatistically minded collaborators. 
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RBSUMB 
Ce travail propose diffkrentes mkthodes non paramktriques 
pour le suivi skquentiel de donnkes de survie apparikes, dans le 
contexte de deux kchantillons. Ces mkthodes sont baskes sur 
l’utilisation de statistiques du Logrank pondkrkes adaptkes 
aux donnkes apparides, prenant en compte la dkpendance de 
la durke de survie et de la censure. La forme de la distribution 
asymptotique jointe de ces statistiques d’analyses skquentielles 
prksente une structure dont les increments sont dkpendants. 
Des simulations valident les caractkristiques opkrationnelles 
des mkthodes proposkes, et soulignent les conskquences en 
terme de puissance et de taille d’dchantillon qui rksultent de 
la non prise en compte de donnkes corrdkes, mdme lorsque la 
dkpendance est faible. Une ktude sur le traitement prkcoce des 
rktinopathies diabktiques permet d’illustrer clairement notre 
prop 0s. 
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APPENDIX 

Under the null hypothesis, 7 ( t )  is asymptotically equivalent 
in distribution to 

{n* (t)I1l2 

x Irn C ( t ,  u)  

x [{YI ( t ,  u ) ) - l d W  (t ,  u) - {YZ (t ,  u ) } - l d w t ,  u)1, 

where 

Mg( t , x )  = N g ( t , x )  - A g ( u ) Y g ( t , U ) d u .  I= 
For the moment, focus on the term 

After an application of the martingale central limit theo- 
rem similar to that used in the Appendix of Murray and 
Cole (2000), this term is asymptotically equivalent in distribu- 
tion to 

Zg(t) = n-4 I w ( t , u ) [ P ( X g ( t )  2 u}]- ’dMg( t ,u) ,  

where w ( t , u )  = 0 for u > t .  Relevant empirical variance 
and covariance estimators based on Z,(t) may be constructed 
using arguments similar to Wei, Lin, and Weissfeld (1989). 
However, additional work leads to recommended asymptotic 

03 



Monitoring Paired Censored Survival Data 989 

closed forms that clearly demonstrate a dependent increments 
structure and are estimable using efficient nonparametric max- 
imum likelihood estimates. A result from Gu and Lai (1991) 
gives that Zg(tl) and Zg(t2) are asymptotically jointly nor- 
mal mean zero processes with 

cov{zg ( t l ) ,  zg (t2)) 

= ~ " W ( t l , U ) " ( t 2 , U ) I P { X g ( t 2 )  > u)l-lxg(U)du. 

Since Xg(t2) = min(Tg, Vg,t2 - Eg), 

p(Xg(t2) 2 z) = P(Tg 2 2, Vg 2 5, t2 - E g  2 z) 

= S,(")C,(t2, "1, 
where Sg(x) = P(Tg 2 x) and Cg(t2,") = P(Eg 5 t2 - 
5,  Vg 2 z). Hence, 

COV{Zg ( t  1)tZg (t2 ) t 

4 t l ,  U)W(t2>4 { S g  ( 4 C g  (t2 t 4) - X, (u)du 
= I" 

x 1" ..l(tl,U)ur(t2,u){Sg(U)Hg(t2,u))-1Xg('LL)dU = { W g  I t2))-l 

asymptotically. For independent treatment groups with w(t,u) 
= ~ ( u ) ,  an independent increments setting would result. How- 
ever, the joint distribution of T(t1) and T(t2) also requires 
cov{Zgl (t l) ,  Zg, (t2)) for g1 # 92. An application of the mul- 
tivariate central limit theorem gives 

cov{zgI(tlL Zgz(t2)) 

= { m g ,  I tdP(Eg2 I t2))-lP(EgI I t l ,  Egz  I t 2 )  

x l"1" ~ ( ~ l , ~ ) ~ ( ~ 2 , w ) G g l g 2 ~ ( ~ l , ~ ) ,  (t2,v))dwdu. 

Define .rrg(t) as the probability of entering group g by calen- 
dar time t and .rrg(tl I t2) as the probability of entering group 
g by t l  given entry in g by t2. Note that 

{ng (t2))- {n* (t l  )n* (t2)) 4 
P 
-.+ {~3-g(t1)~3-g(t2)7g(tl I t 2 ) A  

g = 1,2. so 
7(tl,t2) = {n*(t1)}1/2{n*(t2)}1/2n-1 

x [cov{zl(tl), Zl(t2)) + cov{Z2(t1), Zz(t2)) 

- cov{zl(tl),z2(t2)) 
- cov{Z2(t1), Zl(t2))l 

2 

= C{n3-g(tl).rr3-g(t2).rrg(tl I , 2 )>4  
g=1 

x 1" w(t1,'LL)4t2, U){Sg(.lL)Hg(t2,U)}-lXg(U)$u 

2 

- C$g(3-g)(tld2) 
g=1 

x {(tl,  U ) ,  (t2, w))dwdu 

becomes the asymptotic covariance for T(t1) and T(t2). Tak- 
ing ti = t 2  = t provides a2(t) ,  the variance of 7 ( t )  for a single 
analysis. 

In estimating joint and conditional terms relating to group 
g1 at time tl and group 92 at time t 2 ,  attention is restricted 
to the nglgz(tl,t2) correlated pairs where both members en- 
tered prior to their respective analysis times. In estimating 
marginal terms relating to group g at time t ,  all individual 
pair members entered in group g by time t will be used re- 
gardless of entry by their correlated counterpart. Let 

Yg1 gz {(t l ,  x1 ) I  (t2, "21) 

n, ,gz ( t l , t z )  

= c I{Xg1k(i1) L "1,Xg2k(t2) 2 "2) 
k = l  

count correlated pairs where, at analysis time t l ,  the group g1 
pair member is still at risk at study time "1 and, at analysis 
time t2, the 92 pair member is still at risk at study time 2 2 .  

Also, let 

dNg1gz {(tl, "11, (t2, "2)) 

count correlated pairs where, at analysis time t l ,  the g1 pair 
member fails at study time 21 and, at analysis time t2, the 
92 pair member fails at study time 22. Let 

dNgl 192 {(tl,  "1) I (t2,"2)1 

count correlated pairs where, at analysis time t l ,  the g1 pair 
member had been at risk until failing at study time "1 and the 
92 pair member at analysis time t2 remains at risk at study 
time 2 2 .  An unpooled estimate for 

Gglg2 {(tl I "1 1, (t2,22) )dzl d"2 

becomes 
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Hence, an unpooled estimate for a2(t)  is x {kg(t,u)Kkf(t,ufii(t, u)}-l 

2 

k 2 ( t )  = C j r 3 - g ( t )  

g=1 

Under the null hypothesis, some elements of r2(t)  can be es- 
timated by pooling. For timzs-to-event in groups g1 and g2 
with entry prior to t ,  let K M ( t , z )  be the pooled Kaplan- 
Meier (KM) estimator for the left-continuous survivor func- 
tion at study time z. Let f i g ( t , z )  be the KM estimate of 
the left-continuous censoring survival function for group g 
at time t .  Let Y ( t , z )  = Yg, (t,") + Yg2(t,z)  and f i( t ,z)  = 
Ngl ( t ,  z) + Ng2 ( t ,  z). A pooled estimate for 

G g l g z  { ( t l ,  "I), ( t z ,  " 2 ) ) d z l k  

is 

G g m  {(tl,  "1 , (t2,"2)) 

= Y9192{(tl,"l), ( t 2 1 5 2 ) )  

x { "91 $72 (tl , t 2 )  Kkf(t1, "1 ) Kkf(t2,  "2) 

x "Yg192 {(tl,  "1) 7 ( t z  > z2))I- 1dN91S2 {(tl ,  "1) > ( t 2 ,  " 2 ) )  

x fig1 (tl, "l)figz ( t 2 ,  4 - l  

- [YgIgz{(tl,"l), (t2,"2))Y(t2,52)1-1 

x dNg1lgz{(t1,"l) I ( t2 ,4)dN(tz ,z2)  

- [Y91g2{(tl,zI), ( t 2 ,  zdIY(t2,  z1)I-l 

x dNg21g1{(t2J2) I (tl,"l))d"tZ,"l) 

+ {Y(tZ,"l)Y(tZ, "2))-1dN(t2, Zl)dN(tZ, 22)). 

So a pooled estimate for a2(t) is 

2 

2 ( t )  = - p 3 - g ( t )  

g=l 

An unpooled estimate for a(t1,tz) is 

n 

Pooling under the null hypothesis gives 




