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ABSTRACT

The main objective of this thesis is to obtain exact solutions to the two-
group neutron transport equation utilizing the singular eigenfunction approach.
By this method exact solutions to a limited set of problems can be obtained
against which the accuracy of conventional approximations may be tested.

A detailed study was made of the singular eigenfunctions of the two-group
transport equation. A convenient linear combination of the continuum eigen-
functions was selected to simplify later analysis. Using these eigenfunctions,
a full-range completeness proof for infinite medium applications is presented.
For the half-range case, reliance is placed on a half-range theorem proved
several years ago and (with this as authority) the general half-range problem
is rederived in a form convenient for numerical analysis. Explicitly, two
coupled equations are obtained where the unknowns are the discrete and one
continuum mode expansion coefficients. Finally, the remaining continuum mode
expansion coefficient is expressed directly in terms of the other two coef-
ficients. This general result is then applied to the solution of two typical
half-space problems, the Milne and constant source problems. For comparison
purposes the solutions of the two-group Milne and constant scurce problems
are also obtained in the P;, P3, and DP; approximations.

Special numerical methods developed for the computer solution to the exact
problem are discussed in detail. Of particular importance is the development
of a relatively fast and accurate method for calculating singular integrals.

Computer codes are written in the Michigan Algorithm Decoder (MAD) lan-
guage and a complete listing is given. With these codes anyone can (with dif-
ferent cross section sets) test the accuracy of conventional approximation
methods.

Calculations are performed for four light water systems with varying
amounts of absorption. These calculations show that although the P; approxi-
mation yields fairly good results for the total flux and current, the angular
distribution is not so well represented especially at the interface. The Ps
approximation continues to give negative inward angular fluxes but of a re-
duced magnitude. The DP; method improves significantly on the P; and Pz angular
fluxes as well as on the total flux and current. The boundary condition at the
vacuum-medium interface can be specified exactly in the DP; approximation;
therefore, the exit angular distribution at the boundary is well represented.

An interesting result from this study was in the constant source case the
exit angular distribution becomes less pronounced in the forward direction
with increased absorption in the medium. This is in contrast to the Milne
problem where the opposite effect i1s noted. Also of interest is the fact that
the P; approximation in two-group theory ylelds two eigenvalues in the con-
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tinuum (as well as two outside the continuum) while in the one-group case both
eigenvalues are outside the continuum. This means that in two-group theory
more than just the asymptotic solution is obtained even in the lowest order
approximation.

In two-group neutron transport theory, the Ps and DP; approximations pre-
sent essentially the same computational difficulty. We conclude that in re-
actor physics design analysis (with reactor parameters similar to those studied
here) the DP; approximation is much to be preferred over the Ps.

viii



I. INTRODUCTION

Essentially all of the (static) physical properties of a nuclear reactor
are determined by a knowledge of the velocity and space dependent neutron
flux. This quantity obeys to a very high approximation the neutron transport
equation.l In its full generality, this equation is too difficult to solve
even for the present generation of digital computers. For this reason var-
ious approximation techniques have been developed through the years to deter-
mine the flux in nuclear reactor systems.2 The usual criterion for assessing
the accuracy of the calculations has been to compare the results with critical
experiments.5 The three main sources of error in these comparisons are the
cross sections used, the geometric model of the reactor, and the simplifica-
tion of the transport equation to a tractable approximate form. The calcula-
tions have often given results that compare quite well with critical experi-
mentsa5 But there remains a certain amount of Justified skepticism in the
calculations when one attempts to study a new and different system on which
no experimental data exist. Furthermore, the current requirements for
economic performance of power reactors entail a great deal more than a simple
knowledge of the static criticality factor. It has been well-documented that
calculation of temperature coefficients, burnup, etc., require more sophis-
ticated treatments of the transport eq_uationalL

In the absence of detailed experimental information, it is possible to
use exact solutions of the transport equation as test cases to assess the

validity of various approximation schemes. Needless to say, the physical model



involved must be grossly simplified, but it is still possible to interpret
the accuracy obtainable from the approximate methods when they are then ap-
plied to practical systems.

The first detailed numerical efforts along these lines were made by
Mendelson” who treated the one~speed model in some detail. Our purpose is
to extend these results to the "two-speed" (or as it is generally called the
"two-group") approximation. This is the next logical extension to the grossly
inadequate treatment of the neutron energy spectrum in a reactor yielded by
the one-speed approximation. In fact, many reactors are treated reasonably
well with two-group theory.5 For those systems which do require more groups
(fast and intermediate systems particularily) the present work serves as a
guide for the extension to a multigroup approximation.

As a matter of fact, although there has been considerable effort ex-
vended in recent years to obtain exact analytical solutions to the transport
equation (as is described in detail in Ref. l), the reduction of these re-
sults to numerics has lagged. Obtaining numbers from the analytical formu-
lae 1is far from a trivial problem, the major reason being the different and
unusual nature of the functions involved. This point is clearly made in
Mendelson's work.-

Thus, two contributions are made in this thesis. First, the (singular)
eigenmodes of the two-group transport equation are studied in some detail
and the two-group equations are reduced to a form convenient for numerical
analysis. Then, the numerical analysis is carried through and comparisons

are made to standard approximation methods. Some attempt is made to draw



general conclusions as to the range of reactor parameters for which the com-
mon approximation schemes are valid.

The two-group case has been studied previously by Zelazny and Kuszello6
They succeeded in proving a "completeness theorem" which in effect tells us
that the normal modes which we develop are adequate to solve all infinite
and semi-infinite medium problems. We depend upon this theorem, but because
the results of Ref. 6 are not presented in a form convenient for numerical or
analytical computation much of their analysis is redone. ©Siewert and Zweifell
have obtained analytical solutions to a very special two-group problem, but
their restrictions upon the parameters involved are invalid in the neutron
transport case. (This work was applied to the problem of radiative transport.)
Siewert and Shieh8 have carried out some preliminary work on the more gen-
eral problem considered here, but their results can be applied directly only
to infinite medium problems. Recently some unpublished work along similiar
lines to that described here has come to our attention and we are able to
incorporate some of these results into our workg9

Aside from these very little work similiar to that presented here ap-
pears in the literature. Most of the effort expended upon the exact energy-
dependent transport equation has been applied to neutron thermalization prob-
lemsnlo

Specifically, we treat the one-dimensional two-group transport equation
with isotropic scattering. The method, based on Case's singular eigenfunc-

1,11

tion approach™’ is a logical extension of that described in Ref. 7.



In Chapter II we develop the appropriate eigenvectors and eigenvalues.
In Chapter III we present a full-range completeness proof such as is neces-
sary in infinite medium applications. As we have mentioned, similiar the-
orems have been proved in Refs. 6 and 7, so our treatment is brief, and is
presented only because we use a different (and we believe more convenient)
notation. In Chapter IV we re-derive the half-space problem in a form con-
venient for numerical analysis. Zelazny and Kuszell6 have proved complete-
ness and we do not repeat their work. (Anyway, the completeness theorem is
not constructive12 so its utility is more or less academic.) In our final
equation the presence of a nondegenerate Fredholm term prevents the usual
Weiner~Hopf factorization. We develop a pair of coupled equations where the
unknowns are the discrete and one continuum mode expansion coefficients.
These equations can readily be solved with a computér program which is pre-
sented in Appendix D. In Chapter V we solve the two-group Milne and con-
stant source problems. Some important simplifications are developed by using
the X-function identities listed in Appendix A. Some of the special, unique
numerical methods which were developed for the computer solution are dis-
cussed in Chapter VI. 1In particular, a relatively fast and accurate method
for the evaluation of singular integrals is presented. In Chapter VII we
develop the spherical harmonic solutions to the two-group Milne and constant
source problems. These solutions are developed in the Py, Ps, and DP, approx-
imations.15 To solve the Milne and constant source problems in these approxi-
mations most efficiently, a series of computer programs were written. A

listing of these computer programs is given in Appendix D. Some special



problems, which are not of great importance to the overall goals of this

thesis, are discussed in Appendices B and C.



IT. EIGENFUNCTIONS AND EIGENVALUES

The two-group transport equations with isotropic scattering in plane geom-

etry can be written'

1 1

" gil(xzu) + ooy (x,n) = 9%1 {1 Yo (x,u)du + E%Q {1 Vo (%, )dp (2.1a)
1

8] %a_(_}f_,_u_)_ + OZWQ(X;H) = %l {l \lfl(x}u)d + ——ng [l \Vz(x,u)dp (g.lb)

Wl(x,p) and WZ(X;H) are the angular fluxes in groups one and two respec-
tively, o0, and oo are the total macroscopic cross sections for each group and

the UiJ

are the macroscopic scattering transfer cross sections which describe
the transfer of neutrons from group j to group i. All o's are assumed to be
spatially independent.

We make the nonrestrictive assumption that oo < 0, and we divide Egs.

(2.1) by o2. By defining o = 01/02 and using the optical length z = osx,

we write Egs. (2.1) in the same convenient matrix form as in Ref. 6:

p O y(zm) + L wlzn) = ¢ f ylzp)du (2.2)
dz — == = -1 -
where
c O v, (z,u)
; = s _I!I(Z)H) = P

0 1 o (2 ,1)

Ciz  Caz o s

c = and Cij = 1J

B Ca1  Caz 202



As usual we assume solutions of the form

W) = MR (2.3)

This ansatz when substituted into Eq. (2.2), and after cancellation of the

space dependence, yields the eigenvalue equation (n is the eigenvalue),

1
é E(n;u) = ﬂg fl E(ﬂ;u)du (2.4a)
where
on =K 0"
A = (2.40)
0 n-H

In contrast to the one-speed case where two elgenvalue spectrum con-

sisting of the discrete eigenvalues of magnitude |fq| > 1 and a continuous
) 1 . .

spectrum in the range ne[—l,l], we must here consider three separate regions
for the spectrum since in Eq. (2.4b) the term on-u does not vanish in the
int 1s nel-1, &] and el 3,1]. (Recall that o > 1.)
intervals nel-1, =) and nel F,1). at o .

Following Siewert and Zweifelj we consider Region 1 of the continuous
spectra as ne[- %, %]. The eigensolutions in this region are twofold degen-

(1)

1
erate and will be denoted by Fy '(n,u) and Eé )(n,u). To obtain linearly

independent eigensolutions, we first normalize by

1 /i
e (e e ( > (2.50)
1 0
where
Fi ' (q,n) = (i) (2.5b)
Fl Z(H;H)

3



We substitute Eq. (2.5a) into Eq. (2.k4a) and solve for Eﬁl)(n,u)

Explicitly
P (q,0) = 281 4 n, ()8 (0n-u) (2.6a)
Tyt on -H
and
(1) _ pCoyP ,
Fooo(np) = 2B 6n(n)8(n-p) (2.6b)
s -1
where
A(n)
Aln) =
Na(n)
is to be determined from Egq. (2.5a).
By integrating Egs. (2.6) over du and using Eq. (2.5a),we find
Aln) = 1 -2Ciint(on) (2,7a)
Ma(n) = -2C2inT(n) (2.70)
where
1
P/ S A e ) tanh”l(cn) = 27(on) . (2.7¢)
=1 on-u 1-on

The symbol P in Egs. (2.6) indicates that the integrals are to be interpreted

in the sense of the Cauchy principal value.

With Egs. (2.7) inserted into Egs. (2.6),we have

M + [l-2‘qul‘T (UY] ) ]5 (UT]'"},L)
on-u

C210f | oeninr (n)8 (n-p)
n-i



A similar procedure with the normalization

.
e awa - (D) (2.9)
1

leads to the result

Cazn? — 20y oqr(0n)8 (0n-p)
on-pt

Qﬁ%&g + [1-2nC227(n) 18 (n-p)

(2.10)

Thus the two linearly independent eigenvectors for nel- ] are given by

Q-
Q-

)

Eq. (2.8) and Eq. (2.10).
Next we consider nel-1, - %] and ne| %,l], (Region 2). Defining the eigen-

vector as E(g)(n,p) and noting that the normalization is arbitrary, we use

ai(n) 2nCia7(1/on)
I Eﬁg)(ﬂyu)du (- = - (2.11)
-1 az(n) 1-2C11n7(l/0n)
where
(2)
Fi (n,u)
F<2>(n;“) = 2)
Fa (ﬂ;u)
From Eq. (2.4), we have
p(?) () = Sanmaln) ., Coeneel) (2.122)
n-u an-p
pf2) () - CeanealnlP Ceenea(n)P, o ( sy (2.120)
N=H n-u

We integrate each term in Egs. (2.12) over dp and use the normalization

given by Eq. (2.11) to derive
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k(n) = 1 - 2n022T(n) - 2nCllT(l/Gn) + MCn2T(n)T(l/On) (2.13)

where

C = det

e

Equations (2.11) and (2.13) are inserted into Egs. (2.12) to derive the
following eigenvector for Region 2:

Cion/on-u
F (%) (1,0)

nt(l)P + 5(n_p)x(n) . (2.14)
n-u '

Here t(n) = Czz-21C7(1/on) and A(n) is given by Eq. (2.13).

Next we consider n¢[-1,1] and define the associated eigenvector as

Fl(ﬂ;u)
E(T])li) =
F2(n;u)

In this case, Eg. (2.4) can be solved directly to give

-
1 1 A
Fi(n,p) = —L—|Cy fl Fi(n,u')du' + Ciz J & Faln,p’)dp’ (2.15a)
on-p - -1
j 1 1, , ,
Fa(n,p) = n—*lg Cax fl Fa(nu')an' + Coz [o Falnu'du’| . (2.15b)

We integrate Egs. (2.15) over du to obtain the following secular determinant

whose zeros yield the discrete eigenvalues:

1-2C11nT(l/0n) 2ClgnT(l/Gn)
= O. (2.16)

QCglnT(l/n) l—QngnT(l/n)
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By defining the dispersion function Q(z), we have

Q(z) = 1-2c13127(1/02)-2Copz7(1/2)+4C221(1/2)1(1/0z) = 0O . (2.17)

We have replaced n by the complex variable z to indicate that the roots can
be real and/or complex. We can easily see from Eq. (2.17) that if niy 1s the
positive root then Ny is also. And if n; is a complex root of Eq. (2.17),

q§ is also. We have

Q(-ny) = Q(ni) = 0 (2.18)
Q(ni) = Qg = o . (2.19)

Zelazny and Baran9 have made a detailed study of Eq. (2.17) to determine
the number and type of discrete roots as a function of the Cijﬁs and o. We
reproduce in Table 2.1 their results which take into account all possibilities.
For the two-group problems considered in this thesis we have only two dis-
crete eigenvalues. By virtue of Egs. (2.18) and (2.19) these must be real
or imaginary. In fact from Table 2.1 we note that the discrete roots are
either real and/or purely imaginary. Therefore the eigenvalues occur in #*
pairs and we denote these by #n; with associated eigenvectors Eii(p)o

The normalization in Egs. (2.15) is arbitrary. If we use the same norm-
alization as in Region 2 (with g * n), we derive the discrete eigenvectors
for n¢l[-1,1]; namely

ClZﬂi/GUi;H\ Eij}l(u>

Folu) = | = (2.20)
' n1tns)/n4-u Eii,g(u)
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93 TUTJUI g pue LIeurdewl g 2/o = pg=%3po+1T)H
AxeutSew] ¢ PUB TB3Y C m\b < D2-88po4TT) m\ﬂ < 285 pue N\o < TTg
AaeurSeul + m\b > 0g=22800+1T)H
93TUTJUI g PuB TBaY g g/o = pg~22po+TTH (0/T)rDg > 82D
LxeutSew] g pue Tesy g 2/o < D2-S800+TTH g2/T > 88p pue g/o > TID 0<9D
Tesy % g/o > Dz-S8po%TTH
ALreutrdeul g2 2/T > 83 pue g/o < TTD
pue JO
TeaY ¢ g/T < @2 pue g/o > TTp
93TUTJUL 2 g/0 = D2-380o+TTH (o/T)1d2 < 88D
Kreutlew] g g/o < 0g-T2po+TTH 0< 0
ey 2 2/0 > Dg-88po+TT)
91 TUTJUT ¢ m\o = Umummoo+aﬁo
Kaeutl8eul g g/o < D2-23po+TT) 0>0
TeY ¢ g/o > 02-%800+TT)H
93TUTJUL g g/o = E2po+TTH
LxeutSeul g g/0 < ZSpo+TT)H 0=29
ICE g/o > SSpo+TT)H
s100Y SUOTATPUO)
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where

axis

13

t(ni) = 022-2niCT(l/Uni)

We note that Q(z) is analytic in the complex plane cut along the real

from -1 to 1. Introducing the notation

6,(n) 1, 1€ Region i

= 0, otherwise,

we easily find

= 1-2C22p7(p)—QCllpT(Gu)Gl(u)—EClluT(l/Ou)92(u>+uCH2T(u)T(UH)91(H)
+4Cp2r ()7 (1/op)62 (u)-n2p2C0; (u)Enin[Ca2+C1101 (u)-2CuT(op )6y (u)

-2Cur (p)6y (p)-2CuT(1/on)6a(u)] . (2.21)

Here OF represent the boundary values of Q(z) as the branch cut is approached
from (%Qﬁgg)c That is, 0F(u) = lim Q(u*ic).
>0
It is_convenient to use the following linear combination of Region 1
eigenvectors:

g (nm) - C—i—f)(n,m i C_l_Fél)(n_,m, (2.02)
12
Explicitly,
l -
g (n,u) G o) ]
- - CnP - 8(n-p) [C11-2CqT(n)] (2.23)

C11C12(n-p)  Ci12C11

The following linear combination is a convenient eigenvector valid over

the full range, ne[—l,l]:
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(1)

dotnw) = 2Cienrlon)es(n)EL™ (nu) + [1-2C33nr(on)les(n)-EEH ()

+ E(g)(n,u)ez(n) . (2.24)

Again the explicit form is

ClgnP/cn—p
(Z_%(T]JIJ«) = .
18P 4 % (1)8(n-u) (2.25)
n-p
Here we define
gln) = Cazz-2Cq1(on)61(n)-2Cn7(1/0on)62(n), (2.26)
An) = 1-2Czont(n)-2C11n7(0n)61(n)-2C11n7(1/on )62 (n )+4Cn2r(q)T(on)e1(n)
+hen2r(n)7(1/on)ez(n) . (2.27)

In comparing Eq. (2.27) with Eq. (2.21), we note that we can write Eq.

(2.27) in the compact form

M) = QM) L enace, (q) (2.28)

Also (for later use) we have from Eg. (2.21)

f(p) = —————=FL = C22+C1103(p)-2CuT(p)e1(n)

- 2Cur(op)ey(u)-2Cur(1/op)ez(p) . (2.29)

Thus the eigenvectors consist of the two continuum modes @, (n,u) [Ea. (2.23)],
1 .
nel- %-734; ég(n,p) [Eq. (2.25)], nel-1,1]; and the discrete modes F,.(p)

[Eq. (2.20)].



ITII. TWO-GROUP FULL-RANGE COMPLETENE358

The full-range theorem 1s stated as follows:

1
Any function y(u) of class G can be expanded using the eigenvectors

¢ (n;u ¢2 n:u , and Fy ( ).
We follow the standard procedure of attempting an expansion in terms of

the continuum modes only; namely,

<W2 > -l/o n)g, (n,p)dn +f 02 ﬂ)jég(n;u)dn . (3.1)

We substitute the explicit form of ¢l(n,p) and ¢2(n,u) as given by Egs.

(2.23) and (2.25) into Eq. (3.1), and perform the integrations where possible

to arrive at

() - /o) , o p f noz (n)dn (3.2)
0Ca1 on -

C p fl/c nal(n)dn

- - Otl(“)el(‘-") [C ~2CuT }
v, (1) eotie - /s nem ot 11-2CpT ()
o noeel)an oo (5.3)
-1 m-p

We solve Eq. (3.2) for oy(p/o) and then make the change of variable, u/o = 7

to obtaln

1 1
ap(n) = 0oCray,(on) = C1aCi2 f al ibfg Jdn ‘ (3.4)

The insertion of Eq. (3.4) for oy(n) into Eq. (3.3) yields

15



16

o) + Co_ fl/a Py, (on)dn g

Ciz -1/0 - > Wl(Ou)Gl(u)[Cll-ZCm(u)]

C fl/c Pndn fl Pn'os(n')dn' _ 8, (1) (2CuT (1) -Cy1) fl Pr'oo(n')dn’

-1/ M7k -l n'-n Lo

g()dn 4 oo (Wn(u) . (5.5)

The integration over n in the first term on the right-hand side of

Eq. (3.5) can now be performed by using the Poincaré-Bertrand formulalu

and the partial fraction decomposition

—n_ _ _ 1 ( w1’ ) (5.6)
(n_u)(nv_n) T]"Ll =M T]"ﬂ/
The result is
l/a 1 ! ! ! . Pnloz(n')
c/ /o Pndg [~ En a?(n Jan' ~CnPp2as ()0, (n)-20 [~ B ?2( )
-1fo qme tL n'm .o

- 62(n")r(1/on")] (3.7)
We define
V) = vl + S 0G0 L oy (o) () [Cas-20r () ).
12 -1/0  q-u Ciz (3.8)

By using Eq. (3.7) and Eq. (3.8) and recalling Egs. (2.28) and (2.29), we

write
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As usual we introduce an auxiliary function

. 1 L oz (n)dn :
Nz) = 53 [1 - (3.10)
with boundary values given by the Plemel] formulaelu:
+ 1 dy , 1 o
N (p) = —lf P/ noz(n)dy 5 moz(p) . (3.11a)
2xi -1 n-u
Therefore,
+ -
N (p)-N"(p) -
oo(p) = — - (3.11b)

We write Eq. (3.9) in terms of these boundary values to obtain the factored

form

W' () = W)t () - NT(w)eT (W) . (3.12)
This has the immediate solution

L 1 1 .
= — py! (p)dy :
N(z) = 5= o) N - (%.13)

From Eq. (3.10) we note that N(z) must be analytic in the complex plane cut

from -1 to 1. In order that N(z) have this property for z = ini we require

fl Eiéiﬁl@& = 0 (3,1k4)
“LopEag

where we recall the in; are the discrete eigenvalues.
Our original expansion of y(u) was only in terms of the continuum modes.
We have the discrete modes available to satisfy Eq. (3.14). Thus we make

the replacement of y(u) by
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Yl) - 2 A By (u) - 2A Fy (W) (3.15)

We recall that Y(p) contains components ¥, () and y,(p)and ¥'(n) is a func-
tion of these components as given by Eq. (3.8). Thus y'(p) in Eq. (3.14)
is adjusted according to (3.15) and with two pairs of roots we would have
four equations with four unknowns from which the discrete coefficients, Aj4,
could be found. With the discrete coefficient known we would then determine
oz2(u) from Eq. (3.11lb) where the boundary value of N(z) are determined from
Eq. (3.13). Also in Eq. (3.13%) we must modify y'(u) according to (3.15).
With o2(p) known, @,(p) is calculated from Eg. (3.4). A better procedure for
the full-range case is to provean orthogonality theorem as Siewert and Shieh8
have done. This procedure makes possible the calculation of various normal-

ization integrals from which the expansion coefficient can be derived directly

for any particular full-range problem by taking scalar products.



IV. TWO-GROUP HALF-RANGE CASE

From the completeness proof of Zelazny and Kuszell,6 we know that the
normal modes of the transport equation provide us with sufficient eigenfunc-
tions to solve half-space problems. By a procedure which is in many respects
similar to the completeness theorem proof described in the previous chapter,
we develop equations for the expansion coefficients in a form convenient for
numerical calculations.

The expansion for the half-range case, which we assume is valid from

the work of Zelazny and Kuszell, is

Wl(}l) l/c 1
E(H) = " L) = é al(q)él(n,u)dn + g Qz(n)ég(n,u)dn . (4.1)
o\H

We note that we are using the continuum modes only, the discrete mode will
be introduced later. Using the explicit form of @#;(m,u) and po(n,u) [Egs.
(2.3) and (2.25)] in Eq. (L.1) and performing the integration over the

delta functions yields

_ oa(pfo) L noa(n)a
i) - el 7 n02(ntn (1.22)
and
balw) = - =S [Tl L L o oo () o ()6 (3)
C11C12  © n-H C11C12
+ P fl noz(n)g(n)dn (o () . (4.2b)
© N~k

Making the change of variable p + po in Eq. (L4.2a) and solving for o (u),

we obtain

19
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1
ar(u) = Cary (o) - Cas0az + [T MBI )

The insertion of Eq. (4.3) into Eq. (4.2b) gives

)
) + %2P£”“§B“+C;[mrmmmnan%m>
/o qran' p L onoe(nldn 4 L os(n)a
= cP [/ ndn p [ + [Cyp-2Cur(p)]e (u) P/ D921nJdn
o q'-u  ° 7’ ° e
pop [Hnce(e()dn o (u)es(y) (h.4)
0 -k
14

The Poincaré;Bertrand formula

n' _ A / By n> L
(ﬂ"u)(n"ﬂi) =M Qq'-p‘ T]'T]Y ( ‘5)

enable us to perform an integration over dn' in the first term on the right-

and the partial fraction decomposition

hand side of Eq. (4.4)., The result is

cP fl/on.'_@n_'_P [P oe(n)dn Pflwkl(u>cuzn(L- )
° n'tk © geq! °  new ou
+ 0x( )Cp£n< - é‘g)- 0 (n Cqﬁn&— - _L>
(4.6)
- 82(q)Cnin Ql - —-)J -Cn21202 ()01 (k)

We can write Egq., (2.26) as

¢ . \
g(n) = Coz2-Cnin Kl + -%) +C01 (n)n4n G—n - 1> +CB2 () 4n <1 - le_n) (&.7)

where we have used Eqg. (2.70)°
The insertion of Egs. (4.6) and (4.7) into Eq. (4.4) yields, after some

cancellation and rearrangement, the compact form
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v + o noeln)k(ndan _ 0%(w)-07() p [t nce(nlan , @ (u)+07(u)
o n-K Onip o n-p 2

Here we have defined

V) = )+ S Dl oy (g ()03 20ur ()] (8.9)

0 n=p Ciz

and

/

4 \
k(n,u) = nin K} + %ﬁ) - udn 1o+ %;> . (4.10)

We note that the second term on the left-hand side of Eq. (4.8) is a nonde-
generate Fredholm term. If this term were absent, Eq. (4.8) could be solved

directly by standard procedures.,l If it were degenerate, the method of

15

Shure and Natelson ~ could be used. However, neither of these situations

obtains, and no closed form solution of Eq. (4.8) has been found. Thus, we
describe in Chapter VI an iterative procedure similiar to that used by

1,16

Mitsis™? to solve the critical slab problem and by McCormich and Mendel-

sontT in treating the slab albedo problem,

We define
d'(w) = ¢t () +c [ nceln)k(n,uldy (4.71)
o Nk
Next we introduce a function N(z) defined by
1 L noo(n)a o
N(z) = JR R (1.12)
2ni © n-z

Following Case and Zweifell if az(n) of class G exists then N(z) has the
following properties:
1. N(z) is analytic in the complex plane cut along the real axis from

0 to 1;
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2 N&)~%ash|+m
1
5. W) = Lopinoelnlin Ll (+.13)
2ni o n-H
We note from Property 3 that
+ -
oz(p) = X );N ) (4.14)

Inserting Egs. (4.11) and (4.13) into Eq. (4.8), we find (after some rearrange-

ment) that

(e~ (w) . (4.15)

We recall that Q(z) is analytic in the complex plane cut from -1 to 1. We
note from Property 1 that N(z) is analytic in the complex plane cut from O
to 1. This requires (as in one-speed theoryl) the introduction of a func-

tion X(z) such that

X oo 0w s (4.16)
X" (W) Q7 (p)

1

The X(z) function satisfying the necessary restrictions™ for the half-range

and for one pair of discrete roots only is

1
X(z) = L expl [ Aref(w)du (5.17)
T 0
The ratio condition, Eq. (4.16), is inserted into Eq. (4.15) to yield

y(v" () = NP()xt(u) - N ()X (w) (4.18)
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where

y(u) = u%—ﬁ%. (4.19)

Assuming that the left-hand side of Egq. (4.18) is known, we can write the

solution to Eq. (4.18) as

Nz) = —L  mozlwh"wan (4.20)
2nxiX(z) o© M-z

The Plemelj formulae give the boundary values of N(z) from Eg., (4.20). We

insert these boundary values in Egq. (4.14) to obtain

- 1 1.1 Doyt (uan , 1 ! 1
“2 (k) 2rip <X+(p,) X-(u)> Pg TR i 2u<g<+(u) ' X‘(u)>

oy (v () . (h.21)

(However, this is not a solution because we note from Eq. (4.11) that the

unknown 0p(p) is still contained in ¢"(u).) We next define

f(e) = - L /1 __1 > - Q*(u)-0" () (k.22a)
ahis 2nip \X+(u) X" (w) Zniy(p)ﬂ+(u)9m(u) )
and
- + -
, _ 1 1 1 ‘>, , _ gLiElig_iﬂl ) L 20p
2w 2u(X+(u) ' X" () i 207 (p)a~(p) ( |

The last form of Egs. (4.22) is derived from using Egs. (4.16) and (4.19).

By defining the singular integral operator

o) = £2(w) Pgl lﬁﬁl%— 12(n) (4.23)
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We can write Eq. (4.21) in the compact form

oz(p) = olphv"(p). (h.2k)

Property 2 requires that N(z) ~ % as |z| » ©. We note from Eq. (4.17)

that X(z) ~ - las z >, Thus from Eg. (4.20), we require

k(n,p) du = O (k.25)

where we have used Eq. (4.11) for y"(p). For the case of one pair of discrete
roots we have the discrete eigenfunction availlable to satisfy Eq. (4.,25), We

make the replacement of y(p) in Eq. (4.25) by

Y(p) - AF () . (4.26)

We recall that y'(p) is defined by Egq. (4.9) and is a functional of the com-
ponents of y(u), i.e., ¥ (u) and ¢2(p), We define ¢,.(u) as the corresponding
functional of the components of E1+(H)° Thus the replacement given by the

expression (4.26) is equivalent to replacing y'(u) in Eq. (4.25) by

Y'(p) - Adalp) o (4.27)

With this replacement made in Eq. (4.25), we then solve for A, to yield

fl 7(“)\1/'(”)(1;_1 + C gl 7(H)du fl T]Oéz(n')lf(n,p)dn
A+ =0 @] n-H u ()4_028)

[ (g (W

Likewise with Eq. (4.27) inserted into Eq. (4.11) and subsequently into Eq.

(b.24), we obtain
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ao(p) = O(p)ly'(u)-Audy(u)] +C o(n) fl naz(nzk(n,u)dn ‘
> (4.29)

Finally the replacement of y, (po) by wl(po)-A+F1+)l(p) in Eq. (L.3) yields
ai(p) = OC11[}1’ o) APy 1 (on)] - C11Ci2 Pgl ﬂgﬁial;ﬂ
’ (k.30)
An iteration procedure for solving Egs. (4.28) and (4.29) for Ay and oo(u)
is discussed in Chapter VI. Providing this procedure converges, we can then
insert Ay and o=(p) into Eq. (4.30) and solve for q;(u) competely determining
all expansion coefficients.
A number of important simplifications are now made for the terms con-

taining ¢, (n) in Egs. (4.28) and (4.29). First, from Eq. (4.9) we can write

the explicit form

. Co_ o 1 Mg alowldn o
= P + F @ C "2C ©
g, (W) = Fryolu) + =P/ - o 14,1 (o1)82 (W) [Caz-2Ck (k)]

(4.31)
Next we insert the discrete modes as given by Eq. (2.20) into Eg. (4.31) and

perform the integration to obtain

—

/
’ = Al [Coo+C116 +Cub im | i - 1) +cpe in - l—>
¢+(u) —— [_22 11 1(“) H 1(#) \Ou H 2(“) on
L l
- 200 (W)ut(p)=Cnydn (1 + — } . (4.32)

1A )pt(p)-Cna \\ s
Tt is easy to show that f(u) from Eq. (2.29) can be written as
f(u) = Co2+Cy101(u)-2C61 (p)ut(w)- Cp@l ) In <i + —j> +CpS1 () In (1 - %J\

- Cuba(u)tn Kl . _> +0p6a (1) In Kl - LJ (4.33)
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where we have used Eq. (2.7c). We insert Eq. (4.33) into Eq. (4.32) [re-
calling Eq. (4.10])] to write the compact form
doln) = D1 [f(u)-Ck(ni,u)] . (k. 34)
Ni~H
The substitution of Eq. (4.34) into the integrand of the denominator of Eq.

(4.28) yields

Wb, ()dn = - n1X(nq1) - C fl y(uinik(ng,p)dy (4. 35)

© N1-p

where we have used the X-function identity given by Eq. (A.1) to write

1 )f(p)d

X(ny) = J
0 BT

(4.36)

Next we consider the term O (u)¢.(n) in Eq. (4.29). With o (p) given by Eq.

(4.2%) and ¢ (p) by Ea. (k.34), we write

Wb, (w) = 2i(n) P fl y(pnafp')au’ | wna ) _ 0(n) D]k(n]zu)l
* o (u-p")(na-n") n1 W N1-p
(&.37)

The partial fraction decomposition

N1 _ ( 11 )
(u-p" M (n1-p") P TRANTETAR PV

inserted into the first term on right-hand side of Eq. (4.37) yields

fu')ap

o (up [T 2wt utant o g () Mo lP [2 (
| (u=p")(n1-p") N4 | © T ! —-—

(4.38)

)
i

The last term in brackets in Eq. (4.38) is -X(n1) [?ee Eq. (M,56i] and the
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first term can be written in terms of the boundary values of X(z Eee Eq.

(A.1)]. Explicitly,

R VIDESISD LR w0 > S((H - 2 Tor(u)ea(w] . (4.59)
0 hep

The last form in Eq. (4.39) was derived by using Egs. (4.16) and (4.19). We

insert Eq. (4.%9) into Eq. (4.38) to obtain

Loy(uinaflu')dp" Crlw) ot -
£1(u) P g (u-u’ﬁ(nl-u’) £1(p) E?%; X(n1) 20 (@7 (n)+Q (u)z
(4.40)
We recall from Eq. (2.29) that
lp) = L7 (. 51)
2nip

We insert Egs. (k4.22), (4.40) and (4.41) into Egq. (4.37) to obtain (after

some cancellation)

0 (u)ge(p) = £y (pnaX(ny) _ [: “ (4,42)
Ni~H N1~H

Now Egs. (4.%5) and (4.42) can be substituted into Egs. (4.28) and

(4.29) respectively to obtain a somewhat simpler form

glV(u)w*(u)dp+C gl 7 ()dy él naz(n% én,u dn

Ay = (4. 43a)

" f Loy (unik(ng,p)dy
N1i~H

-n1X(n1)

and

L o (n)k(n,u)dy

az(p) = 0 (w)y'(p) +CO (p)

O—

>y {zl(u)nlx(m) Cco(w) [mfiﬂf&l]} )
"

Ni~H
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We recall that the kernel k(n,u) is defined by Eq. (4.10). The operator
O(p) is given by Eq. (4.23) and £;(n) by (4.22a). Egquations (4.43) are the
set which will be treated numerically, as simultaneous equations for the ex-
pansion coefficients A, and op(n). After A" and oo(p) are obtained, o (u)

is computed from

ALC 1 .
op(p) = 0Cyy [¥alop) - E%ﬁi%%%J - C11C12P é ﬂgﬁ%&i@& . (WL

This completes the reduction of the general two-group expansion, In the
next chapter, we shall obtain some specific forms for ¥'(p) in Egs. (4.43)
and for yi(op) in Eq. (4.L4). TIn fact with these forms for ¥'(p) and ap-
propriate X-function identities, the integrals in Eq. (4.4%3) can be partially

performed.



V. APPLICATIONS OF TWO-GROUP SINGUIAR
EIGENFUNCTION EXPANSIONS

A. INTRODUCTION

We have selected for detailed study the two-group Milne and constant
source problems. These problems are representative of the type of two-group
half-space problems that can be solved by our method. Two half-space prob-
lems appear also to be soluable. In fact one probably can solve any two
group transport problem that is also soluable in the one-group case, although
in the two-group case less analytical and more numerical analysis is required.
Even in one-group theory the X-function must be generated by the computer or
obtained from tables. Also in order to obtain the angular flux, total flux,
and current in the medium, we must calculate principal value integrals on
the computer. The point is that the computer is an essential tool to obtain
complete results even in the one-group case.

We shall find some helpful simplifications similar to those obtained

in Chapter IV before beginning the numerical work.

B, MILNE PROBLEM*
We define the two-group Milne problem for one pair of discrete roots in
a manner similiar to the one-group case.l The solution must satisfy the con-

ditions

Y(o,p) =0, w>0 (5.1a)

*This definition is correct only for two discrete eigenvalues.

29
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and

(5.1p)

The solution which obeys Eq. (5.1b) is expanded in the two-group normal modes

of the transport equation as

W) = AE (™ ap (e 0004, (1,000 ey
1 2/
+ g (n)g,(n,u)e™/ M ay . (5.2)

We use the boundary condition given by Eq. (5.l1a) (normalize by setting

A. =1) to obtain

(n) = AF +f/

Lrlp 1(n)g, (n,m)an + gl oz(n)g, (n,m)dn (5.3)

Therefore the arbitrary expansion function, denoted by Yn(“)’ becomes for

the Milne problem [see Eq. (2.20)],

//wl(u)’ Ciony/oni+p
v () K = - : (5.4)
- Vo (k) n1t(na)/natu

The appropriate Wé(u) for the Milne problem (see Eq. (4.9)) is closely re-

lated to the ¢,.(u) as defined by Eq. (4.31). 1In fact

This means that
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Thus we have from Egs. (4.35) and (4.42) the result that

l 1 ! - 1 y
S ygas = nak(eny) + ¢ [0 detaklna de 5 )
and
O (w) = - lwnXlmld oo () |maklona,e) (5.8)
n N1ty N1+
We insert Egs. (5.7) and (5.8) into Egs. (4.43a) and (L.L3b) to obtain
'T]lX(_nl)+C fl 7( )nlk( “NaisM )d-lvL + f 7, dp« f ﬂ@g(n)k(n,p) n
A o Nitu 0 n-H
+ = (5.9a)
-n1X(n1) - C f y(Wnak(na,p)dp
Ni-H
az(p) = - L (pnaX(eng) | g 0 () LD;M +C o(u)fl oz (n)k(n,p)dn
latH Nt ° n-m
- A+ 11<H)H1X(ﬂ1) -C O(H) {ﬁlkinl¢ﬁ%} . (509b)
N1-H M17H
Since
\ljl(gp) = - _CJ.:ZILII_
o(nytu)
We have from Eq. (4.30) [considering Eq. (2.20)] that
A ‘
oa(p) = -C11Cizny </ L, +\> - C11C12P fl 102 (n)dn (5.9¢)
nituy N1i-H o -

Equations (5.9) are the final reduced equations for the Milne problem. We
note that Egs. (5.9a) and (5.9b) are two coupled equations with unknowns

Qg(p) and A,. These equations are solved by an iteration process described
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in Chapter VI. The operator O{u) is a singular integral operator which
requires special treatment otherwise;the solution is straightforward.
Finally with A, and oo(p) known, we obtain oy (p) from Ea. (5.9c).

The limiting case of C = O is of some interest. We note that the dis-

crete mode expansion coefficient becomes (see Eq. (5.9a))

a, = Xm) o (5.10)

We recall that this is identical to the one-group Milne problem result.t This
is apparently different from Siewert and Zweifel's result but we recall that
they considered the case for C = O and the discrete eigenvalues were infinite.
When the discrete eigenvalues are written in the form of Eq. (2.20) we are im-
plicitly assuming that the eigenvalues are finite.

Also from Eq. (5.9b), we have

_ 24 (WnIX(-nq) (5.11)
N3 -p2

oz (p)

In neutron transport theory, the physical problems for which C = O are quite
specialized and we shall not consider this case further.

We can prove from the form of the operator O(u) and Eq. (4.43b) that
1
oo{p) > 0 for p = = end 1. (5.12)

This result is important because otherwise the angular flux would be singular
at these values of p. This follows from the fact that for any particular
half-space problem the solution is written in terms of the expansion coef-

ficients and the discrete and continuum mode eigenvectors with these eigen-
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vectors containing terms with T(ou), 7(1/op) and (). We note that t(op)
and 1(1/ou) are singular at p = 1/0 and v(u) is singular for p = 1. To

prove (5.12), we note from Eq. (4.22) that

21 (p) ~ + 0 (5.132)
w1 /o~ 7(on)
f(p) ~—2— >0 (5.13b)

u>l/o+ 7(1/op)

L 50 . (5.13¢)

ll(u) ~ >

pu>l- [T(p)]

Similar results follow for fs(n). The operator 0(p) as given by Eq. (4.23)
contains in each term either £;(p) or fzo(n) and we note from Egs. (L4.43)
that these functions always appear multiplying principal value integrals or
functions which are bounded at these values of u. At least this statement
is true for p = l/c and we note from (5.13c) that things are still all right
at p = 1 because of the squared function in the denominator.

With the expansion coefficients known from the computer solution of Egs.
(5.9), the two-group angular fluxes are calculated from Eq. (5.2). The eigen-
vectors given by Egs. (2.20), (2.23) and (2.25) are substituted in Eg. (5.2)

and the integration performed where possible to derive

Z -7 ) -
v (z,p) = Gazme /M2, Cromaee™M2 L 1 (0 o)e % Mg, (4 )sen ()]
Nty on1-H Cii0
P [ 10z (n)e ™%/ May
° o~k (5.1ka)
where
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and
£( )ez/ﬂl t(n)A e‘Z/nl C 1/o ( )e‘Z/nd
bplzp) = R TUEALU - p [ noaln)e” Man
N1ty N1-H C11Ci2 o n-u
—Z ’A,
-1 al(u)[Cll-2CpT(u)]Gl(p)e-z/“ + P fl ng(n)os(nle /qdﬂ
Cl2cll o n-K
P A loa (e Mo (W0a(n)], ~l<p<l . (5. 1kb)

For the angular distribution to the left we note that the integrals are
not singular. A good criterion for the accuracy of the numerical methods is
to see how closely condition (5.l1a) is satisfied. For convenience in com-

puter calculation, the replacement in Eq. (5.1ka) of u by po is made to yield

z/n1 -z/n1 :
C CiomnqA -
\.lf (Z}HU) = _laﬂle_ + lZT]l +e + 1 Ol(u)e Z/H@l(u)
1 o(ni+p) o(ny-p) C110
1 -7z
v G2 p /7 n02(nle Man | 1jecu<ifo (5.15)
O

n-u
The total flux and current for each group are derived by appropriate

integrals cover du and udu, respectively. We shall use superscripts on the

p's to indicate group number. Thus,

l -
p(l)(z> = {l ¥ (z,p)dp = 2Cioma7 <é%i> [ez/“l+A+e Z/nlJ s 2

l/o - !
/ ."2/u

1
x [ op(p') du' - Ciz [ no=(n)e
o o
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p;(ll)(z) = fl wl(z;u)du = 2012T]1€ /T]l (1- -on1 —r< + gcl’znle-z/nl
. B ony
X A+[Gan (.l;.)-l] + = fl/G u'al(u')e_z/u'du’
o1 Cia 0
- 1 -
- QClzéldnnOéz(T])e 2/ ocyp | n%0z(n e Z/“<g(n>-c22)dn (5.16b)
O
0@)(z) = fl Vo (pn)dp = 2nqt(ny) (xl_ [ez/ﬂ1+A e'z/ﬂl]
0 -1 2 \H /G Nit\nL/T T]J_) +
1/o - -
2 (er)e ™ My - e P8yt )1
Cllclz o 11vi2 1
+ 2£1 ne(as(n)r(n)e Ny + £ x(nlos(n)e ™ ay (5.16¢)
(0]
1
Dﬁg)(z) = [1 wip(z,u)dp = 2n1t(nl)ez/nl[l-nﬂ (Tlﬁ>]+2nlt(nl)e'z/ﬂl
1/o -z/q i
x Aplnyr <-—:> 011012 f n ox(n)e [nr(n)-1] dn
1 2/ ,
- J /Onaa(n)[cll-QCnT(n)]e Z/ndn+2 f%ng(n)oz(n)[nT(n)-lJn
C11C12 © o ,
x e %M f (1 o (n)e_z/”dn . (5.16d)

The extrapolation distance (the distance to the left of the interface at
which the asymptotic component of the density vanishes) is given by either

Eq. (5.16a) or Eq. (5.16c). Thus we wish to determine z, such that

eZO/“l+A+e'Z°/Tll = 0 . (5.17)

The solution for z, from this equation gives the same result as in the one-

speed theoryl; namely,

2o = - M m (- i-) : (5.18)
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Again we emphasize that for one pair of discrete roots the extrapola-
tion distances are equal for each group. For four discrete roots, we would
calculate a different extrapolation distance for each group. Baran9 has

studied this problem in detail.

C. CONSTANT ISOTROPIC SOURCE PROBLEM
Assume an isotropic source Spz in group two (the associated problem with
a source in group one is virtually identical). We now seek solutions to the

inhomogeneous transport equation which vanish at +o subject to the condition

v(o,u) = O for p > O. (5.19)

The solution consists of a particular integral, EP(Z,H), plus a solution of
the homogeneous equations, v (z,n). The latter consists only of those modes

which vanish at +w, i.e.,

v (o) = a0 s 7% (g ()e  ans onta)g(n,u)e™ Man
v / f
(5.20)

The particular integral can be found from the two-group transport equa-
tions (Eq. 2.2) in the limit as z+w. In this case, E(Z,p) approaches a con-
stant value denoted for each group by wlS and w2sa With E(Z,p) constant, Eq.
(2.2) reduces to a pair of simultaneous equations which are easily solved to

yield

‘1’18 = 28012 = S]_ (5»2-]-8‘)
(1-2C22) (0-2C31 )-4C12C2y
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and

S(o-2C
= (9-2C3,) = sz (5.210)

(1—2022 ) (6-2011 ) -)-I-C21C12

where

S = 820/02 o

We normalize all constant source problems to a unit source neutron in

group two, i.e., Sgo = 1. The complete solution is written as

5, .
V(z,u) = <r \>+ Are /nlE1+(“) ¥ gl/gal( )¢, (n,u)e Z/ndﬂ+ f oz(n)gs (n,1)
Sz

x &2/ dn (5.22)

By setting z = O in Eq. (5.22) and applying Eq. (5.19), we obtain

S 1 1
- <S:\> - g /Uq1(n)él(n,u)dn + g 02 ¢ sk dn + A+F1 (p) . (5.25)

We repeat here for convenience Eq. (4.8) of Chapter IV,

Vi(p) = wg(“) * Qg_ Lo Eﬂylﬁ——2§3-+ _"—'wj(cu)gl(p)[cll'gcuT(H)] .

Ciz © n-p Ciz ~ (+.8)
And we note from Eq. (5.23) that
/ Wl(u) 51
¥ (w) = = - . (5.24)
Ilfg(u) SE

By inserting Egs. (5.24) into the appropriate terms of Eq. (4.8) and then

performing the integration on the second term on the right-hand side, we find
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Wé(u) = =52 - %%2 [% + Cuel(u)ln<:%g - %) + Cudz2(p)in (l - %E
‘QCHT(H)Gl(M)+01191(H)J . (5.25)

The term in brackets in the second term in the right-hand side of Eg.

(5.25) has terms similar to Eg. (4.33%). 1In fact, we can write

) < s - B Ce s (1o D)o L 526)

We recall from Chapter IV that we need

0 (p)vt () (5.27a)

and

[y (vl (p)au (5.270)

in order to calculate the expansion coefficients Ay and qo(u). By the same
method that was used in Chapter IV to simplify O(u)@,(u), we can easily
prove

o(w)t(u) = 0. (5.28)

Also from Eq. (A.1) in Appendix A, we have that

1 ,
lim 2zX(z) = - [ y(u)f(u)du . (5.29)
Z-»00 o
But from Eq. (4.17), we see that
X(z) ~ - % (5.30)
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Therefore from Eg. (5.29), we obtain

g y(f(wdp = 1 . (5.31)

: _ _ 05,C < 1
ol = ol [v - B iy 1+ L)) (5. 32)
and
o as = - B2 gt 7(u)[ B0 (10 L) G0
o) S Ciz o Ci2 op J
where

I Y~ (5.500)
12
S, and Sy are defined by Egs. (5.21).
We insert Egs. (5.3%2) into Egs. (4.43) to obtain
1 / Y 1 .
S8 e 818 (n s BN awer Y (w)aus noz(n)k(n,u)dn
Clg 0o 012 Ol o] O n-H ,
A, = (5.3%a)
n1X(na) - cfl 7 (wlk(ny,p)dp
o M1~
and
ce(w) = olu)|w - B (1 + l—)] ¢ o)/ noz(n)k(n,pldy
L Cia op 0 n-p
/7
- AL [fl(“)nlx(nl) - Co Ql)(ﬂu%ﬁﬂﬁ;&ljﬂ . (5.33b)
N1 H 1-

The final equation for oy (p) is obtained from Eq. (4.Lh) where
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Explicitly,

o (n) = -0Cy1Sp - giﬁgéﬁﬂiéi - 0,010 P g ng%éﬁ——ﬂ . (5.33¢)
=

Equations (5.%3) are the final reduced equations for the constant source prob-
lem. We refer the reader to the paragraph following Egq. (5.9¢) for comments
concerning the solution to this set of equatiomns.

The angular fluxes for the constant source problem are given by Egs.
(5.14) where we replace the first term in the right-hand side by S; and Sz,
respectively. The neutron current in each group is given by Egs. (5.16b) and
(5.16d) if we delete the first term on the right-hand side. For the total
flux we replace the first term (term with positive exponential) on the right-

hand side of Egs. (5.16a) and (5.16c) by 2S; and 2Sp, respectively.



VI. NUMERICAL METHODS AND COMPUTER SOLUTION
TO HALF-SPACE PROBLEMS

A. PROGRAM FOR FINDING NUMBER, TYPE, AND VALUE OF THE DISCRETE EIGENVALUES

In solving Egs. (5.9) and (5.33) for the expansion coefficients, the func-
tion y(p) must be calculated. But (as shown in Appendix A) the roots of the
dispersion equation must first be found. A computer program was written which
first finds the number and type of eigenvalues from Table 2.1 and then deter-
mines the magnitude of these eigenvalues. The method that was found quite
effective was the false position method.18 For the problems studied in this
thesis we have only one pair of real discrete roots. We concentrate on find-
ing only the positive eigenvalue n; because we know from Eq. (2.18) that the
other eigenvalue is -n;. The false position method require two starting
values  which we denote by n£l) and nél). The subscript here means that these
are two starting values while the superscript is the iteration index. To ob-
tain good starting values we calculate Q(n) for n = 1,000001. We then in-
crease 1 by .1 until Q(n) changes sign. We select ngl) and ﬂél> such that

(1))

Q(nl is opposite in sign to Q(nél)). From these four values a value of

ns is calculated according to

b1
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(2) (1) (1)

ny and nég) from ns, n1~ ', and 7 such that the corresponding functional
values for Q(n) are smallest in absolute value. For the specific problems
studied in this thesis only three iterations were required to find a root ni

such that
a(ny) < 1077,
This program is listed in Appendix D.

B. DISCUSSION OF MESH SPACING
In two-group, half-space problem there are always two basic integration
intervals. We see from previous chapters that we have ordinary integrals and

principal value intervals for integration ranges of

1
0 < =
H< g

and

1< u < L.
o]

We shall see in the next section that in the evaluation ¢f principal value
integrals the singularity is subtracted. This procedure gives rise to a
logarithm term which is singular at the end points of integration. There-
fore we use the midpoint approximation in the evaluation of all integrals.
In this approximation the interval from O to l/c is divided into P equal in-
tervals and all functions are evaluated at the midpoint of each of the P
intervals, A similar procedure is used for the mesh spacing in the interval

from 1/0 to 1.
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C. NUMERICAL EVALUATION OF SINGUIAR INTEGRALS

In the solution of Egs. (5.9) and (5.33) for Ay and oo(u) we must eval-

uate singular integrals of the type
p ot Eluld!
o TREL
The function F(p') in two-group, half-space problems studied in this thesis
always contain factors of y(p) as well as logarithmic functions. For example,
from Eq. (L4.43) all half-space problems have singular integrals where F(u)

is of the form

F(H) = m?'(u)k(nl,u) (62)
Ni~H

where we recall that

K(n,u) - Mn<1+l_)-mQ+L ,
an Op

For the Milne problem we have in addition other integrals involving

Flu) = ny7 (u)k(-n3,u) ) (6.3)
Natu

While the constant source problem has another integral where

12

Plu) - [ 8L (1 %;)J Y (). (6.4)

The details for evaluating y(u) are given in Appendix A. The presence of
logarithm factors and ¥(u) in the function F(u) requires special care in

order that an inordinate amount of computer time is not taken.
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By usual procedures1 the singularity is subtracted to yield

flpElwllan’ - fh [RGu-FGla F(uun(b&) : (6.5)
o p'-p o b -u a

The functions F(p) and {n(l-u)/p are now evaluated at the midpoint of all the
intervals for u between O and 1, and these values are stored in the fast ac-
cess memory of the computer. Let us assume that the singularity is at some

midpoint value My o Then we approximate the principal value integral in Eq.

(6.5) by

fl F ")d ' ~ z [F(Hj)’F(Hi)]hj + hiF'(pi) + F(pi)ﬁ‘n<l—“i> (6.6)

° i ) i H

The prime on the summation indicates that in the sum the term j = i is not
included. This particular term is given by the second term on the right-hand
side of Eq. (6.6). Also hj is the width of interval j. We are using the
trapezodial rule with the midpoint approximation in the evaluation of the
integral term on the right-hand side of Eg. (6.5).

We note that the second term on the right-hand side of Eq. (6.6) has a
derivative factor. When the singular point u; is not in the intgrval ad=-
jacent to the end points or adjacent to the intervals where an interval change
is made, i.e., p = 1/0, this second term on the right-hand side of Eq., (6.6)

is approximated by

BF () = 5 (Flug,q)-Fluy )]

When the singularity is at the midpoint of one of the other four remaining

19

intervals we use
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%_ [F(uz2)+3F (uy )-4F(0)], 1i=1 (6.72)
nF'(pg) o~ % [4F(1/0)-3F(up)-F(pp_y)], 1 =P (6.7b)
1 [F(pP+2)+5F(pP+1)-F(l/0)], i = P+1 (6.7¢)
3
. EBL_ [4F(1)-3F (up)-Flpp_; )], 1 =D, (6.7d)

We have P intervals from O to 1/o and a total of D intervals from O to l.
Following to some extent Bareiss and Neumann,l9 we shall derive in de-

tail Eq. (6.7a). Iet us first calculate the contribution of the integral

term on the right-hand side of Egq. (6.5) to one general interval of width h

about p', i.e.,

u-g < u' < u+§
We have
h
2 (u')-F(u)ldp' _ fh/2 [F () -F(u) ldy (6.8)
H'g - -h/2 y

where we used the change of variable y = p'-p. We expand F(y+u) in a Taylor

series about p to yield
Flyw) = Flu) + yF' () + & F'(u) + ... (6.9)
Inserting this expansion in Eq. (6.8) and integrating over dy yields

3
P () + § 7 (u ﬁF poday = mE () r B E) -
-h/2 T (6.10)

Thus by keeping only the first term on the right-hand side of Eg. (6.10) we

are omitting terms of &h®) or higher.
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For Eq. (6.7a) we need to find a good approximation for h;F(ui) where

Hy = % h; and h; is the width of the first interval. To this end we write

a Taylor series for F(p+h); namely,
. h .
F(uth) = F(u) + hF'(u) + ;F"(p) + M%) . (6.11)

We insert p = % hy in Eg. (6.11), and recalling from the midpoint values that

PO N

pe = < hy, we find

2

F(uz) = Fluy) + hyF'(uy) + %J‘F”(Hl) + O(n3). (6.12)

Next we replace h by -hy/2 and p by hy/2 in Eq. (6.11) to arrive at

h ne ;s |
M@=f@ﬁ-jwmﬁ+§rwﬂ+3m>. (6.13)

2
Solving Eq. (6.13) for 2L F"(n;) yields
>

2
gl'F”(u1> = LF(0) - bF(py) + 20F'(uy) - & “(n®) . (6.14)

This result is substituted into Eq. (6.12) to eliminate the second derivative
term. We then solve for h;F'(n;) to obtain Eg. (6.7a). Equations (6.7b),
(6.7c) and (6.74) are derived in a similar manner.

The nonsingular integrals are also evaluated by the midpoint approxima-

tion, For example the integral in Eq. (5.9a) is approximated as follows:

D

fl y(wnak(ng,u)dy o >ﬁ7(“j)ﬂlk(ﬂl»’“3)hj (6.15)
o N1=H -

j= N17H 3
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D. ITERATION PROCEDURE FOR THE EXPANSION COEFFICIENTS

To solve Egs. (4.28) and (4.29) in the general case, we first approxi-

mate A, by
Aio) ) éz 7 ()" (w)dp -
g 7()gy (n)du
The first iterate solution for o=(u) is given by
) = oy (w)-al0%8, ()1 (6.17)

The superscript on A, and oo(u) specifies the iteration index. Equation

1
(6.17) is then used in Eq. (4.28) to yield A£ ) and then the second iterate
on ao(p) is found; namely,

(1)
(W) = oGy (W-attg ()] + ¢ o) J7 e wlklwdn (g 1)
° n-H

Continuing in this manner, we have for the n'th iterative solution

- 1 m-1)
0§ ) = oty (78,001 + ¢ o) nde Ak (ndn (6.1)
N-K

We assume that for most physically interesting problems, e.g., Milne and con-
stant source, the above procedure converges in the sense that given an € > O

we can find an integer M such that for all m > M and pe(0,1]

1B ()-8 )| < e (6.20)

For the problems studied in this thesis, convergence was achieved in seven
iterations where € = 10-70 An alternate method of solution by matrix inver-

sion is discussed in Appendix C.



VII. SPHERICAL HARMONIC SOLUTIONS TO THE
CONSTANT SOURCE AND MILNE PROBLEM

In the present chapter some commonly used approximation methods are used
to solve the Milne and constant source problems which have been treated
exactly in the earlier chapters of this thesis. We restrict our attention to
the P, Ps, and DP; c:ases,:L and in the following chapter, compare results in
order to derive a feeling for the validity of the various approximation
schemes.

In the P; and Ps cases the angular flux is expanded in a series of leg-

endre polynomials as

o]

g = ) BpG) ) (7.1)
£=0

o{t)(2) b (z,m)
and E(z,p) =
0{2)(2) Vo lzm)

The superscript on the p's denotes the group number.

with

We follow the standard procedure1

of substituting Eq. (7.1) into Eq.
(2.2), multiplying by Pk(p) and integrating over dy. By including a source

term in group two (consistent with Chapter V) and using the identity

() = o [y e, ()]

with the orthogonality relation

L8
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1
£l PI(H)PK(HM-IJ =

the two group Pl equations become

(1) (1)
_l[k dpk-l(z) + (k+l) dpk"‘l(Z)J + Op(:L)(Z)
dz dz

= [20210{1)(2)420120{% ) (2) 18y, (7.2a)

2k+1 dz dz
_ [2C21pél>(Z)+2C22p£2)(z)+28]5ko (7.2)
where as before
s = 520
02

p (z) = 0 for m>1. (7.3)
-

In particular, the Pl equations are

(1), | ~
égiazi_l + opél)(z> = chlpél)(z)+20129é2)(z); (7.ka)
(1)
dpodz( ) + ngil)(z) = 0, (7.%b)
) .
gﬂialifl.+ pég)(z) = QCzlpél)(Z>+Eczzpég)(Z>+25 5 (7.4c)
z

and
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(2)
doo (2) 4 5,(2) () - o . (7.4a)

dz 1

These equations are solved by first finding the eigenvalues of the homo-

geneous set. Assume solutions of the form

k .
N = jiz-Aij ed” (7.52)

and

of)(z) = ZBiJ S (7.5b)

The substitution of Egs. (7.5) into Egs. (7.4) and cancellation of the space

dependence ylelds the following eigenvalue equations:

Aqgky + (U-ECll)AOj - 2C12By; = O (7.62)
Agjky + 3015 = O (7.6b)

Byjks + (1-2C22)Byj - 2021445 = O (7.6¢)
Bojkjy + 3By = O . (7.64)

A nontrivial solution exists to Egs. (7.6) if and only if the secular deter-

minant vanishes:

k O-2Cll 0 '2012
50 k 0 0

0 -2C2; k  1-20pp
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The expansion of Eq. (7.7) yields

k* +B¥® +D = 0 (7.82a)
where
B = ‘3[1"2022+0(0'2011)] (7.8b)
and
D = 90lo(1-2Cop)-2Cy,+4C] . (7.8¢c)

For the problems studied in this thesis, we obtain four real roots to Egs.
(7.8). We denote these roots by *k; and *kp where k; < ks.

The particular integral solution to Egs. (7.4) is derived by realizing
as z»w the total flux in each group becomes constant. From Egs. (7.4b) and
(7.44), the current in each group is zero. Thus from Egs. (7.4a) and (7.kc) we

have a pair of simultaneous equations whose solution is

. hsc
pél)(Z) = 12 = 25, (7.9)
z70  (1-2C22)(0-2C11)-4C12Co,
and
0)(z) = 2(0-2C1, )8 - 25 . (7.90)

(1-2C22)(0-2C17 ) -4C12C2;

For the constant source problem the solutions as given by Egs. (7.5) must
be finite as z*o. This requires that we consider only the negative real roots
of Eq. (7.8a). Also from Egs. (7.6), A1j and Byj can be found in terms of

Ayj and Byj. Thus we write solutions to Egs. (7.4) as follows:
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Z 'kZZ

-k
o, (z) = Aoge 17 + Agge + 28, (7.10a)
~kyz -k o~
Qil)(z) = Aoofi(ky)e 17 + Aoufy(kp)e 22 (7.100b)
-k -
o82)(2) = Moafa(ky)e™® + Agufa(ke)e ™22 + 25, (7.10¢)
2 ~k . -
0P (2) = Aoafa(ky)e % 4 ngura(in)eie? (7.10)
The functions f,(k) are given by

f(k) = X (7.11a)

30

2

£o(x) = 20(02Ca; )oK (7.11b)

60012

2

fa(x) = El30(0-2C1)-k7] (7.11c)

180C12

The corresponding Milne problem solutions to Egs. (7.4) are
pé”(z) = &M% 4 Bope T 4 pge7RE? (7.122)
. k - - .
pil)(z) = f1(-ky)e ?® + Aonfy (ke ST Ayt (ko )e kaz (7.12p)
k - - .

pég)(z) = fa(ky)e 1y Aozfa (kg e kiz oy Agafa(ka)e kaz (7.12¢)
ogg)(2> = fs(‘kl)eklz + hopfalky)e ¥a? 4 Ao4f3(k2>e-kzze (7.124)

Here we have used the same normalization as in Chapter V. We note that there
are two arbitrary constants in Egs. (7.10) and Egs. (7.12) which are determined
by the boundary conditions at z = 0. We approximate the rigorous boundary con-

dition
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y(o,u) = O for p >0 (7.13)

by the lowest order Marshak boundary condition,l

({1 wp(o,pldy = 0. (7.14)

For the P; approximation the angular flux is given by Eq. (7.1) where

pl(z) =0 for £ > 1. Thus we have in this approximation that

Wzw) = Sog(a) + 2up(2) . (7.15)

The substitution of Eq. (7.15) into Eg. (7.14) and subsequent integra-

tion yields

p o)+ py(o) = 0. (7.16)

For the constant source problem, the boundary condition given by Eq.

(7.16) [when related back to Egs. (7.10)] yields

Aosg(ky) + Aosglke) = -5 (7.172)
and
Aosh(ky) + Aosh(kz) = -5z (7.17b)
where
gk) = =+ 1y(k)
and
n(k) = 2 f2(k) + £3(k)
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Likewise, from Egs. (7.12)

Aoog(ky) + Aoss(ks) -g(-ky) (7.18a)

and

Aosh(ky) + Agsh(ks)

-h(-ky) . (7.180)

With the coefficients determined, the complete solution in this approxi-
mation is given by Eq. (7.15) where the p's are given by Egs. (7.10) and
(7.12) for the constant source and Milne problem respectively. In the prob-
lems considered here the eigenvalues are real. One of these roots is less
than unity (in absolute value) while the other is greater. Thus in two-group
theory we obtain one of the continuum eigenvalues even in the P; approximation,

In the one-speed casel

the P, approximation yields only the asymptotic solu-
tion, i.e., the eigenvalues are all greater than unity in absolute value.
(At least the above statements were found to be true for the two-group problems
considered in this thesis.)

The two-group extrapolation distance is found from either Eq. (7.12a)
or (7.12c). We set Apy = O and solve for the extrapolation distance Zg.

This gives

Zo = - ——In (} - . (7.19)

We note that the extrapolation distance is the same for each group and is
given by Eq. (7.19). This result can be contrasted with the usual” procedure
of using an extrapolation distance for each group given in the isotropic
scattering case by .7104A; and .710kNo where A; and Ap are the total mean

free paths for Group 1 and Group 2, respectively.
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In the P5 approximation, we truncate Eq. (7.1) by
el(z) = 0O for [ >3 . (7020)

This condition along with Egs. (7.2) and setting k = 0,1,2 and 3% yields the

following set:

(1)
Bor 2 4 (o-2eys el (2) - 205208 (2) = 0 (7.21a)
dz
20 (o) * ool (2) + 3001 (z) = 0 (7.21b)
dz dz 1
(1),
éﬂEéilﬁEl + g§2é~—iil + 50021)(2) = 0 (7.21c)
dz 4
2%92&1132 + 70pél)(z) = 0 (7.214)
dz
(2)
d_p]d_@+ (1-2022)082)(2) - 20230{V(2) = 28 (7.21¢)
Z
240820 (2)  4pf2)(2)
2 fo +308)(2) = o (7.21f)
dz dz
(2) (2)
3dpg " (z) +2dp:L (z) +5p§2)(z) - (7.21)
dz dz
Ziﬁz(*_gi(_z_)+ 7p:<32)(z) - 0. (7.21h)
dz

By a procedure analogous to the previous Py solution we obtain from Egs.

(7.21) a secular determinant of order eight which, upon expansion, yields
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Ck® + Dk® + Bk* + FkKB + ¢ = O . (7.22)

The coefficients in this equation are given by

c = 81 (7.22a)
D = 990(Ceg+Cyio) - 810(1+07) (7.23b)
E = 1000(11C11-90)(11C22-9) + 9U5[1-2Con+0®(0-2C11)] - 110°0C21Cye  (7.23c)
F = 10500(1-2C22)(11C11-90) + 10500°(0-2C11) (11C22-9) + 210-1100C21C 1o (1+02)

(7.23d)
¢ = (105)%03(0-2C11)(1-2C22) - (210)263C21C1s . (7.23¢)

In analogy with the P; solutions, we can write immediately the solutions
for both the constant source and Milne problem. The constant source problem

solutions are

N
-ksz
pél)(z) = YAOjfn(kj)e %+ 251810 (7.24a)
e
J=1
! n = 0,1,2,3
-k .
péZ)(z) = >:Aojfn+u(kj)e 3%+ 288, - (7.24b)
J=1
And the Milne problem solutions are given by
L
-k sz kqz
pr(ll)(z) = Z Aosfnlkyle 97 + £ (-ky)e? (7.25a)
Jil n =0,1,2,3
~ksz k .
_OI(IE)(Z) = Bojfnel(ksle 97 + £ ) (kg )e 1? (7.25b)
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In Egs. (7.24) and (7.25) we define

fo(k) = 1 (7.26a)
£y (x) = E(5F-9K7) (7.26b)
50(2102-11k2)
£o(k) = Lkofa(k) (7.26¢)
%5 2 ~0k2
Fa(k) = 2= £2(k) (7.264)
To

10Co4 (21-11k2) .
fa(k) = (7.26¢)
k2 (9k2-35)+5(1-2Czz ) (21-11k2)

ro(k) = K(5:9K7) ¢ () (7.262)
5(21-11k2)
fo(k) = —HE £ (x) (7.26¢)
35-9k=2
£ (k) = %E fo(k) . (7.26n)

The Milne problem is normalized as before and we identify the four pos-
sible positive roots of Egq. (7.22) as ki, ko, ks, and k4 where k; is the root
of smallest magnitude.

The unknown coefficients in Egs. (7.24) or Egs. (7.25) are now determined

by two Marshakl boundary conditions; namely,

f PJ.(H)E(O;H)dH = 0 » (727&)



" Ps(ulylo,plan = 0. (7.270)

P1()p, (0) + 2 Palu)ps (o) +

N

P3(p)pg(0) . (7.28)

We substitute Eq. (7.28) into Egs. (7.27) and perform the integration over dy

to derive

pal0) = 0 (7.298)

and

(o) = 0. (7.29b)

Thus for the constant source or the Milne problem, Egs. (7.29) give us
the four equations needed to determine the unknown coefficients. Specifically,

we have for the constant source problem the following set of equations:

L

}: g(kj)Aoj = =53 (7.30a)
J=1
L

S .

h(k:)A . = - 2k T.30b

hlky)Agy > (7.30p)
3=
LS

t(kj)Aoj = =5 (7.30c)
j=1
L

_ .52

z S(kJ)AOJ -~ o (7030(1)

J=1

And for the Milne problem,
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Mgt

g(kj)Aoj = ‘g<'k1) (7-513)

J=1

I
Zh(kj)AoJ = =h(-k;) (7.31b)

j=1

L
) oy = (k) (7.31¢)

J=1

i
Zs(kj)AoJ = -s(-ki) (7.31d)

J=1

Here we have
_ 1 5
g(k) = >t fi(k) +§f2(k) (7.3%2a)
n(k) = =+27f,.(k) +2 £a(k) + = £a(k) (7.32b)
hoos 8 5

t(k) = gf4<k>+f5<k>+§fe<k> (7.32¢)
s(6) = Lra(0) + 2o5(6) + 3 gok) + S 17 (k) (7.324)

With the coefficients, i.e., A's, known from solving either Egs. (7.31)
or (7.32), we can obtain the total flux and current from Egs. (7.24) or (7.25)
or the angular flux from Eq. (7.1). Also the extrapolation distance is given
by Eq. (7.19) with Aps derived, in this approximation, from Egs. (7.31).

An approximation method which permits the exact specification of the
boundary condition at a free surface is the so-called double P;(DP;). This is
in contrast to the ordinary P, method in which the boundary condition can be
fulfilled only approximately (for example, in the previous section we used the

Marshak condition). The angular flux is expanded as
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e ¢]
+
Wew) = ) (@EDReull(), 0<u<d

=0

00
= Z (2£+1)Py(2p+1)p7(2), -1 <u <O (7.33)

=0

In the DP; approximation, we set
E}(Z) = E}(z) = 0 for £>1 . (7.34)
The boundary condition at the vacuum-medium interface is

polo) = pilo) = 0. (7.35)

We shall see that this approximation is of the same computational difficulty
as the Ps approximation, but apparently gives better accuracy.

For the solution of Eq. (2.2) in this approximation we substitute the
expansion given by Eq. (7.33) into Egs. (2.2) and multiply successively by
P,(2u-1), P1(2p-1), Po(2p+l), Py(2p+l) and integrate over du. The range of
integration for the first two cases is from O to 1 while the latter two is

from ~1 to 0. We easlily derive the following equations:

apdt*(2) . o1 (2)

dz ldz * 20pé1)+(z) = ecllpél)(z) + chzpéz)(z) (7.3%6a)
(1)+ (1)+
iﬁo - (z) + 3 dpld (z) N 6op§l)+(z) - 0 (7.360)
z Z
(1)- (1)- . .
dpldz (Z) - Eﬂhdz (Z) + Qgpél)‘(z) — 2cllpél)(z) + gclzpég)(z) (70560)



61

(1)- (1)-
S G N GO LT P (7.364)
dz dz

102 (2) dp£2)+(2)

0 ¥ £ 2081 () - 2C210{1)(2) + 202202)(2) + 28 (7.36e)
dz dz o}
dpé2)+(z) . s dp£2)+(z) .\ 6p(2)+(z) _ 0 (7.367)
dz dz 1 )

102)(2)  ap{P)"(2)

. S~ 4 20{2)7(2) = 2Cayp(1)(2) + 20220 (2) + 25 (7.36g)
ap{2)=(z2) ap{2)"(2)
- dz(%- -3 —Eldz'iz—-+ 6o§2)'(z) = 0. (7.36h)

Here the total flux in each group is

1

o) = [wlewan = ol (z) + ol (2) (7.37a)
o{2)(z) = {i (o = o (2) + p2)(2) (7.570)

We could now obtain a secular determinant from Egs. (7.36) in a manner quite
similar to the P3 approximation. It has been found convenientgl to derive an

equivalent set of equations which are in form very similar to Egs. (7.21).

First we write the following identities

Pin) = 3 [Pa(2u-1)+Py(2p-1)] (T.388)
Py(p) = L [Py(2u+1)-PB,(2p+1)] (7.380)
Po(p) = = [Pa(2u-1)+3Py(2u-1)] (7.38c)
Pa(w) = ¥ [Po(2ut1)-3P1(2u+1)] (7.384)
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dJ
w
—
-

]

[P3(2p-1)+5P2(2u-1)+3Py (2p-1)-P, (2u-1) ] (7.38)

ee] hog

Pa(u) = g [Ps(2u+1)-5B2 (2+1)+3Ps (2+1 )R, (241)] (7.38f)

We use identities given by Egs. (7.38a) and (7.38b) to obtain the net current

for each group, i.e.,

o 2) = S mn G = 1) ()] + L 1o (@)1 ()]
(7.3%)
oB2) = [ Bl zwa - 5 R () ()] + L 162 (a)402)7 ()]
(7.39)

Similiarly by using the appropriate identities above and considering the trunca-

tion given by Eq. (7.34), we obtain

po(z) = 2 [pl(z)-p](2)] (7.40)
and
1 - AT ,
po(z) = & [p5(2)-pl(2)] + § [of(z)wp;(2)] . (7.41)
QZ(Z) and 98(2) are approximate full-range moments because we omit terms of
9; and gz for £ > 1.

From Egs. (7.37), (7.39), (7.40), and (7.41), we can easily solve for the

half-range moments to yleld

ph(z) = 2o (2) - pylz) + 3o (2) (7.42a)
px(z) = Fo.(2) - 2p,(2) + p,(2) (7.k2b)



erlz) = % po(z) + % p,(z) +p_(2) (7.k%2c)
_I(Z) = -l]igl(Z) + EB(Z) - %22(2) . (7..14-2(1)

By appropriate linear combinations of Egs. (7.36),we derive an equivalent

set of equations in terms of the full-range approximate moments; namely,

(1),
ggiazizl + (G-QCll)pél)(Z) = gclgpéQ)(z) (7.43a)
(1), (1)
dpodz( ) ‘0 dpgdz(z) + 5093(_1)(2) -0 (7l¥§b>
3 éEiiZiEl + L éﬁéﬁl&il + 8op£l)(z) =0 (7.43c)
dz dz
@Eé;lﬁf).+ 6opgl)(z) = 0 (7.434)
(2)
ie:a__@_l + (12022)0(2)(2) = 2Co10{l)(2) + 28 (7.43e)
Z

dpég)(Z) Lo de

—_— (2) Z =
= 2 zz + 30,7/(2) 0 (7.43f)
()
R I SACHI N R (7.43¢)
dz z
dog(i)<2> c6p2)z) = 0. (7.430)

For example, to obtain Eg. (7.4%a), Eq. (7.36a) is added to Eq. (7.36c) where
the derivative term is simplified by Eq. (7.39a). The other equations are
derived in a similar manner.

We now solve Egs. (7.43) in a manner analogous to the P5 approximation.
The characteristic equation obtained (on expansion of the secular determinant)

is
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Ck® + Dk6 + Fk4¢ + Fk2 + ¢ = O (7.544)

where the coefficients are now given by

c = -1 (7.452)
D = 24[o(0-Cy1)+1-Caz] (7.45b)
E = 5760[C21C12+(1-Ca2)(Cyi1-0)] - 36[03(0-2C11) + 1-2Co5] (7.L45¢)
F = -8Lo[(C11-0)(1-2C22) - 6®(1-C22)(0-2C11)] - 1728C231C120(c+1) (7.L45d)
G = -12960°(0-2C11)(1-2Con) + 5184CoqCip0>. (7.L5e)

The solutions to Egs. (7.43) is exactly the same as the P5 solutions. For
the constant source problem the solution is given by Egs. (7.24) and for the

Milne problem by Egs. (7.25) where Egs. (7.26) are replaced by

folk) = 1 (7.46a)
_ k(12¢2-k2)
f1(k) = 2o(3R-12) (7.46D)
fa(k) = _9okfy (k) (7.46¢)
2(1202-k2)
fa(k) = §§§iﬁl (7.464)
g

£a(k) = 24Coy (k2-3) (7. 46e)

k2(12-k2)+12(1-2C22 ) (k=-3)

fe(k) = k(kZ-12)f, (k) (7.467)
12(k%-3)




fo(k) = fs(k) (7.46g)

f (k) = Kfell) (7.46g)

The boundary conditions in terms of the half-range moments are given by
Eq. (7.35). From Egs. (7.42a) and (7.42c) we write the equivalent boundary

conditions in terms of the full-range moments as

3 0,(0) + 2p,(0) - p (o) = © (7.472)
and
% p (o) + % p (o) +p (o) = 0 (7.470)
For the DP; approximation, we define
g(k) = 2+ 2 02(k) - oK) (7.48a)
h(k) = ¢ (k) +§fa<k> + Tg(k) (7.148b)
t(k) = 2 f4(k) + 2 T5(k) - 27 (x) (7.48¢)
s(k) = F fs(k) +§f6<k> + £r(k) . (7.u8a)

The equations for determination of the unknown coefficients is identical
[except we use Egs. (7.48)] to either Egs. (7.30) or (7.31) depending on
whether we are solving the constant source problem or the Milne problem. The
total flux and current is given by Egs. (7.24) or (7.25), respectively, the

extrapolation distance by Eq. (7.19), and the angular distribution by Eq. (7.33)
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with the truncation indicated by Eq. (7.34). 1In terms of the full-range

moments the angular distribution from Egs. (7.33%) and (7.L42) is

i

y(z,p)

and

L o5(2)2p,(2) - bp,(2) + ulboa(z) + 2 0,(2) + bp,(2)], O<u<1
(7.49)

> o, (2)-2p, (2)+bkp (a1l -kpa(z) + 2 01(2)+6ps(2)], -1 <u<o,

(7.49b)

We note the discontinuity in the angular distribution at p = 0. In the next

chapter, these solutions are evaluated numerically for some specific cases.



VIII. NUMERICAL RESULTS AND COMPARISONS

We have selected four problems for detailed study. These are all light
water systems. The first problem which we label Set I is for ordinary light
water. ©Set II, III, and IV consist of boarted light water at concentrations
of 1.025, 2.99, and 6.35 barns/hydrogen atom respectively. The ranges of the
energy groups are chosen as

Group 1l: 0. eV < E < .0253% eV
and

Group 2: .0253% eV < E < .5%2 eV
The thermal spectra and cross section averaging procedures were performed by
using the INCITE?? code. The McMurry-Russell25 HoO kernel was used at room
temperature (29%°K). The results of these cross section calculations are

listed in Table 8.1.

TABLE 8.1

TWO-GROUP MACROSCOPIC CROSS SECTIONS

Set
No,

I L4.8B82 3.2343 03166 .01498 33,8180 2.8669 .3524  1,0%26
IT  L4,9270 3,1686 .09725 .ohk2h  3,7953 2,8005 ,3%3239  1.03%L5
III  5.0914 3.,0707 .28011 .11738 3.7659 2.6828  .2705 1,045k
IV 5.3220 2,9738 .58%336  ,22%26  3,6906 2,534 2164 11,0481

01 02 O1a O23g, 011 Oz22 012 O21

Recall that these cross sections must be modified to

o = oifoe

67
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and

Cij = O’ij/20'2 .

A computer program as described in Chapter VI is then used to find the eigen-
values of Eq. (2.17) i.e., the dispersion equation. For the four problem
sets listed in Table 8.1, two real roots are obtained,

In the process of solving the problems by approximate methods as detailed
in Chapter VII,we also must obtain the roots of the characteristic equations
i.e., Egs. (7.8a), (7.22), and (7.44). The eigenvalues for the exact calcu-
lation and the approximate methods are given in Table 8.2 where from Eq.

(2.3) and Egs. (7.5),we see that kj = l/nj.

The eigenvalues for n > 1 provide the asymptotic solution to the one-
group transport equation, This is also true in two-speed transport theory and
we note in Table 8.2 that the P; discrete eigenvalues are closer to the exact
values for Set I and Set II than are the P3 or DP; values., But we observe
that as more absorption is added to the medium the Ps discrete eigenvalues
become almost identical to the exact eigenvalues (see Set III and Set IV in
Table 8.2).

With the discrete exact eigenvalues determined for each case, four Milne
problem were solved by using the computer program listed in Appendix D. The
behavior of the expansion coefficients for Set I and Set IV 1s shown in Fig.
8.1 and Fig. 8.2 respectively. For all problem sets, i.e,, Milne and con-
stant source, we always obtained the sharp resonance-like behavior in o ().

The "resonance" always appeared for p between 1/c and 1. In comparing Fig.
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Fig. 8.1. Expension coefficients for Milne problem, Set I.
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Fig. 8.2. Expansion coefficients for Milne problem, Set IV.
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8.1 with Fig. 8.2 we see that the added absorption causes the resonance to
shift closer to 1/¢ and to become much narrower and higher (note the change
of scale for Qzo(p) in Fig. 8.1 and Fig. 8.2).

In solving the Milne problem we obtain the extrapolation distances by
using Eq. (5.18). The extrapolation distances were also caculated from the

approximate methods using Eq. (7.19). The results are shown in Table 8.3.

TABLE 8.3

EXTRAPOLATION DISTANCES FOR MIINE PROBLEMS

Set No. Exact Py Ps DP,
I 6658 L6217 L6736 6944

11 .6783 .6286 L7111 .7320
III L7121 .6LT76 L7976 L8177
Iv L7613 6735 .9279 .9L32

We see from Table 8.3 that the P, results are consistently too low while
the Ps results are two high and with increased absorption the P; and P5 results
become progressively less accurate. The DPy extrapolation distances are about
3% higher than the Ps.

Angular distributions, total flux, and current are compared only for the
constant source problems since the general conclusions should be valid for
either problem. Also the constant source problem is of more interest for re-
actor applications. All distances into the medium are given in units of mean
free path (m.f.p.) where we use the larger m.f.p. of the two energy groups,

i.e“, 1/02.
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In Fig. 8.3 the exact angular distribution of Group 1 at the interface
is compared to that obtained by the three approximation methods. The P; exit
distribution fits the exact fairly well. As expected the P; approximation
gives both positive and negative inward components. The Pg calculation also
gives a negative inward contribution which is difficult to show on the scale
that we use in Fig. 8.3%. We have indicated the DP; results by points at +90°
and at *101.5°. For © > 101,5° the points for the DP; calculation were very
close to the exact results. We note the discontinuity in the angular distri-
bution at © = £90° for the exact and DP; calculations,

In Fig. 8.4 we make a similar comparison of exit angular distribution for
group 2. We observe the change of scale; otherwise the distributions are quite
similar.

The angular distribution at a distance of 1 m.f.p. in the medium is shown
in Fig. 8.5. As can be seen from the figure the P5 and DP; results are very
close to the exact results, The DP; results are slightly closer to the exact
results than are the Ps,

We show in Fig. 8.6 the change in the exact angular distribution as a
function of distance into the medium for group 2. We observe how the angular
distribution becomes progressively more isotropic and increases in magnitude
with distance into the medium.

The effect of added adsorption on the exit angular distribution for group
2 is shown in Fig. 8.7.

As a measure of the peaking of the exit angular distribution, we compute

the ratio of the angular flux at 4 = -1 to that at B = O, In the constant
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Fig. 8.3. Constant source angular distribution for Group 1,
¥1(0,8), Set I.
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Fig. 8.4. Constant source angular distribution for Group 2,
¥5(0,0), Set I.
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Fig. 8.5. Constant source angular distribution for Group 2,
\Vg(l:g); Set I.
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Fig. 8.6. Modifications in exact angular distribution with
distance into the medium, Set I.
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source problem, this ratio is 2.48 for Set I (pure water) while for Set IV
(most poisoned case) it is 2.10. Thus with increased absorption the peaking
in the forward direction becomes less pronounced. We observe the opposite
effect for the Milne problem which is in agreement with the one-speed theory.
Specifically, the ratios for the Milne problem are 2.91 and 3.77 for Set I
and IV respectively.

In reactor physics analysis the total flux and current are of most
interest and utility. In Figs. 8.8 and 8.9 we show the exact total flux for
Group 2 using Set I and Set IV, respectively. The approximate methods give
a total flux quite close to the exact results, thus making a compariton of
results difficult on the scale that we are using in these figures. Neverthe-
less we attempt to show in Fig. 8.9 the exact total flux and the approximate
total flus. The DPl calculation gives a total flux so close to the exact value
that a separate line could not be drawn. We indicate in each figure with a
horizontal line the asymptotic total flux.

Numerical results for Set I and Set IV and Group 1 and Grecup 2 are given
in Tables 8.4 to 8,6. Alsc the error is given in percent where we define

[go (approx)—go(exact)] 100

error =
o (exact)
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Fig. 8.8. Exact total flux for the constant source vs. distance
into the medium, Group 2, Set I.
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Fig. 8.9. Total flux for the constant source vs. distance into
the medium, Group 2, Set IV.
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TABLE

8.4

TOTAL FLUXES FOR GROUP 1, SET I

Distance

(m.f.p. ) Exact Py Error Py Error DP, Error
0 1.4106 1.5966 +13.1 1.4630 +3.7 1.3975 -.9
.5 3. h4h2k 3,3089 - 3.9 3.3768 -1.9 3. 4364 -.2
1.0 5.0450 L. 8649 - 3.6 4, 9675 -1.5 5.0164 -.6
1.5 6.4926 6.2946 - 3.0 6.4008 -1.4 6. kkko -7
2.0 7.8245 7.6194 - 2.6 7.7207 -1.3 7.7613 -.8
3.0 10.2009 9.9946 - 2.0 10.0829 -1.2 10,1198 -.8
5.0 14,0417  13.85%0 - 1.3 13,9153 - .8 13,9427 -.7
10.0 20.0287  19.8987 - .6 19,9202 - .5 19.9362 -.5
TABLE 8.5
TOTAL FLUXES FOR GROUP 2, SET I
Distance
(m.f.p.) Exact Py Error Ps Error DP4 Error
0 5,760k 6.5009 +12.9 « 6.2100 +7.8 5.6877 ~1,2
.5 11.6354 11,2336 - 3.5 11.3838 -2.2 11,5746 - .5
1.0 16,2810  15.6776 - 3.7 15,9721 -2,0 16.1772 - .6
1.5 20.510% 19,8403 - 3,3  20.1670 -1,7 20,330k - .9
2.0 24,4239 23,7335 - 2.8 24,0507 -1.5 24,1878 -1,0
3,0 31.4543 30,7663 - 2,2 31,0381 1.4 31.1478 -1.0
5.0 L2,8775 42,2395 - 1.5 L2.,hk2k3 -1.1 42,5066 - .9
10,0 60,7205  60.23L0 - .8 60,2984 -~ .7 60. 3425 - .6
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TABLE 8.6

TOTAL FLUXES FOR GROUP1, SET IV

Distance
(m.£.7.) Exact Py Error Ps Error DPy Error
0 3.2683 3,656% +11.8 3, 4226 +4.6 32625 -2
.5 8.3076 7.9137 - 4.7 8.2312 - .9 8.3723 +.8
1.0 11.5025 11,1189 - 3.3 11,4584 - .4 11.5392 +.%
1.5 13,8524 13,5487 - 2.2 13,8201 - .2 13,8656 +,1
2.0 15.6174  15.3%999 - 1.4 15.5924 - .2 15.617L 0
3.0 17.9790 17.8879 - .5 17.9585 - .1 17.9702 0
5.0 20,1820 20.1908 + 0 20,1717 - .1 20.1776 0
10,0 21,2945 21,3033 + 0 21,2945 + 0 21,2959 0

two

the

and

cent positive,

provement in accuracy over the Ps especially at the interface.

with that obtained by the approximation methods,

very close to the exact.

We note the accuracy of the P5 calculation which 1s always within one or

percent of the exact value except at the interface.

error is always less than 8%.

Even at the interface

The error is always negative for the Py

P5 approximations except at the boundary where the error is several per-

We observe that the DP; calculation gives a significant im-

Finally, we compare in Fig. 8.10 the current for the exact calculation

Nevertheless, the DP; calculation gave the best re-

sults in every case studied.

The P53 and DP; currents were
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Fig. 8.10. Constant source current vs. distance for Group 2,
Set IV.



IX. CONCLUSIONS

In the general two-group transport problem an exact analytical solution
has not been found, Nevertheless by the Casell approach we have succeeded
in deriving a pair of coupled equations (one is a singular integral equation)
which are conveniently solved by numerical methods, Singular integral equa-
tions are often easier to solve than Fredholm equations. This is true in
this thesis and may be generally valida25

We develop in this work computer codes in the Michigan Algorithm Decoder
lLanguage (MAD) from which anyone can (with different cross section sets) test
the accuracy of conventional approximation methods,

The numerical calculations show that although the P; approximation yields
fairly good results for the total flux and current, the angular distribution
is not so well represented especially at the interface, The Ps approximation
improves on the P; but we continue (as in the P;) to obtain negative inward
angular fluxes at the interface, The DPq method improves significantly on
the Ps angular fluxes as well as on the total flux and current, The DPy
method has the important property that the boundary condition at a vacuum-
medium interface can be specified exactly even in the lowest order approxi-
mation. Thus the exit angular distribution at the boundary is well=-repre=-
sented.,

An interesting observation from this work is that in the constant source
case the exit angular distribution becomes less pronounced in the forward

direction with increased absorption in the medium, This is in contrast to
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the Milne problem where the opposite effect is noted,

We recall that the P5 and DP; approximation present the same computa-
tional difficulty. From this study we conclude that in two-group reactor
physics design analysis (with reactor parameter similar to those studied
here) the DP; approximation is to be preferred over the P approximation.
This conclusion has also been stated by Weinberg and Wignerzu in the one
group case but never (to our knowledge) has it been tested against exact cal-
culations in two-group problems. Of course, we realize that for complete
core design calculations on complicated power or research reactors multi-

group diffusion theory may still be the only feasible approach,



10.

11.

12,

13.

1k,

REFERENCES

K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley
Publ. Co., Reading, Mass. (1967).

A review of some of these techniques is given in Ref. 1, Chapter 8; see
also A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron
Chain Reactors, University of Chicago Press, Chicago (1958) and R. V.

Meghreblian and D. K. Holmes, Reactor Analysis, McGraw-Hill, New York (1960).

Reactor Physics Constants, ANL 5800, 2nd ed., Argonne National Laboratory
(196%); see also J. L. Meem, Two Group Reactor Theory, Gordon and Breach
(196L).

J. R. Beyster and J. M. Neill, "Status of Thermal Neutron Spectra,”
speech at I.A.E.A. Symposium on Neutron Thermalization and Reactor Spectra,
Ann Arbor, Michigan (1967) (to be published).

M. R. Mendelson, Thesis, The University of Michigan, 196L.

R. Zelazny and A. Kuszell, Ann. Phys. 16, 81, 1961; also in Physics of
Fast and Intermediate Reactors, I.A.E.A., Vienna, 1962.

C. E. Siewert and P. F. Zweifel, Ann. Phys. 36, 61, 1966; and J. Math.
Phys. 7, 2092, 1966.

C. E. Siewert and P. S. Shieh, J. of Nucl. Energy, 21, 383 (1967) .

R. Zelazny, Private communication, June 1967.

M.M.R. Williams, The Slowing Down and Thermalization of Neutrons, Inter-
science Publishers, New York (1966).

K. M. Case, Ann. Phys. 9, 1, 1960.

R. Zelazny and A. Kuszell, op. cit. (in the sense that the expansion
coefficients are obtained).

See Chapter 8 of Ref. 1; also Joel H. Ferziger and P. F. Zweifel, The
Theory of Neutron Slowing Down in Nuclear Reactors, The M.I.T. Press,
Cambridge, Mass. (1966).

N. I. Muskelishvili, Singular Integral Equations, Noordhoff, Groningen,
Holland (1953).

87



16.

17.

18.

19.

20.

2l.

22,

25.

2k,

25.

26.

F. C. Shure and M. Natelson, Ann. Phys. 26, 27L, 196k,

G. J. Mitsis, Nucl. Sci. Eng. 17, 55, 1963; see also G. J. Mitsis, Thesis,
The University of Michigan, 1963.

N. J. McCormick and M. R. Mendelson, Nucl. Sci. Eng. 20, 462, 196hL.

B. Carnahan, H. A. Luther and J. O. Wilkes, Preliminary Editicn of Applied
Numerical Methods, John Wiley and Sons, Inc., New York, 196L.

E. H. Bareiss and C. P. Neumann, "Singular Integrals and Singular Integral
Equations with a Cauchy Kernel and the Method of Symmetric Pairing,"
ANL 6988, Argonne National Laboratory (1965).

J. Yvon, J. Nucl. Energy k4, 305, 1957.

E. Gelbard, J. Davis, and J. Pearson, "Iterative Solutions to the P and
the Double P, Equations," WAPD-T-810, Westinghouse Atomic Power Development,
1958.

R. L. Curtis and R. A. Grimesey, "INCITE-A Fortran IV Program to Generate
Neutron Spectra and Multigroup Constants Using Arbitrary Scattering
Kernels," IN-1062, Idaho Nuclear Corporation (to be published).

H. L. McMurry, G. J. Russell, and R. M. Brugger, Nucl. Sci. FEng. 25,
2L8, 1966.

A. M. Weinberg and E. P. Wigner, The Physical Thecry of Neutron Chain
Reactors, University of Chicago Press, Chicago (1953).

P. F. Zweifel, Private communication, November 1967.

B. A. Galler, The Language cf Computers, McGraw-Hill Book Cc., Inc.,
New York (1962).

88



APPENDIX A

THE EVALUATION OF v (n)

Half-space identities quite similar to those in the one group casel exist
for the two group case. As the method of proving these identities parallels
closely that for the one group case as given in Case and Zweifel} we shall
omit the details in this work. The X-~function identities that we use in this

work are

X(z) = [ 2 ()f (p)dy (A.1)
o h-z
X(z)X(-z) = 5@£§%§§%;§7 (A.2)
x(z) = gl uf (p)dp (A.%)

Q(e0) (n5-p2)X(~p) (p-2)
We are considering only the case of one pair of discrete eigenvalues. Actually
the only modification needed for the four eigenvalue cases is that we must
make the replacement in identity (A.2) and (A.3) of ni—z2 by (ni-iﬁ=(n§-z2)
where ny and nz are the two positive eigenvalues. Also in the above iden-

tities from Eq. (2.29),

f(u) = Qiiﬂg;gli&l = (oo + [Cll-BCpT(p)—QCpT(Op)]91(“)‘2CMT(1/UH>G2(H)
2nip (A.L)

and from the dispersion equation we have

2C1 1 4
Q(w) = 1 - T - 20 + < (a.5)
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The method developed by Shure and Natelsonl5 is now used to obtain a
rapidly convergent integral equation which is then used to calculate the

X-function and y(u). We write from Eq. (A.2),

and note that g(o) = k(o) = 1.

We solve Eq. (A.7) for X(z) and substitute in Egq. (A.6) to arrive at

Z2
az) . LT3 (2.8)
k(z)k(-2) 1-22%2(0)

Boundary values are now taken of Egq. (A.8) to

W -l = o) Q+<“>";'<“ﬂ (.9)

1-&3 & (p
2
Nx
We observe that the function(u(z)-le is analytic in the complex plane

with a cut from O to 1 along the real axis. A direct application of Cauchy's

theorem around this cut gives

k(z)-1 _ 1 " e"(w)-e"(u)dy (A.10)
7 2ni o u(p-z)

We substitute into Egq. (A.9) the boundary value of Q(z) as given in Eg. (A.L4)
and then insert this result into Egq. (A.10) to obtain an integral equation

for k(=z). This integral equation is
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k(-z) = 1 -z I [1'u2:?(0)]f(u)du
’ < - “—2> (w+z )k (-u)
ni

In the monoenergetic case this integral can be carried out explicitly in the

(A.11)

15 i.e., for g(-z) = 1, but in Eq. (A.11) above the func-

first approximation,
tion f(u) occurs and thus numerical procedures must be resorted to immediately.
Actually Eq. (A.11) is a nonlinear singular integral equation because from

Eq. (A.4) and for C # O f(p) > #o as u = % .

To simplify the notation, we define

[1-45%%(0) Ju

\
1= B (e ) ()
( )

By using Eq. (A.4) for f(p) in Eq. (A.11) and by standard techniques of sub-

. (A.12)

g(H;Z)

tracting the singularity, we easily obtain

1
k(-z) = 1 -2z g Eiﬁ¢ﬁl-[022+(cll-20uv(p))el(u)]dp
1 :
v 2cz | le(u,2)-g(%5,2) 1 [r(ou)8s ()1 (1/on)ez(u) ldp
+ 20z g(z,2) gl [1(on)ex(p)+7(L/on)ez(p)lan (A.13)

This last integral in Eq. (A.13) can be performed to yield

1

g [T(OH)@i(p)+T(l/0u)92(u)]d“ _

alr

[or(1/0) + % m(cc-1)] . (A.1k)

Because of the form of the integrands in Eq. (A.13) the integration is per-
formed separately for O < p < l/c and l/c < u < 1. Eight point Gauss

quadrature is now used to evaluate the integrals and we iterate on g(-z) = 1
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for the first iteration. In a sample problem after five iterations the maxi-
mum difference in any of the %2 values of gk was less than 10'6

From Eq. (A.7) we see that

X(-p) = Kl (A.15)

and if we recall that
X () |
'y(p, = (Aol6)

then from Eq. (A.2),

l \
2 St u XZ(O)
7(p) = Hnl(X(o) ) : (A.17)
(n5-p2)k(-u)

Once k(-z) is found then Egq. (A.17) gives y(p). The k-function for one-speed

theory and isotropic scattering can be obtained from Eg. (A.11) by defining

and

nZ(1-C)
where C has its usual one-speed definition.
The computer code for calculating y(p) is an integral part of the com-
puter code which solves the exact Milne and constant source problems. This

code is listed in Appendix D.



APPENDIX B

NECESSARY MODIFICATIONS FOR TWO PAIRS OF DISCRETE ROOTS

We have briefly noted in Appendix A the slight modification in the pro-

cedure to obtain y(u) if there exists two pair of discrete, finite roots.

the modification is carried through we can easily derive for y(u),

1 2
y(p) = uﬁn%(ﬁg‘y+ “)X ) (B.1)

(nF-p2) (n5-u2)k(-p)

where

®(o) = —i (B.2)
Q(w)n5n3

and the integral equation for n(—z) has the form
(~z) 1 [l”p,gxg(o)]f(u)du
_ p2" 2\ _ ‘
1 - /QL - B ) (u+z e (-p)
n% n3

Her ny, and no are the two positive discrete eigenvalues.

The appropriate X(z) function for two pair of discrete roots is

Xﬁz) = 1 exp i fl ME’. N (BOL\l)
(1-2)2 T o H-Z

And in order that N(z) ~-§ as z > o we require from Eq. (4.20) that

[ A
fl (W) LW'(u) + C fl dnnoe (n)k(n.u) 1, - o (B.5)
° ° n-u
and
1 i L annas (n)k(n,p)
g wy (p) LW’(u) + C g b =sldp o= 0. (B.6)
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We have two discrete modes available to satisfy Egs. (B.5) and (B.6) and
thus we make the replacement of ¥'(p) by ¥'(p)-A1481+(p)-As,do,(p). This
gives two equations with two unknowns assuming Qg(p) has been determined.

The equations are

1

g 7wy (w)dp - Aqy 217(u)¢1+(u)du - A, g

wy (1)dp él dnnaﬁ(ﬂ)k(n,u) -0 . (B.8)
5 _

We solve these two equations for Al+ and Ay, to obtain

1 1 ,
[g 7 (wig,, (w)dn gl wy (v (w)dp - g wy (g, (n)dp gl 7 (v (w)dp

Ay, =
. gl 7(u’)¢2+(u')du‘ gl dupy (1) fl dnnOQQ?gk(n,u)
- fl ty(n")Bo, (u')dp! fldu7(u) fl dnnae(n)k(n,gl/// flV(u)¢ (u)du
o) a H 2+ o] o) =K o] 2+
() 1 wr o, o = [l £ 9l )] (5.9)

1
+ gl 7" )g14 (' )dp’ gl dppy (p) gl d”“azéﬂik(“’“) - [y (pn)g(ut)a
(x) gl dpy () £1 dnnazé?ik(n,u):J//w:gl 7 (Wdn [ wy(wg,, (n)du
1 1 7
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The only fundamental difference,other than more terms in this result,

from the case treated in the text is the presence of terms of the type

1
g wy (g, (w)au (B.
We recall that
$r.(n) = M—ﬂl; [£(n)-Ck(nz,u)l . (B.

Inserting this into the above integral we find

1 ‘
Jopy(ug (wap = Y () S f(u)an - © gluy(u) 1 k(nq,p)dp. (B.

0 o n1-K Ni-p

The first integral can be written as

2
o} Ni~H o N1~k
We recall the X-function defined by Eq. (A.1) is also valid for the two

case, i.e.,

X(z) = fl (u)f (p)d ) (A
0 -z
We note that
1
lim zX(z) = - [ y(p)f(pdu . (B.
700 0
But from Eq. (B..4)
X(z) » L (B
7500 z

thus

1
Jluy(p) M= s(pdp = -ng [y (p)f(p)dp + f17(u) B f(p)du . (B.
O

11)

12)

13)

1h)

palr

15)

.16)
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And we find for the integral expression (B.11l) that

()8

1 2
1+(“)du = - nX(ny) - ¢ wrlp) H—k(qg,uldp . (B.17)
(6] (0]

Ni~H
Similar results can easily be derived for the other integrals of this type
in Egs. (B.9) and (B.10).

The basic equations for finding og(p) would be the same as before except
¥v'(n) is replaced by W'(p)-Al+¢l+(u)-A2+¢2+(p). Of course quite basic to
the solution of o(u) is the shape of the function y(p) which would certainly
have a different functional form.

Lastly the equation for o;(p) is modified as follows:

1
arp) = GCll[Wl(OH) - A1+F£i)(0u) - A2+F§i)(0u)]'011012 g Pno (n)dn
-
(B.18)
Here the functions Fii)(op) and Féi)(op) are given by
F£1)(0u) - Saama (B.19a)
G(ﬂl'H)
R (o) - ﬁz‘—ﬂi—) (3.190)

The simplification of 0(p)¢l+(p) and O(u)¢2+(p) would proceed in exactly the

same manner as for O(u)g (p) in Chapter IV.



APPENDIX C

AN ALTERNATE SOLUTION METHOD TO EQ. (k.29)

It is possible that there are values of C for problems of interest where
the iteration technique described in Chapter VI will not converge at all or
will converge very slowly. The method of solution outlined in this appendix

will give a solution for these cases.

Far convenience we repeat Egs. (L4.28) and (L.29) of Chapter IV:

Py wawe ey G021 )(n.u)
- 3 -
& N (4.28)
f 7(H)¢+(u)du
and
052(11) = O(H>[W'(H>'A+¢+(H)] + C O(p) fl dﬂﬂaz(n)k(nyu) . (LI—29>
© uit}
We define
1
Mop = [T 7 (Wéi(w)an (c.1)
(o) fl 7 (v (p)ap
8% = 2 (c.2)
Mo+
We substitute Eq. (L4.28) into Eq. (L.29) to arrive at
1 1
L T
oz(p) = O(uly'(u) - Aio)o(u)si,(u) - C = 1
Mo+
+ € O(y) fl dnnoz (n)k(n,u) (©.3)
(0] N~k .
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Equation (C.3) is now reduced to a set of linear equations. We again
use the midpoint approximation to evaluate the integrals. TFor example the

last integral in Eq. (C.3) i

k(n,u) }: 02 ni) <ﬂ1)H) (c.h)

|._l
'_l

h; is the width of the ith interval.

For the integral in the third term on the right-hand side of Eg. (C.3),

we write
D D D
fl () z nioe(ng)k(ng,pwhhy Z zn, Ing Z 7 (13 ik (ng,ms )
2 ~
 _ Ny 7H i=1 =1 Ni7Hj .
When Jj=1i in the sum over j, we use L'Hospital's rule to write
nik(ni)Hj) 1 N
n = n; log(l + —) - —+— . (c.6)
i Hj 1 an4 l+0ni
Thus we have for Eq. (C.3) the set of equations
D D
o CO(p )P4 (1)
o) = 0lw v (n) - Ai )O(Mk)¢+(u) - O P oz (n; )by
Mo+ i=1 J=1
D
nik(ng,uq)bs s k(ns
(x) 7 (uynik(ng,ug) 34 co(u) z o2 (n Ins k(s uhs (c.7)
M17H | Ny
For clarity, we write the explicit form for O(p, )y'(un),
1 ' 1 "Vdy ! )
Ol v () = ta(o) [ BN ) L cu8)

uk-u’
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Equation (C.7) in matrix-vector form is

Ao = g (c.9)
where
D -
a, = c 0 (1g)dy(n) . Z 7 (g gk (g1 )0y colu,) nmkmm,mhmJ
Mo+ = My~ s Ny ~H
J=1 J .
(c.10)
ay - 148 0 (ng)g+(n) b, 7 {kgn gkn gopug)hy €0, 1251y
Mo+ j=1 n g‘uj Ng K
(c.11)
B ] B ; (o) n
oz (k1) 0 ()W (u)-23°70(uy ) g4 (1)
az(uz)
e - g - ° (c.12)
Vi )= (O) .
_OE(uD)_ _O(uD)W&u) A, (MD)¢+(p) i

Equation (C.9) is now solved by standard matrix inversion. It was
found that the iteration method (discussed in Chapter VI) was much faster
with the same number of points. Nevertheless this matrix inversion method
can always be applied for any value of C. One obvious requirement for a

solution to Eg. (C.9) is

det|A] £ O .



APPENDIX D

COMPUTER CODE LISTING

Five computer programs are listed in this appendix. We denote these
programs by Program 1, 2, 3, 4, and 5. For Program 1 we tabulate a list of
principal variables and refer the reader to Table 2.1 for information on the
number and type of eigenvalues. The false position method for finding the
roots of a transcendental equation is discussed in Ref. 18, We have inserted
remark cards into the other programs to give details of the solution pro-
cedure, In many cases these cards refer to the appropriate equations in the
text.

We have listed the replacement cards at the end of Program 2, 3, and L
which, when inserted into the previous program, will give a program for the
solutions to the constant source problem. In Program 5 the changes for the
DP; are almost analogous to the Ps, therefore, we have not listed thege cards
i.e., we have listed only the solution to the constant source problem in the
DP; approximation. At the end of each program is a list of sample input
data. All programming was done in the Michigan Algorithm Decoder (MAD)

language.
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Program Number 1: List of Principal Variables

Program Symbol Definition
D1 det |C]|
cl Cy1 (See Eq. (2.2))
c2 Ciz
C3 Cay
Ch Caz
SIG o
OMEGAX. Subroutine for calculating Q(z) for z real (see
Eq. (2.17))
OMEGAY. Subroutine for calculating Q(z) for z pure imaginary
ITMAX Maximum number of iterations permitted for converg-

ing on the roots of Q(z).18
EPS1 Convergence criterion for Q(z).

EPS2 Criterion for terminating program when denominator
is too small in false position method.t

ITX Number of iterations, k.
FX(1) (=)
FX(2) Q(x8)
FX(3) a(x3)
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PROGRAM 1

R PROGRAM FOR FINDING THE REAL AND/OR IMAGINARY ROOTS OF THE
R DISPERSION EQUATION FOR TWO GROUP TRANSPORT THEORY BY THE
R FALSE POSITION METHOD
DIMENSION X(3)s FX(3), Y(3), FY(3)
INTEGER ITMAX» ITX, ITY, Is» Js» R
START READ AND PRTNT DATA ITMAX,» EPS1, EPS2,
1C1, €25 C3» C4» SIG
Di1=C1*C4=~C2*C3
N2=C1+SIG*C4
D3=C1+SIG*C4=2,%D}
D4=DI1+ELOG.((SIG+1,)/(SIG=1,))
WHENEVER D1,E0O.
WHENEVER D2.L.SIG/2.
R=1
PRINT COMMENT 8 TWO REAL ROOTSS
OR WHENEVER D2.G.SIGr2.
R=2
PRINT COMMENT $ TWwO IMAGINARY ROOTSS
OR WNHENEVER D2,E.SIG/2,
R=3
PRINT COMMENT 8 TwO INFINITE ROQTSS
END OF CUNDITIONAL
OR WHENEVER D1.L,.0,
WHENEVER D3.L.SIG/2.
R=1
PRINT COMMENT & TWO REAL ROOTSS
OR WHENEVER D3.G.SIG/2.
R=2
PRINT COMMENT $ Tw0O IMAGINARY ROUTSH
OR WHENEVER D3.F.SIG/2.
R=3
PRINT COMMENT $ TwWD INFINITE ROQOTSS$
END OF CONDITIONAL
UR WHENEVER D1+4Go0¢sANDoC#eGoD4
WHENEVER D3.L.STG/2.
R=1
PRINT COMMENT $ TWD REAL ROOTSS
OR WHENEVER D3,6.S1G/2.
R=2
PRINT COMMENT & TwD IMAGINARY RQOTSS
OR WHENEVER D3,FE.SIG/2.
R=3
PRINT COMMENT $ TWD INFINITE RQQOTS$
END OF CONDITIONAL
OR WHENEVER D14Ge0+sosANDsC4aLELDY
WHENEVER Cl LE«SIG/2.ANDWC44GEo(14/24),0R,
1 CleGEWSIG/24eANDClULESC(1,/24)
R=4
PRINT COMMENT 8 FQUR ROUTS TWO REAL AND TWO IMAGINARYS
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SERCHI

PRINT2

SERCH?2
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PROGRAM 1 (Continued)

OR WHENEVER C1eLoeSIG/2¢sANDaClU.Le(14/24)
WHENEVER D3.L.SIG/2.
R=5
PRINT COMMENT $ FOUR REAL ROOTSS
OR WHENEVER D3,G.SIG/2.
R=4
PRINT COMMENT § FOUR ROOTS TwO REAL AND TWO IMAGINARYS
OR WHENEVER D3,E.SIG/2,
R=1
PRINT COMMENT 8 TWO REAL AND TWOD INFINITE ROOTSS
END OF CONDITIONAL
WHENEVER D3.L.SIG/2.
R=6
PRINT COMMENT s FOUR IMAGINARY ROOTSS
OR WHENEVER D3,G.SIG/2.
R=4
PRINT COMMENT 8 TWn REAL AND TwWO IMAGINARY RDOTSS$
OR WHENEVER D3.F.S1G/2.
R=2
PRINT COMMENT 8 TWO IMAGINARY AND TWO INFINITE ROOTSS
END OF CUNDITIONAL
END OF CONDITIONAL
END OF CONDITIONAL
WHENEVER R.E.1
X=z1,000001
OMEGAR=0OMEGAX«(X»C1sC45sD15SI1G)
WHENEVER OMEGAR.L.O.
THRDUGH SERCH1, FOR x=1.100001p.1, (]MEGAR.G.O'.OR'X.GQZO'
WHENEVER XeGe19.75
PRINT COMMENT $ NO SIGN CHANGE FROM NEG TO POS$
THROUGH PRINT1, FOR 7Z=1.0000015415 Z4Ge20,
PRINT RESULTS Z» OMEGAX«(Z»C1,Cl4»D1,S51G)
TRANSFER TO START
END OF CONDITIQONAL
OMEGAR=0OMEGAX«(X,C15C4,D1,SIG)
OR WHENEVER OMEGAR.G40,
THROQUGH SERCH2s FOR X=1.,2006001,,2, OMEGARsLeOeoOReXsGo+20,
WHENEVER X46G.19.75
PRINT COMMENT & NO SIGH CHANGE FROM POS TO NEGS
THROUGH PRINT2, FOR Z=1.000001542» Z+6.20,
PRINT RESULTS Z» OMEGAX.(ZsC1,Cl4sD1,S1IG)
TRANSFER TO START
END OF CONDITIONAL
OMEGAR=0OMEGAX «(XsC1+C4,015,S1G)
OTHERWISE
PRINT COMMENT & X=1.,000001 IS A ROOTS
TRANSFER TO START
END OF CONDITIONAL
X(1)=X-l2
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PROGRAM 1 (Continued)

x(2)=X'01
PRINT RESULTS X(1), OMEGAX+(X(1)»C1,C8,D1,SIG)>»
1X(2)s OMEGAX.(X(2)5,C1,C4,D1,S51G)
FXC1)=0OMEGAX+(X(1)5C15C45D1,SIG)
FX(2)=0OMEGAX.(X(2)»C15C45D1,51IG)
THROUGH LOOPXA, FOR ITX=1,1,1TXeG,ITMAX
NUMER=X(2)*FX(1)=X(1)*FX(2)
DENOM=FX(1)=FX(2)
WHENEVER +ABS. DENOM.L.+sABS NUMER*EPS?2
PRINT COMMENT s DENOMINATOR TOO SMALLS
TRANSFER TO START
END OF CUNDITIONAL
X(3)=NUMER/DENOM
FX(3)30MEGAX(X(3)»C1sC4,D01,51G)
WHENEVERJABS«FX(3),LE.EPSI
PRINT COMMENT § PROCEDURE CONVERGEDS
PRINT RESULTS ITXsX(3),FX(3)sR
TRANSFER TU START
END OF CONDITIONAL
THROUGH LDOPXA, FOR I=z1s151.G,42
THROUGH LOOPXA, FOR J=I+1,1,J.G,.3
WHENEVER +ABSeFX(I)aGaoABSFX(J)
TEMP=FX(I)
FXCI)=FX(J)
FX(J)=TEMP
TEMP=X(I)
X(I)=x(J)
XC(J)=TEMP
LOOPXA END OF CONDITIONAL
PRINT COMMENT & NO CONVERGENCES
TRANSFER TO START
OR WHENEVER RJEe2
THROUGH SERCH3» FOR Y=e00015¢2s OMEGAI oL eQeoOReYeGol0,
WHENEVER Y«G.37.5
PRINT CUMMENT & N0 SIGN CHANGE FROM POS TO NEGS
THROUGH PRINT3, FOR M=.00015,2s MsG,40,
PRINT3 PRINT RESULTS M, OMEGAY.(M»C1,C4,D1,S1G)
TRANSFER TO START
END OF CONDITIONAL
SERCH3 OMEGAI=0OMEGAY.(Y»C1»C4»D1+SIG)
WHENEVER OMEGAY.(,0001,C1,C45D1,SIG)eL 0,
Y(1)=.,0001
Y(2)=,2001
OTHERWISE
Y(1)=Y=.4
Y(2)=Y=,2
END OF CONDITIONAL
PRINT RESULTS Y(1)» OMEGAY.(Y(1)»C1,C4,D1,SIG)>»
1Y(2)» OMEGAY.(Y(2),C1,C4,D1,S51G)
FYC1)=0MEGAY(Y(1),C1,C4,D1,S1G)
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PROGRAM 1 (Continued)

FY(2)=0OMEGAY(Y(2)»C1,C4,01,81Q)
THROUGH LOOPYB,FOR ITY=1,1,1TY.GeITMAX
NUMER=Y(2)*FY(1)=Y(1)*FY(2)
DENOM=FY(1)=FY(2)
WHENEVER +ABS.DENOM,L .+ ABS.NUMERXEPS?2
PRINT COMMENT & DENNDMINATOR TOO SMALLS
TRANSFER TO START
END OF CONDITIONMAL
Y(3)=NUMER/DENQOM
FY(3)=OMEGAY . (Y(3),C1,C4,01,51G)
WHENEVER JABS.FY(3),LE.EPSI
PRINT COMMENT $ PROCEDURE CONVERGEDS
PRINT RESULTS ITYs Y(3)»FY(3)sR
TRANSFER TU START
END OF CONDITIONAL
THROUGH LOUPYB, FOR 1=1s1,1,G,2
THROUGH LOOPYB» FNR J=I+151,J.G43
WHENEVER oABSe FY(1)4GseABSFY(J)
TEMP=FY(I)
FY(CI)=FY(J)
FYCJI=TEMP
TEMP=Y(1)
Y(I)=Y(J)
Y(J)=TEMP
LOOPYB END OF CONDITIONAL
PRINT COMMENT & NO CONVERGENCES
OR WHENEVER ReEo4
THROUGH SERCH4» FAR X=1.0000015405,OMEGAR L ¢0ss0ReXeGa20,
WHENEVER XeGos19.75
PRINT CUMMENT & NO SIGN CHANGE FOK REAL ROOTSS
THROUGH PRINT4, FOR N=1,000001s¢2» NeGoe20,
PRINT4 PRINT RESULTS Ns» OMEGAXe(N»C1,C45D1,51G)
TRANSFER TO IMAGR
END OF CONDITIONAL
SERCH4 OMEGAR=UMEGAX+(X»C15C8»015S1G)
WHENEVER OMEGAX.(1,000001,C15C4,D1,SIG)eL o0
X(1)=1.000001
X(2)=1,100001
OTHERWISE
X(1)=sX=.1
X(2)=X=,05
END OF CONDITIONAL
PRINT RESULTS X(1)» OMEGAXs(X(1)sC1,C4,D1,SIG)>»
1X(2), OMEGAX.(X(2),C1,C4,D1,516)
FX(1)=0MEGAX.(X(1)5C15,C4,D15SIG)
FX(2)=0MEGAX.(X(2)sC1,C45D1,510)
THROUGH LOOPXCs FOR ITX=1s1,ITX,G,ITMAX
NUMER=X(2)*FX(1)=X(1)*xFX(2)
DENOM=FX(1)=FX(2)
WHENEVER «ABSe DENOM.L s ABS NUMERXEPS2
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PROGRAM 1 (Continued)

PRINT COMMENT & DENOMINATOR FOR REAL ROOTS TOD SMALLS
TRANSFER TO 1MAGR

END OF CONDITIONAL

X(3)=NUMER/DENOM

FX(3)=0MEGAX.(X(3),C1,C4,01,S1G)

PRINT RESULTS X(3), FX(3)

WHENEVER «ABSFX(3).LE.EPS1

PRINT CUMMENT $ PROCEDURE FOR REAL RUOTS CONVERGEDS
PRINT RESULTS ITX, X(3), FX(3), R

TRANSFER TU IMAGR

END OF CONDITINNAL

THROUGH LOOPXCs FOR I=1,151.G.2

THROUGH LOUPXCs FOR J=I+1s515J,G,3

WHENEVER «ABSeFX(I)eGsaABSeFX(J)

TEMP=FX(I)

FXCII=FX(J)

FX(J)=TEMP

TEMP=X(I)

X(I)=X(J)

X(J)=TEMP

PRINT RESULTS X(1)» FX(1)s X(2), FX(2)

END OF CONDITIONAL

PRINT CUMMENT $ NO CONVERGENCE FOR REAL ROOTSS
THROUGH SERCHS5» FOR Y=z40001,¢05,0MEGATsLe0seOReYsGoliO,
WHEMEVER Y+G.40.

PRINT COMMENT & NO SIGN CHANGE FOR IMAG ROOTSS
THROUGH PRINTSs FOR T=.00015425 T4G,40,

PRINT RESULTS T» OMFGAY.(T»C1,C4,D1,S1G)

TRANSFER TU START

END OF CONDITIONAL

OMEGAI=0OMEGAY+(Y,C15C4,D15S1G)

Y(1)=Y=.10

Y(2)=Y=,05

PRINT RESULTS Y(1), OMEGAY«(Y(1)»C1,C4,01,51G),
1Y(2), OMEGAY.(Y(2),C1,C4,01,8IG)
FYC1)=0OMEGAY.(Y(1),C1,C4,D1,S14)
FY(2)=0MEGAY . (Y(2),C1,C4,01,S1G)

THROUGH LOOPYDs FOR ITY=1s1,ITY,G,ITMAX
NUMER=Y(2)*FY(1)=y(1)xFY(2)

DENCM=FY(1)=FY(2)

WHENEVER +ABSe DENOMeL«oABSNUMER*EPS?

PRINT COMMENT & DENDMINATOR FOR IMAG. ROOTS TOO SMALLS
TRANSFER TO START

END OF CONDITIONAL

Y(3)=NUMER/DENOM

FY(3)=0MEGAY.(Y(3)5C1,C4,D015,51G)

PRINT RESULTS Y(3), FY(3)

WHENEVER <ABSe. FY(3).LE.EPSI1

PRINT CUMMENT & PROCEDURE FOR IMAG, ROOTS CONVERGEDS
PRINT RESULTS ITY,Y(3),FY(3)sR
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PROGRAM 1 (Concluded)

TRANSFER TO START
END OF CONDITIONAL
THROUGH LOOPYD, FORJ=I+1515J4Gs3
WHENEVER +ABSe FY(I)aGesABSLFY(J)
THROUGH LOOPYD,FURI=1,1514G.2
THROUGH LOOPYD, FOR J=I+1s1sJ,G.3
TEMP=FY(1)
FYCII=FY(J)
FY(JI=TEMP
TEMP=Y(I)
Y(I)=Y(J)
Y(J)=TEMP
PRINT RESULTS Y(1), FY(1)» Y(2), FY(2)
LOOPYD END OF CONDITIONAL
PRINT COMMENT $ NO CONVERGENCE FOR TMAG ROOTSS
OTHERWISE
PRINT COMMENT $ ROOTS ARE INFINITE OR WE HAVE
1 FOUR REAL UOR FOUR IMAGINARY ROQOTSS
END OF CONDITIONAL
TRANSFER TO START
END OF PROGRAM
$ COMPILE MAD, EXECUTE
EXTERNAL FUNCTION (X»C15C845D1,51G)
INTERNAL FUNCTION T14(X)=X*ELOGoCC(SIGHX+14)/C(SIG*X=14))
INTERNAL FUNCTION T2,(X)=X*ELOG.C(X+1,)/7¢X=1.))
ENTRY TO OMEGAX.
OMEGAX=1,=C1*T1,(X)=Ca*T2,(X)+D1*T1,(X)*T2,(X)
FUNCTION RETURN OMEGAX
END OF FUNCTION
$ COMPILE MAD, EXECUTE
EXTERNAL FUNCTION(CYs»C1,C45,D1,SIG)
INTERNAL FUNCTION S1,(Y)=2.,%#Y*ATAN,(1,/C(SIG*Y))
INTERNAL FUNCTION S2,(Y)=2.*Y*ATAN.(1,/Y)
ENTRY TO OMEGAY.
OMEGAY=1,=C1#S1,(Y)=C4*S2.(Y)+D1*S1,(Y)*S52,(Y)
FUNCTION RETURN OMEGAY
END OF FUNCTION
$ DATA
$ DATA
ITMAX=50, EPS1=1,E~7» EPS2=1,E=20, C1=,59023, C2=,05448, C3=,15963,
C4=,44320, SIG=1,50951 *
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PROGRAM 2

$ COMPILE MAD, EXECUTE

START

R THIS IS THE SOLUTION FOR THE EXACT MILNE PROBLEM
DIMENSION Y(16)» S(16), W1(16)» W2(16)» TC16), T1(16)s R(16)»
R1C16)» KY(16)s KSC16)» KY1(16)» KS1(16)» DIFF(32),
21¢(92)s KAPP(92)s GU(96)» ELG(92), ELG1(92)s FK(B8645,DIN)»
FU(B46sVIM), FULC10), FUUC10)s FUM(C10), XFMI(92), 0OMAG1(92),
OMAG2(92)» ALPHA2(828,VIN)» SU(Y96), DIF(92)» FKK(92),
FKU(92), FTK(92), ALPHA1(92), ANGR1(164), FUMM(C10),
FUMP(10)», ANG(92), ANGO(92)» ANG1(92)» AGDIP2(92),»
AGDIM2(92), AGDIP1(92), AGDIM1(92), Z2(92)sXFPI(92),
OPHI(92)s OPSI(92)s FBA(92)» EXPO(92)» Z3(20)» ANGR(184)
INTEGER P1» Ks» P, Js 1, Ls ITMAX, ITMAXX, L1» P3, D, ZEE
VECTOR VALUES VIM=2,0,0
VECTOR VALUES VIN=2,0,0
VECTOR VALUES DIN=2:0,0
PROGRAM COMMON Fu, FUL» FUM, FUU» N» ELGs Z1, H1, H2, P3, D»
1 SG
R VECTOR VALUES FOR GAUSS QUADRATURE

VECTOR VALUES X(1)=.0950125098, ,2816035508» ,4580167777>»

1 6178762444, ,7554044084,.8656312024, ,9445750231,

2 .9894009350

VECTOR VALUES W(1)=.1894506105» ,1826034150» ,1691565194,

1 1495959888, .1246289713» 0951585117, ,0622535239,
2 0271524594

FTRAP,
R INTERNAL FUNCTIQNS FNOR KAPPA FUNCTION CALCULATION

INTERNAL FUNCTION FoeCVvisY1sKAP)=(1l,=V1xy14X02)*%V1/((1,=V1xyl/
1 CETA*ETA))*»(V1+Y1)*KAP)

INTERNAL FUNCTION FG,(V1,Y1,KAP)=1,/((VI+Y1)*KAP)

READ AND PRINT DATA
R NQTE THAT P» P3 AND D ARE DECLARED TQ BE INTEGERS

P=N

P3=N3

D=P+P3

VIM(2)=D+2

VIN(2)=D

DIN(2)=D+2
R THIS PART OF PROGRAM QOBTAINS A KAPPA FUNCTION WITHIN A
R SPECIFIED ACCURACY EPS
R PARAMETERS FOR GAUSS QUADRATURE INTERVAL FROM 1./SIG TO 1.
A=(SIG=1,)/(2.*51G)

B=(SI1G+1.,)/(2.%SIG)

RCALCULATION OF DETERMINANT OF C MATRIX SEE EQ.(242)
Di=C1%xC4=C2%C3
R ReH,S. OF EQeCA,14) MULTIPLIED BY ¢
Q3D1/SIGH(SIG*C(ELOG((SIG+1,)/(SIG=14)))+ELOG.(SIG*SIG=14))
R SEE EQeCAe2) AND EQ4CA45)»(X(0) SQUARED)
X02=1e/((1e=24%C1/SIG=2.%C4+4,%D1/STGI*CETAXETA))

THROUGH EVALs FOR K=1,1» KeG.8

[ A Y

OM
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PROGRAM 2 (Continued)

R NEW VARIABLES CALCULATED FOR GAUSS QUADRATUREs REGION 1
R SEE REF, (18)

YCKYI=X(K)/(2.*STG)+1./(2¢*%SIG)
Y(K+8)==X(K)/(2.%S1G)+1./(2,*SIG)

W1(K)=W(K)/(2.*SIG)

W1(K+8)=W(K)/(2.%S1G)
R NEW VARIABLES CALCULATED FOR GAUSS QUADRATURE» REGION 2
S(K)=X(K)*A+B

S(K+8)==X(K)*A+B

W2(K)=W(K)*A

W2(K+8)=W(K)*A

THROUGH EVALZ2» FOR J=151, JeGosl6
R FUNCTIONS IN EQ.(A.13) THAT ARE DEPENDENT ON INTEGRATION IN-
R TERVAL (MU) ONLY (NDTE GAUSS WEIGHTS ARE INCLUDED)
TCJI=C(Ca4CI=DI*Y (UI*ELDGoCCLa#+Y(J))/C1e=Y(JIIII*(1am=Y(JI*Y(J)
1 *X02)*H1(J)/Cle=Y(JI*Y(JI/CETAXETA)Y)
T1CJI=W1CJUI*DI*ELOGa((144SIG*Y(JI)I/(1,=SIG*Y(U)))
RCUI=ZH2(JUI*CE*(1,=SCJ)*S(JI*X02)/ (1+4=SCJII*SCJI/C(ETA*ETA))
R1(JI=W2(JI*DLI*ELOG.((SIG*SCJI+14)/(SIG*S(J)I>14))

INTERNAL FUNCTION (2)

ENTRY TO G.
R THIS INTERNAL FUNCTINON CALCULATES xAPPA FOR A SPECIFIED 2
SuM=0

THROUGH EVAL3», FOR L=1,1, LeGelb

SUM=SUM+TCLI*F G (YCL) s ZoKY (L)) =TLI(LI*CF L C(Y(L)»ZsKY(L))=Fo(1ls/
1 SIGsZsKSGII+RCLIXFG4(SCL)»ZsKS(L))=RICLI*C(FaC(SCLI»ZsKS(L))=
2 FoC14/SIG2ZsKSG))

FUNCTION RETURN 1,=7*SUM+Q*Z*F+(1,/SIG»Z,KSG)

END OF FUNCTION
R AN ITERATION PROCESS COMMENCES AT THIS POINT WHERE FOR
R INITIAL VALUS OF KAPPA WE SET KAPPA={. THE ITERATION
R CONTINUES UNTIL THF MAXIMUM DIFFERENCE BETWEEN ANY TWO
R VALUES OF KAPPA IS LESS THAN EPS

MAX=1,

KSG=107

THROUGH EVAL4» FOR L=1s1s LeGslb

Ky(L)=1.

KS(L)=1,

THROUGH EVALS, FOR J=1,i, JeGoeITMAX,OReMAXoLsEPS

THROUGH EVAL6s FOR K=1,1, KeGel6

KY1(K)=G,(Y(K))

KS1(K)=G,(S(K))

DIFF(K)=4ABSW(KY(K)=KY1(K))

DIFF(K+16)=.ABS.(KS(K)=KS1(K))

MAX=DIFF (1)

THROUGH ALPHA, FOR L=2,1, L.G.32

WHENEVER DIFF(L) GsMAX, MAX=DIFF(L)

WHENEVER JsGeITMAX

PRINT COMMENT $ MAXIMUM NUMBER OF ITERATIONS FOR KAP EXCEEDS
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PROGRAM 2 (Continued)

PRINT RESULTS MAX, J
TRANSFER TU START
UR WHENEVER MAX.L.EPS
PRINT CUMMENT $ PROCEDURE FUR KAPPA FUNCTION CUNVERGEDS
PRINT RESULTS MAX, Js KY(1)aeoeKY(16)» KS(1)eeeKS(16)
TRANSFER TO GO
OTHERWISE
KSG=KSG1
THROUGH SW1TCHs FOR L1=1,1» L1.Gs16
KY(L1)=KY1(L1)
SWITCH KS(L1)=KS1(L1)

EVALS END OF CONDITIONAL
R THIS CUNCLUDES THE CALCULATION UF KAPPA
GO CONTINUE

R NUMBER NEEDED FOR X=FUNCTION AND GAMMA FUNCTION
SR=1,/SQRT.(Xx02)
R SET=UP MESH SPACING MIDPOINT VALUES
SG=1,/S1G
R INTERVAL SPACING FNR REGION 1
H1=SG/N
R INTERVAL SPACING FOR REGION 2
H2=(1.=5G)/N3
K=1
R MIDPOINT VALUES OF MU VARIABLE DETERMINED
THROUGH COMP1s FOR U=14.51es KaGoD
WHENEVER KJ.LEWP
Z1(K)=(U=,5)*H]
OTHERWISE
Z1(K)=ZL(P)+eS*xH1+(U=N=.5)*H2
END OF CONDITIONAL
COMP1 K=K+1
PRINT RESULTS S6G, H1, H2, Z1(1)4e.Z1CD)
R VARIOUS CONSTANTS NEENED LATER
R IF WE WANT TO SOLVF THE EXACT CONSTANT SOURCE PROBLEM WE
R INSERT CARDS NO. 1S» 2S» 3S AND 4S
PI=3,14159265
R HERE WE CALCULATE KAPPA FIRST AT 1,/SIG AND 1. AND THEN
R GAMMA AT THESE SAMF VALUES
KAPSG=G,. (SG)
GU(D+1)=SG*ETA*ETA*(SR+SGI*X02/((ETA*ETA=SG*SG)*KAPSG)
KAONE=G.(14)
GUCD+2)=ETA*ETA*(SR+1,)*X02/((ETA*ETA=]1,)*xKAONE)
R KAPPA AT TWO DISCRETE ROOTS
KAPM=G . (ETA)
KAPP=G,(=ETA)
R FIRST TERM IN EQeC(4,10) FOR DISCRETE ROUOTS ONLY
ELGETP=ETA*ELOG,(1.+SG/ETA)
R MILNE CARD ONLY
ELGETM==ETA*ELDOG,(1.=SG/ETA)
R SEE EQUATION FOLLOWING EQ.(2.20)
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PROGRAM 2 (Continued)

ANGC=C4=D1*(ELGETP+ELGETM)

R THE LAST TERM IN EQ,(4.10) CALCULATED FOR 1. AND 1,/SIG
ELGONE=ELOG.(14+5G)

ELGSG=SG*ELDG.(2,)
R EQS.(642) AND (6.3) EVALUATED AT 0,» 1./SIG AND 1,
FuLciy=0,

FuL(2)=0,

FUMC1)=GU(D+1)*ETA/(ETA+SG)*(ELGETM=ELGSG) 5M
FUMC2)=GU(D+1)*ETA/(ETA=SG)*(ELGETP=ELGSG)
FUUC1)=GUCD+2)*ETA/(ETA+14)*(ELGETM=ELGONE) 6M

FUUC2)=GU(D+2)*ETA/C(ETA=1)*(ELGETP=ELGONE)

R X=FUNCTION EVALUATED AT DISCRETE ROOTS (SFE EQ.CA,15)

R MILNE CARD ONLY
XFM=KAPM/(SR+ETA)

XFP=KAPP/(SR=ETA)
PRINT RESULTS KAPSGs» GU(D+1)» KAONE, GU(D+2)» KAPM» ELGETM,

1 ELGONE» ELGSGs XFMs XFP

R INTERNAL FUNCTION FOR THE BOUNDARY VALUES OF OMEGA EQ.(2,21)
INTERNAL FUNCTINN 0OM4,(2)=2
INTERNAL FUNCTION 014C€Z)=2Z*EL0Go((14+7)/(1e=2))

INTERNAL FUNCTION 02.CZ)=Z*ELOGe((1,+SIG*2)/(1+=SIG*Z))
INTERNAL FUNCTION 03.(€Z)=Z*ELOG.C((STG#Z+14)/(SIG*Z=14))
THROUGH COMP2» FOR K=1s1, KoGoD

R COMPUTATION TO CHAMGE MU VARIABLE TO ANGLE IN DEGREES FOR

R EASIER PLOTTING
ANRP=ARCCNS.(Z1(K))

ANRM=ARCCOS.(=21(K))
ANGR(K)=ANRP*360,/(2.%P1)
ANGR(K+D) =ANRM*3604/(2+%P1)
WHENEVER Z1(K).L.SG
Z11=71(K)*S1G
ANRP1=ARCCUS.(Z11)
ANRM1=ARCCOS.(=Z11)
ANGR1(K)=ANRP1%360,/(2.%P1)
ANGR1(K+P) =ANRM1%360,/(2.%PI)
END OF CONDITIONAL

R CALCULATION OF KAPPA THEN GAMMA FUNCTION FOR ALL MIDPOINT

R VALUES (SEE EQ.(A.17))

KAPP(K)=G.(Z1(K))
GUCKISZLI(KI*XETAXETA*(SR+Z1(K))I*X02/(CETA*ETA=Z1CK)I*Z1(K) )+

1 KAPP(K))

R CALCULATION OF LOGARITHM TERM IN EQe(646)
ELG(KI=ELOG((1.=71(K))/Z1(K))

R LAST TERM OF EQ.(4,10) EVALUATED AT ALL MIDPOINT VALUES
ELG1C(K)=Z1(K)*ELOG.C1,+SG/Z1(K))

R CALCULATION OF EQ.(6,2) AND EQ.(6,3) AT ALL MIDPOINT VALUES
FKUCK)=ETA/(ETA=Z1(K))*«(ELGETP=ELG1(K))
FUC2,K)=GUCKI*FKUCK)

FKKCK)=ETA/(ETA+Z1(K))*(ELGETM=ELG1(K)) 7™
FUCL1sK)=GU(K)*FKK(K)
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PROGRAM 2 (Continued)

R £EQS,(4,22) EVALUATED FOR EACH REGION

WHENEVER Z1(K),.,L,SG

$1=01.CZ1(K))

$2=02.(Z1(K))

$3=0M4.(21(K))

S4=S53%S3
DENOM1=(1,=Ca*S1=C1*S2+D1*S1*S2=PI*xPI*D1%S4) ,Pe2+PI*PI*S4s
1 (C4+C1=D1*(S2+S1)).P,2

NUMN1=S3%x(CA+C1~-D1%(S1+82))
NUMP1=1,=C4*51=C1*x52+4D1*S1*S2=PI*PIxD14S4

OMAGI(K) = NUMN1/(DENOM1I*GU(K))

OMAG2(K) =NUMP1/DENOM1L

R FIRST TERM OF EQS,(4,42) AND (5.8) EVALUATED
R MILNE CARD ONLY

XEMU(K)SETA*XFM/(ETA+Z1(K))I*OMAGL(K)
XFPICK)=OMAGLIK)*ETA*XFP/(ETA=Z1(K))
R FUNCTIONS NEEDED LATER FOR ANGULAR DISTRIBUTIONS
ANG(K)=C4=D1xS2

ANG1(K)=C1=D1*S1

ANGOCK)=NUMPL1+PI*PI*D1*54
R SAME REMARKS AS ABNOVE RUT FOR REGION 2

OTHERWISE

Ti=01.¢21(K))

T2=03.(21(K))

T3=0M4,(21(K))

T4=T3*T3
DENOM2=(1,=C4*T1=C1*T2+4D1*T1*xT2) P 2+PI%PI*T4*(C4=D1%T2)eP 4?2
NUMN2=T3*(C4=0D1%T2)

NUMP2=1o=C4*T1=C1*T2+4N1*T1%T2

OMAGICK) =NUMN2/(DENOM2*GU(K))

OMAG2(K) =NUMP2/DENOM2

R MILNE CARD ONLY

XFMI(K)SETA*XFM/(ETA+Z1(K))*OMAGL(K)
XFPI(K)I=OMAGI(K)*ETA+XFP/(ETA=Z1(K))

ANG(K)=C4=D1xT2

ANGO(K)=NUMP?2

ANG1(K)=0,

COMP2 END OF CONDITIONAL

R INTEGRALS IN EQe(5.9A) EVALUATED EXCEPT INTEGRAL WITH ALPHA2
R A SUBROUTINE IS USED WHICH IS FOUND AT END OF PROGRAM
INTEGM=INT.(1)

INTEGP=INT.(2)

R EQ.C4.,35) EVALUATED

APLDEN==ETA*XFP=D1*INTEGP

R EQ.(6.16) EVALUATED
APLUS1=(=ETA*XFM+D1*INTEGM)/APLDEN

PRINT RESULTS KAPP(1)ee+KAPP(D)» GUC1)essGU(D)>

1 ELGC1)eeoELGCD), ANGOC1)oseANGOC(D), FKK(1)esoFKK(D),
1 FUCL»1)aeoFUCLsD)s XFMIC1)awoXFMI(D)s FUMCL1), FUUCL1)»
10MAG1C1)44+0MAGI(D)» OMAG2(1)44+0MAG2(D),
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PROGRAM 2 (Continued)

1 XFPIC1),++XFPI(D)s APLUS1, APLDEN, INTEGP, INTEGM
THROUGH COMP3, FOR K=1s1, KeGoD
R EQS.(4,42) AND (548) EVALUATED» PVI, IS A SUBROUTINE LISTED
R AT THE END WHICH CALCULATES PRINCIPAL VALUE INTEGRALS
OPHI(K)=D1*(OMAGLI(K)I*PVI . (1s2,K)=0MAG2(KI*FKUCK))+XFPI(K)
OPSI(K)==D1%#(OMAGTI(K)*PVIe(1,15K)=OMAG2(KI*FKK(K))=XFMI(K) 9M
R INITIAL VALUE OF ALPHA2 CALCULATED SEE EQ.(6,17)
ALPHA2(1,K)=0PSI(K)=APLUSI*OPHI(K)
COMP3 PRINT RESULTS Zt(K)» ALPHA2(1,K)» QOPHI(K), OPSICK)
R INTEGRAND IN SECOND TERM UF NUMERATOR OF EQ.(4.43A)
R CALCULATED EXCLUDING ALPHA2
THROUGH COMP4s FOR J=1s1s JeGoD
THROUGH COMP4, FOR K=151, K.G,D+2
WHENEVER K.E.D+1
FKCJ,KI=Z1(JX/CZ1CJ)=SGI*(ELGICJUI=ELGSG)
OR WHENEVER K.E.D+2
FKCJ,KI=Z21(JI/CZ1(J) =1 *(ELG1CJI=ELGONE)
OR WHENEVER J.E.K
FKCIpKISELGI(KI=Z1(K)/(1,+51G*Z1(K))
OTHERWISE
FKCJI,KI=Z1CJ)/CZ1CJ)=Z1C(KII*(ELGLICUI=ELG1(K))
COMP4 END OF CONDITIONAL
R HERE WE START THE ITERATION PROCEDURE FOR APLUS AND ALPHA?2
MAXX=1,
THROUGH COMP5, FQOR Jz=2s1, JeGoITMAXXeOReMAXXeLEPSI
THROUGH CNMP6s FOR K=1,1, KeGeD+2
R FIRST INTEGKATION PERFORMED IN EQ.(4,43A)
SUM1=0,
SUM2=O'
THROUGH COMP7, FOR I=1s1, 1,G¢D
WHENEVER T.LEWP
SUM1=SUM1+FK(I»K)*ALPHA2(J=1,1)
OTHERWISE
SUM2=SUM2+FK(I»K)*ALPHA2(J=1,1)
COMP7 END OF CONDITIONAL
SUCK)=SUMI*H1+SUM2%H?2
COMP6 FUCJ»KI=SUCKI*GU(K)
R SECOND INTEGRATINN PERFORMED IN EQ.(4443A)
INTG=INT, (J)
R NEW VALUE OF A+ CALCULATED
APLUS=APLUS1+INTG/APLDEN®D1
PRINT RESULTS FUCJs1)aesFUCJSD+2)s SUCL),esSU(D+2) » INTG
FuL¢Jd=0,
R FUNCTIONS NEEDFD FOR NEXT PRINCIPAL VALUE INTEGRAL
FUM(JI=FUCJsD+1)
FUUCJI=FUCJI»D+2)
PRINT RESULTS FUL(J)» FUM(CJ)» FUUCJI» APLUS
THROUGH COMPBs FOR K=1,1, KeGel
R NEW VALUES OF ALPHA2
ALPHA2(J,K)=0PST(KI=APLUS*OPHICKI+D1*(~0OMAGI(KI*PVI,.(1sJsK)+
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PROGRAM 2 (Continued)

1 OMAG2(K)*SU(K))
R DIFFERENCE BETWEEN PREVIOUS AND NEW VALUES OF ALPHAZ2
DIF(K)=ALPHAR(JsK)=ALPHA2(JU=1,K)

PRINT RESULTS DIF(C1)e,sDIF(D)
R LOCATE MAXIMUM DIFFERENCE

MAXX=+sABS,(DIF(1))

THROUGH COM1, FOR L=2s1» L+GsD

WHENEVER oABS«(DIF(L))«G,MAXXy MAXX=+ABS,(DIF(L))

WHENEVER JsE.ITMAXX

PRINT COMMENT & MAXIMUM NUMBER OF ITERATIONS FOR ALPHAZ2 EXD$
PRINT RESULTS MAXX, J

TRANSFER TO START
R EPSI IS CRITERION FOR TERMINATION OF ITERATION PROCEOURE
OR WHENEVER MAXX,L.EPSI

PRINT CUMMENT & PROCEDURE FOR ALPHA?2 CONVERGEDS

TRANSFER TO GOO

OTHERWISE

PRINT RESULTS MAXX, Js ALPHA2(J»1),,¢ALPHA2(J,D)

END OF CONDITIONAL

PRINT RESULTS ALPHA2(Jr1)eosALPHA2(JsD)» Z1(1)0eesZ1(D)s MAXX
R FINAL CONVERGED CALCULATION OF A+ (SEE EQ,(5,9C))

THROUGH COMS, FUR K=1s1, K,G.D

SUM1=00

SUM2=0,

THROUGH COM6s FUR I=1,1, I.GWD

WHENEVER TeLE.P

SUM1I=SUMI+FK(I,K)*ALPHA2(J»I)

OTHERWISE

SUM2=SUM2+FK(I,K)*ALPHA2(J»I)

END OF CONDITIONAL

SU(K)=SUM1*H1+SUM2*H2

FUCJI»KI=SUCK)*GU(K)

ALPAI=INT,.(J)

PRINT RESULTS SU(1)eeoSUCDY» FUCJIs1)eaeFUCJsD)

THROUGH COM4, FOR K=1,1» KeGWD

FUCJ+1,KI=Z1(K)*ALPHA2(J,K)

APLUS=APLUS1+ALPATI/APLDEN*D1

FUL(J+1)=0.

FUM(CJ+1)=0.

Fuu(J+13=0.

THROUGH COM3, FOR K=1,1s K GeD
ALPHAT(K)=="ETA*C2%C1+*(1+/CETA+Z1(K))Y+APLUS/(ETA=Z1(K)))=C2xC1
1*PVI,(1,J+1,K)

PRINT RESULTS Z1(K)» ALPHALl(K)
R INTERNAL FUNCTION FOR QUADRATIC INTERPOLATION

INTERNAL FUNCTION QUAD(Z2X0sFO0sX15F1,X2,F2)=F0+(Z=X0)*(F1=
1 FOX/(X1=X0)+(Z=X0)*(Z=X1)/(X2=X0)*((F2=F1)/(X2=X1)=(F1=F0)
1 7(X1=X0))
R MILNE CARD ONLY

EXTRAP==ETA/2.*%ELOG.(~1./APLUS)

10M
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PROGRAM 2 (Continued)

PRINT RESULTS APLUS» EXTRAP, ALPAI
R CALCULATION OF ANGULAR DISTRIBUTION FOLLOWS(SEE EQS.(5.14)
R AND (5.15))
THROUGH €04, FOR L=1,1» LeG.ZEE
THROUGH C06s FOR K=1,1, KeGeD
EXPOCKI=EXP(=23(L)/Z1(K))
THROUGH CO01s FOR K=1,1s KeGoD
SUM1=00
SUM2=°¢
SUM3=00
SuM4=0,
SUM5=0.,
SUM6=0.
FUCL1,K)I=Z1(K)*ALPHA1(K)*EXPO(K)
FUC2,K)=Z1{KI*ANG(KI*ALPHAZ2(J»K)*EXPO(K)
FUC3sK)=Z1(KIXALPHA2(J,KI*EXPO(K)
THROUGH C€03» FOR I=151, 1eGoD
WHENEVER T.LELP
SUM1=SUMI+Z1CI)*ALPHALCT)/(ZICI)+Z1(K)I*EXPO(I)
SUM2=SUM2+Z1(I)*ANGCIYXALPHA2(J,I)/CZ1CI)+Z1(K)I*EXPO(I)
SUM3=SUM3+ZI1(I)*ALPHA2CJ»1)/CZ1C1)+7Z1(K))*EXPOC(CI)
WHENEVER Z1(K)eGoSG»SUME =SUM6 +Z1(I)*ALPHAL(I)/(Z1C(I)=Z1(K))
1 *EXPOCI)
OTHERWISE
SUM4=SUMG+Z1CI)*ANGCI)*ALPHA2CJ» 1)/ (Z1CI)+Z1(KII*EXPOCI)
SUMS =SUMS +Z1(I1)*ALPHA2(J,I)/CZ1C(I)Y+Z1(K)I)I*EXPOCI)
END OF CONDITIONAL
FKK(K)=SUM1+H1
FKUCK)ISSUM2%H1+SUM4*H2
FTKCK)=SUM3*H1+SUMS*H?2
FBK(K)=H1*SUM6
FuL(1)=0,
FUMC1)=SG*QUAD(SGsZ1(P=1),ALPHALI(P=1),Z1(P)»ALPHAL(P)»Z1(P*+1
1), ALPHAL(P+1))*EXP,(=Z3(L)/SG)
FuLc¢2)=0,
SG1=ALPHA2(J»P=1)+ANG(P=1)
SG2=ALPHA2(JsP)*ANG(P)
SG3=ALPHA2(JsP+1)*ANG(P+1)
FUM(2)=SG*QUAD+(SG,»Z1(P=1)55G1,Z1(P)»SG2,Z1(P+1),S5G3)*EXP,(
1 =723(L)/SG)
PRINT RESULTS SG1, SG2» S$G3, FUM(2)
Fuu¢2)=0,
FuL(3)=0,
FuM(33)=0,
FUU(3)=0-
R MILNE CARD ONLY
EXPETM=EXP.(Z3(L)/ETA)
EXPETP=EXP«(=Z3(L)/ETA)
THROUGH €02» FOR K=1,15 KeG,D
AGDIM2(K)=ETA*ANGC/(ETA=Z1(K))*EXPETM+ETA*ANGC*APLUS/(ETA+Z1(
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PROGRAM 2 (Continued)

1 K))*EXPETP=D1/(C1*C2)*FKK(K)+FKU(K)

WHENEVER Z1(K).L oSG
AGDIPZ(K):tTA*ANGC/(ETA*Zl(K))*EXPETM+ETA*ANGC*APLU5/(ETA'ZI(
1 K))*EXPETP=0D1/CC1%*C2)#PVIe(2515K)=ALPHAL(K)/(C2*CL1I*ANGL(K)*
1 EXPOCK)+PVIo(152,K)+ANGOCK)*ALPHA2(J,K)*EXPO(K)
AGDIP1(K)=C2*ETA/(S1G* (FTA+Z1(K)))*xEXPETM+C2*ETA*APLUS/(SIG*
1 (ETA=Z21(K))I*EXPETP+ALPHAL(K)/(CL1*xSIGI*EXPOCKI+C2/SIG*PVI.(1
1 53,K)
AGDIMLC(K)=C2¥ETA/(SIGN(ETA=Z1(K)))I*EXPETM+C2*ETA*APLUS/(SIG*
1 (ETA+Z1(K))I*EXPETP+C2/SIG*FTK(K)

PRINT RESULTS ANGR1(K), AGOIP1(K), ANGR1(K+P), AGDIM1(K)
OTHERWISE
AGDIP2(K)=ETA*ANGC/C(ETA+Z1(K)I*EXPETM+ETA*ANGC/ (ETA=Z1(K))*

1 APLUS*EXPETP=D1/(C1%C2)*FBK(KI+PVI (1,2,K)+ANGO(K)I*ALPHA2(J,
1 K)*EXPO(K)

END OF CONGITIONAL

PRINT RESULTS ANGR(K), AGDIP2(K)s ANGR(K+D)» AGDIM2(K)
AGDIP2(P)=QUAD.(Z1(P), Z1(P=2), AGDIP2(P=2),Z1(P=1),AGDIP2(P
1 =1),Z1(P+2)+AGDIP2(P+2))

AGDIP2(P+1)=QUAD,(Z1(P+1)» Z1(P=1),AGDIP2(P=1),Z1(P+2)»AGDIP2
1 (P+2)5s21(P+3)sAGDIP2(P+3))

PRINT RESULTS AGDIP2(P), AGDIP2(P+1)
R APPROPRIATE INTEGRALS TO OBTAIN THE TOTAL FLUX AND CURRENT

R FOLLOWED BY A CALCULATION OF THE ASYMPTOTIC FLUX AND CURRENT
R SEE EQS.(5.16)

SUM1=00

SUM2=0.

SUM3=0.

SUMll:O.

SUM5=0,

SuM6=0,

SUM7=0,

5UMB=0-

SUM9=0.,

SUM10=0.

SUM11=0.

SUM12=0,

THROUGH CNSs FOR K=1s1» KeGeD

WHENEVER KelLoP+1

22(K)=Z1(KI*SIG

SUM1=SUM1+AGDIM1(K)

SUM2=SUM2+AGDIP1(K)

SUM3=SUM3+AGDIM2(K)

SUM4=SUML+AGDIP2(K)

SUMS=SUMS=22(K)*AGDIMY (K)

SUM6=SUME+Z2(K)*AGDIP1(X)

SUM7=SUM7=Z1(K)*AGDIM2(K)

SUMB=SUMB+Z21(K)*AGDIP2(K)

OTHERWISE

SUM9=SUM9+AGDIM2(K)

12M
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PROGRAM 2 (Continued)

SUM10=SUM10+AGDIP2(K)

SUM11=SUM11=Z1(K)*AGDIM2(K)

SUM12=SUM12+Z1(K)*AGDIP2(K)

END OF CONDITIONAL

FLNEG1=SUM1*H1*SIG

FLPOS1=SUM2*H1+S1IG

TOTFL1=FLNEG1+FLPOS!

CUNEG1=SUMS*H1%S1G

CUPOS1=SUMb6*H1*S]G

TOTCU1=CUNEG1+CUPOS1

FLNEG2=SUM3*H1+SUMO*H?

FLPOS2=SUM4*H1+SUM10%H2

TUTFL?:FLNEG?+FLPUS?

CUNEG2=SUMT*H1+SUM11*H2

CUPQS2=SUMS*H1+SUM12*%H?2

TOTCU2=CUNEG2+CUPQOS?

PRINT RESULTS FLNEGt, FLPOS1» TOTFL1» CUNEG1» CUPOS1, TOTCUIL,
1 FLNEG?, FLPUS2s TOTFL2» CUNEG2» CUPDS2, TOTCU2
ARCSIG=ELGETP+ELGETM

ASYFL1=C2*ARCSIG*(EXPETM+APLUS*EXPETP)
ASYCU1=C2+ETAXEXPETM#*(2¢=SIG*ARCSIG)+C2+*ETA*EXPETP*APLUS*(
1 SIGxARCSIG=2.)

ARCETA=ETA*ELOG.((ETA+1.)/C(ETA=1,))
ASYFL2=ANGC*ARCETA*(EXPETM+APLUS*EXPETP)
ASYCU2=ETA*ANGC+EXPETM*(2+=ARCETA)+ETAXANGC*APLUS*EXPETP*¢(
1 ARCETA=2,)

PRINT RESULTS ASYFL1» ASYCUl» ASYFL2» ASYCUZ2

TRANSFER TO START

END OF PROGRAM
MAD, EXECUTE
R SUBROUTINE FOR THE CALCULATION OF INTEGRALS BY MIDPOINT
R APPROXIMATION= TRAPEZOIDAL RULE

EXTERNAL FUNCTION INT,(J)

INTEGER Ks I» Q4, Ps» P1, P3s D, J

DIMENSION FU(B46,VIM), FULC10)» FUMC10)» FUU(C10), ELG(92),
1 21(92)

VECTOR VALUES VIM=2,0,0

PROGRAM COMMON FuU, FuULs FUMs FUU» N, ELG, Z1s H1, H2s P3s 0>
1 SG

VIM(2)=D+2
P=N

SUM1=0,

SUM2=OO

THROUGH EVALs FOR K=1,15 KeGWD
WHENEVER KeoLELP
SUMI=SUM1+FUC(CJ,»K)
OTHERWISE

SUM2=SUM2+FU(J»K)

END OF CONDITIONAL

FUNCTION RETURN SUMIxH1+ SUM2%H2

16M
17M

16M
19M
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PROGRAM 2 (Continued)

END OF FUNCTION

$ COMPILE MAD, EXECUTE
R SUBROUTINE FUR CALCULATING SINGULAR INTEGRALS SEE CHAPTER 6

COMP1

$ DATA

EXTERNAL FUNCTION PVI,(JsI,»Q4)

DIMENSION FU(B46,VIM), FULC10)» FUM(CL10), FUUC10)
1 71(92)

VECTOR VALUES VIM=2,0,0

INTEGER K» 1, Q4, Ps» P1» P3, D» J

PROGRAM COMMON Fu, FUL» FUM, FUUs N, ELG, Z1, H1
1 SG

P=N

VIM(2)=D+2

SUM=0.

SUM1=0a

SUM2=0,

THROUGH COMP1, FOR K=1s1, K.G4D

WHENEVER K.E.Q4

WHENEVER Q44Lel

SUM=SUM+1 /3% (FU(T»2)+3.*FUCI,1)=b4,*FULCI))

OR WHENEVER Qé4.E.P

SUM=SUM+1 /3% (4, xFUM(I)*3.%FUCI»P)=FU(I,P=1))
OR WHENEVER Q4.E.P+1
SUM=SUM+1¢/3e*(FUCT»P+2)+3s%FU(IsP+1)=4 ,%FUMCI))
OR WHENEVER Q4.E,.D

SUM=SUM+1 /3% (4, *»FUUCTI) =3.*xFUCIsD)=FUCI»D"=1))
OTHERWISE

SUM=SUM+1,/72.*(FUCT»Q4+1)=FU(I»Q4~1))

END OF CONDITIONAL

OTHERWISE

WHENEVER KJ.LE.P
SUMI=SUMI+(FUCI»KI=FU(CTI»Q4))/(Z1(KI=~Z1(Q4))
UTHERWISE
SUM2=SUM2+(FUCI»KI=FU(T»Q4))/(Z1(K)=21(Q4))

END OF CONDITIONAL

END OF CONDITIONAL

WHENEVER J.Eel

FUNCTION RETURN SUM+FUC(I,Q4)*ELG(QA)+HI*SUMI+H2%*
OTHERWISE
R SINGULAR INTE@R&AL FOR REGION 1 ONLY

FUNCTION RETURN SUM+FU(CI,Q4)*ELDG.(SG/Z1(Q4)~1,)
END OF CONDITIONAL

END OF FUNCTION

C1=,61320» ¢2=,04404, C3=,17023, (C4=,43685, SI1G=1,65809,
EPS=.000001, N=22,, ITMAXX=10, EPSI=.000001, N3=70.»
Z3C1)=045¢5514214552423055,58.510,2204» ZEE=10, ITMAX=10

R THE SOLUTION TO THE CONSTANT PROBLEM IS OBTAINE
R REPLACING IN THE PREVIOUS PROGRAM THE CARDS WIT
R COLUMN 77 BY THE FOLLOWING CARDS WITH S IN COLU
R NUMBERS MUST ALSO MATCH, FOR EXAMPLE S5M IS REPL

» ELGC92),

s H2, P3, D»

SUM2

+H1%SUML

ETA=2,595825,

*
D BY
H M IN
MN 77. THE
ACED BY 5S»
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PROGRAM 2 (Concluded)

ETC. ALSO WE MAY REMOVE FROM THE PREVIOUS DECK ALL CARDS
PRECEDED BY THE REMARK SMILNE PROBLEM ONLYS, NOTE THAT
THE FIRST FOUR CARDS AFTER THE FIRST ARE PLACED IN THE
PREVIOUS DECK AT ONE DESIGNATED LOCATION,

THIS IS THE SULUTION FOR THE EXACT CONSTANT SOURCE PROBLEM
CS1=2¢#%C2/((1e=2.#C4)x(SIG=2,%C1)=4,%xC2%C3)
CS2=(SIG=2*C1)/((1e=2 %C4)*(SIG=2,%C1)=4,%C2%C3)
CSW==CS2=CS1*D1/C2+SIG*CS1*C4/C2
€S3=SIG*CS1*D1/C2
FUMC1)=GUCD+1)*(CSW=CS3*ELGSG)
FUUC1)=GU(D+2)*(CSW=CS3+*ELGONE)

FKK(K)=CSW=CS3*ELG1(K)
APLUS1=(~SIG*CS1/C2+INTEGM)/APLDEN
OPSI(K)==0OMAGL(K)I*PVI(1,1,K)+0OMAG2(K)*FKK(K)
ALPHAL1(K)==CS1*SIG*C1=ETA*C2*C1xAPLUS/(ETA=Z1(K))=C2x*C1

AGDIM2(K)=CS2 +ETA*ANGC*APLUS/(ETA+Z1(K
AGDIP2(K)=CS?2 +ETA*ANGC*APLUS/(ETA=Z1(
AGDIP1(K)=CS1 +C2*ETA*XAPLUS/(SIG*
AGDIM1(K)=CS1 +C2*ETA*APLUS/(SIG*
AGDIP2(K)=CS?2 +ETAXANGC/(ETA=Z1(K) )+
ASYFL1=2,%CS51+C2*ARCSIG*APLUS*EXPETP

Asycuts= +C2*ETA*XEXPETP*APLUS*(

ASYFL2=2,*CS2+ANGC*ARCETA*APLUS*EXPETP
ASycu2= +ETA*ANGC*APLUS*EXPETP*(

0S8
18
2S
3$
4S5
58
65
7§
8s
9S
10S
115
128
13$
145
158
165
175s
185
198§
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PROGRAM 3

$ COMPILE MAD, EXECUTE, DUMP, PRINT OBJECT

START

ITER

SERCH1

SERCH2

R PROGRAM FOR SOLUTION 0OF THE MILNE PROBLEM

R SPHERICAL HARMONICS=P1 APPROXIMATION

DIMENSION X(3), FX(3), ROC4), COP1(2), COP2(2),
1 F1(2)» F2(2)s EXPO1(50)s EXP02(50), RHO01(50), RH11(50)»
1 RHO02(50), RH12(50), 73(50), PSI1C(1050,VIM)» PSI2(1050,DIM),
1 COP3(2), ANGLEC(C21)s EXPD3(50)»

1 ASY01(50)» ASY11(50), ASY02(50)» ASY12(50)

INTEGER I1,J, Q» ZEE» ITMAX» ITX, ITY

VECTOR VALUES VIM=2,0,21

VECTOR VALUES DIM=2,0,21

READ AND PRINT DATA

PI1=3,14159265

R THE ROOTS OF EQ.(7.8A) ARE OBTAINED BY THE FALSE POSITION
R METHOD (SEE REF. (28))

Di=C1%C4=C2*C3

B ==3e%(1,=2,*C4+SIG*SIG=2,*SIG*C1)
D =94 *STIG*(SIG=24*C1=2.,*C4*xSIG+4,201)

PRINT RESULTS B» D» D1

INTERNAL FUNCTION CHARW(Z)=Z P ol+Bx724P 424D
T=,00000001

Q=1

CHARO=CHAR.(T)

WHENEVER CHARO«L .0,

THROUGH SERCH1» FNR Y=Ts,02sCHAR14G4VaedReYeGo40,
HWHENEVER YoeGad40.

PRINT COMMENT 3 NO SIGN CHANGES

TRANSFER TO START

END OF CONDITIONAL

CHARt=CHAR,.(Y)

OTHERWISE

THROUGH SERCHR2, FOR Y=T»s»402,CHARL1eL,0¢e0RsYeGosl40,
WHENEVER Y.G.40.

PRINT CIOMMENT & NO SIGN CHANGES

TRANSFER TO START

END OF CONDITIONAL

CHAR1=CHAR.(Y)

END OF CONDITIONAL

X(1)=Y=,00

X(2)=Y=.02

FXC1)=CHARL,(X(1))

FX(2)=CHARL(X(2))

PRINT RESULTS X(1), FX(1)» X(2)s FX(2)

THROUGH LOOPXA, FOR ITX=1»1» ITXeG.ITMAX
NUMER=X(2)*FX(1)=X(1)*FX(2)

DENOM=FX(1)=FX(2)

WHENEVER JABS. DENOM.L+sABS NUMER*EPS2

PRINT COMMENT 8 DENOMINATOR TOO SMALLS

TRANSFER TO START

oM
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PROGRAM 3 (Continued)

END OF CONDITIONAL

X(3)=NUMER/DENOM

FX(3)=CHAR(X(3))

WHENEVER JABSFX(3).LE.EPS1

PRINT CUMMENT % PROCEDURE CONVERGEDS

TRANSFER 70 ITER1

END OF CONDITIONAL

THROUGH LOOPXA, FNR I=z1sls 1.G.2

THROUGH LNOPXAs FNR J=T+1s1s JeGe3

WHENEVER «ABSeFX(I)eGeedABSFX(J)

TEMP=FX (1)

EXCI)=FX(J)

FX(J)=TEMP

TEMP=X(I)

X(I1)=x(J)

X(JI=TEMP

END OF CONDITIONAL

FRINT COMMENT $ NO COMVERGENCES

THROUGH CVALOGs FOR Y1zt E=8s 4025 Y1.G.30,
CHAR3=CHARL(Y1)

PRINT RESULTS Y1, CHAR3

TRANSFER TOD START

ROCQI=X(3)

PRINT RESULTS ITXx, X(3)s FX(3)s Q

T=Y=,02

Q=Q+1

WHENEVER QeEe3» TRANSFER TO GO

TRANSFER T# ITER

PRINT RESULTS ROC1)s ROC2)
R END OF PRUSGSRAM FNOR 0NBTAINING THE RQOTS

THROUGH EVAL1s FOR TI=1s1, 1.6G,2
R EQSe(7411) EVALUATED

COPI(I)=ROCII/(3,%S1G)
COP2(I)=(3e*xSIGH(SIG=2,*#C1)=ROCTII*ROCII)/(6exSIG*C2)
COoP3(Id=COP2(I)*RN(CI)/3.
R SEE EQ@S. FOLLOWING EQSe(7417)

F1(I)=.50+COFL1CT)

F2¢1)=C0P2CI)/2.+C0P3(1)

PRINT RESULTS CDP1(I), £OP2(I)» COP3(I)s F1C(I)» F2(I)
R NEXT THREE CARDS FOR MILNE CASE JONLY (SEE EQWSe(7.184)
COP4==RUC1)/(3.xS1G)

CopPs5=C0P2(1)

COPe==RU(C1I*CUPS/3,

F3=,5+C0P4

Fa=,5+«CIOP5+ COP6
R SEE EQS,(7.13A)
BO2=(F4*F1(2)=F3*xF2(2))/(F1(1)*F2(2)=F1(2)*F2(1))
BOAU=(F3*F2(1)=Fa4*xF1C1))/(F1(1)xF2(2)=F1(2)*F2(1))
PRINT RESULTS F3, Ft, 302, BU4

THROUGH EVALZ2s FUR I=1,1, I.G.ZEL

iM
2M
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PROGRAM 3 (Continued)

EXPO1(I)=FXP,(=ROC1)I%#Z3(1))

EXPO2C(I)=EXP.(=R0O(2)*Z3(1))

R MILNE CARD ONLY
EXPO3(I)=EXP.(ROC1)I*Z3(I))

R SEE EQS,(7.,12)
RHO1CI)=EXPO3C(I)+ROZ2*EXPOICI)+B0UxEXPO2(I)
ASYO1CI)=EXPOU3(I1)+BN2+EXPOI(CI)
RH11(I)=COP4*EXPN3(I)+B02*COP1(1)*EXPD1(I)+B04*COP1(2)*EXPD

R MILNE CARD ONLY

1 2¢n)

ASY11(I)=COP4*EXPQ3(I)+BN2*COP1(1)*EXPOLI(CI)

RHO2(I)=COPS*EXPO3(I)+B02*COP2(1)*EXPNL(I)+BO4*xCOP2(2)*
R MILNE CARD ONLY
1 EXPO2CI)

ASY02(I)=COPS*EXPQ3(I)+BO2+COP2(1)*EXPO1(I)

RH12(I)=COP6*EXPO3(I)+BO2*COP3(1)*EXPO1CI)+ BO4*XCOP3(2)*
R MILNE CARD ONLY
1 ExPO2(I)

ASY12(1)=COPO6*EXPO3CI)+B302*COP3(1)*EXPO1(CI)

PRINT RESULTS Z3(I)» EXPO1CI), EXPO2(1), RHO1(I)» RH11(CI),
1 RHO2(CI)» RH12(I)» ASYO1(I)s» ASY11(I), ASYO02(I)» ASY12(CI)
R ANGULAR DISTRIBYTINON FOLLOWS

Q=1

THROUGH EVAL4s FOR L=tes=els LeLoe=1,

ANGLECQ)=3604/(2,*PI)*xARCCOS (L)

9=Q+1

ANGP=360,/(2+*PI)*ARCCNS.(4+975)

ANGM=360,/(2.*PI)*ARCCOS.(=.975)

THROUGH EVAL7s FOR J=1,1, J.G.ZELE

PSP1=45*%*RHO1(J)+1,5%,975%RH11(J)

PSM1=¢5*%*RHO1(J)=1,5%,975+RH11(J)

PSP2=+5*RH02(J)+1,5%,975%RH12(J)

PSM2=.5%RH02(J)=1.5%,975%RH12(J)

Q=1

THROUGH EVAL3, FOR L=1,s=els LelLe=1,

PST1(JsQ)=e5*RHO1(J)+1,5%L*RH11(J)

PS12(JsQ)=45*%RHO2(y)+1,5*L*RH12(J)

PRINT RESULTS ANGLECQ)» Z3(J)» PSI1(¢J,Q), PSI2(J,Q)

Q=0+1

PRINT RESULTS ANGP, PSP1, PSP2» ANGM» PSM1s PSM2
R NEXT TWO CARDS ARE MILNE CARDS UNLY
R SEE EQe(7.419)

EXTRAP==1,/(2.*R0O(1))I*ELOG.(=1./B02)

PRINT RESULTS EXTRAP

TRANSFER TO START

END OF PROGRAM

€1=.59023, C€2=,05448,» C3=,15963, C4=.44320, 23(1)=0454551451.552,>

205)30!3o5)4op405;50!5c! 104 20, EP51=10E'6’ EPS2=1,E£=20, SIG=1.50951!

ZEE=14,

ITMAX=50 *

5M
6M
7™

8M
9M
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PROGRAM 3 (Concluded)

FOR THE CONSTANT SNURCE PROBLEM WE MAKE THE REPLACEMENT goF
THE FOLLOWING CARDS EXACTLY AS WE DID IN THE PREVIOUS CASE
PROGRAM FUOR THE SQLUTION OF THE CONSTANT SOURCE PROBLEM

By SPHERICAL HARMONICS=P1 APPROXIMATION
S1=24%C2/((1e=2,%C4)*(SIG=2,%C1)=4,%C2%C3)
S2=(SIG=24%C1)/((1e=2,%CU)*(SIG=2,%C1)=4.%C2%C3)
A02=(S2%F1(2)=51%F2(2))/(F1(1)*F2(2)=F1(2)*F2(1))
AO4=(SIwF2(1)=S2*F1(1))/(F1(1)*F2(2)=F1(2)*F2(1))
RHO1(I)=A02*EXPO1(I)+A04+EXPO2(I)+2,*S1
ASYO1(I)=A02*EXPO1(I)+2.%51
RH11(I)=COP1(1)*A02*EXPO1C(I)+COP1(2)*A04*EXPD2(])
ASY11(I)=COP1(1)*A02*EXPO1CI)
RHO2(1)=C0P2(1)*A02*EXPOICI)I+COPZ(2)*xA04*EXPO2(I)+2,%S2
ASY02(I)=COP2(1)*A02+EXPDLI(I)+2,%S2
RH12(I)=COP3(1)*A02*EXPOL1(I)+COP3(2)*A04«EXPO2(I)
ASY12(1)=COP2(1)*A02xEXPO1CI)
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PROGRAM 4

$ COMPILE MAD, EXECUTE, DUMP, PRINT OBJECT

START

ITER

SERCHI1

SERCH?2

R PROGRAM FUR THE SOLUTION OF THE MILNE PROBLEM BY
R SPHERICAL HARMONICS=P3 APPROXIMATION
DIMENSION X(3)» FX(3), ROC4)» COP1(C4), COP2C4), COP3(C4),
1 COoP4(4), COP5(4), COP6CE)» COPT(4), FI1C4), F2C4), F3C4),
1 Faca)s EXPO1C(S50), EXPD2(50)» EXPD3¢(50)» EXPO4(50), RHO1(50),
1 RH11(50), RH21(50)» RH31(50), RHO02(50), RH12(50), RH22(50)»
1 RH32(50), Z3(50), PS11(1050,VIM), PSTI2(1050,DIM)s ANGLEC(21),
1 YC4)» AC20,VIN)» ASY01(50)» ASY02(50), EXPO5(50)
INTEGER 1sJs Q@» ZEE» ITMAX» ITX, ITY
VECTOR VALUES VIM=2,0,21
VECTOR VALUES DIM=2,0,21
VECTOR VALUES VIN=2,0,5
READ AND PRINT DATA
D1=C1+#C4=C2%C3
PI=3.14159265
C=81,
D=990,+(Ca+C1+SIG)=810,*(1,+SIG*SIG)
E=(110,*SIG*C1=90, *SIG*SIGI*(110,%C4=90,)+945,%(1,=2,*%C4+SIG.,
1 Pe3#(SIG=2¢%C1))=110,%110,*SIG*C2%(C3
Fz105e%(1,=2.%CO)%(110,*SIG*C1=90,*SIG*SIGI+105*SIG,P43%¢(
1 SIG=2e%C1)*(110,%#C8=90¢)+210.%110,*SIG*C2+C3%(1,+SIG*SIG)
G=1054%105e*SIGeP,3*%(SIG=24%C1)%(1,22,%C4)=210,%210,*#SIG,P,3
1 *C2+C3
PRINT RESULTS C» Ds E, F, G
INTERNAL FUNCTION CHARG(Z)IZCH*Z 4P eB4D*Z P ob6+E*XZsPolU+F*Z,P+2+G
=,00000001
Q=1
CHARO=CHAR.(T)
CHAR1=0,
WHENEVER CHARO.L,.O,
THROUGH SERCH1sFOR Y1=T».01sCHAR1eG,04ss0ORsY14Goed0,
WHENEVER Y1.G.40,
PRINT COMMENT & NN SIGN CHANGES
TRANSFER TO START
END OF CONDITIONAL
CHAR1=CHAR.(Y1)
OTHERWISE
THROUGH SERCHZ2,FOR Y1=Ts¢01,CHARL L 40oeOReY1eGod0,
WHENEVER Y1.G.40,
PRINT COMMENT $ NO SIGN CHANGES
TRANSFER TO START
END OF CONDITIONAL
CHAR1=CHAR.(Y1)
END OF CONDITIONAL
X(1)=Y1=,02
X(2)=Y1=,01
FX(1)=CHAR.(X(1))
FX(2)=CHAR.(X(2))



125

PROGRAM 4 (Continued)

THROUGH LOOPXAs FOR ITX=1»1, ITXeGaITMAX
NUMER=X(2)*FX(1)=X(1)%FX(2)
DENOM=FX(1)=FX(2)
WNHENEVER oABSe DENOM.L+.ABS NUMER*EPS2
PRINT COMMENT & DENOMINATOR TOO SMALLS
TRANSFER TU START
END OF CONDITIONAL
X(3)=NUMER/DENOM
FX(3)=CHAR(X(3))
WHENEVER (ABS«FX(3).LEJEPS1
PRINT COMMENT $ PROCEDURE CONVERGEDS
TRANSFER TO ITER1
OR WHENEVER QeE+s2.AND, ABS FX{(3)4L.,0003
TRANSFER T0 ITER}
OR NHENEVER QtEo3cAND.!ABSOFX(3)OL0.003
TRANSFER TO ITER1
OR WHENEVER QeEo84.AND, s ABSeFX(3)sLl,,1
TRANSFER TO ITER1
END OF CONDITIONAL
THROUGH LOOPXA, FOR I=1,1» 14Ge2
THROUGH LOOPXAs FOR J=1+151, JeGe3
WHENEVER «ABSeFX(T1)eGesABSFX(J)
TEMP=FXC(1)
FXCII=FX(J)
FXCJI=TEMP
TEMP=X(I)
X(1)=X(J)
X(J)=TEMP
PRINT RESULTS X(1)» FX(1)» X(2)s FX(2)
LOOPXA END NF CONDITIONAL
PRINT COMMENT & NO COMVERGENCES
THROUGH EVAL6, FOR Y1=0esels Y1.Goe30.
CHAR3=CHAR.(Y1)
EVALSG PRINT RESULTS Y1, CHAR3
TRANSFER TO START
ITER1 ROCQ)I=X(3)
PRINT RESULTS ITX, X(3)» FX(3)s @
T=Y1-,01
Q=Q+1
WHENEVER Q+E+5» TRANSFER TO GO
TRANSFER TO ITER
GO PRINT RESULTS RO(C1)+.,R0O(4)
R END OF PROGRAM FOR CALCULATING THE RQOTS SEE CHAPTER 7 FpR
R APPROPRIATE EQUATIONS FOR THE FOLLOWING PROGRAM
THROUGH EVAL1», FOR T=1,1, I.G.4
SQR=RO(I)*ROCI)
SQASG=SIG+SIG
COP1(I)=ROCII*(35,%SQASG=9¢*SARI/(S5,*SIG*(21+4*%SQSG=11.%*SQAR))
COP2(I)=14+*%RO(I)*SIG*COP1C(I)/(35,%SQ5G=9,*SQR)
COP3(I1)=3.*ROCII*COP2(1)/(7.*SIG)



EVAL1

EVALS
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PROGRAM 4 (Continued)

COPA(CI)=10e%xC3%x(21,=11,*SQARI/(SQR*(9e*SQR=35,)+5,%(1,=2,%C4)

1 *#(214=11,*SQR))
COPSCIN=ROCII*(35,=9,«SQRI*COPU(I)/(5,*%(21,~11,%5QR))
COP6(I)=14.*ROCI)*COPS(1)/(35.,=94*SQR)
COP7(I)=3.*ROCII*COP6CI)/T.
F1(I)=.5+4C0P1(1)+5,%COP2C1)/8,
F2(1)=425434*%COP1(1)/5,+5.*C0P2(I)/8442,.%COP3(I)/5,
F3C(I)=e5+COP4CII+COPS(I)+5.%xCOP6(I)/8,
FOCI)=e25%COPUCII+34%COPSCI)/S5445,#COP6CI)/4e+2,%COP7(I)/5,
PRINT RESULTS RO(CI)» COP1CI), COP2(CI), COP3CI)» COP4(I)»

1 COPS5(I1), COP6(CI), COPT(I)» FI1(I)» F2(C1)» F3CI)» F4C(CI)

R FOR THE CONSTANT SDURCE PROBLEM WE INSERT CARDS 1S AND 23
AC155)==,5+4C0P1C1)+45,/8,*COP2(1)
A(255)==,25+434/5*COP1(1)+45,/6.%C0P2(1)+2,/5.%xCOP3C1)
A(3,5)==,5*CUP4C1)Y+CUPS(1)+5,/8,.,*COP6(1)
ACA,5)==,25%COP4(1)+3,/5,%COPS(1)+5,/8.%COP6(1)+2,/5.,*COPT7(1)
THROUGH EVALSs FOR I=1,1, l.G.4
ACt1,1)=F1(CI)

AC2,1)=F2(I)

AC3,1)=F3(1)

ACa,1)=F4(l)

PRINT RESULTS A(15,1)e,4A(455)
EPSS=1.E=20
DETER=SIMUL+(45A,Y,EPSS)

PRINT RESULTS AC1,1)e4s8(455), Y(1)s0,aY(4)» DETER
THROUGH EVALZ2, FOR I=1,1, I.G.Z2EE
EXPO1(I)=EXP.(=RO(1)*23(1))
EXPO2CI)=EXP,(=RO(2)*x73(1))
EXPO3CI)=EXP.(=R0O(3)I*23(I1))
EXPO4CI)=EXP,(=RO(4I*Z3(1))

R MILNE CARD ONLY
EXPOSC1)=EXP.(ROC1)*23(¢1))
ASYO1(I)=Y(1)*EXPO1CIY+EXPOSC(I)
RHO1CI)=SY(1)*EXPOLICID+Y(2)*EXPO2C(I)+Y(3)*EXPO3C(I)+Y(4)*

1 EXPO4CIY+EXPOS(I)
RH11(I)=Y(1)*CUPLC1I*EXPOLICI)+Y(2)*xCOPL1(2)*EXPO2CI)I+Y(3)*

1 COP1(3)*EXPU3C(I)+Y(4)*COPL1(4)*EXPO4C(I)=EXPOSCI)*COP1(1)
RH21¢I)=Y(1)*COP2(1I*EXPDICI)+Y(2)*xCUP2(2)*EXPO2CI)+Y(3)*

1 COP2(3)*xEXPO3CI)+Y(4)*COP2(4)*EXPO4(I)=EXPOS(I)*COP2(1)
RH31(I)=Y(1)*COP3(1I*EXPDICI)+Y(2)*COP3(2)*EXPO2CI)+Y(3)*

1 COP3(3)*EXPO3CI)+Y(4)*COP3(4I*EXPO4C(TI=EXPOSCI)*COP3(1)
ASY02(1)=Y(1)*COPU(1)*EXPOIC(I)+EXPOS(I)*COP4(1)
RHO2(I)=Y(1)*COP4(1IXEXPOLI(I)+Y(2)*COP4(2)*XEXPD2CI)+Y(3)*

1 COP4C3IXEXPO3CIN)+Y(4)YXCOPAC4)*EXPOL4CII+EXPOSCII*COP4CY)
RH12(I)=Y(1)*COPS(1)+EXPOLICII+Y(2)%COPS(2I*XEXPO2CI)+Y(3)*

1 COPS(3II*EXPO3(I)+Y(4)*COPSCUI*EXPO4(I)=EXPOS(I)*COPS(1)
RH22(I)=Y(1)*xCOPO6(1)*EXPOLICI)+Y(2)*COP6(2)*EXPO2(I)+Y(3)*

1 COP6(3I*EXPO3CIN+Y(4)*COPO(4I*EXPD4(T)=EXPOS(I)*COPH(1)
RH32CI)=Y(1)*xCOPT(1Y*EXPOLICII+Y(2)*COP7(2)*EXPO2CI)+Y(3)+

1 COP7C3)*EXPO3CI)+Y(4)*COPT(4)*EXPO4C(I)=EXPOSCI)*COPT7C1)

3M
4Mm
5M
oM

™
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PROGRAM 4 (Continued)

EvaL2 PRINT RESULTS 23(I)» RHO1(I)» RH11(1), RHO2CI)» RH12(I)»
1 ASYO1(I), ASYO2(I)
R NEXT TwD CARDS ARE MILNE CARDS ONLY
EXTRAP==,5/ROC1I*ELNG.(=1./Y(1))
PRINT RESULTS EXTRAP
R ANGULAR NDISTRIBUTION FOLLOWS
Q=1
THROUGH EVAL4» FOR L=1ss=0ls LaLe~1,
ANGLE(Q)=360./(2,#PI)*ARCCOS,.(L)
EVALY4 0=Q+1
THROUGH EVAL3» FOR J=1,1, J.G,2EE
Q=1
THROUGH EVAL3» FOR L=14s=s1s LoeLe=1,
PSI1CJr0)=e5*%RHOL(JI+1oS*L*RHL1(JI+14254( 3, %L *L=14)%RH21(J)
1 +7./u0*(50*LOP!3'30*L)*RH31(J)
PST2(JsQ)=+5%RHO2(JI+1 S*L*RHI2(J)I+1425% (3, %L *L=1,)%RH22(J)
1 #74/80%(Se*LoePe3=3.%L)*RH32(J)
PRINT RESULTS ANGLEC(Q)Ys Z3(J)» PSI1(JsQ)s PSI2(J»Q)
EVAL3 Q=Q+1
TRANSFER TO START
END OF PROGRAM
$ COMPILE MAD, EXECUTE», DUMP, PRINT O0BJECT
R THIS SUBRUUTINE SOLVES THE SET OF SIMULTANEOUS EQUAYIONS
R SFE EQS,(7,30) AND (7,31) FOR DETAILS SEE REF. (18)
EXTERNAL FUNCTION SIMUL.(NsA»X,EPS)
DIMENSION IR(50), JC(50), CJ(59)
NORMAL MODE 1S INTEGER
FLOATING POINT A, BIGA, X» DETERs EPS, AJCK
NPi=N+1
DETER=1.
THROUGH L1ts FOR K=z1s1y KeGeN
BIGA=0.
THROUGH L2s FOR I=151, [,GeN
THROUGH L2) FOR J:llln J.G.N
THROUGH L3» FOR If1=1,1s I1.E.K
THROUGH L3» FOR J1=1,15 JleE.K
L3 WHENEVER T+E+IRCI1)e0RsJ,EeJC(J1)s TRANSFER TO L2
NHENEVER .ABS«A(I,J).G.BIGA
BIGA=+ABS.A(I»J)
IR(K)=1
JC(K)=J
L2 END OF CONDITIONAL
WHENEVER BIGALL+EPSs FUNCTION RETURN 0
BIGA=A(CIR(K)»JC(K))
DETER = DETER*BIGA
THROUGH L&+ FOR J=1,1, J,G.NP1
L4 ACIR(K)I»J)=ACIR(K)Y,J)/BIGA
THRNOUGH L1» FOR I=1s1, I,G.N
WHENEVER ToNE.IR(K)
AJCK=A(I,JC(K))



L6 ACI>J)=ACTsJ)=AJCK*ACIRCK)»J)
Lt END OF CONDITIONAL
THROUGH L7» FOR I=1s1, I,GeN
CJCIRCI))=dC(D)
L7 XCJCCIYI=ACIRCIISNPL)
COUNT=0
THROUGH L9» FOR I=1s1, I.EWN
THROUGH L9» FOR J=I+1,1, JeGeN
WHENEVER CJ(J)eL,CJCI)
TEMP=CJ(J)
CJ(JI=CJ(1)
CJCI)=TEMP
COUNT = COUNT+1
L9 END OF CONDITIONAL
WHENEVER COUNT/2%2,NE,COUNT, DETER==DETER
FUNCTION RETURN DETER
END OF FUNCTION
$ DATA
€1=,59023, C2=,05448, C3=,15963, C4=,44320, 2301)50,54551451,502,»
20553453055 8094,5550284510,5204» EPS1=1.E=6, EPS2=1,E=20s $16G=1,50951,
RO(1)=.1376522, 1,162925, 2,068132, 3,289316,
2EE=14, ITMAX=50 *
R FOR THE CUNSTANT SNURCE PROBLEM WE REFER THE READER TO THE
R PREVIOQUS INSTRUCTINNS FOR THE P1 CASE
R PROGRAM FOR THE SOLUTION OF THE CUNSTANT SOURCE PROBLEM
R BY SPHERICAL HARMOMICS=P3 APPROXIMATIUN

1

1

1
1

1
1
1

1
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PROGRAM k4 (Concluded)

THROUGH L6s FOR J=1,1, J,GsNP1

§122.#%C2/C(1e=2,%CU)%(SIG=24%C1)=4,%C2%C3)
S2=(SIG=2e%C1)/((1+=2.%CU)*(SIG=2,%C1)~4,%C2%C3)
AC1,5)==51
A(2,5)==51/2.
ASYO1(1)=Y(1)*EXPO1(I)+2,*S1
RHOLCI)I=Y (1) *EXPO1(T)+Y(2)*EXPO2CI)+Y(3)+EXPO3CId+Y(4)*
EXPOACINI+24%51
RH11(I)=Y(1)*COPL1(1)*EXPOICI)+Y(2)*COP1(2)*EXPO2CI)+Y(3)*
COP1(3)*EXPO3(I)+Y(4)*COPL(4)*EXPD4(])
RH21(I)=Y(1)*COP2(1I*EXPOLCI)+Y(2)*%COP2(2)*EXPO2(I)+Y(3)*
COP2(3)+EXPU3C(I)+Y(4)*COP2(4)*EXPD4C(T)
RH31(I)=Y(1)*CUP3(1I*EXPOICII+Y(2)*COP3(2)*EXPD2CI)+Y(3) %
COP3(3)%xFEXPU3(IN+Y(4)Y*xCOP3(UI*EXPDUC(])
ASY02(Id=Y(1)*COPA4(1I*EXPO1CI)+24%S2
RHO2(I)=Y(1)*COP4C1I*EXPOLCI)+Y(2)%COPU(2I*EXPO2CID+Y(3)*
COP4C3)*EXPO3CI)+Y(4)*COPUCLI*EXPOLC(TI)I+24%S2
RH12(I)=Y(1)*COPS(1)I*EXPOLICII+Y(2)*COPS(2)*EXPO2CI)+Y(3)*
COPS(3)*EXPO3(TI)+Y(4)*xCOPS(4I*EXPO4C(])
RH22(I)=Y(1)*COP6 (1) *EXPOICID+Y(2)*COP6(2I*EXPO2(I)+Y(3)%
COP6C3I*EXPO3IC(IN+Y(4)*COP6C4)*EXPO4(T)
RH32(I)=Y(1)*COP7(1)+EXPOLCI)+Y(2)%CUOP7(2)*EXPO2CI)+Y(3)%
COPT(3)*EXPU3CI)+Y(4)*COPT(4)*EXPO4(])
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PROGRAM 5

MAD. EXECUTE, DUMP, PRINT OBJECT
R PROGRAM FOR THE SOLUTIAON OF THE CONSTANT SOURCE PROSLEM BY
R SPHERICAL HARMONICS=DP1 APPROXIMATION

DIMENSION X(3)» FX(3), ROC4)s COP1C4), COP2(4), COP3(4),
COP4(4), CUOPS(4), COP6C4)s COP7(4), F1C4)» F2(4), F3(4)>»
Faca), EXPO1(50), EXPD2(50), EXPD3(50), EXPO4(50), RHO1(50),
RH11(50)» RH21(50)» RH31(50)» RH02(50)s RH12(50)s RH22(50)»
RH32(50), Z3(50), PSI1(1050,vIM), PSI2(1050,0IM), ANGLE(21),
Y(4)» AC20sVINY, EXPNS5(50), ASYOU1(S50), ASYO02(50)

INTEGER I,J» Q» ZEE, ITHAXs ITX, ITY

VECTOR VALUES VIM=2,0,21

VECTOR VALUES DIM=2,0G,21

VECTOR VALUES VIN=2,0,5%
READ AND PRINT DATA
PI=3,14159265

Di=C1xCl4=C2+%C3
C==-1,
D=24%x(SIG*SIG=C1*SIG+1.=C4)
E=5764*STG*(C2*%C34(14=CU)*(C1=SI1G))=36e*(SIGeP¢e3*(SIG=2¢*C1)+
1 1.=2.*%C4)
F=w86l4e*STGx((C1=SIG)%(1,=24%C4)=(1,=C4)*SIG*SIG*(SIG=2e%C1))
1 =1728,*xC2*C3*SIG*(SIG*xSTu+l,)
G==1296e*SIGePe3x(SIG=24*C1)*(1,=2,%C4)+5184,%C2%C32S5I1G.P,3
PRINT RESULTS C» D, E, Fy G

INTERNAL FUNCTIUN CHARL(Z)=C*7,Pe8+D%Z P, 6+E*7Z P .lU+F*x7,P+2+G
T=,00000001

Q=1

CHARD=CHAR.(T)

CHAR1=0,

WHENEVER CHARO.L.O,

THROUGH SERCH1,FOR Y1=T»e01,CHARL«G,04eNReY1eG:40,

WHENEVER Yl.te40,

PRINT COMMENT & NO SIGN CHANGES

TRANSFER TO START

END OF CONDITIOWAL

CHAR1=CHAR. (Y1)

OTHERWISE

THROUGH SFRCH2,FOR Y1=T,401sCHART+L 4VeeORoY1eGed0,

WHENEVER Y1,G440,

PRINT COMMENT & NN SIGN CHANGES

TRANSFER TO START

END OF CONDITIONAL

CHAR1I=CHARL (Y1)

END OF CONDITIONAL

X(1)=Yy1=,02

X(2)=Y1=,01

FX(1)=CHAR.(x(1))

FX(2)=CHAR.(X(2))

THROUGH LODOPXA, FNR ITX=1s1s ITXeGseITMAX

—— s s s



LOOPXA

EVALS

ITERL

GO
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PROGRAM 5 (Continued)

NUMER=X(2)*FX(1)=X(1)*FX(2)
DENOM=FX(1)=FX(2)

WHENEVER J.ABS. DENDM,L « s ABS e NUMER®EPS2

PRINT COMMENT & DENOMINATOR TOO SMALLS
TRANSFER TO START

END OF CONDITIONAL

X(3)=NUMER/DENOM

FX(3)=CHARS(X(3))

WHENEVER JABS.FX(3).LE.EPSI1

PRINT CUMMENT & PRNOCEDURE CONVERGEDS$
TRANSFER TC ITER{

OR WHENEVER QeEe34AND,«ABSFX(3)sL.,005

TRANSFER TU ITER1

OR WHENEVFER QeEo4 AND, ABSeFX(3)alL,,01
TRANSFER TO ITER1

END OF CONDITIONAL

THROUGH LNOPXA, FNR TI=151s 14G.2
THROUGH LDOPXA, FUR J=I+1s1, JeGe3
WHENEVER ABSeFX(I)eGesABSFX(J)
TEMP=FX(I)

FXCI)=FX(J)

FXCJ)=TEMP

TEMP=X(1)

X(1)=xX(J)

X(J)=TEMP

PRINT RESULTS XC(1)s FX(1)s X(2)s FX(2)
WHENEVER FX(1).E,FX(2)

FX(3)=FX(1)

X(3)=x(1)

TRANSFER TO ITER})

END OF CONDITIONAL

END OF CONDITIONAL

PRINT COMMENT & NO CONVERGENCES
THROUGH EVAL6s FOR Y1=0usels Y1,G,30,
CHAR3=CHAR.(Y1)

PRINT RESULTS Y1, CHAR3

TRANSFER TU START

ROCQ)=X(3)

PRINT RESULTS 1TX, X(3)» FX(3)» @
T=Y1=,01

Q=Q+1

WHENEVER QeE+5» TRANSFER TO GO
TRANSFER TU ITER

PRINT RESULTS RO(1)eossROCH)
S1=24%C2/C(1e=2,%xCU)*(SIG=2,%C1)=4,%C2%C3)
S2=(SIG=2+*C1)/((1e=2,%CAI*(SIG=2,.%C1)=4,%C2%xC3)
THROUGH EVAL1s FOR I=1s1, I.G.4
SQR=ROCIY*ROCI)

SQSG=SIuxSIG

COP1(I)=ROCII*(12,*SQASG=SAR)/(12+*STG*(3,*SQASG=SQAR))



131

PROGRAM 5 (Continued)

COP2(1)=0,*SIG*RO(II*COP1CI)/(2,*(12+*5QSG=SQR))
COP3(I)=ROCTII*COP2(I)/(6.,*%S1G)
COP4(II=24,%C3*(SQR=3,)/(SOAR*(12,=SQAR)I+12,%(1,=2,%C4)*(SQAR~=
1 3.0
COPS(II=RNCII*(SQR=12,)*COP4CI)/(12,*(SQAR=34))
COP6(I)=9.*RUCII*COPS(TI/(2.%(12,=5SQR))
COP7(I)=ROCII*CAPE(I) /6.
F1(I)=e5+4,75*COP1CI)=COP3CI)
F2C1)=425+COP1(1)+42,/3.*CAOP2CI)+COP3(1)
F3(I)=e5*%COP4CII+,75%COPSC1)=CUPT(I)
FOCI)=425«COP5(1)+24/3.*COP6CII+COPT(])
EVAL1 PRINT RESULTS RO(CI)s COP1CI)» COP2(I)s COP3CI)s COP4C(I)»
1 COP5(I), COP6(1), COPTC(I)» FI1CI), F2CI), F3(1), F4CI)
A(1,5)=~S1
A(2’5)=00
A(3,5)==52
AC4,5)=0,
THROUGH EVALS» FOR TI=1s1, I.G,0
AC1,1)=F1CI)
A(2,1)=F2(D)
AC3,1)=F3CI)
EVALS ACa,1)=Facl)
PRINT RESULTS AC141)e4eAC4,5)
EPSS=1,E=20
DETER=SIMUL(45A4,Y,FPSS)
PRINT RESULTS AC1,1)es0A(455)s Y(1),eaYC4), DETER
THROUGH EVAL2s FOR I=1,1» I.G.ZEE
EXPO1C(I)=EXP.(=ROC1)I*Z3(1))
EXPO2CIJI=EXP.(=R0O(2)*23(1))
EXPN3(II=EXP.(=RO(3)%23(1))
EXPO4CII=EXP,(=RO(4)I*Z23(1))
RHOL(I)=YC1)*EXPOLCI)+Y(2)*EXPU2CI)+Y(3)*EXPO3CI)+Y(4)*
1 EXPO4C(I)+2.%S51
ASYO1(I)=Y(L)*EXPO1(I)+2,*S1
RH11C¢I)=Y(1)*COP1 (1) *EXPOLCII+Y(2)*COP1(2)Y*EXPO2CI)+Y(3)*
1 COP1(3)*EXPO3CI)+Y(4)*COPL(4)*EXPOGC(T)
RH21(I)=Y(1)*xCOP2C1)*EXPOLICI)+Y(2)*xCOP2(2)*EXPO2CI)+Y(3)*
1 COP2(3)*EXPO3CI)+Y(4)*xCOP2C4)*EXPO4(T)
RH31(I)=Y(1)*COP3(1)*EXPOLICID+Y(2)*COP3(2)*EXPO2(TI)+Y(3)*
1 COP3(3)*EXPO3CI)+Y(4)*COP3(4)*EXPO4(I)
RHO2(I)=Y(1)*COP4(1I*EXPOLICII+Y(2)*COP4(2)*EXPO2(I)+Y(3)*
1 COP4(3)«EXPO3(I)+Y(4)*COPA4CUI*EXPO4(TI)+2,%52
ASY02(I)=Y(1)*COP4(1)+EXPOLI(I)+24%S2
RH12(I)=Y(1I*COPS(1)*EXPOLCI)+Y(2)*COPS(2)*EXPU2CI)+Y(3)*
1 COPS(3I+EXPO3CIN+Y(4)+xCOPSC4)I*EXPD4(T)
RH22(I)=Y(1)*COP6CII*EXPOLICI)+Y(2)*xCOP6(2)*EXPO2CI)+Y(3)*
1 COP6C3I*EXPO3CI)+Y(4)*COP6C4)I*EXPO4(T)
RH32(I)=Y(1)*xCOP7(1I*EXPOLCI)+Y(2)*COPT(2)*EXPU2CI)+Y(3)*
1 COP7(3)*EXPU3CI)+Y(4)*COPT7(4)*EXPD4C(T)
EVALZ2 PRINT RESULTS Z3(I)» RHO1(I)» RHI11(I)» RHO2(I)» RH12(I)»
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PROGRAM 5 (Continued)

1 ASYO1(I)s ASYO2(I)

R ANGULAR DISTRIBUTION FOLLOWS

Q=1

THROUGH EVAL4» FOR L=t.»=els Lele=1,
ANGLE(Q)=360./(2,*PI)*ARCCOS.(L)

EVAL4 Q=0Q+1

THROUGH EVAL3» FOR J=1,1, J.GsZEE

Q=1

THROUGH EVAL3s» FOR L=1,s=e1s Lele=1,

WHENEVER L+Gse001
PSI1(Js@)=eS5*RHOL1(U) =2, #RH21(J) =4 oxRH31(JI+L* (4, *RH21(J)+
1 34/72+%RH11(J)+6,%*RH31(J))
PSI2(JrQ)=e5*RH02(J) =24 *RH22(J) =4 ¢ *RH32(J)+L* (4, *RH22(J)+
1 34/72,%RH12(J)+6,%RH32(J))
PSI1(J»@)=e5*RHO1(JI=2,%RH21(J)+4*RH31(J)+L*(=4,%RH21(J)+
1 3./724*RH11(J)+6,%*RH31(J))
PSI2(J»0)=e5%*RH02(J)=2,%RH22(J)+4 *RH32(J)+L*(=4,#RH22(J)+
1 3./2.%RH12(J)+6,%RH32(J))
R HERE WE CALCULATE THE DISCONTINUITY IN THE ANGULAR
R DISTRIBUTION AT MU=0,

OR WHENEVER Qe.E.11

DISP1 =e5*RHO1(JI =24 *RH21(J) =4 ¢ *RH31(J)+L*(4,*RH21(J)+
1 3,/2.*RH11(J)+6,*RH31(J))
Disp2 =e5*RHO2(J) =2, *RH22(J) =8 ¢ *RH32(J) +L* (4, *RH22(J) +
1 3,/2.%RH12(J)+6,%xRH32(J))
DISM1 2o S*RHO1(UI =2, *RH21(J)+4,*RH3I1 (U +L* (=4, *RH21(J)+
1 3,/72.*RH11(J)+6,*RH31(J))
DISM2 =e5*RHO02(J)=2¢*RH22(J)+4 4 *RH32(JI+L* (=4, *RH22(J) +

1 3,/72.%RH12(J)+6,*RH32(J))
PRINT RESULTS DISP1» DISP2, DISM1, DISM2, ANGLECQ)
END OF CONDITIONAL
PRINT RESULTS ANGLEC(Q), Z3(J)s PSI1(J,Q), PSI2(J,Q)
EVAL3 Q=Q+1
TRANSFER TO START
END OF PROGRAM
$ COMPILE MAD, EXECUTE, DUMP, PRINT DBUECT
EXTERNAL FUNCTION SIMUL.(Ns»AsXsEPS)
DIMENSION IR(50), JC(50), CJ(50)
NORMAL MODE IS INTEGER
FLOATING POINT A, BIGAs, X» DETER» EPS, AJCK
NPi=N+1
DETER=1.
THROUGH L1» FOR K=151, K,GeN
BIGA=0¢
THROUGH L2» FOR I=1s1s I.G.N
THROUGH L2» FOR J=1s1, J.GN
THROUGH L3» FOR I1=1,1, Il.E.K
THROUGH L3» FOR Ji=1,15 Jl.E.K
L3 WHENEVER T+EsIRCI1)e0RsJoE«JC(JL)» TRANSFER TO L2
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PROGRAM 5 (Concluded)

WHENEVER 4ABS<A(I,J).G.BIGA
BIGA=+ABSWA(I»J)
IR(K)=1
JC(KI=J
L2 END OF CONDITIONAL
WHENEVER BIGA«L.EPS» FUNCTION RETURN O
BIGA=A(CIR(K)»JC(K))
DETER = DETER*BIGA
THROUGH L4s FOR J=1s1, J,GeNP1
4 ACIR(K)»J)=ACIR(K),J)/BIGA
THROUGH L1s» FOR I=1s1, I.GeN
WHENEVER TeNE.IR(K)
AJCK=A(I,JC(K))
THROUGH L6» FOR J=1s1, J,GeNP1
L6 ACT,J)=ACT15J)=AJCK*ACIR(K)»J)
L1 END OF CONDITIONAL
THROUGH L7» FOR I=1s1, I,GeN
CJCIR(II)=UC(I)
L7 XCJCCI)I=ACIRCI)sNPY)
COUNT=0
THROUGH L9» FUR I=1s1, I.E.N
THROUGH L9, FOR J=I+1,15 JeGeN
WHENEVER CJ(J)eL,CJ(D
TEMP=CJ(J)
CJdcyr=Cucl)
CJCI)=TEMP
COUNT = COUNT+1
L9 END OF CONDITIONAL
WHENEVER COUNT/2%2,NE,COUNT, DETER==DETER
FUNCTION RETURN DETER
END OF FUNCTION
t DATA
C1=.59023) C2=.05L”¥8) C3=o15963’ C4=,44320, Z3(1)=00p05’1n)1c5)2.:
2¢553023¢558458¢59550580510452045 EPS1=1,E=6, EPS2=1,E=20, SIG=1,50951,
ZEE=14, ITMAX=50 *
R FOR THE SOLUTION TO THE MILNE PROBLEM IN THIS
R APPROXIMATION WE REFER THE READER TO THE PREVIOUS P3 PROGRAM
R FOR THE APPROPRIATE CHANGES. ALSO SEE CHAPTER 7
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