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Abstract

We present SCA, a symbolic algorithm for concept acquisition. SCA is an incremental concept
learner that maintains a distributed set of rules for predicting category names. While the design is
very simple, it deviates from previous approaches in machine learning. For learning, starting with
general rules, SCA incrementally acquires more specific rules. We empirically demonstrate its unusual
behaviors, as well as showing its potential performance as a concept learner. Comparisons with other
machine learning systems are made.

1 Introduction

In this paper, we explore the learning behavior and performance of a new incremental supervised learning
algorithm. Previously we have presented our approach [Miller and Laird, 1991] as a model of human
category acquisition designed within the context of Soar, a unified theory of cognition [Newell, 1990]. Here,
however, we present the SCA (Symbolic Concept Acquisition) algorithm separate from the Soar context,
as a novel algorithm with interesting learning behaviors that distinguish it from previous approaches in
machine learning. Furthermore, we demonstrate SCA’s promise as a powerful learning approach in terms
of accuracy, noise tolerance and learning rate.

Traditionally, supervised learning algorithms in machine learning have taken three approaches to rep-
resenting concepts. The first approach seeks a compact symbolic representation that covers the concept’s
positive examples while excluding negative examples. Searching for a parsimonious concept representation
as an approach is defended by Blumer et al. (1987) and underlies the working principles of many super-
vised learning systems. These include decision trees {Quinlan, 1986), which search for the smallest tree
that covers the training examples, and the STAR methodology [Michalski, 1983, which seeks the simplest
logical formula as represented in disjunctive normal form.

The second approach saves classification examples instead of maintaining a compact explicit concept
definition. In categorizing a new example, the algorithm seeks a similar, previously classified example.
This approach places a burden on the system to correctly index the appropriate pre-classified example in

*This research was sponsored by a grant from the Nissan Corp. and grant NCC2-517 from NASA Ames.



memory. Example systems include a nearest neighbor method [Aha, 1989], and COBWEB [Fisher, 1987],
which indexes instances through a concept hierarchy constructed by an unsupervised clustering strategy.
Also, in contrast to the first approach, both of these systems use probabilities or weights which quantify a
matching metric by which search for the best exemplar is guided.

The third approach also does not keep an explicit concept definition. It differs from the second group,
however, in that it does not maintain the integrity of individual training examples. The primary examples
of this approach are the artificial neural network models. Concept representations are distributed across
a network of excitory and inhibitory connections. Learning occurs by incrementally adjusting weights in
order to minimize the prediction error on training examplés. Evolutionary systems similarly alter their
conceptual representation as they search for the representation that minimizes prediction error.

The approach we describe here does not conform to any of these three approaches. SCA is a symbolic
rule-based system, but it does not try to maintain a compact explicit concept definition. Neither does it
keep whole training instances for future classification. Instead, it incrementally acquires prediction rules.
For a particular concept, there may be many. At first, SCA learns very general rules, but as learning
progresses, more specific rules are acquired. For category prediction, SCA searches for the most specific
prediction rules first before accessing more general ones.

In the next sections, we describe how SCA incrementally acquires prediction rules. Then, we show some
of SCA’s learning behaviors that result from its design. Finally, we make some empirical comparisons with
other established concept acquisition systems in order to demonstrate SCA’s effectiveness as an approach
to concept acquisition.

2 The Algorithm

The current implementation of SCA accepts training instances described in terms of symbolic attributes
and values. For example, a training instance may be described as follows:

[category:ball shape:spherical, color:blue, texture:smooth]

SCA incrementally acquires new prediction rules based on training instances and previously acquires
prediction rules.

Before we look into how SCA acquires its rules, let us explain how SCA predicts the category name for
an instance description when the description does not include the category name. Through learning, SCA
acquires a large set of prediction rules. Some are very general (for the following examples, we have omitted
the attribute names):

[spherical] --> predict category:ball
[spherical] --> predict category:globe

Others are more specific:

[spherical, red] --> predict category:ball
[spherical, blue]l] --> predict category:globe
[spherical, red, smooth] --> predict category:ball

SCA makes a prediction by searching for the most specific rule that matches the instance description.
In particular, the process takes the instance description and then checks if there is a rule that matches all
of its features. If there isn’t any, it then removes a feature from the instance description and checks if there
are any matches on all of the remaining features. This process of removing a feature and then checking for
a match continues until either a prediction rule matches or until there are no features left. In the latter
case, no prediction can be made until more prediction rules are learned. If several competing rules match
at the same time, a guess for one of the predictions must be made.

The performance of the system hinges on the ability to remove the least relevant attributes first,
especially when only the more general rules can match. We defer this issue to the next section where we
discuss a scheme that controls the search through the prediction rule space.



Here is an example with the above rules and the instance description [spherical, red, fuzzy, large]. SCA
makes its prediction by first checking whether there is a rule that matches all four of these features. Since
there isn’t any, one feature is removed, say large, leaving the description [spherical, red, fuzzy]. Still there
is no match. Fuzzy is removed, leaving [spherical, red]. Now, a rule matches, predicting ‘ball.’

For learning, SCA accepts a training instance description, with the category label, and processes it by
trying to make a prediction as described above. This time, however, the search does not necessarily stop
with the first-matched rule. Instead, search continues until a matching-prediction rule makes the correct
prediction, or until no features are left in the instance description. With a match, the system has thus
discovered prior experience that supports the current training instance. The training instance now serves
as new knowledge for adding an additional rule. The condifions of the new rule include all of the features
that matched (or no features if no match occurred) plus the feature that was last removed before the search
stopped. The prediction of the new rule is simply the correct category given by the training instance.

Let us use the training instance [ball: spherical, blue, fuzzy, small] as an example of how a new rule
1s acquired. First, the description [spherical, blue, fuzzy, small] is processed in search for a category
prediction. ‘Small’ is removed and then ‘fuzzy’ is removed. At this point, the description [spherical, blue]
matches a prediction rule. However, this rule predicts ‘globe’-the wrong category. Search continues by
removing ‘blue’. Finally, the description [spherical] matches a correct rule and search stops. A new rule is
constructed and added to memory:

[spherical, blue] --> predict category:ball

With the acquisition of this new rule, there are now two competing rules with these attributes at this
level of specificity. Should both of these rules match during performance, a guess is required in order to
make a prediction. Typically, however, the acquisition of this new rule is merely an intermediate step
towards the acquisition of still more specific ones. Eventually, with enough training instances, sufficiently
specific rules are acquired so that conflicts among them become quite rare.

The choice of adding only one rule with only one more feature in the condition represents a compromise
between previously obtained knowledge and the knowledge implicit in the newly presented training instance.
Should the previously obtained knowledge be incomplete, i.e. the prediction conditions do not include
all relevant features, the addition of a new rule with an extra feature in the condition helps complete the
system’s knowledge. On the other hand, should the knowledge implicit in the training example be irrelevant
(due to spurious correlations) or incorrect (due to noise), the addition of only one more rule with only one
additional conditional feature allows room for error recovery with the acquisition of new knowledge. Error
recovery automatically occurs with the presentation of additional training instances which incrementally
lead to rules more specific than the incorrect ones. By searching through the rule space from the most
specific rule to the more general ones, the first matched rule is typically the correct rule.

We have yet to explore intermediate alternatives such as adding a rule with two additional features
or adding several different rules each with one additional feature. The performance of these alternate
strategies are still open to further research. However, our empirical studies have ruled out the extreme
alternative, which adds rules of all levels of specificity for each presented training instance. Our findings
indicate that this approach learns at the same rate (with respect to the number of training instances) but
with significantly worse accuracy.

Over time, the system acquires many rules. While SCA’s approach is memory intensive, it does not
make exceeding demands on rule indexation in terms of computational time. Because all of the description’s
features must match for a rule to apply, a simple hashing scheme can be used for rule indexation. This
allows a match to occur in nearly constant time regardless of how many rules are currently in memory.

3 Search control

As noted earlier, the effectiveness of this approach depends critically on which features are removed from
the instance description. Ideally, all the relevant attributes should be in the conditions of the acquired
rules. Furthermore, the irrelevant features should be removed first so that rules with relevant features in
their conditions can be successfully indexed. On the other hand, if relevant attributes are removed from the
description before a match occurs, the quality of the category prediction will certainly suffer. In addition,



if the selection of attributes during training trials is erratic, the learning rate of more specific rules will
suffer. An inconsistent choice of attribute removal will fail to index specific rules previously acquired with
a different order of feature removal. Thus, the ideal search heuristic should be as stable as possible from
training trial to training trial.

Despite SCA’s dependency on a reasonable selection heuristic, SCA’s performance depreciates only in
terms of learning rate as the choice of attribute removal suffers. In the case where irrelevant attributes are
kept in the instance description at the expense of having relevant ones removed, SCA will still be able to
make good predictions once specific enough rules have been learned that include both the irrelevant and
the relevant rules. Likewise, erratic selection of attributes will slow the progression of how fast specific
rules are learned. However, after enough training instances, specific rules are still acquired.

An in depth analysis of attribute selection heuristics for our system is beyond the scope of this paper.
Instead, we have chosen the relatively simple entropy measure as used in ID3 [Quinlan, 1986]. This roughly
respects our conditions for a good heuristic and supplies an immediate means in which we can empirically
evaluate SCA’s learning behavior and performance. With this, we can project a lower bound on SCA’s
learning potential while still constraining our system to that of an incremental learner.

A choice must be made on whether the entropy should be calculated for each attribute/value pair, with
the selection based upon the attribute’s value, or the entropy measure for an attribute’s values averaged,
with the selection made by attribute. Initial studies suggest this choice has a large impact upon the system’s
performance. Our preliminary findings suggest the by-attribute scheme works well when the dataset only
uses two categories, whereas the by-value approach proves far more successful when many categories are
learned. For now, we choose to use both of these methods as appropriate. Further research should address
this issue and we anticipate a more unified approach to selecting features.

4 System behavior and empirical evaluation

As SCA learns, it gradually acquires more specific rules. Figure 1 shows how more specific rules are matched
through the course of learning. The x-axis specifies the number of encountered training instances. After
intervals of twenty training instances, the system made predictions on a set of test instances. The y-axis
specifies the average specificity, in terms of features matched, of the indexed prediction rules for the test
set!. Figure 2 shows the relationship between rule specificity and prediction correctness. Using data from
the same run of Figure 1, the prediction accuracy was calculated according to rule specificity. The x-axis
specifies the specificity of the indexed prediction rules. The y-axis specifies the accuracy. Roughly, the
more specific the rule is, the more likely the prediction will be correct. This observation helps understand
SCA’s external properties which we now explain.

SCA has three behavioral consequences that are independent of the attribute selection heuristic choice.
They are 1) learning often improves over multiple exposures of the same training data, 2) computational
expense lessens through the course of learning and 3) the algorithm has a built-in tolerance for noise.

Often one pass through a training set is sufficient for SCA to acquire rules specific enough to make
reasonably accurate predictions. Typically, however, running it over the same dataset continues to improve
performance. Figure 3, shows the effect on accuracy by exposing a small training dataset multiple times.
The x-axis specifies the number of times the training set was presented to SCA. The left side of the y-axis
specifies the prediction accuracy on a larger test set. The graph shows how accuracy improved after a
second exposure to the same dataset. The improvement is due to the system’s having learned some more
specific rules containing relevant features not previously included from the first training cycle.

The same figure also shows SCA’s computational runtime (including training and testing) in relation
to the number of exposures. The right side of the y-axis specifies the total runtime including training
and testing in terms of a machine-internal time unit. Most of the runtime can be accounted for by the
constant overhead required in calculating the entropy measure. Nevertheless, runtime slightly decreases
with learning. Recall that SCA searches for specific rules first before it tries to match a more general rule.
Runtime is thus inversely proportional to the specificity of the matched rule. If specific rules can be found
in memory, response time is faster. After many training trials, more specific rules have been acquired,
causing runtime to be faster.

1All of the datasets we used can be obtained from the University of California-Irvine dataset depository.
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Training | Testing | Number of | Number of
Name set size | set size | attributes | categories
Mushrooms 50 200 22 2
Soybeans 290 340 35 15
Cong. Voting | 235 200 16 2

Table 1: Description of datasets

Figure 4 shows how SCA is tolerant of noise. For this task, during training, the wrong category was
given with the instance description a given percent of the time, specified by the x-axis. The y-axis shows the
prediction accuracy on a separate test set. For comparison purposes, the same task was run with ID3? and
COBWEBS3. In understanding SCA’s resilience to noise, it can thought of as a competition model where
conflicting rules compete in making the category prediction. Because SCA searches for the most specific
rule first, it is the most specific rule which wins the competition. Presumably, during training, the system
encounters more correct instances than incorrect ones. The correct rules thus contribute to the learning
of rules that are more specific than prediction rules formed from incorrect instances. Typically, correct
predictions result despite there being many incorrect rules (rendered benign by their lack of specificity) in
memory.

SCA’s accuracy and learning rate can also be compared with COBWEB and ID3. Table 1 describes the
datasets we used in testing accuracy. Figure 5 shows the accuracy of the three systems on these datasets.
For the mushroom data, we limited the size of the training set to 50 instances because of the dataset is
relatively easy. For the other two datasets, the prediction accuracies approach asymptotic performance.
The prediction accuracy is the performance on the test set. Figure 6 examines the learning rates of these
systems on the congressional voting dataset. The x-axis specifies the number of training instances given
to the systems. The y-axis specifies the prediction accuracy on the separate test set after each training
installment. Certainly, SCA is the slowest learner of the three systems that we compare here, although it
eventually achieves the superior accuracy. This also explains why SCA did the poorest with the mushroom
data in which case it had hardly reached its asymptote in prediction accuracy (which is 100

It is important to realize that both COBWEB and SCA are incremental learners whereas, ID3 is not.
For all of our studies, ID3 had the added benefit of being able to access any of its training instances at any
time.

5 Conclusion and future work

We have shown how SCA differs from previous work in supervised learning. While the rules it acquires
are entirely symbolic, it does not try to maintain a compact concept representation, nor does it explicitly
save whole training examples. Furthermore, because of its design, the learning behavior elicits interesting
properties, including improved response time and resilience to noise. While it has not been our goal to
demonstrate how SCA is superior to any other concept acquisition system, it is clear that SCA is competitive
in asymptotic prediction accuracy, though it requires more training instances to attain asymptotic behavior.
Furthermore, SCA'’s efficient method of indexing prediction rules should prove critical in scaling up to larger
tasks requiring many prediction rules.

In this paper, we have neglected the role of the search-control heuristic used with SCA and have instead
emphasized the behavior resulting from the symbolic-rule acquisition aspect of the system. There remains
much research studying search heuristics which could improve system performance. We have also refrained
from discussing any properties that validate SCA as a psychological model of human category learning.
While Miller and Laird (1991) discuss some of these including typicality effects and extension errors, more
recent studies indicate that SCA successfully replicates many other phenomena.

2We used a version of ID3 that built a binary tree, implemented by John Paxton. Fayyad (1991) reports that a binary
tree is superior to the standard implementation.
3The implementation we used was COBWEB/3, obtained from NASA Ames Research Center.
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