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SUMMARY. We develop an approach, based on multiple imputation, t o  using auxiliary variables to recover 
information from censored observations in survival analysis. We apply the approach to data from an AIDS 
clinical trial comparing ZDV and placebo, in which CD4 count is the time-dependent auxiliary variable. To 
facilitate imputation, a joint model is developed for the data, which includes a hierarchical change-point 
model for CD4 counts and a time-dependent proportional hazards model for the time to AIDS. Markov 
chain Monte Carlo methods are used to multiply impute event times for censored cases. The augmented 
data are then analyzed and the results combined using standard multiple-imputation techniques. A com- 
parison of our multiple-imputation approach to simply analyzing the observed data indicates that multiple 
imputation leads to a small change in the estimated effect of ZDV and smaller estimated standard errors. 
A sensitivity analysis suggests that the qualitative findings are reproducible under a variety of imputation 
models. A simulation study indicates that improved efficiency over standard analyses and partial corrections 
for dependent censoring can result. An issue that arises with our approach, however, is whether the analysis 
of primary interest and the imputation model are compatible. 
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1. Introduction 
1.1 Overview 
In survival analysis, common goals are to estimate the survival 
distribution and the effect of time-fixed covariates on this 
distribution. Standard estimation methods for censored data 
can be used for these problems. In many medical studies, 
however, there is other information measured periodically 
on the subjects, and such measurements may be informative 
about the state of health of the subjects. Examples of such 
time-dependent markers are CD4 count and viral load in 
studies of HIV/AIDS. Because these markers are frequently 
associated with the event time, they have many possible uses, 
including as potential surrogate endpoints or as auxiliary 
variables. In this article, we will focus on their use as 
auxiliary variables. We will describe a method that seeks to 
recover information lost due to censoring by incorporating the 
information supplied by time-dependent markers. The goal is 
to make better and more efficient inferences about clinical 
endpoints of interest. 

In a clinical trial, incorporating auxiliary variables has 

potential for significantly improving the efficiency of the 
comparison between the arms of the trial and for reducing 
bias due to dependent censoring. Phase I11 trials typically 
use a meaningful clinical endpoint as the primary measure of 
efficacy, even in situations where most subjects will take a 
long time to progress to the endpoint. This creates logistical 
problems and expense because a large number of subjects 
and/or a long follow-up time may be needed. Statistical 
methodology that can reduce the amount of follow-up time 
or the number of subjects and still retain power and validity 
would have major implications for the conduct of clinical 
trials. 

A number of authors (e.g., Robins and Rotnitzky, 1992; 
Finkelstein and Schoenfeld, 1994; Fleming et al., 1994; Gray, 
1994; Malani, 1995; Murray and Tsiatis, 1996) have developed 
various methods for using extra auxiliary variable information 
to improve survival estimates, such as weighted Kaplan- 
Meier estimation and use of estimated likelihoods. In this 
article, we take a more direct approach in which we regard 
the event times for the censored observations as missing 
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data. We multiply impute values for these missing data and 
then analyze the augmented data, a technique that has been 
investigated before in different contexts (Wei and Tanner, 
1990, 1991; Schenker and Taylor, 1996). If the auxiliary 
variables used to build the imputation model are predictive of 
the event times, then by incorporating information from the 
observed auxiliary variables, analyses of the multiply-imputed 
data should be more efficient than standard analyses of the 
data without imputation. Moreover, if censoring is related 
to the auxiliary variables, then imputation should lead to 
a partial adjustment for dependent censoring in analyses of 
the multiply-imputed data; such an adjustment would not 
be made in standard analyses that do not incorporate the 
auxiliary variables. 

The multiple-imputation procedure we use requires a joint 
model for the auxiliary CD4 markers and the survival end- 
points. A number of different joint models have been suggest- 
ed (Clayton, 1991; Pawitan and Self, 1993; De Gruttola and 
Tu, 1994; Tsiatis, De Gruttola, and Wulfsohn, 1995; Faucett 
and Thomas, 1996; Hogan and Laird, 1997; Wulfsohn and 
Tsiatis, 1997). We use a similar, but more general, random 
effects model than used by Faucett and Thomas (1996) for the 
marker data, together with a proportional hazards model for 
the failure times. As is discussed in Section 2.5, an issue to be 
considered is whether such an imputation model is compatible 
with the analysis of primary interest. 

1.2 AIDS Clinical Trial 
Our techniques will be applied to data from the ACTG-019 
clinical trial (Volberding et al., 1990). This was a double-blind 
randomized trial examining the efficacy of zidovudine (ZDV) 
in prolonging survival and delaying the onset of AIDS and 
advanced AIDS-related complex. Asymptomatic HIV-positive 
adults with CD4 counts of less than 500 were randomized 
to one of three treatments: placebo (428 subjects), ZDV 500 
mg per day (453 subjects), or ZDV 1500 mg per day (456 
subjects). For each subject, several baseline characteristics 
(e.g., age) were recorded, and CD4 measurements were 
scheduled to be obtained at 0, 8, 16, 32, 48, 64, and 
80 weeks postrandomization (the median number of CD4 
measurements was four). Times of diagnosis with AIDS- 
related complex, AIDS, or death were recorded. 

We focus on time to AIDS as the primary outcome of 
interest. The number of subjects that were diagnosed with 
AIDS was 33 (7.7%) in the placebo arm and 25 (2.8%) 
in the treated arms combined. The median follow-up time 
was 50 weeks and the maximum was 108 weeks. Since 
preliminary analyses showed no significant differences in 
AIDS-free survival between the low-dose and high-dose ZDV 
arms, we combine these groups. Previous analyses of the CD4 
count data from this trial (Bycott and Taylor, 1998) have 
suggested that ZDV causes an initial increase in CD4 counts 
for about 8 to 16 weeks, after which it tends to decline, 
although there is considerable variation between people. 

The primary analysis goal is to estimate the effect of 
treatment on AIDS-free survival. Most subjects (96%) were 
censored. We will use the repeated CD4 measurements as 
auxiliary information to multiply impute times of AIDS 
development for censored subjects. 

2. Methods and Assumptions 
2.1 General Approach 
For the i th subject, i = 1,. . . , N ,  let T," be the true failure 
time and Ci be the censoring time so that we observe Ti = 
min(T,",Ci) and indicator Di that is equal to one if the 
subject failed at Ti and is equal to zero if the subject was 
censored at Ti. Also, for subject i, let yi = { y i l , .  . . , y i n , }  
denote the vector of ni observations of the longitudinal 
auxiliary variable, xi denote fully observed fixed covariates, 
and zi = {zi( t ) ,O 5 t 5 Ti} denote the complete history of 
the expected value of the longitudinal auxiliary variable up 
to time T,. 

Our primary goal is to draw inferences about the 
distribution of T o  given xo, i.e., [To I xo], where xo is a 
subset of x and the subscript i is omitted. We call [To 1 xo] 
the primary analysis model. The standard approach would 
be to estimate the parameters of this distribution using the 
observed values of (T, D ,  xo). However, estimates from such 
an analysis would be less efficient than they would be if 
To were observed for every subject. If y is predictive of 
To,  incorporating y into our inferences about [To I xO] via 
multiple imputation should allow recovery of some of the 
information about To that is lost due to censoring. Moreover, 
incorporating y via multiple imputation allows inferences 
about [To I xo] that are valid if censoring depends on To 
through both x and y.  Standard analyses based on T, D ,  and 
xo require the more restrictive assumption that censoring can 
depend on To often only through xo. The Appendix gives 
specific assumptions under which the multiple-imputation 
approach is valid. 

We incorporate y into our analysis by imputing T," 
for subjects with Di = 0 from the posterior predictive 
distribution [To I T,D,X,Y],  where To denotes the vector 
T!, . . . , T i  and similarly for T, D, X, and Y .  The imputed 
event times are created in two steps. First, we obtain random 
draws from the posterior distribution [Cl I T, D, Y,  XI, where 
Cl denotes the parameters of the assumed model for [To,y I 
x]. We refer to [To,y I x] as the joint survival/auxiliary 
model, and this model will be used for imputation. As direct 
generation of f2 from its posterior distribution is infeasible, we 
accomplish this using Markov chain Monte Carlo (MCMC) 
methods. Second, we impute the unobserved T," conditional 
on the current draw of 0 and the observed data. This 
two-step procedure is repeated M times, resulting in M 
augmented data sets. For each augmented data set, selected 
aspects of the distribution [To I xo] are estimated, and the 
A4 estimates are then combined using standard multiple- 
imputation procedures (Rubin and Schenker, 1986; Rubin, 
1987). The following sections describe the assumed models 
and application of this general approach to the analysis of 
the AIDS clinical trial data. 

2.2 Primary Analysis Model 
For our application, To denotes the time of AIDS development 
and xo is the scalar treatment indicator, with 2' = 1 for ZDV 
and zo = 0 for placebo. We consider two primary analysis 
models, [To 1 xo]. The first is a nonparametric model, in which 
the quantities of primary interest are the AIDS-free survival 
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probabilities for the two treatment groups. The second is a 
Cox proportional hazards model with hazard X(t) = Xo(t) x 
exp(yOzO), in which the quantity of primary interest is the 
relative hazard of AIDS for treatment versus placebo (7’). 
See Section 2.4.3 for further discussion. 

2.3 Joint Survival/Auxiliary Model 
In our application, the auxiliary variables y are the repeated 
measurements of CD4. The joint distribution, [To, y I x ,  n], 
can be factored into a longitudinal CD4 model, [y I x,n], 
and a conditional model for time to AIDS given CD4, [To I 

2.3.1 Longitudinal CD4 model. Let t i j  denote the time since 
randomization at which yi j  was observed. For each subject, 
we assume that CD4 level (after a transformation) follows a 
piecewise-linear random effects model with transition point 
~ i .  Specifically, yi j  = z i ( t i j )  + tij, where z i ( t )  = boi + bli{t  - 
(t - ~ i ) + }  + bzi(t - T~)+, and (t - T)+ equals zero for t 5 T 

and equals t - T for t > T. The random effects include 
subject-specific intercepts, boi, and pre- and posttransition 
point slopes, bli and b2i, respectively. The vectors bi = 
(boi, b l i ,  b2i)’ are assumed to  be i.i.d. multivariate normal 
with mean (xbi,Bos, xi ipls,  x&,Bas)’ and covariance matrix 
Es, where s = 1,. . . , S denotes a subgroup to which subject 
i belongs. The vectors X k i  and p k s ,  k = 0,1 ,2  (each 
of dimension p k s ) ,  contain, respectively, a subset of the 
measured covariates for subject i and corresponding vectors of 
fixed effects. The logarithms of the transition points loge(q) 
are assumed to be i.i.d. N ( X : ~ P ~ ~ , U ? ~ ) ,  where x,i also 
contains measured covariates for subject i and ,BTs is the 
corresponding vector of fixed effects for subgroup s. The ~ i j  

are assumed to be i.i.d. N(0, &). 
2.3.2 AIDS hazard model. We assume that failure times 

follow a proportional hazards model that is a function 
of the expected CD4 level z i ( t )  and covariates xi,  i.e., 
X { t  I y i , x i , z i ( t ) }  = Xo(t)exp{$zi(t) + y’xi}. Note that, 
conditional on z i ( t ) ,  the hazard is independent of yi. The 
corresponding survival function is S ( t )  = exp[-[;X{s I 
xi, z i ( s ) }ds ] .  The baseline hazard function X o ( t )  is assumed 
to be a step function on a predefined set of time intervals 
L1 , .  . . , L K ,  i.e., Xo(t) = X k ,  t E Lk, k = 1, 

2.3.3 Variations of the joint model. In our application to 
the ACTG-019 data, we will impute from several variations 
of the joint survival/auxiliary model in order to examine the 
sensitivity of the results to model specification. 

In the first model (model Ml) ,  a single longitudinal model 
is assumed (S = 1) for y i j  = (CD4)lI2 - 18.0. A common 
intercept is assumed for the two treatment groups (xoi = 1 
for all subjects), but treatment effects are included for both 
slopes (x l i  = x2i = (1 ,O) ’  for subjects given placebo, xli = 
x 2 i  = (1,l)’ for treated subjects). We constrain each subject 
to have a common transition point, ~i = 56 days. Thus, we set 
pTs = 1, x,i = 1, pTs = 4.03, and u:s = 0. The expected CD4 
level at time t ,  z2( t ) ,  and the treatment assignment indicator 
are included in the AIDS hazard model. We use K = 19 
baseline hazard steps, each of width 40 days. 

Each of models M2 through M6 can be described in terms 
of how it differs from model M1. In model M2, we set ~i = 112 
days instead of T; = 56 days. In model M3, subject-specific 
transition points are allowed, is, uzs is not fixed at 0. For 
model M4, yi j  = (CD4)1/3 - 6.82. In model M5, CD4 is 

Y , x , n l .  

modeled separately for the placebo (s  = 1) and treated ( s  = 
2) groups. Within each treatment arm, a single population 
intercept and single pre- and posttransition point slopes are 
specified, i.e., p k s  = 1 and x k i  = 1 for s = 1,2,  k = 0,1,2, 
and i = 1,. . . , N .  Model M6 is the same as model M1 except 
that age is also included as a covariate in the hazard model. 
Finally, the treatment-only imputation model includes only a 
treatment indicator in the hazard model. 

2.4 Multiple Imputation Procedure 
2.4.1 Sampling joint surviual/auxiliary model parameters. In 
order to impute To,  we first generate samples from the 
posterior distribution [ C l  \ T, D,Y,  XI. The posterior density 
of the unknown parameters and random effects in the joint 
model is proportional to a product of the likelihoods based 
on the longitudinal CD4 and AIDS hazard models and the 
densities for the prior distributions. Weakly informative prior 
distributions are adopted for the population parameters. 
These include uniform priors for pks, PTs,  4, and y, inverse- 
Wishart priors for ZS, inverse gamma priors for c,, and u : ~ ,  
and gamma priors for Xk. The prior for PTs constrains 7 to 
be between 50 to 300 days since we have limited information 
regarding T outside that range and we expect an early ZDV 
effect. 

Since sampling directly from the joint distribution is 
infeasible, we rely on MCMC methods (Geman and Geman, 
1984; Li, 1988; Gelfand and Smith, 1990). After assignment 
of initial values to all parameters, each unspecified parameter 
is sampled in turn from its full conditional distribution 
given the observed data and the current values of the other 
parameters. Specifically, each XI, is sampled from a gamma 
distribution, and q5 and each component of y are sampled 
univariately using adaptive rejection sampling (Gilks, 1992). 
The random effects bi and ~i are sampled jointly for each 
subject using a Metropolis-Hastings step (Gilks, Richardson, 
and Spiegelhalter, 1995), and the , 8k s  and ,BTS are sampled 
from truncated normal distributions. The Es matrices are 
sampled from inverse Wishart distributions, and r?s and 
azs are sampled from inverse gamma distributions. For 
each imputation model, 500 iterations were eliminated for 
convergence and 10,000 additional iterations were generated. 

2.4.2 Imputation of event times. Given a set of sampled 
values for all parameters, a new event time and disease status 
for each censored subject is imputed. A random value U is 
drawn from a uniform distribution on (0 , l )  and then the 
equation S{t I t > T i , z i ( t ) , x i }  = U is solved for t .  If the 
resulting value of t exceeds a prespecified maximum allowable 
time, t,,,, then the subject is considered censored at  time 
tmm. For the AIDS clinical trial data, we set t,,, = 720 days, 
the end of the hazard interval that included the last observed 
event time. If t 5 t,,, then the imputed event time is set 
to t and Di is set to one. Imputations were produced after 
every 100th iteration of the MCMC procedure, resulting in 
M = 100 augmented data sets. Other values for tmax were 
also explored for model M1. 

By limiting the range of the imputed failure times, we avoid 
extrapolation beyond the range of the observed data and 
thus reduce the effects of the imputation model assumptions 
on some multiple-imputation analyses. The influence of the 
assumed imputation model can also be reduced by this limit 
since only small changes in survival time can be imputed for 
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censored subjects with long follow-up times. Because of 
this limit, however, if there is CDCdependent censoring, 
then the imputation approach can only partially adjust for 
this dependency in some analyses (see Remark C of the 
Appendix). Use of a good imputation model should improve 
estimates compared with standard approaches that make no 
adjustment for dependent censoring, however. 

2.4.3 Analysis of augmented data. Each of the M augment- 
ed data sets is analyzed using two methods of analysis, and 
the resulting analyses are combined using standard methods 
(Rubin and Schenker, 1986; Rubin, 1987). First, a Kaplan- 
Meier estimate of the probability of remaining AIDS-free 
at a given time t is calculated for each treatment group. 
A variance estimate for this estimated probability at each 
observed (not imputed) time of AIDS development is obtained 
by applying Greenwood's formula. Second, Cox regression is 
used to estimate the log hazard ratio (yo) of the proportional 
hazards model of Section 2.2. Here, in contrast with the joint 
survival/auxiliary model that we use to produce imputed 
AIDS times, we make no assumptions regarding the form of 
the baseline hazard. 

For comparison, we perform Kaplan-Meier and Cox re- 
gression analyses of the original data (T, D, X) to estimate 
components of the distribution [To I xO]. We call this the 
partially observed analysis. 

2.5 Incompatibility Between Models 
A key issue in our approach is whether the primary analysis 
model used for analyzing the augmented data and the joint 
survival/auxiliary model used in creating the imputations 
are incompatible. This is closely related to the issue of 
uncongeniality discussed in Meng (1994) and Rubin (1996). 
We briefly discuss two types of situations that are relevant to 
our problem. 

The first type of incompatibility occurs when one model 
is correct but the other is incorrect. In such a situation, 
inferences based on multiple imputation are likely to be 
incorrect as well. For example, the proportional hazards 
model for [To I xO] described in Section 2.2 is incompatible 
with the AIDS hazard model described in Section 2.3.2 
because proportionality of hazards when a set of predictors 
is included generally implies nonproportionality of hazards 
when only a subset of the predictors is included. This would 
explain the apparent biases of the estimates of the treatment 
effect yo, both with and without multiple imputation, in the 
simulation results of Section 4.2.2 when the data are generated 
under our assumed joint survival/auxiliary model with 
independent censoring but then analyzed using a proportional 
hazards primary analysis model. The simulations also suggest, 
however, that inferences with multiple imputation are better 
than inferences without multiple imputation. 

The second type of incompatibility occurs when both 
models are correct but extra information about the quantity 
of primary interest that is used in creating imputations 
is then not used in analyzing the augmented data. We 
suspect that this represents a type of uncongeniality, discussed 
in Meng (1994) and Rubin (1996), under which inferences 
with multiple imputation tend to be conservative but more 
efficient than inferences without multiple imputation. This is 
consistent with the simulation results of Section 4.2.1 when 
Kaplan-Meier estimation is used as the primary analysis. The 
extra information in this case could be the model structure 

that is present in the creation of imputations but not present 
in the Kaplan-Meier analysis. See also Remark B of the 
Appendix. 

For our problem, the first type of incompatibility, in which 
one of the models is incorrect, is a much greater concern than 
the second type. Thus, in practice, careful consideration and 
checking of models should be carried out so that neither model 
will be obviously incorrect. Moreover, sensitivity analysis 
could be used to assess the magnitude of possible biases. 

3. Analyses of AIDS Clinical Trial Data 
3.1 Kaplan-Meier Estimation 
Figure 1 displays the estimated Kaplan-Meier curves from 
the partially observed (PO) analysis and from the multiple- 
imputation (MI) analysis under model M1. For the placebo 
group, the two analyses produce nearly identical estimated 
probabilities. On the other hand, for the treated group, the MI 
method yields larger estimated survival probabilities toward 
the end of the observation time. A possible interpretation is 
that the censored subjects in the treated group tended to be 
healthier and, if they could have been followed longer, would 
have developed AIDS at a lower rate than those that were 
not censored. Thus, the MI analysis could be providing an 
adjustment for dependent censoring. 

Figure 2 displays the ratio of the estimated variance of 
the survival probability estimate from the PO analysis to 
that from the MI analysis based on model M1. The larger 
ratios occur later in the observation time since there is more 
censoring at later times in the original data set and thus more 
imputation of events at those times. 

Table 1 provides a comparison of Kaplan-Meier estimates 
and estimated standard errors at two points in time for 
the PO method and the MI method under the various 
imputation models. The survival estimates from MI models 
Ml-M6 are similar to each other but slightly higher than 
those obtained from the PO analysis for the treated group. 
Multiple imputation also leads to a reduction in the estimated 
standard errors compared with the PO analysis. We suspect 
that the smaller standard errors under the treatment only 
(TO) imputation model when compared with the PO analysis 
are due to use of a parametric hazard specification in 
the imputation procedure and possibly the use of weak 
informative priors, both of which could add information to 
the nonparametric Kaplan-Meier analysis (see Section 2.5) .  

3.2 Cox Regression 
Table 2 displays the estimated treatment effect q0 and 
estimated standard error based on the PO analysis and based 
on the MI approach under the various imputation models. 
There is little difference between the PO and T O  estimates, as 
expected, since no auxiliary information is utilized and since 
the primary analysis is more parametric than the Kaplan- 
Meier analysis of Section 3.1. When we add CD4 to the 
imputation model (models Ml-M6), all estimated standard 
errors are smaller than in the PO analysis. The ratio of the 
estimated variance obtained from the PO analysis to that 
obtained from the MI analyses ranges from 108 to 127%. 
The yo estimates are larger for models Ml-M6, which is 
consistent with the results for Kaplan-Meier estimation in 
Section 3.1. Model M6, which uses both CD4 and age as 
auxiliary variables, yields the smallest estimated standard 
error. 
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Figure 1. 
imputation under model MI. 
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Figure 2. 
to those based on multiple imputation under model M1. 

Ratio of estimated variances of survival probability estimates based on the partially observed data (no imputation) 

Table 3 displays the results for model M1 when imputa- 
tion of an event time is limited to a specific number of days 
(rather than the maximum limit of 720 days). In compari- 
son with the PO analysis, the MI method results in larger 
estimates of treatment effect and smaller estimated standard 
errors regardless of the limit placed on the event times. 

4. Simulation Study 
We performed a simulation study to  evaluate the performance 
of our method under a variety of parameter combinations. In 
our base simulation, data were generated to approximate the 
structure of the ZDV clinical trial, although we reduced the 
sample size and number of imputations, simplified the model, 
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Table 1 
Kaplan-Meier estimates of AIDS-free survival probabilities and estimated standard 
errors based on  partially observed data ( n o  imputation) and m,ultiply-imputed data 

Treatment group Treatment group 

Placebo Treated Placebo Treated 

Model S(450)a (%400-500)~ s(450) (%400-5oo) S(550) (G5oo-600) S(550) (s^E500-600) 

Partially observed 0.930 (0.01542) 0.965 (0.00842) 0.905 (0.01968) 0.949 (0.01040) 
Treatment only 0.930 (0.01519) 0.969 (0.00712) 0.907 (0.01848) 0.954 (0.00894) 
MI  0.927 (0.01516) 0.971 (0.00690) 0.903 (0.01744) 0.957 (0.00865) 
M2 0.928 (0.01521) 0.971 (0.00711) 0.905 (0.01826) 0.957 (0.00846) 
M3 0.928 (0.01515) 0.971 (0.00716) 0.905 (0.01848) 0.957 (0.00869) 
M4 0.926 (0.01582) 0.973 (0.00665) 0.903 (0.01923) 0.958 (0.00841) 
M5 0.928 (0.01541) 0.971 (0.00704) 0.906 (0.01840) 0.958 (0.00876) 
M6 0.927 (0.01519) 0.971 (0.00686) 0.904 (0.01847) 0.957 (0.00825) 

a Kaplan-Meier estimated probability of remaining AIDS-free at day 450. 
Greenwood’s formula averaged over days 400-500 in the complete-data standard error estimate. 

and increased effect sizes. Each additional simulation varied 
one of the base model parameters. We present results for both 
an estimated survival probability and the estimate of yo from 
the model X(t) = X o ( t )  exp(yOzo). 

4.1 Data Generation 
Data were simulated for 400 subjects, with 200 receiving 
placebo and 200 receiving treatment. The parameter values 
given next are those used in the base simulation. A normal 
linear model was used for yzj ,  i.e., yiJ = z i ( t i j )  + tij, where 
~ i j  - N(0, 2.52) and z i ( t )  = boi + b l i t ,  with boi N N(O,9) and 
bli N N ( , q ~ , 0 . 0 0 2 ~ ) .  The value of /LTX was -0.008 for the 
placebo group and 0.0 for the treated group. Observations of 
yij  were generated at time 0 and every 3 months thereafter, 
for a total study length of 2 years and a maximum of 8 
measurements. The time of AIDS development (T:) was 
generated from the model X(t )  = Xo(t)exp{&i(t) + yzi}, 
where X o ( t )  = 0.0008, 4 = -0.5, y = -0.5, and xi is 
the treatment indicator. A random censoring time (Ci) was 
generated based on the model X,(t) = exp{$o+$lzi(t)}, with 
$0 = -5.0 and $q = 0.0. 

One hundred data sets were generated and analyzed to 
obtain survival probability estimates at I year for each 
treatment group and estimates of the marginal treatment 
effect yo using three methods of analysis. First, for the fully 
observed (FO) analysis, which we treat as the gold standard, 
we applied the primary analysis (Kaplan-Meier estimation 
or Cox regression) to each data set without any random 
censoring so that Ti was equal to min(T:,2 years). Second, 
for the usual partially observed (PO) analysis, we applied the 
primary analysis to each data set with random censoring so 
that T, was equal to min(T:, Ci,2 years). Finally, the multiple- 
imputation (MI) analysis was based on the same data as the 
P O  analysis, but it used the auxiliary variables to impute 
event times past Ti but prior to 2 years. Fifty augmented 
data sets ( M  = 50) were created, the primary analysis was 
applied to each data set, and the results of the 50 analyses 
were combined. 

We computed the mean and standard deviation of 
estimates across the 100 data replicates. We also computed 
the average over the 100 replicates of the squared difference 

of the PO and MI estimates, respectively, from the FO 
estimates. This latter measure provides a single summary of 
the closeness of the PO and MI estimates to the FO estimates. 
We computed the squared-difference ratio (SDR), with values 
above 1.0 indicating improved estimation by the MI method. 

4.2 Szmulation Results 
4.2.1 Kaplan-Meier estimation. Over a range of parameter 
combinations, except in the case of dependent censoring, 
there was little bias associated with the MI method and the 
MI estimates were considerably less variable than the PO 
estimates. This was true even when there was no effect of 
the auxiliary variable on disease risk ( 4  = 0.0, model 4), 
which is consistent with the results for the TO imputation 
model in Section 3.1. The reason for the gain in efficiency 
is that extra information, specifically the assumptions of 
proportional hazards and a constant baseline hazard as well as 
the prior distributions, is used in the creation of the imputes 
but not in the primary analysis (also see Section 2.5). The MI 
method was better at reproducing the FO estimates than was 
the PO analysis, with the SDR ranging from 1.8 to 4.7. 

Table 2 
Estimated treatment effect from Cox 

regression based on partially observed data 
(no imputation) and multiply-imputed data 

Estimated 

Model To error t-Statistic” pva lue  
Estimate standard 

Partially 

Treatment only -0.799 0.260 
observed -0.798 0.266 

MI -0.861 0.250 
M2 -0.832 0.249 
M3 -0.812 0.256 
M4 -0.906 0.253 
M5 -0.823 0.250 
M6 -0.842 0.236 

a z-Statistic for partially observed analysis. 

3.00 
3.07 
3.44 
3.34 
3.17 
3.58 
3.29 
3.56 

0.0027 
0.0023 
0.0006 
0.0009 
0.0017 
0.0004 
0.0011 
0.0004 
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Table 3 
Estimated treatment effect from Cox regression based on partially observed data ( n o  

imputation) and on multiple imputation under model M1, with limited imputation times 

Estimate Estimated Percentage censored 

Limit ;vo standard error &Statistic pValue Treated Placebo 

Partially observed 
100 days 
200 days 
300 days 
400 days 
500 days 
600 days 
700 days 
NO limitb 

-0.798 
-0.817 
-0.853 
-0.870 
-0.869 
-0.860 
-0.862 
-0.861 
-0.861 

0.266 
0.263 
0.262 
0.264 
0.258 
0.252 
0.251 
0.250 
0.250 

a z-Statistic for partially observed analysis. 
Up to 720 days posttreatment. 

With the introduction of censoring that depends on the 
auxiliary variable (models 11 and 12), the mean of the MI 
estimate was closer than the PO mean to the mean FO es- 
timate, although the MI estimate was still biased. In models 
11 and 12, the assumptions regarding independent censoring 
required for the validity of the PO method are violated since 
censoring depends on 2,. To the extent that this dependence 
is explained by yi, the MI method corrects for it (see Assump- 
tion 2 in the Appendix). 

For models 1-10, the proportion of times the MI estimate 
plus or minus 1.96 times its estimated standard error con- 
tained the mean FO estimate ranged from 95 to 99% (data 
not shown) and always exceeded the coverage rate for the P O  
method, which ranged from 77 to 98%. The estimated SEs 
were on average 16% higher than the SDs of the point esti- 
mates for the MI method. This provides some evidence that 
our imputation model did not produce artificially small esti- 
mates of the standard errors (also see Section 2.5 and Remark 
B of the Appendix). 

The results for the placebo group are in general similar 
to those for the treated group, although for the MI method, 
there was a slight upward bias in the estimates for some of 
the models and the range of the SDR was 1.7-6.9. The results 
for survival probability estimates at 1.5 years were also calcu- 
lated and were similar to those at 1 year. Differences included 
slightly more bias in the estimates for the placebo group for 
the MI method under some models and greater efficiency gains 
for the MI method compared with the PO method. 

4.2.2 Cox regression. For estimating the marginal treat- 
ment effect yo over a range of parameter combinations, the 
MI method produced estimates that were less variable and 
closer to the FO method estimates than were the standard 
PO estimates, as shown in Table 4. Provided there was some 
effect of the auxiliary variable on disease risk, the MI method 
was better at reproducing the FO estimates than was the 
PO analysis, with the SDR ranging from 1.3 to  3.5. When 
there was no effect of the auxiliary variable on disease risk 
(4 = 0.0, model 4), the P O  and MI methods both provided 
approximately unbiased estimation of the mean FO esimate 
and there was no advantage to using the MI method compared 

3.00" 
3.10 
3.25 
3.30 
3.37 
3.41 
3.44 
3.44 
3.44 

0.0027 
0.0019 
0.0012 
0.0010 
0.0008 
0.0007 
0.0006 
0.0006 
0.0006 

97.2 
96.4 
95.6 
94.9 
94.0 
93.4 
93.1 
93.1 
93.1 

92.3 
90.3 
88.6 
87.2 
86.0 
85.2 
84.7 
84.6 
84.6 

with the PO method, which is consistent with the results for 
the TO imputation method in Section 3.2. 

The PO and MI methods were generally biased at estimat- 
ing the FO marginal treatment effect, even under independent 
censoring. This was due to the omission of the auxiliary vari- 
able from the primary analysis model, which results in the 
proportional hazards assumption in the marginal model (i.e., 
the primary analysis model) not strictly holding (see Section 
2.5). 

Finally, the proportion of times the MI estimate plus or 
minus 1.96 times its estimated standard error contained the 
mean FO estimate ranged from 70 to 99% across the 12 simu- 
lation conditions (data not shown). The corresponding range 
for the PO method was 35-98%, with the PO coverage rate 
never exceeding the MI coverage rate. The estimated SEs were 
on average 21% higher than the SDs of the point estimates for 
the MI method. This again provides some evidence that our 
imputation model did not produce artificially small estimates 
of the standard errors. 

5.  Discussion 
The simulation study shows that the use of the MI method 
can lead to improved performance of estimators. The MI point 
estimates were generally less variable and closer to those pro- 
duced by the FO method than were the estimates produced 
by the PO method. The MI approach did not eliminate all 
bias, however. In the case of dependent censoring, this may 
be due in part to the fact that the MI approach only adjusts 
for censoring related to the observed values y and not the 
latent values z. In the case of the Cox proportional hazards 
primary analysis model, it may be due in part to a deficiency 
in the fit of the primary analysis model (see Section 2.5). 

In the ACTG-019 trial, there was a large amount of censor- 
ing, some of which was administrative censoring due to termi- 
nation of the study and some of which was loss to follow-up. 
The reasons for subjects dropping out of the study may have 
been related to their health, which could lead to biased es- 
timates of survival probabilities due to dependent censoring. 
Utilizing the auxiliary CD4 variable, we found larger effect es- 
timates and lower estimated standard errors than produced by 
a standard analysis of the observed data. The magnitudes of 
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Table 4 
Simulation results: survival probability estimates at 1 year for  treated 

subjects and marginal treatment effect parameter (7’) estimates 

Squared 
difference 

Simulation model” Fully observed Partially observed Multiple imputation 

Y 4 PO $0 $1 Mean SD Mean SD Mean SD ratiob 

Survival Probability Estimates at One Year for Treated Subjects 
Base model 

1. -0.5 -0.50 -0.008 -5.0 0.0 

Vary treatment effect on disease 
2. -1.0 
3. 0.0 

Vary auxiliary-variable effect on disease 
4. 0.00 
5. -0.25 
6. -0.75 

Vary difference in p between treatments 
7. -0.012 
8. -0.004 

Vary amount of censoring 
9. -5.5 

10. -4.5 

Add dependent censoring 
11. -0.5 
12. -1.0 

0.74 

0.81 
0.65 

0.84 
0.81 
0.68 

0.74 
0.74 

0.74 
0.74 

0.74 
0.74 

0.029 

0.026 
0.030 

0.024 
0.024 
0.030 

0.029 
0.029 

0.029 
0.029 

0.029 
0.029 

0.74 

0.82 
0.65 

0.83 
0.81 
0.67 

0.74 
0.74 

0.73 
0.75 

0.90 
0.93 

0.058 

0.052 
0.070 

0.056 
0.053 
0.062 

0.058 
0.058 

0.042 
0.111 

0.030 
0.024 

1. -0.5 -0.50 -0.008 -5.0 
2. -1.0 
3. 0.0 
4. 0.00 
5. -0.25 
6. -0.75 
7. -0.012 
8. -0.004 
9. -5.5 

10. -4.5 
11. 
12. 

Marginal Treatment Effect Parameter (7’) 
0.0 -1.12 0.12 -0.72 0.24 

-1.49 0.13 -1.15 0.26 
-0.78 0.11 -0.32 0.22 
-0.49 0.16 -0.51 0.31 
-1.03 0.14 -0.71 0.28 
-1.10 0.12 -0.62 0.21 
-1.47 0.12 -0.90 0.24 
-0.73 0.13 -0.55 0.25 
-1.12 0.12 -0.81 0.21 
-1.12 0.12 -0.64 0.29 

-0.5 -1.12 0.12 -0.81 0.34 
-1.0 -1.12 0.12 -0.92 0.35 

0.74 

0.81 
0.65 

0.84 
0.80 
0.68 

0.73 
0.74 

0.74 
0.73 

0.84 
0.87 

-0.87 
-1.19 
-0.57 
-0.47 
-0.87 
-0.81 
-1.11 
-0.58 
-0.92 
-0.79 
-1.05 
-1.08 

0.039 2.3 

0.036 2.4 
0.045 2.6 

0.036 2.8 
0.041 1.9 
0.040 3.1 

0.037 2.5 
0.039 2.4 

0.034 1.8 
0.051 4.7 

0.034 2.3 
0.037 1.9 

0.21 2.1 
0.22 1.3 
0.19 3.5 
0.33 0.9 
0.26 2.1 
0.19 2.4 
0.21 2.3 
0.22 1.4 
0.19 1.9 
0.26 1.8 
0.28 2.7 
0.32 1.8 

a Parameters are set to the base-model values unless otherwise noted. Remaining model parameter values are given in Section 4.1. 
(Partially observed dif2)/(multiple-imputation dif2), where dif2 is the average across 100 replicates of the squared difference of the 

estimate from the fully observed estimate. 

these changes were consistent with results from other articles 
(e.g., Murray and Tsiatis, 1996). These results could indicate 
improved performance of the MI method or they could be an 
artifact of the assumed imputation model. We addressed the 
latter by comparing analyses under different imputation mod- 
els. The consistency of the qualitative conclusions regardless 
of the model used was reassuring, but results from a single 
data set cannot be considered conclusive evidence that our 
approach adjusted for dependent censoring or produced more 
efficient estimates. Also, although imputation models Ml-M6 
are flexible, none can be assumed to be perfect, and thus to 

the extent that they are not “true,” they may induce some 
bias in the final parameter estimates. 

The use of multiple imputation to handle censored obser- 
vations provides two potential sources of robustness to model 
misspecification in addition to that achieved by avoiding ex- 
trapolation outside the range of the data. First, if a large 
amount of information is missing about a subject’s failure 
time, then the multiply-imputed failure times are likely to dis- 
play a large amount of variability, which could swamp bias due 
to model misspecification. Second, methods based on models 
other than those used for imputation, such as a Weibull regres- 
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sion or a log-rank comparison, could be used for the analysis 
of the augmented data sets. Thus, the assumptions underly- 
ing the imputation method need only affect final inferences 
through their effect on the imputed values for the censored 
survival times and not through the method chosen to analyze 
the augmented data. As discussed in Section 2.5, however, use 
of a primary analysis method that is incompatible with the 
imputation method can result in incorrect inferences. 

Our general approach of joint modeling followed by multi- 
ple imputation has the flexibility to be extended in a num- 
ber of ways. Different forms could be considered for both the 
joint survival/auxiliary imputation model and the primary 
analysis models. Other time-dependent covariates could be 
investigated, including categorical covariates (e.g., Faucett, 
Schenker, and Elashoff, 1998), and important baseline prog- 
nostic categorical or continuous variables could be added to 
the models, as demonstrated by our adding age in model M6. 
We suspect that, under the correct models, superior perfor- 
mance of the estimates could be achieved through the use of 
a more accurate and/or more frequently measured marker of 
disease progression. 
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RESUME 
Nous avons dkveloppk une approche fondke sur le principe 
de l’imputation multiple pour utiliser des variables auxiliaires 
afin de reconstituer l’information des donnkes censurbes dans 
les analyses de survie. Nous appliquerons cette approche h 
des donnkes issues d’un essai clinique dans le SIDA com- 
parant ZDV et placebo, pour lequel la numkration des CD4 
est la variable auxiliaire dependant du temps. Pour faciliter 
l’imputation, un modble joint est dkveloppk pour les donnkes, 
qui inclut un modble hikrarchique de changement d’btat pour 
les CDL et un modble des taux proportionnels pour les dklais 
de survenue du SIDA. La mkthode de Monte Carlo pour des 
chaines de Markov est utiliske pour une imputation multiple 
des temps d’kvknements aux observations censurkes. La s6rie 
de donnkes ainsi 6toffke est ensuite analyske et les r6sultats 
combinks en utilisant des techniques d’imputation multiple 
standard. Une comparaison de notre approche aprbs imputa- 
tion multiple et de la simple analyse des donnkes observkes 
indique que l’imputation multiple conduit h une faible mod- 
ification de la mesure de l’effet du ZDV et h une estima- 
tion plus faible des kcarts type. Une analyse de sensibilitk 
sugghre que ces rksultats sont stables pour plusieurs modhles 
d’imputation. Une ktude de simulation montre qu’il peut en 
rksulter une amelioration de l’efficacitk de la prockdure par 
rapport k une analyse classique et une correction partielle 
en cas de censure dependante. Un problbme est nbanmoins 
apparu avec notre approche qui est de savoir si l’analyse de 
premier int6ri.t et le modhle d’imputation sont compatibles. 
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APPENDIX 

Conditions for Validity of the Procedures 

We describe conditions for the validity of our procedures when 
we do not impose time limits on the imputed values of To.  In 
Remark C, we discuss the effect of imposing such time limits. 

Let yf denote the full history of the longitudinal auxiliary 
variable up to time T and let ym denote the values in yf 
that are not included in the observed y due to only periodic 
follow-up. The assumptions about censoring and missing data 
that underlie our imputation procedure are 

1. To and C are independent, given x, yf, and z. 
2. C is independent of ym and z, given x and y. 
3. The parameters of [To,yf,z 1 x] are distinct from the 

parameters of [C I x, yf ,.I. 

4. Missingness of the longitudinal auxiliary variable, in the 
sense that y is observed instead of yf , is ignorable (Ru- 
bin, 1976). 

Under these assumptions, using arguments analogous to 
those used in the appendix of Faucett et al. (1998), it can be 
shown that our imputation procedure is equivalent to draw- 
ing To from the correct posterior predictive distribution with 
density p(To 1 T,X,Y,D) .  Implicit in this result is an as- 
sumption that, given x and z, the distribution of To does 
not depend on yf. A similar assumption was made in Section 
2.3.2. 

The parameters of primary interest, say yo, are the pa- 
rameters of [To d x']. Under assumptions 1-4, the posterior 
distribution of y can be shown to be equal to 

Moreover, suppose that a fifth assumption holds, i.e., 

5. The parameters of [y,xl 1 To,x'] are distinct from yo, 
where x1 contains the variables 

Then it can be shown that 

[yo I TO,X,Y] = [TO 

and (1) becomes 

/ P ( ? '  I TO,XO)P(T' I 'I 

. .  
d x other than x'. 

T O ,  xO] 1 (2) 

X,Y,D) dT'. (3) 

Our MI inference procedure uses simulation to approximate 
(3), with p(y' I To,Xo) approximated by the primary anal- 
ysis. Thus, to the extent that the primary analysis provides 
an adequate approximation (see Section 2.5) and assumptions 
1-5 hold, our procedure is valid under our joint model for the 
observed data. 

Remark A .  Standard assumptions about censoring for the 
PO analysis are that To and C' are independent given xo 
and that the parameters of [To I xo] are distinct from the 
parameters of [C I xo] (Kalbfleisch and Prentice, 1980, p. 40). 
It can be shown that the former (independence) assumption 
is equivalent to the following: 

1'. To and C are independent given xo and z. 
2'. Either To and z are independent given xo or C and z 

are independent given xo. 

Assumption 1' is usually stronger than the corresponding 
MI Assumption 1 because the former assumes independence 
with less conditioning than the latter. Moreover, as long as 
the latent auxiliary variables z contain information about To 
in addition to that contained in x', assumption 2' becomes 
an assumption that C and z are independent given xo, which 
similarly is often stronger than Assumption 2 with regard to C 
and z. 

Remark B. Assumption 5 underlying our MI procedure and 
the resulting equation (2) express the notion that y and x1 do 
not contain any information about yo in addition to that con- 
tained in To and xo. This assumption is difficult to check for 
our joint model. We suspect that violation of the assumption 
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is analogous to the second type of incompatibility discussed in 
Section 2.5, in which the imputation model incorporates extra 
information that is not used in the procedure for analyzing 
the augmented data. 

Remark G. Because we censor our imputations at tmax 
days (see Section 2.4.2), our method’s adjustment for depen- 
dent censoring is only a partial adjustment in some cases. 
For example, consider the situation in which subjects with 
higher CD4 are censored more frequently and also tend to 
have longer failure times. (This type of situation was dis- 

cussed briefly in Section 3.1.) Our method adjusts for such 
dependent censoring by imputing longer failure times for cen- 
sored subjects with higher CD4 counts. But our censoring at 
t m m  days can counteract this adjustment for subjects with 
imputed failure times that are longer than t,,, days. As the 
discussions in Section 2.4.2 and this remark imply, our im- 
putation procedure in a sense balances not doing a complete 
job of adjusting for dependent censoring against extrapolating 
beyond the range of the data. 




