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Summary. Classical diagnostics for structural equation models are based on aggregate forms of the data and are ill suited
for checking distributional or linearity assumptions. We extend recently developed goodness-of-fit tests for correlated data
based on subject-specific residuals to structural equation models with latent variables. The proposed tests lend themselves to
graphical displays and are designed to detect misspecified distributional or linearity assumptions. To complement graphical
displays, test statistics are defined; the null distributions of the test statistics are approximated using computationally efficient
simulation techniques. The properties of the proposed tests are examined via simulation studies. We illustrate the methods
using data from a study of in utero lead exposure.
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1. Introduction
Structural equation models (SEMs) are becoming increas-
ingly popular in health research (e.g., Bandeen-Roche et al.,
1997; Dunson, 2000; Budtz-Joergensen et al., 2002; Liu, Wall,
and Hodges, 2005; Proust et al., 2006). This modeling frame-
work is useful in analyzing data from studies where multi-
variate outcomes or multiple, highly correlated predictors,
for example surrogates of an exposure, have been collected.
Through the use of latent variables, SEMs succinctly describe
associations between multivariate predictors and multivariate
outcomes, and alleviate issues of multiple comparisons and
collinearity (Sánchez et al., 2005).

Classical fitting methods for these models depend on dis-
tributional and linearity assumptions that are important to
check. Distributional assumptions are required for using read-
ily available fitting procedures in the presence of data missing
at random (Little and Rubin, 2002), for example in the Mplus

software (Muthén and Muthén, 1998–2004). Although proce-
dures that relax distributional assumptions have been devel-
oped (e.g., Browne, 1984; Arminger and Schoenberg, 1989),
they work correctly only under data missing completely at
random. Further, distributional assumptions are desirable be-
cause of improved efficiency, especially when small effect sizes
may be expected. Deviations from the assumed distribution
lead to biased standard errors, and may hinder the predic-
tive ability of the model. Deviations from linearity are also
problematic, but are difficult to explore prior to modeling
since the latent variables are unobserved. An incorrect linear-
ity assumption among latent variables leads to, for example,
incorrect estimation of exposure effects (e.g., nonlinear dose-
response). Further, incorrectly assuming linear relationships
between a latent variable and one of its observed indicators is
also problematic because it may preclude the comparison of

latent variable means across groups (Bauer, 2005). Although
procedures that relax linearity assumptions have also been
developed (Wall and Amemiya, 2000; Carroll et al., 2004; Lee
and Song, 2004), their use has remained relatively limited.
Hence, it is of interest to develop tools to check linearity and
distributional assumptions for SEMs with latent variables.

Diagnostics tools for SEMs that are based on individual-
level residuals is an area that has received little attention, al-
though some notable references exist. Lee and Lu (2003) and
Lee and Tang (2004), for example, propose computationally
efficient diagnostics to assess the degree of influence a particu-
lar observation may have on the estimated model parameters,
and model fit. Their methods can be viewed as generaliza-
tions of Cook’s distance to SEMs. Other authors have used
ad hoc diagnostics to check for model fit, such as examining
standardized residuals against quantiles from a standard nor-
mal distribution. However, such diagnostics do not account
for having estimated model parameters with the same data.
Not accounting for parameter estimation may affect the Type
I error rates of goodness-of-fit tests derived from such ad hoc
procedures.

We propose and evaluate a variety of graphical procedures
and associated statistical tests to examine distribution and
linearity assumptions. Their theoretical basis rests on re-
cent developments in diagnostic methodology for linear mixed
models, as follows. Houseman, Ryan, and Coull (2004) and
Houseman, Coull, and Ryan (2006) developed theory and
methods to test the normality assumption of the error term
in a linear model for correlated data, including linear mixed
models. Pan and Lin (2005) provide theoretical results and
methodology to check the deterministic component of linear
mixed models. Both methodologies directly apply to linear
SEMs because SEMs have many overlaps with linear mixed
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models. Specifically, SEMs, like linear mixed models, imply a
structured mean and variance for the marginal moments of the
data. This similarity is sufficient for the methodologies to ap-
ply. We adapt both methods to structural equation modeling.
Key issues in adapting their methods to SEMs are defining
residuals for the various error components of the model, and
adequately weighting observations in the presence of missing
data. We evaluate properties of the diagnostics not previously
examined because of the complexity of SEMs in contrast to
linear mixed models. The proposed methods are graphical in
nature, such that they provide information on the type of
misspecification. We also provide test statistics to assess sig-
nificance of lack of fit.

The motivation for this work comes from a study of fetal
lead exposure (Tellez-Rojo et al., 2004). Some of the study
aims are to quantify the relative contribution of endogenous
(e.g., bone lead concentration) versus exogenous (e.g., use of
lead contaminated ceramics) sources of exposure and to un-
derstand how maternal characteristics impact fetal lead ex-
posure levels. The exposure data collected are high dimen-
sional: various biomarkers and survey data are collected on
the mother pre-pregnancy and three or four times during and
after pregnancy. Table 1 shows a list of observed biomarkers
used in this analysis and their timing. The sample size is 209,
although there is a large number of missing data patterns,
and higher percentages of missing data occur at the earlier
stages of pregnancy when recruitment is more difficult. We
model these data with a structural equation model with la-

Table 1
Data collected

Label Biomarker Time N

X10 Plasma BP 11
X20 Blood ABC Lab BP 29
X30 Blood Smith Lab BP 11
X11 Plasma T1 153
X21 Blood ABC Lab T1 172
X31 Blood Smith Lab T1 155
X12 Plasma T2 169
X22 Blood ABC Lab T2 173
X32 Blood Smith Lab2 T2 198
X13 Plasma T3 157
X23 Blood ABC Lab T3 176
X33 Blood Smith Lab T3 159
X43 Cord Blood Birth 107
X14 NTx T1 95
X24 NTx T2 127
X34 NTx T3 137
X15 Patella lead BP 23
X25 Tibia lead BP 19
X35 Patella lead 1mpp 203
X45 Tibia lead 1mpp 173

Covariates
Z1 Maternal Age R 209
Z2 % of Mother’s Life R 209

in Mexico City
Z3 Frequency of Leaded R 209

Ceramics Use

Notes: BP = Before Pregnancy, 1mpp = 1 month post-partum, Ti =
Trimester i, and R = Recruitment.

tent variables, represented in Figure 1, which reduces the di-
mensionality of the data and succinctly describes associations
between lead concentrations in various media.

In Section 2, we define linear structural equation models
with latent variables. In Section 3, we propose distribution
and linearity diagnostics for SEMs. Section 4 presents re-
sults from simulation studies evaluating the empirical size and
power of the proposed tests. In Section 5, we demonstrate the
utility of these diagnostics by applying them to the study of
in utero lead exposure. In Section 6, we state our conclusions
and suggest directions for future work.

2. Linear Structural Equation Models
For the ith of n independent units, let Xi represent p error-
prone measurements of an �-dimensional latent variable vector
Ui, and let Zi represent q fixed covariates. We specify a two-
stage linear SEM for this data and name the sources of error in
the model. We also write marginal moments for the observed
data, which are later used in defining diagnostics.

The first stage relates dependent variables, Xi, to latent
variables and fixed covariates

Xi = ν + ΛUi + KZi + εi, (1)

where νp×1,Λp×�, and Kp×q are parameter matrices with some
elements often restricted to zero or one to ensure identifiabil-
ity (Sánchez et al., 2005). The vector of conditional errors εi is
multivariate normal with E(εi |Ui, Zi) = 0 and Cov(εi |Ui,
Zi) = Σε. This error term captures the deviation of the de-
pendent variables from their conditional mean, given the la-
tent variables and covariates, for example, measurement error.
Measurement errors within a subject may be correlated (see
Figure 1) thus Σε may not always be diagonal.

The second stage of the model defines linear relationships
between the latent variables

Ui = α + BUi + ΓZi + ζi, (2)

where Γ�×q and B�×� = {βgh} (βgg = 0 for all g) may also
have entries restricted to zero. The vector of latent variable
errors ζi is independent of εi, and is normally distributed,
with E(ζi |Zi) = 0 and Cov(ζi |Zi) = Ψ. In the lead study,
latent circulating lead level is a longitudinal measure, thus
elements of ζi may be correlated, leading to nondiagonal Ψ.

Let θ represent all free parameters that parameterize
ν,Λ,K,Λ,Σε,α,Γ, and Ψ. As they will later be useful in
defining residuals, we state the following marginal moments

µi ≡ µ(θ;Zi) = E (Xi |Zi) = ν + Λ(I − B)−1α

+ [Λ(I − B)−1Γ + K]Zi (3)

Σ ≡ Σ(θ) = Var (Xi |Zi) = Λ(I − B)−1Ψ(I − B)−TΛT + Σε.

(4)

Note that unlike linear mixed models, where it is often as-
sumed that the marginal mean and variance are parameter-
ized by two distinct sets of parameters (Longford, 1993, p. 26),
the marginal mean (3) and variance (4) share parameters (Λ
and B). We use maximum likelihood estimation to obtain
parameter estimates, but refer the reader elsewhere for esti-
mation details (e.g., Bollen, 1989; Sánchez et al., 2005).
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Covariates: Mom’s age, % life in
Mexico city, ceramic use, others
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Figure 1. Model describing association between latent bone lead concentration, latent bone resorption rate, and latent
circulating lead concentrations. Latent variables are indirectly measured by various biomarkers, and are regressed on fixed
covariates. Circulating lead levels depend additionally on bone resorption rate and bone lead concentration. Abbreviations:
See Table 1 legend, and PB = Lead, NTX = Bone resorption biomarker, RBC = Red Blood Cell.

3. Residual-Based Diagnostics
The model specification assumes linearity, and maximum like-
lihood estimation requires distributional assumptions; either
or both assumptions could be violated. The distributions of
either the latent variable errors, or the conditional errors, or
both, can deviate from normality. Given the linearity assump-
tions at both stages of the model, there are at least four pos-
sibilities for misspecification. In (2), one could misspecify (a)
the functional form of a covariate on a latent variable or (b)
the link between a latent variable and its linear predictor; and
in (1), (c) the functional form of a covariate on a surrogate or
(d) the link between a surrogate and its linear predictor. To
propose diagnostics to check these assumptions, we first de-
fine several types of residuals. Residuals similar to ours have
been described previously by Bollen and Arminger (1991).

Standardized marginal residuals for the ith subject are de-
fined as

ri = Σ−1/2(Xi − µi), (5)

where Σ1/2 is the square root of Σ. Because these residuals
have zero mean, variance one, and are uncorrelated, they lend
themselves to regression diagnostics for independent data. Be-
cause the marginal residuals encompass both the conditional
and latent variable error, they will serve to define an omnibus
test of fit.

Next we define the kth conditional and gth latent variable
residuals based on standardized estimates of the respective
components of the conditional and latent variable error vec-
tors. Estimates of the errors εik and ζig are obtained by taking
their conditional expectation, given the observed data. As de-
tailed in Web Appendix A, E(εik |Xi) = πc

kΣεΣ−1(Xi − µi),
where πc

k is a (1 × p) matrix that selects the kth compo-
nent of E(εi |Xi), i.e., it is zero everywhere except at the (1,
k) position, which is one. Similarly, E(ζig |Xi) = π�

gΨ(I −
B)−1ΛTΣ−1(Xi − µi), where π�

g selects the gth component
of E(ζi |Xi). To standardize, first note that the conditional
expectations above can be written as E(εik |Xi) = CkΣ−1/2

(Xi − µi) and E(ζig |Xi) = DgΣ−1/2(Xi − µi), where Ck

= πc
kΣεΣ−1/2 and Dg = π�

gΨ(I − B)−1ΛΣ−1/2. Then, letting

Pc
k = (CkCT

k )−1/2Ck, and P�
g = (DgDT

g )−1/2Dg, we arrive at

rc,ki = Pc
kri, (conditional) (6)

r�,gi = P�
gri (latent), (7)

which are standardized conditional and latent variable resid-
uals. Standardizing is important in the presence of missing
data, as the estimated residuals will have different variabili-
ties. Web Appendix B details how the definitions of the resid-
uals are affected by missing data. Also note that the condi-
tional and latent variable residuals are linear combinations, or
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projections, of the marginal residuals ri defined in (5). The
projections play a role in defining the diagnostics.

3.1 Distribution Diagnostics
To assess normality assumptions, we first describe the empir-
ical cumulative distribution functions (ECDFs) of the above
defined residuals, and later define ECDF-based test statis-
tics. Because the asymptotic distribution of the test statistics
is difficult to obtain analytically, we then discuss an efficient
simulation technique to compute p-values.

To construct an omnibus test of normality, consider the
ECDF of the standardized marginal residuals r = (rT1 , rT2 , . . . ,
rTn )T . For a fixed value of t in the real line, this ECDF is

Fpn(t;θ, r) = (pn)−1
n∑
i=1

p∑
k=1

1{rik ≤ t}, (8)

where rik is the kth component of the ith subject’s standard-
ized marginal residuals, ri. Under the null hypothesis that
εi and ζi are normally distributed, and assuming that the
marginal mean, µi, and variance, Σ, are correctly specified,
then (8) evaluated at θ = θ0, the true value of θ, approxi-
mates the standard normal cumulative distribution function,
Φ(t). Large deviations of (8) from Φ(t) would indicate that
either the latent variable errors, or the conditional errors, or
both, are not normally distributed. To construct tests for lack
of normality for the kth or gth conditional errors latent vari-
able errors, εik or ζig, consider the ECDF of the residuals in
(6) and (7). For a given matrix P (e.g., P = Pc

k or P = P�
g),

the ECDF of the residuals is

Fn(t;θ,P, r) = n−1
n∑
i=1

1{Pri ≤ t}. (9)

Thus, for example, under the null hypothesis that εk is nor-
mally distributed, and assuming that µi and Σ are correctly
specified, Fn(t; θ = θ0, P = Pc

k, r) should approximate Φ(t).
Standard normality tests (van der Vaart, 1998) cannot be

conducted to assess the significance of the observed differences
between the ECDFs and Φ(t) because θ0 is unknown. Instead,
a variety of test statistics capturing the discrepancy between
the ECDFs and Φ(t) can be defined. For instance, we compute
test statistics similar to the Kolmogorov–Smirnov (KS) test
and the Cramér–Von Mises (CVM) test, respectively,

τKS = sup |Fn(t; θ̂, P̂, r) − Φ(t) | , and

τCVM =

∫
(Fn(t; θ̂, P̂, r) − Φ(t))2dΦ(t).

The null distribution of test statistics like τKS and τCVM, which
adjust for the estimation of θ̂, are difficult to obtain analyt-
ically but can be approximated by simulation (Houseman et
al., 2004, 2006). That is, first simulate the behavior of the

discrepancies Fpn(t; θ̂, r) − Φ(t) or Fn(t; θ̂, P̂, r) − Φ(t) under
the null hypothesis; then compute the statistics, τKS and τCVM,
over many simulations; and finally obtain a p-value by cal-
culating the proportion of simulated test statistics that are
larger than the observed statistic.

Under the null hypothesis, the behavior of Fpn(t; θ̂, r) −
Φ(t) and Fn(t; θ̂, P̂, r) − Φ(t) can be simulated by computing
realizations of the stochastic processes in t

F̂ ∗
pn(t) − Φ(t) = Fpn(t; θ̂, r∗) − Φ(t)

+ δpn(t, θ̂, θ̂)TJ(θ̂)−1S(θ̂, r∗), and (10)

F̂ ∗
n(t) − Φ(t) = Fn(t; θ̂,P, r∗) − Φ(t)

+ δn(t, θ̂, θ̂)TJ(θ̂)−1S(θ̂, r∗). (11)

As detailed in Web Appendix C, (10)–(11) are derived
from first-order Taylor series expansions of the correspond-
ing ECDFs around θ0, evaluated at θ0 = θ̂. In (10) and (11),
P = P(θ); r∗ = (r∗T1 , r∗T2 , . . . r∗Tn )T , where r∗i are p × 1 vec-

tors of simulated standard normal deviates; J(θ̂) is the ex-

pected information matrix evaluated at θ̂; and S(θ̂, r∗) is
the score function for θ, with the observed data vector for
the ith subject, Xi, replaced by Σ−T r∗i + µ(θ, Zi). Finally,

δpn(t, θ̂, θ̂) and δn(t, θ̂, θ̂) are, respectively, the θ derivatives
of the expected value of the corresponding ECDF, evaluated
at (θ0,θ) = (θ̂, θ̂). Expressions for δpn(t, θ̂, θ̂) and δn(t, θ̂, θ̂)
are also given in Web Appendix C.

3.2 Diagnostics for Linearity
To assess departures from linearity, we propose tests based
on cumulative sums of projected residuals, rc,ki or r�,gi , taken
with respect to covariate values or certain predicted values
(e.g., E(Xik) or E(U ig)). These sums are stochastic processes
which, under the null hypothesis, fluctuate about zero (Pan
and Lin, 2005). In contrast to residual plots, the asymptotic
behavior of the sums can be approximated via simulation such
that inference, and thus objective conclusions, regarding lack
of linearity can be drawn. Further, the shape of the cumulative
sum is informative about the type of nonlinearity as explained
in the example in Section 5, and further detailed by Lin, Wei,
and Ying (2002).

Misspecified covariate effects on the gth latent variable in
(2) can be assessed by summing the latent variable residuals,
r�,gi , with respect to the jth covariate

W �
Zj

(t) = n−1/2
n∑
i=1

1{Zij ≤ t}r�,gi . (12)

Tests can also be defined for testing the link function between
the gth latent variable and its linear predictor by considering
the cumulative sum of latent variable residuals

WUg (t) = n−1/2
n∑
i=1

1{E(Uig) ≤ t}r�,gi , (13)

where E(U ig) = π�
gE(Ui) = π�

g (I − B)−1(α +ΓZi).
Misspecified relationships between a surrogate and one of

its predictors (e.g., Zj or Ug) can be assessed by summing
the kth conditional residuals with respect to Zj or E(Ug)

W c
Zj

(t) = n−1/2
n∑
i=1

1{Zij ≤ t}rc,ki or

W c
Ug

(t) = n−1/2
n∑
i=1

1{E(Uig) ≤ t}rc,ki .
(14)



108 Biometrics, March 2009

The sum W c
Zj

(t) can be used to diagnose item bias, that is,

a subject’s differential response to a surrogate (item) due to
a covariate, conditional on the latent variables (Beck, 1982).
Finally, similar to testing the link between a latent variable
and its linear predictor,

WXk
(t) = n−1/2

n∑
i=1

1{E(Xik) ≤ t}rc,ki , (15)

can be used to assess the link between a surrogate and its
linear predictor.

To draw inference, it is necessary to study the behavior of
the cumulative sums (12)–(15) under the null hypothesis of
correctly specified (linear) associations. The cumulative sums
of residuals define stochastic processes in t, which, under the
null hypothesis, fluctuate around zero (Pan and Lin, 2005).
Hence, unusually large departures from zero are indicative of
model misspecification. Departures from zero can be charac-
terized by test statistics defined as functionals, 
(·), of the
cumulative sums; for example, the sup and L2 norms,


∞(W (t)) = sup
t

|W (t) | , and 
2(W (t)) =

∫
t

(W (t))2 dt,

can be used. These are analogous to the KS and CVM tests
for normality.

The asymptotic behavior of such test statistics, however, is
difficult to obtain analytically. Instead, the null distribution of
the functional-based test statistics, 
(·) is approximated via
simulation. Specifically, we draw realizations of the stochastic
processes (12)–(15) under the null hypothesis; calculate the
statistics on each of many realizations; and compute p-values
as the proportion of simulated statistics that exceed the ob-
served test statistic. Under the null hypothesis, realizations of
the cumulative sums of residuals can be simulated as follows.
First, note that (12) and (14) are special cases of a multivari-
ate stochastic process

WZ(t) = n−1/2
n∑
i=1

1{Zi ≤ t}Pri, (16)

where t = (t1, t2, . . . , tq), and 1{Zi ≤ t} =
∏p

k=11{Zk ≤ tk},
and P is Pc

k or P�
g. The cumulative sum with respect to one

covariate Zj is obtained from (16) by setting tk = ∞ for all
k 
= j. Under the null hypothesis, (16) can be shown (Pan
and Lin, 2005) to converge in distribution to the conditional
distribution, given the data Zi, Xi, of the following zero-mean
Gaussian process

ŴZ(t)=n−1/2
n∑
i=1

(
1{Zi ≤ t}Pri +ϑ(θ̂, t)TJ−1(θ̂)Si(θ̂;Xi)

)
Gi,

(17)

where (G1, G2, . . . Gn) are i .i .d . ∼ N(0, 1), independent of
the observed data, and ϑ(θ, t) = −n−1

∑n

i=1(1{Zi ≤ t} ∂Pµi
∂θ

).

Repeated realizations of ŴZ(t) can be obtained by fixing the
observed data, and drawing samples of (G1, G2, . . . Gn). The
approximation (17) of WZ(t) is derived from a Taylor series
expansion. The theory behind (17) is different from that for
the distribution diagnostics. The simulation technique for the
distribution tests, τKS and τCMV, is an approximate parametric
bootstrap (Houseman et al., 2006), which requires re-sampling

from the null distribution of marginal residuals, r∗ (i.e., pn
samples), and evaluates S(θ̂, r∗) for each sample r∗. In con-
trast (17) is based on a conditional multiplier central limit
theorem (Su and Wei, 1991; Pan and Lin, 2005), requires n
samples, G′s, and evaluates Si(θ̂,Xi) once.

The processes ŴUg (t) and ŴXk
(t) can be defined simi-

larly to (17) with 1{Zi ≤ t} replaced by 1{E(U ig) ≤ t} and
1{E(Xik) ≤ t}, respectively. Proof of the weak convergence of

WZ(t), ŴZ(t), WUg (t), ŴUg (t), WXk
(t), and ŴXk

(t) follows
from the convergence of the weighted processes considered in
Section 3.5 of Pan and Lin (2005).

4. Simulation Studies
We conducted simulation studies to evaluate the performance
of the proposed diagnostics. Although simulation studies eval-
uating the properties of these methods have been conducted
in the context of linear mixed models (Pan and Lin, 2005;
Houseman et al., 2006), there is a need to examine the perfor-
mance of these methods in assessing model misspecifications
unique to structural equation modeling.

To evaluate the empirical size and power of the tests, the
model: Xi = ν +ΛUi + εi and Ui = α + BUi + ΓZi +
ζi, with p = 6, � = 2, q = 2 was fitted to simulated data. The
form of the parameter matrices was always assumed to be
ν = (ν1, ν2, . . . , ν6)

T ,K = 0,α = (0, 0),

ΛT =

(
1 λ2 λ3 0 0 0
0 0 0 1 λ5 λ6

)
, B =

(
0 0
β 0

)
, and

Γ =

(
γ11 γ12

γ21 γ22

)
.

To estimate the tests’ empirical sizes, we generated 2000 data
sets from the assumed model, and used 1000 simulated test
statistics to calculate empirical rejection probabilities. Param-
eter values were set to ν = (0, 1, 2, 0, 1, 2),K = 0,α =
(0, 0),λ2 = 0.5,λ3 = 1.25,λ5 = 0.5,λ6 = 1.25,β = 1, γ11 =
1, γ12 = 0.5, γ21 = 1, and γ22 = 1. The conditional errors
were assumed uncorrelated, normally distributed, and with
variance parameters chosen such that the measurement er-
ror variance for all surrogates accounted for 30% or 50% of
their marginal variance. The latent variable residuals, ζ1 and
ζ2, were assumed to be uncorrelated and have unit variance.
Covariates, Zi, were simulated from a bivariate normal distri-
bution with mean (0,0), unit variance, and correlation 0.2. To
evaluate power, we generated 1000 data sets from each alter-
nate model, described below, and used 1000 realizations from
the distributions of the test statistics under the null hypoth-
esis to calculate empirical rejection probabilities. All model
parameters were estimated in Mplus (Muthén and Muthén,
1998–2004), and the linearity and normality tests were im-
plemented in the statistical package R (functions available at
http://www.biometrics.tibs.org).

4.1 Distribution Diagnostics
We evaluated the power of the distribution tests to detect lack
of normality in a specific component of the latent variable
error or in a specific component of the conditional error. We
simulated data using skewed (centered χ2

3) or heavy-tailed (t3)
distributions. We considered scenarios where either the condi-
tional error εi1 or the latent variable error ζi1 was nonnormal,
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Table 2
Empirical size and power for distribution diagnostics, tests of nominal size 0.05

Surrogates with 30% meas. error Surrogates with 50% meas. error
CVM
alternative n Test ε1 Test ζ1 Omnibus Test ε1 Test ζ1 Omnibus

Null Model 200 0.048 0.049 0.053 0.049 0.05 0.048
(ζ, ε ∼ Normal) 300 0.046 0.048 0.058 0.048 0.061 0.052
(1) ζ1 Skewed 200 0.051 0.99 0.11 0.057 0.76 0.07

ε1 Normal 300 0.045 >0.99 0.17 0.053 0.92 0.084
(2) ζ1 Normal 200 0.98 0.059 0.28 >0.99 0.061 0.4

ε1 Skewed 300 >0.99 0.053 0.38 >0.99 0.063 0.6
(3) ζ1 Skewed 200 >0.99 >0.99 0.62 >0.99 0.83 0.64

ε1 Skewed 300 >0.99 >0.99 0.83 >0.99 0.96 0.84
(4) ζ1 Heavy Tailed 200 >0.99 0.75 0.47 >0.99 0.52 0.53

ε1 Skewed 300 >0.99 0.88 0.65 >0.99 0.62 0.72
(5) ζ1 Skewed 200 0.76 >0.99 0.37 0.84 0.79 0.38

ε1 Heavy Tailed 300 0.87 >0.99 0.52 0.94 0.94 0.52

Surrogates with 30% meas. error Surrogates with 50% meas. error
KS
alternative n Test ε1 Test ζ1 Omnibus Test ε1 Test ζ1 Omnibus

Null Model 200 0.055 0.053 0.055 0.057 0.053 0.051
(ζ, ε ∼ Normal) 300 0.044 0.040 0.046 0.039 0.061 0.052
(1) ζ1 Skewed 200 0.053 0.63 0.057 0.054 0.65 0.57

ε1 Normal 300 0.054 >0.99 0.13 0.048 0.85 0.09
(2) ζ1 Normal 200 0.98 0.055 0.3 0.98 0.067 0.3

ε1 Skewed 300 >0.99 0.05 0.28 >0.99 0.052 0.47
(3) ζ1 Skewed 200 0.98 0.7 0.49 >0.99 0.72 0.51

ε1 Skewed 300 >0.99 >0.99 0.69 >0.99 0.9 0.7
(4) ζ1 Heavy Tailed 200 0.99 0.39 0.4 >0.99 0.41 0.41

ε1 Skewed 300 0.99 0.8 0.48 >0.99 0.52 0.57
(5) ζ1 Skewed 200 0.74 0.7 0.26 0.74 0.71 0.26

ε1 Heavy Tailed 300 0.78 >0.99 0.38 0.87 0.87 0.39

as well as cases where both εi1 and ζi1 deviated from normal-
ity. We conducted tests of normality on the conditional and
the latent variable residuals, as well as the omnibus test.

Table 2 illustrates the empirical size and power for tests
of nominal size 0.05. The top half of the table shows results
for the CVM tests, while the bottom half shows results for
the KS tests. In general, the simulation-based tests proposed
here perform well in terms of power, and are within Monte
Carlo error of the nominal size. For every type of misspeci-
fication, the CVM test was more powerful than the KS test.
The test for lack of normality of the conditional error was,
in general, more powerful than the test for the latent vari-
able error (e.g., compare Alternatives 1 and 2 under the 50%
error column). Similarly, the omnibus test had slightly more
power to detect a misspecified distribution for εi1 than ζi1, and
had high power when both distributions were misspecified.
As expected, larger measurement error variance decreases the
power of the tests. Finally, and most importantly, the tests
were specific to the stage of the model containing the devia-
tion from normality. If the conditional error was not normal
while the latent variable residual was normal, then the test
conducted on the latent variable residuals preserved its Type-
1 error rate, and vice versa.

4.2 Linearity Diagnostics
We evaluated the performance of linearity tests based on cu-
mulative residuals. In scenarios where the functional form of

a covariate is misspecified, at either stage of the model, we
also evaluated the power of the corresponding link test, and
the CVM normality test (Eberly and Thackeray, 2005, show
that normality tests can detect misspecified mean functions).
For comparison, we also evaluate the power of the Wald test
of the null hypothesis when fitting the model under the (cor-
rect) alternative hypothesis. The Wald test was only possible
for cases when the null was nested in the alternative.

To investigate the power of the test of the functional
form of a covariate for the mean of a latent variable, we
considered three alternatives for the structural part of the
model

Model 1a: U1i = γ11Z1i + γ12Z2i + γ13Z
2
2i + ζ1i,

Model 1b: U1i = γ11Z1i + γ12 exp(Z2i) + ζ1i,

Model 1c: U1i = γ11Z1i + γ12Z2i + γ13Z3i + ζ1i,

where Z3i ∼ Normal(0,1), and independent from (Z1i, Z2i).
Models 1a and 1b represent scenarios where a quadratic term
should be included in the linear predictor for U 1i, and where
the covariate was incorrectly log -transformed. Model 1c im-
plies Z3i is missing from the model specification. We use
data on Z3 to construct the cumulative sum diagnostic; for
example, mother’s age in the example section, Figure 2c.
The power of the link test between covariates and a latent
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Figure 2. Residual diagnostics showing: (a) latent circulating lead residuals versus mother’s education and regression-based
p-value; (b) latent circulating lead residuals cumulatively summed with respect to mother’s education and simulation-based
p-values; (c) significant association between the bone resorption rate residuals and mother’s age; (d) lack of association
between the conditional residuals of patella lead concentration and age. Cumulative sum plots include simulated cumulative
sums under the null hypothesis (light lines).

variable was assessed by using a nonlinear link function g(·)
in the structural part of the model

Model 2: g(U1i) = γ11Z1i + γ12Z2i + ζ1i.

To evaluate the power of the test of the functional form of
a covariate on a surrogate, we considered two alternatives for
the measurement part of the model

Model 3a: X3i = ν3 + λ3U1i + κZ1i + ε3i,

Model 3b: X3i = ν3 + λ3U1i + λU 2
1i + ε3i.

Given that the assumed model does not include covariates
in the measurement part of the model, the misspecification
represented by Model 3a corresponds to item bias. Similar
to Model 1c, data on Z1 is used to construct the diagnostic.
Model 3b corresponds to a nonlinear association between the
latent variable and the observed surrogate. In this case, U1 is
already in the model, but the diagnostic still uses an estimate
of U 1,E(U 1), to construct the cumulative sum. Finally, to
investigate the power of the test of link between a surrogate

and its predictors, we considered the following alternative for
the measurement model

Model 4: g(X3i) = ν3 + λ3U1i + ε3i,

where g(·) is a nonlinear link function.
Tables 3 and 4 show the empirical sizes and power for

the linearity tests considered. The empirical sizes of the tests
based on the cumulative sums of residuals are within Monte
Carlo error of the nominal size. The cumulative sum tests
based on the latent variable residuals enjoy reasonable power
in larger sample sizes, although their power is reduced with
increasing measurement error variance in the surrogates. In
contrast to linear mixed models, the link tests had little power
to detect misspecified functional forms of covariates (Pan and
Lin, 2005); the power never exceeded 30% (not shown). The
test evaluating the functional form of the covariates on ei-
ther the latent or surrogate variables have good power. Un-
der all scenarios, the CVM-type test 
2(·) is more powerful
than the KS-type test 
∞(·). The normality test, as expected,
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Table 3
Empirical size and power for cumulative latent variable residuals tests, nominal size 0.05

Surrogates with 30% meas. error Surrogates with 50% meas. error

CVM CVM
n 
∞(·) 
2(·) (Wald) Test ζ1 
∞(·) 
2(·) (Wald) Test ζ1

Correct Model
Covariate Test 200 0.05 0.05 0.042 0.043

300 0.06 0.05 0.043 0.046
Link Test 200 0.06 0.06 0.05 0.048

300 0.05 0.05 0.047 0.044
Model 1a

γ13 = 0.25 200 0.33 0.54 (0.95) 0.06 0.28 0.42 (0.93) 0.04
300 0.60 0.90 (>0.99) 0.05 0.48 0.79 (>0.99) 0.06

γ13 = 0.50 200 0.92 0.99 (>0.99) 0.11 0.79 0.97 (>0.99) 0.09
300 0.99 0.99 (>0.99) 0.24 0.99 >0.99 (>0.99) 0.15

Model 1b
γ12 = 0.25 200 0.14 0.20 0.056 0.12 0.15 0.06

300 0.16 0.30 0.051 0.24 0.40 0.06
γ12 = 0.50 200 0.46 0.72 0.061 0.31 0.49 0.06

300 0.90 0.99 0.087 0.82 0.99 0.08
Model 1c

γ13 = 0.5 200 0.34 0.72 (>0.99) 0.051 0.52 0.92 (>0.99) 0.05
300 0.85 >0.99 (>0.99) 0.05 >0.99 0.99 (>0.99) 0.05

γ13 = 1.0 200 0.75 >0.99 (>0.99) 0.05 0.99 >0.99 (>0.99) 0.05
300 0.99 >0.99 (>0.99) 0.051 >0.99 >0.99 (>0.99) 0.06

Model 2
g(·) = log (·) 200 0.14 0.46 0.85 0.18 0.43 0.99

300 0.40 0.69 0.95 0.41 0.65 0.94
g(·) =

√· 200 0.48 0.57 0.99 0.45 0.54 >0.99
300 0.67 0.71 0.92 0.64 0.68 >0.99

detected misspecified means in some settings. The power of
the Wald test is greater, but the test requires a correctly spec-
ified, nested alternative.

5. Example: Fetal Lead Exposure
We use SEMs to study the relationships between bone- and
blood-based biomarkers of fetal lead exposure and apply the
diagnostic tools defined in Section 3 to this model. The model,
represented in Figure 1, succinctly describes the associations
of interest and utilizes all available data, as opposed to con-
ducting multiple analyses with traditional regression meth-
ods. Table 1 summarizes the abbreviations used in the follow-
ing algebraic form of the model.

5.1 Measurement Model
We relate the blood-based biomarkers to latent circulating
lead as follows. At time t, t = 0, 1, 2, 3 (before pregnancy,
and trimesters 1, 2, 3) let,

X1t = Ut + ε1t Model for Plasma Lead

X2t = ν2t + λ2Ut + ε2t Model for Blood Lead,

ABC Laboratory

X3t = ν3t + λ3Ut + ε3t Model for Blood Lead,

Smith Laboratory

X43 = ν43 + λ43U3 + ε43 Model for Cord Blood Lead,

where U t represents circulating lead at time t. Circulating
lead takes the units of plasma lead, both in terms of its scale

as well as central tendency because λ1 = 1 and ν1t = 0. The
model is weakly time invariant (Bollen, 1989) because the only
parameters not allowed to vary over time are the factor load-
ings, λ—i.e., the associations between the scales of the latent
and observed variables do not change over time. To account
for laboratory effects in the blood lead concentrations, we al-
low ε2 = (ε20, ε21, ε22, ε23)

T and ε3 = (ε30, ε31, ε32, ε33)
T to have

banded correlation structures, but ε2 and ε3 are assumed to
be independent; i.e., for j = 2, 3, corr(εjt, εj;t+k) 
= 0 for k =
1, but is 0 for k > 1, and corr(εjt; εj′t′) = 0 for j 
= j ′.

Bone resorption rates, measured at t = 1, 2, 3, are modeled
using a mixed effects model, Xt4 = U 4 + κt + εt4, where
U 4 ∼ Normal(α4, ψ4) represents a random intercept, and κ is
a fixed time effect. The random intercept can be interpreted
as the mother’s intrinsic resorption rates. The model for bone
lead concentrations is

X15 = U5 + ε15 Patella lead, before pregnancy

X25 = ν25 + λ25U5 + ε25 Tibia lead, before pregnancy

X35 = ν35 + U5 + ε35 Patella lead, 1 mo. post partum

X45 = ν45 + λ25U5 + ε45 Tibia lead, 1 mo. post partum,

which assumes that bone lead burden, U5, is measured in units
of patella lead concentration. The population average for bone
lead burden is assumed to be equal to the average observed
for patella lead before pregnancy. After pregnancy this con-
centration is, on average, ν35 units different from that before
pregnancy (i.e., fixed time effect). Tibia lead concentration is
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Table 4
Empirical size and power for cumulative conditional residuals tests, nominal size 0.05

Surrogates with 30% meas. error Surrogates with 50% meas. error

CVM CVM
n 
∞(·) 
2(·) (Wald) Test ε3 
∞(·) 
2(·) (Wald) Test ε3

Correct Model
Covariate Test 200 0.059 0.059 0.040 0.048

300 0.050 0.050 0.044 0.042
Covariate Testa 200 0.041 0.041 0.039 0.044

300 0.056 0.059 0.041 0.042
Link Test 200 0.050 0.041 0.042 0.046

300 0.059 0.050 0.041 0.043
Model 3a

κ = 0.5 200 0.13 0.38 (0.34) 0.054 0.08 0.12 (0.19) 0.07
300 0.25 0.66 (0.51) 0.052 0.08 0.18 (0.32) 0.06

κ = 1.0 200 0.42 0.93 (0.90) 0.057 0.12 0.28 (0.72) 0.05
300 0.74 0.99 (0.99) 0.052 0.19 0.52 (0.94) 0.05

Model 3ba

λ = 0.25 200 0.31 0.53 (>0.99) 0.18 0.16 0.25 (0.97) 0.07
300 0.52 0.78 (>0.99) 0.31 0.24 0.40 (>0.99) 0.11

λ = 0.50 200 0.94 0.99 (>0.99) 0.94 0.46 0.77 (0.99) 0.53
300 0.95 0.99 (>0.99) 0.99 0.70 0.95 (>0.99) 0.75

Model 4
g(·) = log (·) 200 0.11 0.23 0.99 0.08 0.08 0.95

300 0.22 0.36 0.99 0.14 0.14 0.75
g(·) =

√· 200 0.14 0.48 0.93 0.36 0.48 0.80
300 0.83 0.96 >0.99 0.58 0.75 >0.99

aUses 1{E(U1i) ≤ t} in the definition of the cumulative sum.

also a surrogate of bone lead burden; 1 unit of patella lead is
roughly equivalent to λ25 units of tibia lead before and after
pregnancy.

5.2 Associations Between Latent Variables
We impose a longitudinal model on latent circulating-lead ex-
posure. That is, U t = αt + β1U 4 + β2U 5 + γ1Z1 + γ2Z2 +
γ3Z3 + ζt, where αt is a trimester-specific mean (to avoid
assumptions on the trend of the latent variables). The ef-
fects of bone resorption rates, U4, and bone lead burden,
U5, on circulating lead are given by β1 and β2, respectively.
The covariance of ζt, t = 0, 1, 2, 3 is modeled as a banded-
heterogeneous matrix. The model defined for the blood-based
lead biomarkers can be seen as a latent variable model for lon-
gitudinal data with multiple continuous outcomes (Roy and
Lin, 2000), except that here latent variables are also predic-
tors. Finally, we model the effects of covariates on bone lead
burden: U 5 = α5 + γ15Z1 + γ25Z2 + γ35Z3 + ζ5, where ζ5 is as-
sumed to be independent from ζ4 and from ζt, t = 0, 1, 2, 3.

5.3 Diagnostics
Given the variety of residuals and available tests, a strategy
for the order in which model assumptions are evaluated is
needed. Since the distribution tests require correct mean and
variance specification, we apply linearity tests first. Specifi-
cally, we use linearity diagnostics to detect whether covariates
are missing from the model misspecification, or whether linear
relationships are incorrectly specified. We then inspect distri-
butional assumptions by first using the omnibus test for nor-
mality, then checking the distributions of the latent variable
residuals, and, finally, examining the conditional residuals.

Here we show a sample of the diagnostic results to illustrate
the use of the methods.

After fitting a model, it may be of interest to assess whether
additional covariates should be added to it. For instance, we
considered adding maternal education as a predictor of la-
tent circulating lead exposure. A sensible approach may be
to plot the circulating lead exposure residuals against edu-
cation and fit a regression line (Figure 2a). In this case, the
p-value obtained from a regression of the residuals against
maternal education suggests that education should be added
as a predictor. However, inferences from such an approach
may be problematic as they do not adjust for the estimation
of θ. Thus, we analyze the cumulative sum of the circulat-
ing lead residuals with respect to education (Figure 2b). Al-
though the observed cumulative sum appears to deviate from
the simulated sums (light lines), objective inference based on
the simulated p-value does not call for adding education as a
predictor. Nevertheless, we fitted a model including education
as a predictor of trimester 1 exposure. From the correspond-
ing Wald test, we concluded education was not a statistically
significant predictor of circulating lead exposure.

Figure 2c displays the cumulative sum of latent resorption
rate residuals with respect to maternal age. The observed cu-
mulative sum clearly stands out from the simulated sums.
The drastic increase in the sum indicates a preponderance
of positive residuals at younger ages, and the sharp decrease
indicates an excess of negative residuals at older ages. This
pattern in the residuals and their cumulative sum is consis-
tent with a missing linear term for age (Z1), and thus suggests
modeling: U 4 = α4 + γ14Z1 + ζ4. We included the term γ14Z1
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Figure 3. Q–Q plots with point by point 95% confidence intervals and simulation based p-values corrected for parameter
estimation showing (a) no significant lack of fit for bone resorption rate residuals; (b) lack of normality for the circulating lead
residuals; (c) significant lack of normality for bone resorption biomarker (NTX) at trimester 2; (d) marginal lack of normality
for plasma lead residuals at trimester 3.

in the model, and again calculated the cumulative sum of the
bone resorption residuals with respect to age. From the up-
dated plot and test, we concluded there was no significant
association between the bone resorption rate residuals and
maternal age, thereby suggesting that a linear term may be
sufficient in modeling the bone resorption rate-age associa-
tion.

Figure 2d presents the cumulative sum of conditional resid-
uals for patella lead concentration. The observed sum is well
within the cloud of simulated sums. Thus, no evidence exists
of a misspecified association between patella lead concentra-
tion and age. Similarly, cumulatively summing the residuals
of plasma lead concentrations gave no evidence of a misspec-
ified links between the plasma biomarkers and its predictors
(not shown).

Next we examine distributional assumptions. We first con-
ducted an omnibus test of normality based on the standard-
ized marginal residuals, and concluded significant lack of nor-
mality. However, the omnibus test provides no indication

of which residuals ζ or ε violate the normality assumption.
Therefore, we examined the conditional and latent compo-
nents of the error separately. Figures 3a and b show Q–Q
plots for two of the six latent variable residuals in the model,
point-wise confidence intervals calculated using the variance
estimator proposed by Houseman et al. (2004), and p-values
for the KS and CVM type tests. There was no violation of
normality in the distribution latent variable residuals for bone
resorption rates. In contrast, the distributions of (latent) cir-
culating lead residuals violate normality assumptions. The
shape of the Q–Q plot would instead suggest a left-skewed
distribution.

Next, we inspected the conditional error distributions. The
conditional residuals for both bone lead concentrations (be-
fore and after) and blood lead concentrations (both labora-
tories, at every trimester) did not deviate significantly from
normality. The bone resorption concentrations reveal devia-
tion from normality at trimester 2 (Figure 3c). The condi-
tional residuals for plasma lead show marginally significant
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lack of normality (Figure 3d); the Q–Q plot is indicative of a
heavy tailed error distribution. Thus, a t or logistic distribu-
tion might instead be considered for these conditional errors.
Note that these figures show the specificity of the normality
tests; that is, the latent variable residuals for the bone re-
sorption rates (Figure 3a) do not appear to violate normality
assumptions, whereas one of its surrogates does (NTX, T2,
Figure 3c).

6. Conclusions
We proposed and implemented residual-based diagnostics
that assess distributional and linearity assumptions com-
monly made in classical SEMs. The diagnostics are based on
three types of residuals that isolate the various sources of er-
ror in the model, namely, marginal, conditional, and latent
variable residuals. The theoretical basis for making inferences
based on the proposed diagnostics follows from research on
residual diagnostics for linear mixed models (Houseman et al.,
2004, 2006; Pan and Lin, 2005). Both tests are adjusted for
the estimation of all model parameters, although more sim-
ple adjustments for parameter estimation may be sufficient
for the normality tests (see Web Appendix D). The proposed
diagnostics improve upon available model specification tools
for SEMs because they not only lend themselves to graphi-
cal displays, but are also based on individual-level residuals.
Classical model specification tools, such as modification and
χ2 fit indices, are based on aggregate forms of the data (Beck,
1982), and require specific alternatives to test against.

Further research is needed on the sequence in which these
diagnostics should be implemented; that is, there is possible
confounding between various types of model misspecification
(Eberly and Thackeray, 2005). We examined linearity assump-
tions before normality assumptions because distribution di-
agnostics assume correctly specified mean and variances; but
diagnostics for linearity may not necessitate correctly spec-
ified error distributions (Pan and Lin, 2005; also see Web
Appendix E).

Furthermore, because in SEMs incorrect covariance as-
sumptions on the error terms leads to biased conditional mean
parameter estimates (Sammel and Ryan, 2002) it is unclear
whether testing the default linear associations in SEMs may
also require correctly specified covariance structures for the
errors. This is in contrast to diagnostics for linear mixed mod-
els, where correctly specified covariance matrices are not re-
quired to make inferences on the predictive part of the model
(Pan and Lin, 2005). Thus, developing projection matrices
based on robust variance matrices might be a promising next
step. Developing methods to assess the covariance matrices of
the errors might also be of interest.

7. Supplementary Materials
Web Appendices referenced in Sections 3 and 6, as well as the
R code, are available under the Paper Information link at the
Biometrics website http://www.biometrics.tibs.org
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