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Summary. We propose a population pharmacokinetic (PK) model with time-dependent covariates mea-
sured with errors. This model is used to model S-oxybutynin’s kinetics following an oral administration of
Ditropan, and allows the distribution rate to depend on time-dependent covariates blood pressure and heart
rate, which are measured with errors. We propose two two-step estimation methods: the second-order two-
step method with numerical solutions of differential equations (2orderND), and the second-order two-step
method with closed form approximate solutions of differential equations (2orderAD). The proposed methods
are computationally easy and require fitting a linear mixed model at the first step and a nonlinear mixed
model at the second step. We apply the proposed methods to the analysis of the Ditropan data, and evalu-
ate their performance using a simulation study. Our results show that the 2orderND method performs well,
while the 2orderAD method can yield PK parameter estimators that are subject to considerable biases.

Key words: Differential equations; Laplace approximation; Measurement error; Nonlinear mixed models;
Pharmacokinetics; Two-compartment model.

1. Introduction
1.1 The Ditropan Study
S-oxybutynin, a major active component of Ditropan (ALZA
Corp.), is commonly prescribed as an antispasmodic for pa-
tients with uninhibited neurogenic or reflex neurogenic blad-
der. It is used to relieve symptoms associated with voiding,
such as urge incontinence, urgency, and frequency of urina-
tion arising from overactivity of the detrusor muscle (AHFS
Drug Information, 2000).

In a Ditropan drug study sponsored by ALZA Corp.,
the controlled released drug formulation (once a day) was
compared to the regular formulation (three doses a day)
to establish the bioequivalence. In this article, we focus on
the pharmacokinetics of S-oxybutynin based on the three-
dose data. This study involved 40 healthy subjects, and the
three doses were given 8 hours apart. Each subject had
25 plasma measures over 48 hours. Figure 1d shows individual
S-oxybutynin plasma concentration time profiles. In addition
to the plasma concentration of S-oxybutynin, diastolic blood
pressure (DBP), systolic blood pressure (SBP), and heart
rate (HR) were measured nine times repeatedly during the
48-hour window for each subject, and the times these covari-
ates were measured were different from those of the plasma
measures. The time profiles of DBP, SBP, and HR are given
in Figure 1a–1c. An objective of this study was to develop
a pharmacokinetic (PK) model for the S-oxybutynin plasma
concentration by modeling the PK parameters as functions

of the time-varying covariates blood pressure and heart rate,
which were measured with error. We present in Section 1.2
some preliminary-analysis results and provide biological mo-
tivations for such a model.

1.2 Preliminary Analysis of the Ditropan Data
and Motivation for the Proposed Research

Following an oral administration of S-oxybutynin, absorption
from the gut is rapid, and it is metabolized extensively by cy-
tochrome P450 3A4 in the liver and the gut wall. Douchamps
et al. (1988) conducted a one-oral-dose study and found that
S-oxybutynin followed a two-compartment model with lin-
ear pharmacokinetics. Li et al. (2002) analyzed the three-
dose Ditropan data, and found that both the dose-dependent
maximum concentration (Cmax) and the dose-dependent
area under the concentration (AUC) of S-oxybutynin were
nondecreasing functions of the three consecutive doses, sug-
gesting that some pharmacokinetic parameters were dose de-
pendent. Therefore, we started our pharmacokinetic analysis
from a three separate two-compartment model correspond-
ing to the three doses. Specifically, we assumed that the PK
parameters were constant during each dosing period and dif-
ferent among the three dosing periods.

Denote by tl the time the dose l is given (l = 1–3). For the
Ditropan study, (t1, t2, t3) = (0, 8, 16). Let {A1,il(t − tl )+,
A2,il(t − tl )+, A3,il(t − tl )+} be the amount of drug in gut,
blood, and tissue at time t for subject i (i = 1, . . . , 40) from
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Figure 1. Raw data (a) diastolic blood pressure (DBP), (b) systolic blood pressure (SBP), (c) heart rate (HR), and
(d) S-oxybutynin plasma concentration. The solid lines in (a), (b), and (c) are the fitted polynomial curves corresponding to
the lowest AICs using the linear mixed model (10).

dose l (l = 1, 2, 3), respectively, where Ak,il(t − tl )+ =
Ak,il(t − tl ) (k = 1–3) if t > tl and 0 if t ≤ tl except A1,il(0) =
1. The two-compartment model for dose l can be written as
the following differential equations:

dA1,il(t− tl)+

dt
= −ka,ilA1,il(t− tl)+

dA2,il(t− tl)+

dt
= ka,ilA1,il(t− tl)+

− (ke,il + k23,il)A2,il(t− tl)+

+ k32,ilA3,il(t− tl)+

dA3,il(t− tl)+

dt
= k23,ilA2,il(t− tl)+ − k32,ilA3,il(t− tl)+, (1)

where ka,il is the absorption rate, ke,il is the elimination rate,
and k23,il and k32,il are the distribution rates for subject i given
dose l. Note that we here assume that the PK parameters
are constant within each dose period and different among the
three doses. One can show that under this assumption, the

above system of differential equations (1) has a closed form
solution. Specifically, we have

A2,il(t− tl)+ =
ka,il(k32,il − ka,il)e−ka,il×(t−tl)+

(λ1,il − ka,il)(λ2,il − ka,il)

+
ka,il(k32,il − λ1,il)e

−λ1,il×(t−tl)+

(λ2,il − λ1,il)(ka,il − λ1,il)

+
ka,il(k23,il − λ2,il)e

−λ2,il×(t−tl)+

(λ1,il − λ2,il)(ka,il − λ2,il)
, (2)

where

λ1,il =
[
ke,il + k23,il + k32,il

+
{
(ke,il + k23,il + k32,il)

2 − 4ke,ilk32,il

}1/2]/
2

λ2,il =
[
(ke,il + k23,il + k32,il

−
{
(ke,il + k23,il + k32,il)

2 − 4ke,ilk32,il

}1/2]/
2.
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The log-transformed plasma drug concentration given the
three consecutive doses is

fi(Vil, ka,il, ke,il, k32,il, k23,il, t)

= log
[{
A2,i1(t− t1)+ +A2,i2(t− t2)+

+A2,i3(t− t3)+

}/
Vil

]
, (3)

where Vil is the volume of the distribution for subject i from
dose l. Let Yij be the plasma drug concentration for subject
i at the jth time point (j = 1, . . . , 25). We assume Yij follows
the nonlinear mixed model

Yij = fi(Vil, ka,il, ke,il, k32,il, k23,il, tij ) + εij , (4)

where εij ∼ N(0, σ2
ε), and

log(Vil) = log(Vl) + b1i,

log(ka,il) = log(ka,l) + b2i, log(ke,il) = log(ke,l) + b3i,

log(k23,il) = log(k23,l) + b4i, log(k32,il) = log(k32,l),

and bi = (b1i, b2i, b3i, b4i)
T ∼ N(0, D), D = diag(σ2

11, . . . ,
σ2

44), bi and εij are independent. In particular, k32,il is assumed
to be only dose dependent, because the algorithm did not con-
verge during our initial subject-specific and dose-dependent
model. The failure to convergence might be due to the fact
that variance of the random effects in k32,il was close to zero. It
was also probably because there was not enough information
for k32,il from some subjects.

We fit the two-compartment nonlinear mixed models (2)–
(4) using the conditional first-order method (Lindstrom and
Bates, 1990). Table 1 gives the parameter estimates and their
standard errors, and the last column gives the p values testing
for the equivalence of the PK parameters among the three
doses. The results show that the absorption rate ka,l and the
distribution rate k23,l are statistically significantly different
among the three doses. The absorption rate decreases with
the dose level. This might be explained by the saturability of
transporting passages across gastrointestinal membranes. The
distribution rate appears to have a bell shape, with the lowest
rate given by the second dose. It is of scientific interest to
investigate the factors that drive the bell-shaped relationship
between the distribution rate and the dose.

The distribution rate is usually either blood flow sensitive
or binding sensitive. It is known in vitro that oxybutynin

Table 1
Parameter estimates under the dose-specific two-compartment models (2)–(4) for the Ditropan study

Fixed effects Dose 1 Dose 2 Dose 3 p value

V 0.163 (0.021) 0.175 (0.020) 0.195 (0.013) 0.687
ka 6.394 (0.882) 3.553 (0.391) 2.574 (0.207) 0.001
ke 0.652 (0.027) 0.605 (0.026) 0.632 (0.022) 0.330
k23 0.312 (0.060) 0.209 (0.051) 0.324 (0.015) 0.041
k32 0.122 (0.104) 0.078 (0.082) 0.091 (0.025) 0.914

Variance components
σ2
ε 0.135 (0.011)
σ11 0.247 (0.039)
σ22 0.162 (0.046)
σ33 0.121 (0.094)
σ44 0.204 (0.095)

demonstrates high binding specificity for M3/m3 receptors.
If oxybutynin were binding sensitive due to saturation with
repeated doses, one would expect the distribution rate de-
creases monotonically with the doses instead of a bell shape.
In view of our results in Table 1, we have no evidence that oxy-
butynin is binding sensitive. We hence focus on investigating
the factors that might drive the distribution rate to be blood
flow sensitive. It is known that blood pressure is a driving
force for blood to flow through the arterial system (Eugene,
2001). If the distribution rate is flow sensitive, it could be
correlated with blood pressure. In addition, since blood pres-
sure usually has a circadian pattern, it might explain the ob-
served bell-shaped relationship between the distribution rate
and the dose. Therefore, we are interested in extending mod-
els (2)–(4) to allow for the distribution rate to be a function
of blood pressure and heart rate. In the Ditropan study, this
investigation is further challenged by the fact that blood pres-
sure is measured with considerable error and its measurement
times are different from those of plasma-concentration mea-
sures. We hence need to take these features into account in
our statistical model.

1.3 The Statistical Background
Nonlinear mixed models have been widely used in modeling
pharmacokinetic data (Lindstrom and Bates, 1990; Davidian
and Giltinan, 1995), where the PK parameters are modeled
as parametric functions of time-independent covariates. Li
et al. (2002) extended such models to allow for some time-
dependent PK parameters to be nonparametric functions of
time using splines. Although there is an extensive literature
on measurement error in nonlinear models (Carroll, Ruppert,
and Stefanski, 1995), the literature on measurement error in
nonlinear mixed effects PK models is rather limited. Higgins,
Davidian, and Giltinan (1997) proposed a simple two-step
regression calibration method. They assumed the PK param-
eters to be time dependent. Under this assumption, the so-
lution of the differential equation does not have an analytic
form. They assumed in their estimation procedure an approx-
imate analytic solution. We will show in our simulation study
that such a closed-form approximation can be subject to con-
siderable bias. Their two-step method also does not consider
the contribution of the variation of the estimator obtained
from the first step to the estimation at the second step. Their
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simulation results show that the model-based standard errors
seriously underestimate the true SEs.

We consider in this article nonlinear mixed effects PK mod-
els where the PK parameters are functions of time-dependent
covariates which are measured with errors. We describe the
model in Section 2, and propose in Section 3 two two-step esti-
mation methods: the second-order two-step method with nu-
merical solutions of differential equations (2orderND), and the
second-order two-step method with closed form approximate
solutions of differential equations (2orderAD). Both methods
yield approximate MLEs where the likelihood function is ap-
proximated using the Solomon–Cox–Laplace approximation.
They are both computationally easy and stable, and require
fitting a linear-mixed model at the first step and a nonlinear-
mixed model at the second step. The proposed methods are
applied to the Ditropan study in Section 4, and their per-
formance is evaluated using a simulation study in Section 5.
Conclusions are given in Section 6.

2. The Population PK Model with Time-Dependent
Covariates Measured with Errors

The preliminary results of the Ditropan data in Table 1 pro-
vide no evidence that Vl , ke,l , and k32,l are dose dependent,
whereas there is a strong statistical evidence that ka,l and
k23,l are dose dependent. Little between-subject variation of
ke was found. We hence assume Vl , ke,l , and k32,l are dose
independent and (ke , k32) are fixed effects in our subsequent
measurement error PK model. Denote these PK parameters
by βi(t) = {Vi , ka,i(t), ke , k23,i(t), k32}T . We consider a two-
compartment model similar to (1) except that the PK param-
eters (Vi,l , ke,il , k32,il , ka,il , k23,il ) are replaced by {Vi , ke , k32,
ka,i (t), k23,i (t)}, where ka,i (t) and k23,i (t) are time dependent,

dA1,il(t− tl)+

dt
= −ka,i(t)A1,il(t− tl)+

dA2,il(t− tl)+

dt
= ka,i(t)A1,il(t− tl)+

−{ke + k23,i(t)}A2,il(t− tl)+

+ k32A3,il(t− tl)+

dA3,il(t− tl)+

dt
= k23,i(t)A2,il(t− tl)+ − k32A3,il(t− tl)+. (5)

It follows that the differential equations (5) do not have an
analytic closed-form solution. We solve it numerically using an
IMSL Fortran77 function (DIVPRK), which uses the Runge–
Kutta–Verner fifth-order method (IMSL USER’s MANUAL
STAT/LIBRARY Version 1.0, 1987).

We describe below a three-stage nonlinear mixed model
to account for measurement errors in covariates for the two-
compartment model. Suppose the data are composed of m
subjects. The jth observation (j = 1, . . . , Ji ) of the ith sub-
ject (i = 1, . . . ,m) is measured at time tij and consists of
an outcome variable Yij , accurately measured time-varying
covariates Xij = X(tij ), and an unobserved time-varying co-
variate Uij = Ui (tij ), e.g., Uij is the true diastolic blood pres-
sure measured at time tij for subject i. Suppose that W is an
observed error-prone measure of U and is measured at time
points t∗ik (k = 1, . . . ,Ki ), where t∗ik might differ from tij and
Ji might differ from Ki . For example, Wik = Wi (t

∗
ik ) is the

observed diastolic blood pressure measured at time t∗ik . In the
Ditropan data, the times diastolic blood pressure was taken
(t∗ik ) differed from the times plasma concentration was mea-
sured (tij ), and Ji = 25 and Ki = 9.

The first-stage model describes the observational level
pharmacokinetics. Specifically, we rewrite the nonlinear mixed
model (4) for the plasma concentration Yij (i = 1, . . . ,m, j =
1, . . . , Ji ) as

Yij = fi(βij , tij ) + εij , (6)

where fi (βij , tij ) = log [{A2,i1(βij , tij − t1)+ + A2,i2(βij ,
tij − t2)+ + A2,i3(βij , tij − t3)+}/Vi ], A2,il(·) solves (5), βij =
βi(tij ), the εij are independent and follow N(0, σ2

ε), and are
independent of βij .

The second stage model describes the association between
time-dependent PK parameter vector βij and the accurately
measured covariates Xij and the unobserved covariate Uij ,
e.g., Uij is the true DBP at tij , as follows:

βij = d(Xij , Uij ,α,bi), (7)

where βij = {Vi , ka,i(tij ), ke , k23,i(tij ), k32}T , Vi = exp(α1 +
b1i), ka,i(tij ) = exp{I(tij ≤ 8)α2 + I(8 < tij ≤ 16)α3 + I(16 ≤
tij )α4 + b2i}, I(·) is an indicator function, ke = exp(α5),
k23,i(tij ) = {α6 + α7Uij } exp(b3i), k32 = exp(α8), d is a five-
dimensional function, bi = (b1i, b2i, b3i)

T ∼ N(0, D), and
D = diag(σ2

11, σ
2
22, σ

2
33). In particular, a linear relationship be-

tween log-transformed k32 and Uij was initially investigated;
however, the association (result not reported) was not as sig-
nificant as that in raw scale.

The unobserved covariate Uij can be regarded as a realiza-
tion of the underlying true continuous process Ui (t) at time
tij , i.e., Uij = Ui (tij ). Suppose Ui (t) is measured with error by
the error-prone process Wi (t), and Wik is the value of Wi (t)
at time t∗ik (k = 1, . . . ,Ki ). The third stage relates the error-
prone covariate Wik = Wi (t

∗
ik ) to the true unobserved values

Ui (t
∗
ik ) using an additive measurement error model (Carroll,

Ruppert, and Stefanski, 1995)

Wik = Ui

(
t∗ik

)
+ eik , (8)

where eik ∼ N(0, σ2
e) is an independent measurement error

and is independent of εij and bi. Following Higgins, Davidian,
and Giltinan (1997), we assume a polynomial model for the
underlying process Ui (t

∗
ik )

Ui

(
t∗ik

)
= T∗

ik
Tγ + BT

ikai, (9)

where T∗
ik = (1, . . . , {t∗ik}r)T , γ is a (r + 1) × 1 vector, Bik =

(1, . . . , {t∗ik}h)T , ai is an (h + 1) × 1 vector of random effects
following N(0, Ω), and Ω is diagonal.

It follows from (8) and (9) that

Wik = T∗
ik
Tγ + BT

ikai + eik . (10)

Denote by Y i = (Yi1, . . . , YiJi
)T ,Y = (Y T

i , . . . ,Y
T
m)T , and

f , t, ε, β, X, t, U , t∗, and e similarly. Let B = diag(Bi).
Equations (6)–(10) can be rewritten in a matrix form

Y = f(β, t) + ε, (11)

β = d{X,U(t),α,b} = d(X,γ,a,α,b), (12)
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W = U(t∗) + e, (13)

U(t∗) = Tγ + Ba, (14)

where b∼N{0, diag(D)}, a∼N{0, diag(Ω)}, ε∼N(0, σ2
εI),

and e ∼ N(0, σ2
eI), and b, a, ε, and e are independent.

Denote by ζ = (α, D, σ2
ε). The integrated likelihood func-

tion of the observed data Y | (W , X) is

L
(
Y |W,X; ζ,γ,Ω, σ2

e

)
=

∫
L1(Y |b,a;γ, ζ)L2(b;D)L3

(
a |W;γ,Ω, σ2

e

)
db da, (15)

where L1(Y |b, a; γ, ζ) is the conditional likelihood of Y
under the first-stage model (11), L2 (b; D) is the likelihood
of b under the second-stage model (12), and L3 (a |W; γ, Ω,
σ2
e) is the likelihood of a under the third-stage models (13)

and (14). Since the function f(·) is nonlinear, the likelihood
(15) does not have a closed form and its evaluation involves
a high dimensional integral.

3. The Two Estimation Procedures
3.1 The Solomon–Cox–Laplace Approximation

of the Likelihood
In view of the high dimensional integral involved in the like-
lihood (15), we consider a two-step estimation procedure by
approximating the likelihood (15) using the Solomon–Cox–
Laplace approximation. Since the W data contain the major-
ity of the information about (γ, Ω, σ2

e), at the first step, we use
the W data to estimate (γ, Ω, σ2

e) by fitting the linear-mixed
model (10) and obtain the BLUP estimator of ξ = (γT , aT )
denoted by ξ̃ and its covariance Ṽ ξ. It can be easily shown

that the resulting estimators (γ̂, Ω̂, σ̂e2) are consistent. At the
second step, we treat ξ̃ and Ṽ ξ to be known and to maximize
the Solomon–Cox–Laplace approximation of the integrated
likelihood (15) as a function of ζ to obtain an approximate
MLE of ζ.

Specifically, denote by U = U(t) = Tγ + Ba = Sξ, where
S = (T , B) and ξ = (γT , aT )T . Given (γ̂, Ω̂, σ̂e2), the dis-
tribution of (U |W ) can be estimated using the distribution
of (ξ |W ), i.e., the distribution of the BLUP estimator of

ξ. Denote by H = SST + diag(0, σ̂2
eΩ̂

−1
). Then ξ |W follows

N(ξ̃, Ṽ ξ), where

ξ̃ = H−1SW , Ṽ ξ = σ̂2
eH

−1. (16)

It follows that the distribution of U |W can be estimated
as N(Ũ , Ṽu), where Ũ = Sξ̃ and Ṽu = SṼ ξS

T . Note that

in fact Ũ = E(U |W ) evaluated at (γ̂, Ω̂, σ̂2
e), and Ũ corre-

sponds to the regression calibration estimator of U.
To estimate ζ, we approximate the doubly integrated like-

lihood (15) using the Solomon–Cox and Laplace approxima-
tions at the second stage. Specifically, some calculations show
that the likelihood (15) can be rewritten by integrating out
U and b as

L
(
Y |W,X; ζ,γ,Ω, σ2

e

)
=

∫
L1(Y |b,U; ζ)L2(b;D)L3

(
U |W;γ,Ω, σ2

e

)
dU db, (17)

where L3(U |W ) is the likelihood of U |W and can be es-
timated as U |W ∼ N(Ũ , Ṽu), and Ṽu is the conventional
variance of the BLUP of U. To approximate the double inte-
grals in (17), we first approximate the integral that involves
U using the Solomon–Cox approximation (Solomon and Cox,
1992) by treating the integrand as a function of U and taking
a quadratic expansion of the integrand about Ũ , the mean of
U. We next approximate the integral that involves b using the
Laplace approximation by treating the integrand as a function
of b and taking a quadratic expansion of the integrand about
its mode b̃. The resulting Solomon–Cox–Laplace approxima-
tion can be regarded as the second-order approximation of
the integrated likelihood (15).

Specifically, following Wolfinger and Lin (1997, Section 3),
one can show that the Solomon–Cox approximation for the
integral involving U corresponds to the loglikelihood of Y as
a function of ζ under the nonlinear mixed model

Y = f(β, t) + e∗, (18)

where β = d(X, Ũ ,α, b) = d(X, ξ̃,α, b), b ∼ N(0,D),e∗ ∼
N(0,R∗),R∗ = σ2

εI + FuṼuF
T
u = σ2

εI + F ξV
−1
ξ F T

ξ , and
F u = ∂f/∂UT and F ξ = ∂f/∂ξT . Note that here we assume
(Ũ , Ṽu), equivalently (ξ̃, Ṽ ξ), which are obtained from the
first step, are fixed and known parameters.

Following Lindstrom and Bates (1990) and Wolfinger and
Lin (1997, Section 4), we can show that a further application
of the Laplace approximation for the integral involving b in
(17) gives, apart from a constant,

"SCL(Y |W ; ζ) = − 1
2 ln | Ṽ | − 1

2{Y − f(β̃, t) − Z̃b̃}Ṽ −1

×{Y − f(β̃, t) − Z̃b̃}, (19)

where β̃=d(X, Ũ ,α, b̃), Ṽ = Z̃DZ̃
T

+ R∗, Z̃ = ∂f/∂bT |b=b̃

and b̃ solves

1

σ2
ε

Z̃
T {Y − f(β̃, t)} −D−1b̃ = 0.

We term (19) the Solomon–Cox–Laplace approximation of the
likelihood (15). The resulting approximate maximum likeli-
hood estimator of ζ that maximizes (19) correponds to fit-
ting the nonlinear mixed model (18) using the Lindstrom and
Bates (1990) algorithm.

3.2 The Two-Stage Estimation Methods
The above discussions suggest that our two-step estimation
procedure is hence simple. At the first step, one fits the
linear-mixed model (10) using the W data to obtain the MLE

(γ̂, Ω̂, σ̂2
e) and the BLUP estimator ξ̃ and its covariance Ṽ ξ.

At the second step, one treats ξ̃ and Ṽ ξ as known, and fits
the nonlinear-mixed model (18) with b as the random effects
using the Lindstrom and Bates algorithm.

Following Lindstrom and Bates (1990) and Wolfinger and
Lin (1997), one can show that fitting the nonlinear-mixed
model at the second stage can proceed by iteratively fitting
the linear-mixed model

Y ∗ = X∗α + Z∗b + e∗, (20)
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where denoting by α∗ and b∗ the estimates at the previous
iteration, Y∗ is a working vector,

Y ∗ = Y − f ∗ + X∗α + Z∗b∗, e∗ ∼ N
(
0,R∗ = F ξṼ ξF ξ

T
)

f ∗ = fα∗,b∗,ξ̃, X∗ = ∂f
/
∂αT |α∗,b∗,ξ̃

Z∗ = ∂f
/
∂bT |α∗,b∗,ξ̃, F ξ = ∂f

/
∂ξT |α∗,b∗,ξ̃.

The variance components D and σ2
ε are estimated iteratively

using REML under (20).
Note that the regression calibration method (Higgins,

Davidian, and Giltinan, 1997) ignores the variability of U |W
by simply plugging Ũ into β(·) and setting U = Ũ . Our pro-
cedure accounts for the variability in the regression calibration
estimator Ũ .

The nonlinear mixed model (18) and the linear-mixed
model (20) involve evaluating the nonlinear function f(·). We
propose two two-step estimation procedures in the next two
sections. Both procedures are the same at the first step. They
differ by the second step. The first procedure evaluates f(·) by
numerically solving the differential equation (5) at the second
step, while the second one approximates the solution of (5)
analytically.

3.3 The Second-Order Two-Step Method with Numerical
Solution of Differential Equations

Our first two-step estimation procedure fits the linear mixed
model (10) using the W data at the first step and fits the
nonlinear mixed model (18) or iteratively fits the linear mixed
model (20), where f(·) is evaluated by numerically solving the
differential equation (5). We call this method the second-order
two-step method with numerical solution of differential equa-
tions (2orderND).

Examination of equation (20) suggests that we need to cal-
culate both f{β(t), t} and its first derivative ∂f{β(t), t}/∂β.
For the two-compartment model, equation (5) indicates that
we need to calculate Ail(t − tl )+ and Aβ,il(t − tl )+ =
∂Ail(t − tl )+/∂β, where Ail(t − tl )+ = {A1,il(t − tl )+,
A2,il(t − tl )+, A3,il(t − tl )+}T . Write (5) as Ail(t − tl )+/dt =
Gi{β(t)}Ail(t − tl )+ and take a derivative with respect to β
on both sides, and we have

dAβ,il(t− tl)+

dt
= Gβ,i{β(t)}Ail(t− tl)+

+Gi{β(t)}Aβ,il(t− tl)+, (21)

where G(·)β,i = ∂Gi(·)/∂β. Hence both Ail(·) and Aβ,il(·)
can be obtained by solving the differential equations (1) and
(21). Note that the initial value Aβl, (0) is always 0, because
changing the PK parameters β will not affect the initial value
Ail(0). More details of the numerical solution of the differen-
tial equations can be found in Li et al. (2002).

Wu (2002) applied an EM algorithm to maximize a
marginal likelihood function similar to (17). He treated both
the random effects b and the unobserved variable U as miss-
ing data. At the E-step, b and U were estimated using the
observed data (Y, W ) by assuming the conditional distribu-
tion of (b, U |Y , W ) to be normal. At the M-step, given the
estimated b and U, he maximized the joint likelihood function
of (Y, W, b, U) over all the other parameters.

Our two-step method assumes that almost all of the infor-
mation about U is contained in W. Hence, U is estimated
from W exclusively at step one. At step two, the parame-
ters of the PK model and the random effects b are estimated
jointly from the Solomon–Cox–Laplace approximation (19) of
the likelihood function of Y. Since he assumed normality for
the conditional distribution of (b, U |Y , W ), his EM algo-
rithm can be viewed as a second-order approximation of the
marginal likelihood function (15), similar to ours. However,
unlike his method, we estimate U only once, and therefore
the computational burden required by numerically solving the
differential equations is considerably reduced.

3.4 Second-Order Two-Step Method with Approximately
Closed Form Solutions of Differential Equations

Unless the PK parameters are time independent, there is
no closed form solution for the differential equations (5) in
general. However, if the PK parameters change only slightly
over time, the closed form solution based on the constant PK
parameter assumption would provide a good approximation
to the exact solution. In this section, we make such an as-
sumption and solve the differential equations analytically in
a closed form. The resulting estimation procedure is hence
computationally much faster. Specifically, under this assump-
tion, the solution of (5) is

A2,il(t− tl)+ =
ka,i(t){k32 − ka,i(t)}e−ka,i(t)×(t−tl)+

{λ1,i(t) − ka,i(t)}{λ2,i(t) − ka,i(t)}

+
ka,i(t){k32 − λ1,i(t)}e−λ1,i(t)×(t−tl)+

{λ2,i(t) − λ1,i(t)}{ka,i(t) − λ1,i(t)}

+
ka,i(t){k32 − λ2,i(t)}e−λ2,i(t)×(t−tl)+

{λ1,i(t) − λ2,i(t)}{ka,i(t) − λ2,i(t)}
, (22)

where

λ1,i(t) =
[
ke + k23,i(t) + k32

+
{
(ke + k23,i(t) + k32)

2 − 4kek32

}1/2]/
2,

λ2,i(t) =
[
ke + k23,i(t) + k32

−
{
(ke + k23,i(t) + k32)

2 − 4kek32

}1/2]/
2.

We call this method the second-order two-step method with
approximately closed form solutions of differential equations
(2orderAD). It is the same as the 2orderND method described
in Section 3 except that a closed form expression f(·) is used
in the estimation at the second step when fitting (18).

4. Data Analysis
We applied the proposed measurement error PK model (6)–
(9) to the analysis of the Ditropan data introduced in Section
1 to study the effect of DBP on the distribution rate k23(t).
We also considered the effects of SBP and HR on k23(t). Since
DBP, SBP, and HR are highly correlated, we analyzed each
of them separately by assuming W to be either of these three
variables.

At step one, the linear mixed model (9) with a random
intercept was fitted to DBP, SBP, and HR separately using
the Splus function LME. We modeled the time effects us-
ing quadratic, cubic, and quartic regression, and compared
their fits using the AICs. The quartic model for DBP, and the
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Table 2
AICs and parameter estimates of the polynomial mixed models (9) for DBP, SBP, and HR for the

Ditropan study

Diastolic blood Systolic blood
pressure pressure Heart rate

AIC Linear 1844.2 1874.0 1857.9
Quadratic 1839.5 1871.4 1854.2
Cubic 1827.1 1868.4 1850.4
Quartic 1826.8 1879.9 1855.5

Parameter estimatea Intercept 66.76 107.97 68.79
(t − 13) 0.33 0.11 0.13
(t − 13)2 0.02 0.02 0.01
(t − 13)3 −0.002 −0.0004 −0.0004
(t − 13)4 0.00004
σ2

a 6.43 8.08 6.88
σ2

e 5.90 7.27 7.86

aThe parameter estimates of the model with the smallest AIC.

cubic models for SBP and HR gave the lowest AIC. The AIC
values of all models and the parameter estimates associated
with the model with the smallest AICs for each variable are
given in Table 2. Higher-order random effects models, e.g.,
random slope models, were also tried. They all had higher
AIC values. The solid lines in Figure 1a–1c give the polyno-
mial fits with the lowest AICs for these three time-dependent
covariates. The curves all first decreased, then increased, and
then decreased again. This indicates that BP and HR react
to the three doses.

At step two, the plasma concentration was modeled
using the nonlinear mixed model (18), where fi (·) =
f [{A2,i1(t − t1)+ + A2,i2(t − t2)+ + A2,i3(t − t3)+}/Vi ], A2,il(t)
is given (5), and

k23,i(tij ) = {α6 + α7U(tij )} exp(b3i), (23)

and U(t) is set to be DBP, SBP, or HR. Parameter estimators
were obtained using the 2orderND method and the 2orderAD
method described in Section 3 to account for measurement

Table 3
Parameter estimates under the PK model with the time-dependent covariate measured with error (6)–(9)

for the Ditropan study

2orderND (SE) 2orderND (SE) 2orderND (SE) 2orderAD (SE)
Parameters (DBP) (SBP) (HR) (DBP)

V = eα1 0.171 (0.010) 0.170 (0.010) 0.171 (0.010) 0.187 (0.009)
ka1 = eα2 6.536 (0.839) 6.547 (0.854) 6.541 (0.861) 7.232 (1.112)
ka2 = eα3 3.591 (0.327) 3.668 (0.344) 3.625 (0.342) 4.654 (0.400)
ka3 = eα4 2.612 (0.169) 2.673 (0.173) 2.650 (0.166) 3.276 (0.287)
ke = eα5 0.603 (0.016) 0.611 (0.017) 0.607 (0.016) 0.455 (0.020)
α6 −0.040 (0.088) −0.013 (0.072) −0.025 (0.077) −0.079 (0.111)
α7 0.0042 (0.002) 0.0023 (0.0015) 0.0032 (0.0018) 0.0059 (0.0017)
k32 = eα8 0.091 (0.008) 0.084 (0.008) 0.085 (0.008) 0.075 (0.006)
σ2
ε 0.162 (0.012) 0.164 (0.012) 0.164 (0.012) 0.166 (0.013)
σ11 0.265 (0.037) 0.269 (0.038) 0.266 (0.037) 0.255 (0.044)
σ22 0.167 (0.042) 0.166 (0.042) 0.167 (0.042) 0.170 (0.039)
σ33 0.256 (0.111) 0.273 (0.122) 0.265 (0.118) 0.268 (0.121)

2orderND: second-order two-step method with the numerical solutions of the differential equations.
2orderAD: second-order two-step method with the approximately closed form solution of the differential equations.

error in DBP, SBP, and HR. The results are given in Table 3.
Using the 2orderND method, we found that k23,i (t) was signif-
icantly positively associated with true DBP(t) (α7 = 0.0042,
p value = 0.022), and there was some evidence of a positive
association between k23,i (t) and true SBP(t) (α7 = 0.0023,
p value = 0.125) and true HR(t) (α7 = 0.0032, p value =
0.075). These results partially support our hypothesis that
the distribution process could be blood flow sensitive.

To investigate the effect of not incorporating the time-
varying covariate, e.g., DBP, in the k23,i (t) model, we com-
pared the residuals of the model assuming k23,i (t) was a func-
tion of DBP given in equation (23) with U(t) = true DBP(t),
with the model assuming k23,i (t) was free of DBP as k23,i(tij ) =
α6exp(b3i). These two residual plots are given in Figure 2a and
2b. Figure 2c shows the average differences between these two
sets of residuals, and Figure 2d shows the estimate curve of
k23(t) as a function of t and its 95% confidence interval.

Figure 2c suggests that if the effect of DBP is not modeled,
the residuals are too high during the second dosing period,
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Figure 2. (a) The residual plot when k23,i (t) was modeled as {α6 + α7 × trueDBP(t)}exp(b3i); (b) the residual plot when
k23,i (t) was modeled as {α6}exp(b3i); (c) the average residual differences between (a) and (b); and (d) the estimate of k23,i (t)
as a function of t under (a). Solid line is the fitted curve of k23,i (t); dotted lines are its 95% confidence interval.

and too low during the first and the third dosing periods. In
other words, there was a clear lack of fit if the mean of k23,i (t)
was assumed to be a constant and free of DBP. This lack of
fit was caused by the fact that the second dose had a lower
k23 than the other two doses, and the lower k23 in the second
dosing period might be due to the fact that a higher DBP was
associated with the second dose.

We also analyzed the data using the 2orderAD method,
where model (23) was used in calculating the mean function
f(·) in (3). The results in Table 3 show that the PK param-
eters were overestimated using the 2orderAD method. Our
simulation study confirms this finding. We present 2orderAD
analysis with only DBP in Table 3; the other two time-
dependent covariates have similar results. The biases of the
2orderAD estimates were likely to result from the poor ap-
proximation of the closed form solution of the differential
equations. Both methods, however, provided comparable vari-
ance component estimates.

5. Simulation
We performed a simulation study to evaluate the performance
of the two-step 2orderND and 2orderAD procedures. The de-

sign of the simulation study was identical to that of the orig-
inal Ditropan data. Specifically, we generated the data from
model (6)–(9) with f(·) given in (3), and set the true parame-
ter values equal to the estimates from the analysis of the real
DBP data given in Tables 2 and 3. In each simulated data set,
there were 40 subjects and each subject had 25 observations
over time. In addition, every subject’s DBP was simulated at
nine different fixed sampling time points during 48 hours. We
used 500 Monte Carlo data sets.

We analyzed each simulated data set using the 2orderND
and 2orderAD methods. At step one, the AIC was used to
estimate the degree of the polynomial of DBP(t). Hence both
methods had the same estimate of true DBP(t). At step two,
PK parameters were estimated from the mean function which
was calculated using the differential equations (2orderND) or
the approximate analytic solution of the differential equations
(2orderAD). Table 4 summarizes the average point estimates,
model-based SEs (MOD-SE), empirical SEs (EMP-SE), rela-
tive biases of the parameter estimates, and the ratios of the
model-based SEs and the empirical SEs.

When the 2orderND method was used, 6 out of 500 data
sets did not converge. The results in Table 4 show that the



A Population Pharmacokinetic Model with Time-Dependent Covariates 459

Table 4
Simulation results using the 2orderND method

Parameter True value Estimate MOD-SE EMP-SE RB MOD-SE/EMP-SE

V = eα1 0.17 0.165 0.007 0.008 −0.029 0.875
ka1 = eα2 6.50 5.877 0.649 0.711 −0.096 0.913
ka2 = eα3 3.60 3.356 0.219 0.221 −0.065 0.990
ka3 = eα4 2.50 2.457 0.182 0.212 −0.017 0.858
ke = eα5 0.60 0.612 0.021 0.022 0.020 0.954
α6 −0.04 −0.035 0.081 0.091 −0.125 0.890
α7 0.0042 0.0038 0.0016 0.0018 −0.095 0.888
k32 = eα8 0.09 0.092 0.008 0.009 0.022 0.888
σ2
ε 0.162 0.174 0.014 0.016 0.074 0.875
σ11 0.265 0.247 0.042 0.046 −0.068 0.913
σ22 0.167 0.149 0.049 0.059 −0.108 0.830
σ33 0.256 0.207 0.152 0.178 −0.191 0.853

2orderND: second-order two-step method with the numerical solutions of the differential equations.
MOD-SE: model-based standard error.
EMP-SE: empirical standard error.
RB: relative bias.

Table 5
Simulation results using the 2orderAD method

Parameter True value Estimate MOD-SE EMP-SE RB MOD-SE/EMP-SE

V = eα1 0.17 0.192 0.007 0.008 0.129 0.875
ka1 = eα2 6.50 8.353 1.013 1.210 0.285 0.837
ka2 = eα3 3.60 4.872 0.364 0.429 0.353 0.848
ka3 = eα4 2.50 3.030 0.271 0.308 0.212 0.879
ke = eα5 0.60 0.490 0.018 0.019 0.183 0.947
α6 −0.040 −0.0068 0.092 0.102 −0.830 0.902
α7 0.0042 0.0057 0.0018 0.0020 0.357 0.900
k32 = eα8 0.09 0.076 0.006 0.008 −0.156 0.750
σ2 0.162 0.175 0.015 0.018 0.080 0.833
σ11 0.265 0.242 0.045 0.049 −0.087 0.917
σ22 0.167 0.143 0.054 0.067 −0.144 0.805
σ33 0.256 0.201 0.151 0.181 −0.214 0.834

2orderAD: second-order two-step method with the approximately closed form solution of the differential equations.
MOD-SE: model-based standard error.
EMP-SE: empirical standard error.
RB: relative bias.

2orderND method performs well. The PK parameter esti-
mates had small biases, with the largest 12% bias observed in
the estimate of α7, which describes the association between
true DBP(t) and k23(t). The variance component estimates
also had small biases. The biases of the estimates of σ2

ε and
σ2

11 were smaller than those of σ2
22 and σ2

33. These results are
expected, as εij and b1i are linearly related to yij , whereas b2i

and b3i are nonlinearly related to yij . The model-based SEs
slightly underestimated the true SEs.

The 2orderAD method was slightly less stable than the
2orderND method, and 9 out of 500 of the simulated data
sets did not converge. The results in Table 5 show that the
estimates are considerably biased, especially the estimates of
α6 and α7, whose biases could be as high as 80%. This is ex-
pected, since the 2orderAD method uses an approximate ana-
lytic solution of the differential equations by assuming the PK
parameters change slowly with t. If the PK parameters vary
considerably with the time-varying covariate, the approxima-

tion is likely to be poor. Both methods, however, provided
comparable variance component estimates.

6. Conclusion
We considered in this article a population PK model with
the PK parameters modeled as functions of time-dependent
covariates measured with errors. We proposed two two-step
estimation methods. Both methods are computationally easy
and stable, and only require fitting a linear mixed model at
the first stage followed by fitting a nonlinear mixed model at
the second stage. The 2orderND method accounts for the fact
that the PK parameters depend on a time-varying covariate
and change over time, and solves the differential equations
numerically, while the 2orderAD method assumes the PK pa-
rameters vary slowly with time and approximates the solution
of the differential equations in a closed form. Our simulation
results show that the 2orderND method performs well, and
has small biases in parameter estimators and the model-based
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standards errors are close to the empirical standard errors.
The 2orderAD method is subject to considerable bias. For
simplicity, our presentation focused on the two-compartment
model in this article. The proposed method is applicable to
general nonlinear mixed models commonly used in pharma-
cokinetics.

We showed that the 2orderND method could be derived as
the Solomon–Cox–Laplace approximation of the integrated
likelihood. Our simulation study suggests that such a likeli-
hood approximation works well in practice. In view of the
computational advantage of the proposed method and the
considerable additional computational burden of the maxi-
mum likelihood method, it would be of future research inter-
est to investigate whether the magnitude of improvement of
the maximum likelihood method over the 2orderND method
is practically appreciable and is worth additional computa-
tional burden. Based on our proposed 2orderND method, we
found using the Ditropan data that the true underlying pro-
cesses of diastolic blood pressure, systolic blood pressure, and
heart rate were all positively correlated with k23(t), although
only diastolic blood pressure showed a statistically signifi-
cant association. This finding suggests that drug-distribution
rate might be flow sensitive as discussed at the end of
Section 1.2. To have a better power to verify the associ-
ation between k23(t) and blood pressure and HR, a larger
range of systematically changed blood pressure and HR is
needed. For example, it would be desirable to let subjects ex-
ercise during one dosing period, and rest in another period
in a new study. On the other hand, in order to understand
the association between blood pressure and S-oxybutynin’s
pharmacokinetics among hypertension and hypotension pa-
tients, more studies are necessary. As this study was per-
formed on healthy subjects, it remains for further studies to
verify our findings and determine its clinical significance in
the patient population. If the decreasing ka pattern is verified,
the controlled release formulation may need to be modified to
keep the drug concentration as stable as possible. If the flow-
sensitive hypothesis of k23 is verified, more studies may need
to be done carefully among hypertension and hypotension
patients.
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Résumé

Nous proposons un modèle de pharmococinétique de pop-
ulation (PK) avec des erreurs sur la détermination de co-
variables dépendant du temps. Nous utilisons ce modèle
pour traiter la cinétique de la S-oxybutinine après admin-
istration orale de Ditropan en faisant varier la constante
de distribution en fonction du rythme cardiaque et de la
pression sanguine, quantités connues avec erreurs. Nous pro-
posons deux méthodes du deuxième ordre et en deux étapes:

une méthode avec résolution numérique des équations
différentielles (2orderND) et une méthode avec des formes
fermées de solutions approchées des équations différentielles
(2orderAD). Ces deux méthodes donnent des calculs faciles
et réclament l’ajustement d’un modèle linéaire mixte à la
première étape et d’un modèle non linéaire mixte à la seconde.
Nous appliquons les deux méthodes à l’analyse des données
du Ditropan et leurs performances sont étudiées par simu-
lation. Nos résultats montrent que la méthode 2orderND se
comporte bien alors que la méthode 2orderAD peut donner
des estimations des paramètres de PK sujettes à des biais
considérables.
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