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ABSTRACT

Particular numerical methods are described for solving the two-group
neutron transport equations obtained in a companion paper. Numerical solu-
tions are presented for the Milne problem and the constant source problem,
and the results are compared with P,, P5, and double P; calculations. The
most interesting result is the occurrence of a resonance in the continuum
expansion coefficient which appears to be due to a zero of the dispersion

function Q(z) in the unphysical Rieman sheet.



I. INTRODUCTION

In a previous paper, hereafter denoted by I,l the general two-group, half-
range eigenfunction expansion such as is appropriate to the study of neutron
transport in half-spaces was reduced toa form convenient for numerical analysis.
The application was then made to two typical half-space problems; the Milne
and constant isotropic source problems. The shape of the arbitrary two-com-
ponent function which is expanded was determined by the application of appro-
priate boundary conditions. The judicious use of typical X-function identi-
ties in the general case and for the applications provided some important
simplifications to the final equations. The result for any typical half-space
problem was a pair of coupled equations for two unknowns, a discrete and a
continuum mode expansion coefficient, Egs. (I-58a) and (I-58b). With these
two expansion coefficients assumed as known, one addition equation [Eg.
(I-58¢c)] provided directly the solution for the remaining expansion coef-
ficient. The angular fluxes and the total fluxes and currents are then ex-
pressed in terms of th2se expansion coefficients and the normal modes of the
two-group transport equation.

In this paper the necessary numerical procedures for an exact, complete
solution to typical two-group, half-space problems is presented. The logical
steps in the numerical procedure are as follows:

1. The discrete eigenvalues (roots) of the dispersion equation are
found [Eq. (I-10)].

2. By an iteration procedure using Gauss quadrature, a nonlinear singular

integral equation is solved for an unknown function denoted by k(-z) which is
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directly related to the X-function and y(u). [The X-function is introduced in
Eq. (I-33); y(u) is defined in (I-35).]

3. The set of coupled equations [Egs. (I-58)], is then solved for the
expansion ccefficients by an iteration procedure.

L4, With the expansion coefficients known the two-group angular fluxes,
as well as total fluxes and currents, are easily calculated.

The spherical harmonic solutions to the two-group neutron transport equa-
tion in the P1, Ps, and DP; approximations are briefly discussed in Section
IV. These solutions are developed in order to compare with the exact results
and thus derive a feeling for the validity of the various approximation
methods. Finally in Section V numerical results are presented for a set of
light woter problems. We refer the reader to I for notation and appropriate
equations.

The most interesting result is the occurrence of resonance in the con-
tinuum expansion coefficient (see Figs. 1 and 2). These "quasi-discrete modes"
are already known in certain thermalization problems, and have been attributed
to discrete eigenvalues lying in the unphysical Rieman sheet (for review and
further references, cf. Ref. 3 of Part I). There is no question in our minds
that such an explanation is correct in the present case as well for the
following reasons. We notel that for certain values of the parameters, the
two-group dispersion function has one pair of zeros while for other values
two pairs occur. It seems likely that two pairsof zeros always occur, but

in certain cases one pair disappears through the cut onto the unphysical sheet.



Since, at least in the one-speed case, the continuum expansion coefficien varies
-1 . . . . .

(v)] 7, if this pole on the unphysical sheet lies sufficiently

close to the cut a resonance behavior is exactly what one would expect. This

question is being studied further at the present time.

II. DISCRETE EIGENVALUES AND COMPUTATION OF ()
For the problems studied in this paper, the discrete eigenvalues satisfy

the conditions

|ﬂii > 1,

and
(ng) = Q(-my) = 0.

1
Also from Table 1 the discrete eigenvalues of interest here are two in number
and are real for each case studied.
1" < 11 2 . .
The "regula falsi method for finding the roots of a transcendental

equation is used to solve the dispersion equation [Eq. (I-10)]. In practice



Q(z) is calculated for z near unity and then z is advanced in small positive
values until Q(z) changes sign. By linear inverse interpolation the root is
then calculated to any desired accuracy. With the discrete eigenvalues known,
we proceed to the calculation of y(u).

The method of Shure and Natelson5 is used to obtain a nonlinear singular
integral equation for a function k(-u) which is directly related to the X-
function and y(u). For this analysis the two-group X-function identities

that we need are

u-2z
and
X(2)X(-z) = oz (1b)
2(w) (n3-27)
where
o (p)-07(w) _
f(p) = = Cpp + [C11-2CpT(p)-2CuT(op) 101 (n)-2CuT(1/op)02(1)

(2)

and the dispersion relation yields

o) = 1 -

2C11 Le
- + —=
5 2Cop =

4
The proof of these identities parallels closely that for the one-group case.

We define a function k(z),

with the property



where X(o) is given by

1/2
1
o) = [;(W)an

By solving Eq. (3) for X(z) and substituting into Eq. (1b), we obtain

o(z) 1- 5
() e(-2) ~ 1-22%8(o) ° (%)

The function [k(z)-1]/z is analytic in the complex plane cut from O to 1
along the real axis. A direct application of Cauchy's theorem around this

cut yields

e .

)
N
i
=
i
=
O—

The boundary values of k(z) as given by Eq. (4) are inserted into the inte-
grand of Eq. (5). After some rearrangement, we obtain the nonlinear integral

equation

(og) = , (T [1-p5%%(0) I1f(p)dp ' 6
(-2) . o (1-p2/1%)(ptz)k(-p) ()

This is a nonlinear singular integral equation because from Eg. (2)

|f(u)| > » as p > 1/o. By defining

[1-5%%(0) I
2
(1 - ) (erae(-0)

g(u,z)

(7)

Iy
and by the standard technique of subtracting the singularity, Eq. (6) becomes
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l1-2z él 5£ﬁ15l {(Caz + [C11-2CpT(p)]01(1)Jdu + 2Cz él [g(u,2)

g(1/0,2) 1lr(on)0x(n) + 7(1/0n)02(p) Jan + g§5 g(1/o,2)

1

[o7(1/0) + % tn(02-1)] (8)

>

where the last term in brackets is obtained by integrating

o g [r(on)ex(n) + 7(1/on)02(p)ldn

and Eq. (2) has been used for f(u).

Eight point Gauss quadrature is now used in each of the integration in-
tervals pe[0,1/0] and pe[l/0,1]. An iteration procedure is used to solve Eq.
(8) where for the first iteration k(-z) = 1. In a sample problem the maximum
difference in K between the fourth and fifth iterations was found to be less
than 10_6

With k(-z) known, the X-function is obtained from Eq. (3). To compute

y(u), first recall that [Eq. (I-35)]

Then from Egs. (1b) and (3), we obtain

ung (35(%)_ + u) X(0)
(nE-1%)k(-p)

7(1) (10)

With y(p) known, we are ready to solve the equations for the expansion coef-
ficients. But first we discuss a fast, accurate method to evaluate singular

integrals.



ITI. NUMERICAL PROCEDURES FOR SINGULAR INTEGRALS AND ITERATION TECHNIQUE

An inspection of the equations that must be solved for the expansion co-
efficients [Egs. (I-58)] reveals the fact that the integrands of Cauchy
principal value integrals as well as of ordinary integrals contain y(u) and
logarithmic functions. The computations of numerical values for functions of
this type take a relative long time on the computer. Therefore, we use an
integration scheme where these functions are computed once and then stored
in the fast access memory to be recalled as needed. Specifically, we use
the midpoint approximation and trapezcidal rule to evaluate all integrals.

The operator O(p) as given by Eq. (I-39) is defined in part by the
boundary values of”Q(z). These boundary values change at u = l/o requiring
that we define an independent mesh interval for each of MG[O,l/O] and
pe[1l/0,1] even though the integrands are well-behaved at p = 1/0. In addi-
tion the operator O(u) requires the evaluation of singular integrals of the

general type

where F(u) is ordinarily a product of y(u) and logarithmic factors. By usual

L
procedures the singularity is subtracted to yield

P él EXﬁ%%ﬁﬁl - él [F(u')-F(p)Jdu" + 7(u)sn <l:&> . (11)

ol

For illustrative purposes, assume the singularity is at pu = p;. Then we ap-

proximate the principal value integral by

D
Pt Eean ‘[F<M'iijL“i>ﬂi+hiFv(ui> + Fuy) In (iﬂ) : (12)
| JHi Mi
51
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The prime on the summation symbol denotes that the term j = 1 is not included.

This term is given by the second term on the right-hand side of Eq. (12). hs

J
is the width of interval j and D is the total number of intervals.

When the singular point By is not at the midpoint of the first or last
interval or at the midpoint of the intervals adjacent to p = 1/c then the
second term on the right-hand side of Eq. (12) is approximated by

hiF'(Hi) >~ % [F(Hi+l)'F(Hi)] . (13a)
Otherwise, we use
-
1 .
5 [Flpg) + 3F(pa) - F(0)], 1=1 (12p)
1 . z
5 [bF(1/0) - 5F(up) - Flup 1)), 1 =7 (13¢)
1 (-
5 [Flipp) * 5Fupyy) - 4¥(1/0)], 1 =P+l (134)
1 .
'5‘ [M'F(l) - 5F(HD) - F(HD_]_)]; i=0D (13e)
-

Here we dencte by the symbol P the total number of intervals for pe[Ojl/o],
Recall that D is the total number of intervals for upel[0,1].

The midpoint approximation is required in this analysis because we observe
that at u = 0 or p = 1 the last term in Eq. (11) is singular. These singular-
ities cause no difficulty in the actual analysis because they are removed by
the factors multiplying the Cauchy integrals or F(u). What we are saying is
that the product of the last term of Eq. (11) with ﬂl(u)l is well-behaved near

uw=21and F(u) » 0 as u > O.

11



The iteration procedure for determining the expansion coefficients will
be described with reference to Egqs. (I-58a) and (I-58b). The discrete mode

expansion coefficient is approximated as

(0) gl 7()v' (p)dp
o T X(ny) - ¢ [F 2(wk(n,u)dn ()
T o Ni-H

With this result substituted into Eq. (I-58b), we obtain

of () = olwurn) - A&”{“(““lm” - co(y) [-u—ullk : “J} (15)

Mi-p Ni-M

The superscript on A, and Oo(p) denotes the iteration index. This value for
ao(p) when substituted in Eq. (I-58a) and the double integration performed
provides an improved value for A; which we denote by A$l>. Then a new value

of agg)(p) is computed from Eq. (I-58b),

aég)(u) = oWy (u) - Ail){jll(u)nlx(ﬂl) - co(p) L?lkgnlgH%J}

Ni-H Ni-p

+ co(p) fl Wlél)(ﬂ)kﬁﬂyu)dﬂ ) (16)

o -k

Continuing in this manner, the nth iterative solution is obtained as

Oéén)(u) = o(pv'(p) - Aﬁn-l>{f1(u>ux<m> ) [D_TLM 1 H]}

Ni-M Ni-M
(n-1)

+ co(p) gl 2 (Egi(ﬂ;u)dﬂ ) (17)

We assume that for physically interesting problems (e.g., Milne and constant
source), this procedure convenges in the sense that given an € > O we can

find an integer M such that for all m > M and pe[0,1],

12



loB(p) - Oézm'l)(ujl <e

Convergence was achieved in seven iterations for € = lO_7 in the problems
studied in this paper. With A, and 0o(u) known, a1(p) is computed from Eq.
(I-58c) thus determining all expansion coefficients.

The expansion coefficients are now substituted into the appropriate
equations of I to determine the angular fluxes, total fluxes, and currents

for each group.

IV. SPHERICAL HARMONIC SOLUTIONS

The spherical harmonic solutions to Eq. (1) of I in the P;, Ps, and so-
called double P;(DP;) approximation are straightforward extensions of the
methods developed in the one-group case. As usual in the P; and Ps approxi-
mation the rigorous boundary condition at the vacuum-medium interface is ap-
proximated by the Marshak boundary condition while in the DP; approximation
the exact boundary condition is used. In each approximation method a secular
determinant is derived from which the eigenvalues (roots) are obtained. The
extrapolation distances for these approximations is defined in a manner con-
sistent with the exact methods of I. Complete details of the spherical harmonic

solutions are given in Ref. 6.

V, NUMERICAL RESULTS

For illustrative purposes, we have selected for detailed study four prob-
lems in light water media. The first problem which is denoted by Set I is
ordinary light water. Set II, III, aﬁd IV consist of borated light water at

concentrations of 1.025, 2.99, and 6.35 barns/hydrogen atom, respectively.

15



The ranges of the energy groups are

Group 1: O < E<.025% eV
and

Group 2: .0253 < E < .532 eV.

The thermal spectra and cross-section averaging routine were performed by
. 7 8
using the INCITE code. The McMurry-Russell kernel was used at room temper-

ature (293°K). We list in Table I the results of these cross-section calcu-

lations. Recall that the cross sections must be modified to
o = o01/o2 and Ciy = oij/202 .

From the dispersion equation [Egq. (I-10)], and the secular determinants
of the approximation methods, the respective eigenvalues are computed. These
eigenvalues are given in Table II. The discrete eigenvalues provide the
asymptotic solution in each case. We note that in the low absorption cases
(Set I and II) the P; discrete eigenvalues are closer to the exact values than
the Ps or PD;. As the absorption is increased (Set III and IV) the Ps and DP;
approximation provide the more nearly correct discrete eigenvalues. We ob-
serve that the DP; discrete eigenvalues are in every case nearly identical to
the Pz values. The P; approximation in two-group theory yields an eigenvalue
in the continuum while in the one-group case only the discrete eigenvalue
(asymptotic solution) is calculated.

The expansion ccefficients for the exact calculation were calculated for

each problem set by the iteration procedure described in Section IIT. The

1k



shapes of these expansion coefficients for Set I and IV are shown in Fig. 1
and Fig. 2. The expansion coefficients a;(u) and 0s(p) are quite smooth and
well-behaved except for 0z(n) in the range l/c <p<1l. We observe in every
case a resonance-like behavior with the "resonance" becoming higher, more

peaked and shifting nearer to 1/oc as absorption is increased. These are the

quasi-discrete modes discussed in Section I.

The calculated extrapolation distances are shown in Table III. The P,
results in Table III are consistently too low while the P3 results are too
high and with increased absorption the P; and Ps extrapolation distance be-
come progressively less accurate. The DP; values are about 3% higher than
the P3. For the problems studied in this work, the extrapolation distances

are the same for each group.

The angular distribution for Group 1, Set I, and constant isotropic source
is shown in Fig. 3. The P; results appear to give a better fit to the exact
results than the P3 except for the inward contribution. Both the positive and
negative inward angular distributions are larger for the P; case than for the
Ps. Of course, the exact and DP: results give no inward contribution. Also,
we note that the DP; results for the exit distribution are very close to the

exact calculation. Similar results were obtained for Group 2.

The modification in the exact angular distribution for Group 2, Set I
with distance in mean free path (m.f.p.) is shown in Fig. L. We note how the
distributions become progressively more nearly isotropic and increase in mag-

nitude with distance into the medium.

The effect of increased absorption on the exit angular distribution for
Group 2 is shown in Fig. 5. As a measure of the peaking in the exit distri-

bution we compute the ratio of the angular flux at p = -1 to that at p = O.
15



This ratio is 2.48 for Set I (pure water) while for Set IV (most poisoned case)
it is 2.10. Thus in the constant source problems with increased absorption
the peaking becomes less pronounced in the forward (exist) direction. The
opposite effect was observed in the Milne problems. Specifically, the ratiocs
for the comparable Milne problems were 2.91 and 3.77 for Set I and Set IV,
respectively. These results for the Milne problems are in agreement with
one-group theory.

In reactor physics design the total fluxes and currents are of most inter-
est and utility. In Fig. 6 we show the total flux for Group 2, Set IV. On
the scale of that figure it is impossible to distinguish the DP; results from
the exact. The horizontal line gives the asymptotic flux (flux as z - =) for
the constant source problem.

In Table IV and V are shown the total fluxes for Group 1, Set I and Group

1l, Set IV, respectively. The error is computed by

[oo(approx) -p,(exact)] x 100

errcr =
o (exact)

The P5 total fluxes are within 1 or 2% of the exact values except at the
interface. We note that both the P; and Ps give a negative error except at
the interface where the error is several percent positive. The DP; calcula-
tion yields a significant improvement over the Ps especially at the interface.

Finally in Fig. 7 the constant source current for Group 2, Set IV is
shown. Only the P; results departed from the exact results sufficient to shcw
on the figure. Nevertheless, the DP; results were nearer the exact results

in every case.

16



VI. CONCLUSIONS

In the general two-group neutron transport problem an exact analytical
sclution has not been found. Nevertheless, by the Case approachlL we have
succeeded in deriving a pair of coupled equations which are conveniently
solved by numerical methods. One of these equations is a singular integral
equation. It may be generally true that singular integral equations are
easier to solve than Fredholm equations. At least this work demonstrates
that by appropriate numerical analysis and computer programming any real dif-
ficulties can be surmounted.

In connection with this work several computer codes were developed in
the Michigan Algorithm Decoder Language (MAD) from which any one can (with
different cross section sets) test the accuracy of various approximaticn
methods. A complete listing of these codes is given in Ref. 6.

The numerical calculation show that although the P; approximation yields
fairly good results for the total flux and current the angular distributicn
is not so well represented especially at the interface and in the inward di-
rection. The P53 approximation improves on the P; in that the inward angular
distribution is nearer the exact. The DP; improves on both the P; and Ps
approximation in angular fluxes, total fluxes and currents. Of course, in
the DP; approximation we can specify the exact boundary condition. There-
fore, we would expect the exit angular distribution to be well represented.

An interesting observation from this study is that in the constant source
case the exit angular distribution becomes less pronounced with increased ab-

sorption in the medium. We can contrast this with the Milne problem where

17



the opposite effect is noted. We leave it to the reader to devise a physical
explanation for these two effects.

We recall that the Ps and DP; approximations present the same computa-
tional difficulty. From this study we conclude that in two-group reactor
design analysis (with reactor parameters similar to those used here) the DP;
approximation gives significantly better results than the Ps. A similar con-
clusion is stated by Welnberg and Wigner9 in the one-group case but never
(to our knowledge) has it been tested against exact calculations in two-group
problems.

The most interesting results, however, appear to be the quasi-discrete

modes, shown in Figs. 1 and 2, and discussed in more detail in Section I.
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TABLE I

TWO-GROUP MACROSCOPIC CROSS SECTIONS

Set No. 01 02 O1g O2g, 011 Oo2 O12 O21

I L.8822 3.234%  ,03166  .01498 3.8180 2.8669  .3524  1.03%26
II L.9270 3.1686 .09725  .OLh2k  3,7953 2.8005  .3239  1.0%3L5
I1I 5.0914  3.0707 .28011 .11738 3.7659 2.6828 .2705 1.04s54
IV 5.3220 2.9738  .583%%36  .22326 3.6906 2.534L1  .2164 1.0481
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TABLE IIT

EXTRAPOLATION DISTANCES FOR MILNE PROBLEMS

Set No. Exact Py P3 DP;
I .6658 L6217 .6736 .694L
II .6783 .6286 L7111 .7320
IIT L7121 .6LT76 L7976 L8177
IV L7613 6735 .9279 9432
TABLE IV

TOTAL FLUXES FOR GROUP 1, SET I, CONSTANT SOURCE

Distance

(m.5.p.) Exact PM Error P Error DP; Error
0 1.4106 1.5966  +13.1 1.4631  +3.7 1.3975 -.9

.5 3. hhok 3.3089 - 3.9 3.3768 -1.9 3.43649 -.2

1.0 5.0450 L.86Lk9 - 3.6 4.9675 -1.5 5.0164 -.6
1.5 6.4926 6.2946 - 3.0 6.4008  -1.k4 6. 44L9 -.7
2.0 7.8245 7.6194 - 2.6 7.72079 -1.3 7.7613 -.8
3.0 10.2009  9.9946 - 2.0 10.0829 -1.2  10.1198 -.8
5.0 14,0417  13.8530 - 1.3 1%.915% - .8  13.9L27 -.8
10.0 20.0287 19.8987 - .6 19.9292 - .5 19.9362 -.5

22



TABLE V

TOTAL FLUXES FOR GROUP. 1, SET IV, CONSTANT SOURCE

?if;?;f? Exact P, Error Ps Error DP; Error
0 3.268% 3.6563%  +11.8 3.4227 44,6 3.2625 -.2

5 8.3076 7.9138 - L.7  8.2312 - .9 8.3723 +.8

1.0 11.5025 11.1189 - 3.3 11.458% - .4 11.53%92 +.3
1.5 13.8524 13.5497 - 2.2 13%3.8200 - .2 1%.8656 +.1
2.0 15.6174 15.3999 - 1.k  15.5924 - .2 15.617h -0
3.0 17.9790 17.8879 - .5 17.9%85 - .1 17.9702 0
5.0 20.1820 20.1908 + 0 20.1717 - .1 20.1776 0
10.0 21.2945 21.3033 + 0 21.2945 + O  21.2959 0

23



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

FIGURE CAPTIONS

Expansicn coefficients for Milne problem, Set I.

Expansion coefficients for Milne problem, Set IV.

Constant source angular distribution for Group 1, V¥1(0,0).

Medifications in exact angular distribution with distance into the

medium, Set I, Group 2.

Absorption effect on exact angular distribution for constant source

problem, Set I and IV, Group 2.

Total flux for the constant source vs. distance into the medium,

Set IV, Group 2.

Constant source current vs. distance for Group 2, Set IV.
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