BIOMETRICS 65, 478-486 DOI: 10.1111/j.1541-0420.2008.01102.x

June 2009
Mixed-Effect Hybrid Models for Longitudinal Data
with Nonignorable Dropout
Ying Yuan'* and Roderick J. A. Little?
'Department of Biostatistics, University of Texas M.D. Anderson Cancer Center,
Houston, Texas 77030, U.S.A.
2Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
*email: yyuan@mdanderson.org
SUMMARY.  Selection models and pattern-mixture models are often used to deal with nonignorable dropout in longitudinal

studies. These two classes of models are based on different factorizations of the joint distribution of the outcome process
and the dropout process. We consider a new class of models, called mixed-effect hybrid models (MEHMSs), where the joint
distribution of the outcome process and dropout process is factorized into the marginal distribution of random effects, the
dropout process conditional on random effects, and the outcome process conditional on dropout patterns and random effects.
MEHMs combine features of selection models and pattern-mixture models: they directly model the missingness process as in
selection models, and enjoy the computational simplicity of pattern-mixture models. The MEHM provides a generalization of
shared-parameter models (SPMs) by relaxing the conditional independence assumption between the measurement process and
the dropout process given random effects. Because SPMs are nested within MEHMs, likelihood ratio tests can be constructed
to evaluate the conditional independence assumption of SPMs. We use data from a pediatric AIDS clinical trial to illustrate

the models.
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1. Introduction

Missing data are a common problem in longitudinal studies,
and are frequently caused by dropout, whereby subjects are
lost to follow-up and thereafter their responses are not ob-
served. In many cases, dropout depends on either unobserved
values or an underlying response process, resulting in non-
ignorable missing data (Little and Rubin, 2002). Analysis of
such data requires jointly modeling the outcome process and
the missing data mechanism. Likelihood based and estimation
equation methods have been proposed to handle this problem.
For the likelihood-based approach, Little (1995) identified two
broad classes of nonignorable models based on different fac-
torizations of the likelihood of the outcome process and the
dropout process: selection models (Wu and Carroll, 1988; Dig-
gle and Kenward, 1994; Follman and Wu, 1995, among oth-
ers) and pattern-mixture models (Wu and Bailey, 1989; Little,
1993, 1994; Hogan and Laird, 1997a; Fitzmaurice, Laird, and
Schneyer, 2001, among others). Approaches based on estima-
tion equations include inverse probability methods (Robins,
Rotnitzky, and Zhao, 1995; Rotnitzky, Robins, and Scharf-
stein, 1998; Scharfstein, Robins, and Rotnitzky, 1999). Recent
reviews of methods handling nonignorable dropout in longi-
tudinal data can be found in Little (1995, 2008), Verbeke
and Molenberghs (2000), and Hogan, Roy, and Korkontzelou
(2004).

Little (2008) defined a new class of likelihood-based mod-
els, namely, mixed-effect hybrid models (MEHMs), based on
a new factorization of the likelihood of the outcome process
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and the dropout process. Unlike selection models and pattern-
mixture models, we factorize the likelihood of the outcome
process and the dropout process into the marginal distribu-
tion of random effects, the conditional distribution of the
dropout pattern given random effects, and the conditional
distribution of the outcome given both random effects and
the dropout pattern. The resulting MEHMs have features
of selection models in that they directly model the dropout
process, and also have features of pattern-mixture models in
that the sample is stratified by the missing data patterns and
the outcome process is modeled over these patterns. As a
result, the MEHM directly models the missing data mecha-
nism, an attractive feature of selection models, and it shares
with pattern-mixture models the desirable feature of compu-
tational simplicity. MEHMs also provide a generalization of
the shared-parameter model (SPM; Wu and Carroll, 1988;
De Gruttola and Tu, 1994; Follman and Wu, 1995). Because
SPMs are nested within MEHMs, MEHMs provide a conve-
nient way to test the conditional independence assumption
and goodness of fit of SPMs via likelihood ratio tests.

We apply our methods to a double-blind randomized pe-
diatric AIDS trial (Brady et al., 1996), previously analyzed
by Hogan, Lin, and Herman (2004). The primary objec-
tive of the trial was to investigate whether a lower dosage
(90 mg/m?/dose) of zidovudine was equally effective as a
higher dosage (180 mg/m?/dose) of zidovudine to treat HIV-
infected children (3 months to 12 years of age) with mild to
moderate symptoms. A total number of 424 subjects were
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enrolled and randomized into a low-dose group (n = 216) and
a high-dose group (n = 208). Participants were followed up
to 5 years to collect a number of endpoints, such as CD4 cells
count, neuropsychologic evaluation, and serum p24 antigen
level. In this article, we are interested in comparing the lon-
gitudinal trajectory of CD4 cell counts between the two dose
groups. Subjects were scheduled for measurements of CD4
count before entry and every 12 weeks up to week 200; how-
ever, the actual measurement times may have varied. This
trial experienced a significant amount of dropout: only 52%
and 45% of the subjects completed 3 years of follow-up for
the low- and high-dose groups, respectively. There were also
some intermittent missing values. As the intermittent missing
visits were often due to reasons unrelated to the response vari-
able (i.e., CD4 count), we assume that the intermittent miss-
ing data are missing at random. Because methods proposed
here are likelihood based, we can ignore the intermittent miss-
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ing data and only focus on nonignorable missing data due to
dropout.

In AIDS studies, dropout is often associated with the level
or underlying rate of change of the CD4 counts, thus leading
to nonignorable missing data (Wu and Carroll, 1988; De Grut-
tola and Tu, 1994; Hogan and Laird, 1997b). Figure 1 shows
the estimated individual least-square slopes versus dropout
time for the children in the HIV trial. It is clear that the
lower slopes are associated with early dropout, suggesting
that the dropouts may be nonignorable. In this case, the stan-
dard random-effects model (REM) leads to biased estimates
(Little and Rubin, 2002), and we need to model the dropout
process to obtain consistent estimates.

The remainder of the article is organized as follows. In
Section 2, we define MEHMs, and in Section 3, we provide
estimation procedures. In Section 4, we present a simula-
tion study comparing these methods with other methods. In
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Figure 1. Subject-specific least-square slopes for square root of CD4 count as a function of dropout time for (a) low dose

and (b) high dose with least-square regression line.
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Section 5, we illustrate our methods by analyzing the pedi-
atric AIDS trial data. We provide conclusions in Section 6.

2. Models

Suppose a longitudinal study is designed to collect K re-
peated measurements of a response Y and covariates X for
each of n subjects. Let Y; = (Yi1,...,Yix) denote a vector
of repeated measurements planned for subject i, and X; =
(Xi1,...,Xx) with X;; = (Xij1,...,X;jp) denote the as-
sociated K X p covariates matrix. We assume that X, is
fully observed (e.g., external or fixed by study design), but
Y;; is subject to missingness due to dropout. Let D; index
dropout patterns, such that D; = K for complete cases, and
D, = k if the subject i drops out between the kth and (k +
1)th measurement time, i.e., ¥;1,...,y;r are observed and
Yik+1,---,Yix are missing, for k = 1,..., K. We assume at
least one observation for each subject, as subjects without
any observations have no information and are often excluded
from the analysis. We use Y? to denote the observed part of
Y, and Y}" to denote the missing part of Y.

Longitudinal data are often modeled by mixed-effects mod-
els (Laird and Ware, 1982) where random effects, say b;, are
used to model the correlation of repeated measurements on
the same subject. The likelihood of the observed data is ob-
tained by integrating the missing data Y!" and random effects
b; from the joint distribution of (Y;, D;, b;):

N
18D, Y",X) :H//fwi,n,bi|Xi,e>dY:-"dbi, 1)
i=1

where 0 denotes a vector of unknown parameters.

2.1 Selection and Pattern-Mizture Models

A rich class of models can be formed by different factorization
of f(D;,Y;,b;|X;,0) in equation (1). In particular, Little
(1995) calls models based on the factorization

f(Diythi ‘Xiye) = fB(bi |Xi771)fY\B(Yi |Xi7bi7'72)
XfD\Y,B(DHXi,Ymbmw) (2)

mixed-effect selection models, where 71,72, and @ are pa-
rameter vectors indexing the corresponding densities. Models
based on the factorization

f(DiaYivbi ‘Xive) = fD(Di |Xi75)fB\D(bi \Xian'h)
X fy .0 (Y| X;,bi,D;,vs) (3)

are called mixed-effect pattern-mixture models, with §,v,
and vy parameter vectors indexing the corresponding densi-
ties.

Mixed-effect selection models provide a natural way of fac-
toring the model, with fzfy|p the mixed-effects model for
the data in the absence of missing values, and fpy s the
model for the missing-data mechanism that specifies how
the dropout depends on the outcome variable Y and la-
tent random effects b;. As a special case of mixed-effect
selection models, SPMs (Wu and Carroll, 1988; De Grut-
tola and Tu, 1994; Follman and Wu, 1995; Ten Have et
al., 1998) assume that dropout is independent of outcome
Y, when conditioned on the underlying random effects b;,
ie, fD\Y‘B(Di | X, Y, b;,1) = fD\B(Di, | Xi,bi,). SPMs
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implicitly correlate the dropout process with the longitudi-
nal outcome process by modeling both processes with shared
random effects.

Mixed-effect pattern-mixture models are based on factor-
ization (3). This approach stratifies the sample by the pat-
terns of missing data (e.g., by the times of dropout) and then
models the difference in the distribution of Y'; over these pat-
terns. Pattern-mixture models are particularly suitable for sit-
uations in which it is not substantively meaningful to consider
nonresponse as missing data, and it may make better sense
to restrict the inference to the subpopulation of cases with
observed values. Other desirable features of pattern-mixture
models are that in some cases they do not require full spec-
ification of the missing data mechanism, and they are often
computationally simpler than selection models. For compar-
isons of selection and pattern-mixture models, see for example
Little (1995), Michiels, Molenberghs, and Lipsitz (1999), and
Verbeke and Molenberghs (2000).

2.2 Mized-Effects Hybrid Model

Little (2008) proposed a new class of models based on another
factorization of the joint distribution of Y';, b;, and D;:

f(Di,Yi,b;1X,0) = fp(bi | Xi,71)fp13(Di | Xi,b;,9)
X fyig,p (Y| X, b;,D;,vs). (4)

This factorization has features of both equations (2) and (3).
In particular, the first two factors explicitly model the dropout
process, a feature of mixed-effects selection models, and the
third factor models the longitudinal outcome process condi-
tional on the pattern of missing data, a feature of pattern-
mixture models. Therefore, we call models based on the fac-
torization (4) MEHMs. Little (2008) did not consider these
models in any detail or provide examples.

SPMs are special cases of MEHMs obtained by
assuming the same outcome processes across differ-
ent missing patterns given b;, fy . p (Y, |X,,b;,D;,vs) =
fr18(Y;|X,;,b;,v;), that is, conditional independence be-
tween Y; and D; given the random effects b;. This crucial
assumption underlying the SPM is often difficult to test. Pulk-
stenis, Ten Have, and Landis (1998) proposed testing the con-
ditional independence by including observed data Y9 as co-
variates in the model of the dropout process. Because the
SPM is nested within the MEHM, a likelihood ratio test can
be used to test the validity of the conditional independence
assumption of SPMs.

The MEHM combines some desirable features of selection
models and pattern-mixture models. In common with selec-
tion models, the MEHM directly models the dropout process.
This is natural and easily understood by researchers, thereby
facilitating the elicitation of expert opinions to formulate rea-
sonable dropout models. Incorporating outside information
about the missing data mechanism is especially important for
nonignorable models because the missing data mechanism is
untestable based on observed data. On the other hand, as
with pattern-mixture models, the computation for MEHMs
is relatively simple, because the missing data Y* can be in-
tegrated out from the joint distribution of (D;,Y?,Y " b;)
under the factorization (4). As we describe in Section 3, some
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MEHMSs can be fitted conveniently by standard software such
as SAS Proc NLMIXED.

The MEHM is also advantageous when it is meaningful to
model the outcomes in strata defined by the patterns of miss-
ing data. An important example is when dropout is caused by
death, and it is not meaningful to define values of the outcome
for individuals who do not survive. This is often the case with
clinical trials of AIDS or other severe diseases, where many of
the dropouts are attributable to death. However, in the pe-
diatric AIDS clinical trial we consider here, patients enrolled
were a relatively healthy group of HIV-infected children, and
only 18% of dropouts were due to death. The majority of
dropouts were a result of parental or physician request be-
cause of concern of disease progression or interest in newer
antiretroviral agents (Brady et al., 1996). In our analysis we
make inferences about marginal effects of the drug by av-
eraging over missing data patterns, while noting that if we
had information to distinguish dropout by death from other
causes, the analysis would be improved by conditioning on
the subset of cases who survived. The MEHM model provides
flexibility to make conditional inference or marginal inference
(with respect to the missing data strata), depending on which
is substantively meaningful.

We now describe the particular form of MEHM used to an-
alyze these data. We model the longitudinal outcome process
using a linear mixed-effects model:

Y| X, Z:,b;,Di = k ~ N (X.8%) + Z,b,,50)  (5)
b;|T ~ N,(0,T)

where Nk (p,¥) denotes the K-variate normal distribution
with mean p and covariance matrix 3; B8%) is a vector of
unknown parameters characterizing the conditional effects of
covariates X; given the missing pattern k X*) and T are
unknown covariance matrices; and Z; is a known K X ¢ design
matrix associated with random effects b;.

To model the missing data mechanism, we define the
discrete hazard rate of dropout N\ =Pr(D;, =k|D; >
k;wip, b;), for k = 1,..., K, where w;; are fixed covariates
and \; x = 1. We model the discrete time dropout process by
the continuation-ratio logit model (Agresti, 2002):

logit(Aix ) = wiy + @b, (6)

where ¢ is a vector of parameters that govern the relation-
ship between the random effects and the dropout process. The
conditional probability of the ith subject who drops out right
after the kth measurement given w;; and the random effects
b,j is

ES

-1
Pr(D; =k |bj,wir) = Aip | | (1 -
1

Aij)- (7)

J

Note that if 3%) = 8 and =*) = ¥ in model (5), the above
MEHM becomes an SPM.

When the effect of covariates X ; on the marginal mean of Y
is of interest, it can be obtained by averaging the conditional
mean over the random effects b; and the missing pattern D,.
For the model (5) this yields
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E(Y;|Xi,Z;) = By, Ep, b, (Xiﬁ(k’) + Z'ibi)
K
= X ZEb,, (mi1)B"), (8)
b1

where m;, = Pr(D; = k|b;, w;);). The marginal effect of the
covariates X; is a weighted average of B%*). The weight
Ey, (m;;) can be obtained by numerically integrating out ran-
dom effects b; from the conditional dropout probability (7).
More simply, if this is assumed independent of the covari-
ates, it can be estimated by nj/n, where n; is the number
of subjects who dropped out between the kth and (k + 1)th
measurement time.

Nonignorable models typically suffer from identification
problems. The MEHM (5) specifies distinct fixed parameters
B%) and *) and is clearly not identified, because the param-
eters of the complete-data distribution of Y; are not estimable
for incomplete patterns. For instance, for D; = k with k #
K, some components of the covariance structure X*) are not
estimable. Particular structures might be specified for %)
or/and B*) to identify the model. For %), one common as-
sumption in mixed-effects models is that {Y;,...,Y x} are
independent given the random effects b;, yielding X*) = o1,
where I is a K x K identity matrix. More often, we assume
that {Y1,...,Y x} are identically independent distributed
conditional on b;, i.e., *) = ¢2I. If the conditional indepen-
dence of {Y;y,...,Y x} does not hold, we may assume that
the covariance matrix is the same across missing patterns,
ie.,, Z*) = 3, to identify the parameters, but this approach
requires that some subjects complete the study. The identi-
fiability of B%) depends on the nature of the associated co-
variates X;. If X; are time independent, %) is individually
estimable as long as the number of subjects in each missing
pattern exceeds the number of parameters. If the covariate is
time or time dependent, B is not identified, because the es-
timation of straight lines requires at least two observed time
points, and this pattern contains only one observation. These
cases might simply be omitted from the analysis. Alterna-
tively, we may impose some structure on 3*), for example,
assuming that the intercept is independent of the pattern,
and the slope is linearly related with the dropout time (Wu
and Bailey, 1989). We adopt this approach to obtain a par-
simonious MEHM for the pediatric AIDS trial, for which the

number of missing patterns is large.

3. Estimation

Under the MEHM, the estimates of unknown parameters
B%), o., T, ~, and ¢ are obtained by maximizing the
marginal likelihood (1). We obtained this marginal likelihood
by numerical integration over the random-effects distribution
using the adaptive Gaussian quadrature approximation (Pin-
heiro and Bates, 1995). We then maximized the marginal
likelihood with respect to the unknown parameters using a
quasi-Newton approach. To choose appropriate initial values
of parameters in the quasi-Newton maximization algorithm,
we first fit the hybrid model by a two-stage estimation pro-
cedure: at the first stage, fit the model (5) without consid-
ering the dropout process; and at the second stage, fit the
dropout model (6) by replacing b; with the estimates obtained
from the first stage. Estimates of parameters resulting from
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the two-stage estimation can then be used as initial values
in the quasi-Newton algorithm. These estimates are biased,
but they serve well as initial values for maximization. The
adaptive Gaussian quadrature and quasi-Newton algorithms
have been implemented in Proc NLMIXED in SAS 9.1. We used
this procedure to fit the MEHM.

4. Simulation Study

We carried out a simulation study to compare the perfor-
mance of MEHM with several alternative models. We assumed
n = 200 subjects with four repeated measures, and two co-
variates X and Z, where X was generated from N(1, 1), and
Z ={1, 2, 3, 4} denotes the vector of measurement times. The
outcome variable Y was generated according to the following
model

Yij | Xi, Zij,boi, b1y, Di = k ~ N(bUi + b1 Zij Jrﬁ(k)XhUz),
k=1,...,4.

2 2
boi|040,ToNN(OZU,TU)7 b1i|041,7'1NN(C1177'1)-

We assumed that the dropout probability depends only on
the random slope by; and covariate X via logit(A;y, |by;) =
do + ¢1b; + X We set ¢y = —4.1,¢1 = 1,97 =
—0.6,a; = 3, and 72 = 2, so that on average 45% of sub-
jects drop out prematurely. In terms of how the outcome
process depends on dropout patterns, we simulated four
scenarios: (i) both the regression parameter and variance
vary across dropout patterns, i.e., 8 = {51, 3% 3631 =
{1,2,4,5} and o2 = {02,0%,0%,02} = {1,2,4,6}; (ii) the re-
gression parameter varies across the dropout pattern but the
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variance does not, i.e., B = {1,2,4,5} and o?={2,2,2,2};
(iii) the variance varies across the dropout pattern but the re-
gression parameter does not, i.e., 8 = {3.62,3.62, 3.62,3.62}
and o?={1,2,4,6}; and (iv) both the regression parame-
ter and variance are constant across dropout patterns, i.e.,
8 = {3.62,3.62,3.62,3.62}, and o? = {2,2,2,2}. We set other
parameters as ag = 2 and 73 = 1.5. Dropouts are nonignor-
able in the above four scenarios. For comparison, we also
simulated another scenario in which dropouts are missing
at random by setting ¢, = 0, 8 = {3.62, 3.62, 3.62, 3.62}, and
o?=1{2,2,2,2}. Under each of these scenarios, 1000 data sets
were generated. We analyzed each simulated data set using
a standard REM (Laird and Ware, 1982), an SPM, and an
MEHM. We were interested in making inference about the
marginal effect of Z and X, i.e., ag, a1, and (3, where 3 is
the marginal effect of X obtained by averaging %) over the
dropout patterns. In our simulation, the true values of «g, a1,
and @ are 2, 3, and 3.62, respectively.

The results are reported in Table 1. Across all scenarios, the
MEHM yielded unbiased estimates of g, a1, and # and sound
coverage probabilities close to the nominal value (0.950). In
contrast, the SPM led to biased estimates of ag,a;, and
when $*) varied across missing patterns (scenarios 1 and 2),
i.e., the conditional independence assumption was violated.
Although ag and «; were constant across missing patterns,
misspecification of %) also caused bias in the estimates of
these parameters. In these situations, coverage probabilities
of 95% confidence intervals of these parameters were gener-
ally poor (i.e., less than 70%). When regression parameters

were constant and only the residual variance o} varied across

Table 1
Standardized bias (SB) (i.e., bias/standard error), average standard error (SE), and coverage probability (CP) of the
95% confidence interval for estimates of regression parameters based on the standard REM, the SPM, and the
MEHM. The biased estimates are highlighted by boldface.

Model SB SE CP SB SE CP SB SE CP
Scenario 1: g% = {1, 2, 4, 5}, 02 = {1, 2, 4, 6}
REM 1.64 0.34 0.608 —3.86 0.14 0.030 2.19 0.21 0.449
SPM 1.31 0.36 0.700 —2.50 0.18 0.262 2.19 0.21 0.464
MEHM 0.03 0.30 0.948 0.00 0.16 0.947 0.05 0.22 0.946
Scenario 2: 8% = {1, 2, 4, 5}, 07 = {2, 2, 2, 2}
REM 2.14 0.29 0.401 —4.58 0.12 0.004 2.11 0.19 0.445
SPM 1.73 0.30 0.577 3.29 0.14 0.111 2.11 0.19 0.448
MEHM 0.00 0.14 0.951 0.07 0.14 0.951 —-0.10 0.20 0.938
Scenario 3: B%) = {3.62, 3.62, 3.62, 3.62}, 0 = {1, 2, 4, 6}
REM 1.61 0.31 0.623 —3.86 0.14 0.042 0.11 0.19 0.940
SPM 0.06 0.32 0.942 0.00 0.17 0.942 0.00 0.19 0.947
MEHM 0.00 0.30 0.943 0.00 0.16 0.951 0.00 0.18 0.934
Scenario 4: 8% = {3.62, 3.62, 3.62, 3.62}, 02 = {2, 2, 2, 2}
REM 1.79 0.24 0.609 -3.17 0.12 0.115 —0.27 0.15 0.945
SPM 0.04 0.24 0.946 0.00 0.14 0.947 0.00 0.15 0.942
MEHM 0.04 0.24 0.944 0.00 0.14 0.941 0.00 0.16 0.956
Scenario 5: Missing at random
REM 0.04 0.24 0.952 0.07 0.13 0.947 0.00 0.15 0.943
SPM 0.04 0.24 0.957 0.07 0.13 0.951 0.00 0.15 0.939
MEHM —0.04 0.24 0.956 0.07 0.14 0.951 0.00 0.16 0.943
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missing patterns (scenarios 3 and 4), SPM yielded estimates
of regression parameters with little empirical bias and close
to nominal coverage probabilities, but estimates of the vari-
ance components o, 7o, and 7, were biased (results are not
shown). As expected, the estimates from REM were generally
biased except when missing data were missing at random. In
the case in which regression parameters were constant and
only the residual variance varied across missing patterns (sce-
narios 3 and 4), the REM estimates of oy and a; were biased
but the estimate of 5 was largely unbiased because 8 was not
associated with the dropout process. In summary, the sim-
ulation demonstrates that estimates based on SPM can be
seriously biased if the conditional independent assumption is
violated, and that MEHM is a more general model that does
not require the conditional independence assumption to yield
consistent estimates.

The estimation procedure proposed in Section 3 is rather
efficient. Under our simulation settings, it took about 20 sec-
onds to fit the MEHM in a PC with a Pentium 3.00 GHZ
CPU, and about 98.5% iterations successfully converged. The
algorithm failed to converge in a small percentage of simula-
tions, because the number of observations with some missing
data patterns was occasionally small (e.g., less than 5).

To assess robustness, we assessed the behavior of our mod-
els as the distribution of the response Y;; departures from
normal. We simulated data by assuming that the error of Y
was from a ¢ distribution with a degree of freedom of 2, or from
a gamma distribution with the scale parameter of 2 and the
shape parameter of 2. The simulation results (Web Table 1)
suggest that the proposed model is not particularly robust to
the severe violation of the normality assumption. Where pos-
sible, an appropriate transformation should be considered to
improve the normality of data.

5. Application

In this section, we describe our analysis of the pediatric AIDS
data using three different models: REM, SPM, and MEHM.
The square root transformation is applied to the CD4 count
to improve the normality, and we fitted each model separately
by dose.

5.1 Models

A simple but reasonable approach to analyze the pediatric
AIDS data is to use an REM:
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Yij | boisbri ~ N(ﬁo + Bity; + boi + blit;/‘aoj) (9)

bo; ~ N 0 7 T11, T12 ’
b 0 Ti2, Too

where Y;; is the square root of the CD4 count at the jth
measurement time ¢;;; B9 and 1 are fixed-effects parameters;
and by; and by; are subject-specific random intercepts and
slopes. Following Hogan, Lin, and Herman (2004), we rescaled
the time using t;; = ¢;;/range(t;;) so that the new time scale
has a range of 1. The rescaling makes the estimates more
stable by increasing the variance of individual slopes away
from zero, and also improves the interpretation of parameters.
In particular, 8, represents the average total change in the
square root of the CD4 count from baseline to the longest
follow-up time for the study. The linear relationship between
the square root of the CD4 count Y;; and the measurement
time ¢; for both treatment arms is supported by the plots
(Web Figure 1).

The association between the dropout time and the individ-
ual least-square estimate of the slopes (Figure 1) motivated
us to fit an SPM to reflect that relationship. SPMs have been
previously used to account for nonignorable (or informative)
dropouts in AIDS clinical trials by Wu and Carroll (1988) and
De Gruttola and Tu (1994). SPMs consist of two components:
a model for the outcome process and a model for the dropout
process. We model the measurement process using the REM
(9), and model the dropout process using the continuation-
ratio logit model (6) with random intercepts and slopes as
regressors.

We also fit the proposed MEHM to the pediatric AIDS
data. Given that there are 17 possible missing patterns and
some of them have sparse data, we adopt the approach of Wu
and Carroll (1989) and assume that

k L) * k *
/8(<) ) =M+ ,th(k) ) ﬁi ) =7+ ’74t(k) )

where ¢ = (#®) — L 5™ 1®)) /range(t;;) with ¢*) denotes
the dropout time of the kth missing pattern. We centered the
dropout time t*) so that +; and ~3 have desirable marginal
interpretations (Fitzmaurice et al., 2001). Note that if vo =
~v4 = 0, the MEHM becomes an SPM.

(10)

5.2 Results

Table 2 shows estimates and associated standard errors for the
marginal regression coeflicients. In the REM and SPM, [, and

Table 2
Estimates of intercept and slope characterizing the marginal mean of the CDJ trajectory
under the standard REM, the SPM, and the MEHM. Standard errors of the estimates
appear in parentheses.

Zidovudine dose

Model Parameter Low (90 mg) High (180 mg) Difference p-value
REM Bo 28.6 (0.8) 30.1 (0.9)

4 ~12.7 (0.8) ~18.2 (1.4) 5.5 (1.6) 0.0007
SPM Bo 28.8 (0.8) 30.1 (0.9)

e ~13.6 (0.9) ~19.0 (1.4) 5.4 (1.6) 0.0007
MEHM - 29.0 (0.8) 30.1 (0.9)

vy ~16.7 (1.0) —20.7 (1.5) 4.0 (1.8) 0.03
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Table 3
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Estimates of parameters characterizing the dropout process
and the overall likelihood under the SPM and the MEHM.
Standard errors of the estimates appear in parentheses.

Zidovudine dose

(1 are marginal intercept and slope regression parameters. In
the MEHM, as described in equation (8), we need to average
over the dropout patterns to obtain the marginal regression
parameters. Because we centered the dropout time in equation
(10), 1 and ~3 directly represent the marginal intercept and
slope parameters. As expected, the slope estimates for SPM

Dosage Parameter SPM MEHM and MEHM are smaller than for REM, because SPM and
Low o ~2.39 (0.07) ~2.40 (0.07) MEHM talfe into account the fact .that early d.ropout's are as-
sociated with lower slopes. There is no appreciable difference
(90 mg) o —0.017 (0.007) 0.001 (0.009) . . )
b ~0.013 (0.005) 0.001 (0.009) the estimates of the intercept in the three models. When
™ 143.1 (14.3) 136.9 (14.7) comparing the slopes between two treatment arms, REM and
To 122.4 (15.9) 117.9 (14.9) SPM yield very similar results, i.e., the estimated mean differ-
T12 —68.7 (12.4) —81.2 (12.5)  ence between the low- and high-dose arms in total change in
Likelihood —8705 —8667 the square root of the CD4 count is about 5.5, with a highly
High b0 —2.35 (0.07) —2.37 (0.07) significant p-value of 0.0007, suggesting that the low dose of
(180 mg) b1 —0.017 (0.007) 0.003 (0.009) zidovudine is superior to the high dose because the decline
o —0.010 (0.005)  —0.004 (0.006) in the CD4 count is less steep. Under MEHM, the estimated
T 152.9 (15.8) 152.5 (17.3)  mean difference between the low- and high-dose arms in total
T22 338.3 (42.3) 338.3 (50.4) change in the square root of the CD4 count is decreased to 4.0,
LT —115.4 (20.3) —116.0 (21.6) with a p-value of 0.03. Although we draw the same conclusion
Likelihood —8033 —8011 with MEHM, the superiority of the low dose is substantially
(a) Low Dose
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Figure 2. Sample means of the square root of the CD4 count at each measurement time. The horizontal line segments are
the overall means; the solid triangles pointing upward are the means for subjects who do not drop out at the subsequent visit;
and the open triangles pointing downward are the means for subjects who drop out at the subsequent visit.
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weakened using this approach, i.e., the effect size is decreased
from 3.38 to 2.22.

The estimates of slope based on the SPM and MEHM are
substantially different in the AIDS trials (Table 2). To explore
this difference, we display estimates of other parameters in
Table 3. Noticeably, in the SPM, the regression parameters
of the dropout process ¢; and ¢, are both significant in both
the high- and low-dose arms, suggesting that the dropout pro-
cess depends on the random intercept and slopes in the out-
come process. However, in MEHM, the dependence between
dropout and random effects is weakened, and both ¢, and ¢-
are not significant when the measurement process is allowed
to depend on dropout pattern after conditioning on random
effects. The likelihood ratio test can be employed to assess
the conditional independence assumption and goodness of fit
of the SPM. For the low-dose arm, the maximized likelihood
for SPM is —8705 and for MEHM is —8667, yielding a like-
lihood ratio test statistics of 76, which is highly significant;
for the high-dose arm, the maximized likelihood for SPM is
—8033 and for MEHM is —8011, yielding a highly significant
likelihood ratio test statistic of 44. These results suggest that
the conditional independence assumption of the SPM may
not hold for the AIDS data set, i.e., the dropout process may
still depend on the missing outcome conditional on random
effects. As empirical evidence, we plotted the sampling mean
of the CD4 count for subjects who had not dropped out at
the subsequent visit, and subjects who had dropped out at
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the subsequent visit, across all visits (Figure 2). Clearly, sub-
jects who had remained in the study tended to have larger
CD4 counts than those who had dropped out by the subse-
quent visit, suggesting that the dropout process may directly
depend on the value of the CD4 count at the time when a
subject drops out of the study.

5.3 Sensitivity Analysis

The MEHM is more general and provides a better fit than
the SPM for the pediatric AIDS trial data. However, as is
common when modeling nonignorable missing data, the iden-
tification of MEHM is heavily driven by model assumptions.
The observed data contain weak information about ¢; and
02, and estimation of these parameters relies on the normal-
ity assumption of the random effects. Unfortunately, these
distributional assumptions are untestable based on the ob-
served data. In this case, a sensible strategy is to perform a
sensitivity analysis. Following Rotnitzky et al. (1998), we set
¢1 and ¢, at a series of fixed values (rather than estimating
them based on the observed data), and then evaluated the
sensitivity of the inference to the value of ¢; and ¢,. If the
inference showed no essential change, the interpretation of the
results would be straightforward. Otherwise, there would be
some residual ambiguity in the interpretation.

Figure 3 shows the results of the sensitivity analysis. We
set @9 = ¢; and varied their values from —0.4 to 0.4 for each
dose arm. Compared with the estimates of these parameters
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Figure 3. Sensitivity analysis of MEHM for the AIDS data. This figure depicts the change of regression parameters v; and

~v3 by setting ¢; = ¢ = ¢ at various values.
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based on the MEHM (Table 3), this range is rather wide,
representing about a 24-fold change in each direction. As ¢q
and ¢, vary from —0.4 to 0.4, for the low-dose arm, the value
of v, varies from 28.85 to 29.02, and the value of 3 varies
from —16.61 to —14.52; for the high-dose arm, the value of
~1 varies from 30.07 to 30.27, and the value of 73 varies from
—22.68 to —20.42. Clearly, the estimates of ; and 3 are quite
stable, suggesting that our results based on the MEHM is not
sensitive to the model assumptions for the AIDS data.

6. Conclusion

We have considered a new class of models, MEHMSs, for an-
alyzing longitudinal data with nonignorable dropout based
on a new factorization of the joint distribution of random ef-
fects, the dropout process, and the measurement process. The
MEHM has features of both selection models and pattern-
mixture models, such as directly modeling the missing data
mechanism, and computational simplicity. The MEHM can
be viewed as a generalization of an SPM without making
the conditional independence assumption of the dropout and
measurement processes given random effects. Because SPMs
are nested within MEHMSs, by fitting the MEHM, the con-
ventional likelihood ratio test can be used to test the condi-
tional independence assumptions underlying the SPMs. Al-
though we have noted some useful features of these models, it
should be emphasized that these models do not resolve issues
of lack of identifiability that are inherent with nonignorable
nonresponse. Also, models based on other factorizations of
the joint distribution of the measurement and missing-data
process, such as random-effects selection models and random-
effects pattern-mixture models, remain valid alternatives. De-
spite these caveats, MEHMs do provide another useful tool for
modeling nonignorable missing data in longitudinal studies.

7. Supplementary Materials

Web Figures and Tables referenced in Section 4 and 5 are
available under the Paper Information link at the Biometrics
website http://www.biometrics.tibs.org.
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