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ABSTRACT

The accelerator considered in this report consists of a single-layer elec-
trically conducting solenoid and a metal projectile closely fitting inside or
outside the coil. A series of switches delivers or removes current from each
solenoid turn in synchronism with the traveling projectile. This produces with-
in the proJjectile both steady-state and transient magnetic fields which are shown
to increase the efficiency over a purely transient system.

Both mechanical and thermal limitations are studied. In the ten-meter ac-
celerator treated as an example, mechanical destruction was the more severe lim-
it; taking this into consideration, the analysis shows that, assuming zero fric-
tion, projectiles having several hundred grams mass can be accelerated to 10,000
meters per second in ten meters.

Both lateral displacement and tilting of the projectile axis with respect to
the driving-coll axis are shown in certain instances to be unstable.

Parallel, series, and "traveling wave' circuits are applicable to this par-
ticular device.
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I. INTRODUCTION AND SUMMARY

A. NEED FOR A HIGH-VELOCITY GUN

A device capable of accelerating an appreciable mass to high velocity has
several applications of major importance. In the weapons field, anti-aircraft
shells and missiles must have high velocity to be effective against the high-
velocity missiles employed in modern warfare. Such an accelerator would also
find use as a missile testing device when operated as an inverse wind tunnel
and perhaps even as a missile launching mechanism. In the realm of component
testing for modern high-thrust, high-velocity systems, high "g" impulse and im-
pact tests also require a high-velocity accelerator. As a final example, a
high-velocity gun can be used in some instances for its energy storage capa-
bilities, as, for instance, in electrical impuise generators! and in impact

heating (see Appendix II).

B. REVIEW OF PREVIOUS HIGH-VELOCITY-GUN RESEARCH

Chemically driven guns appear to be limited by the burning rates of fuels
and explosives, although velocities as high as 7000 meters per second have been
reached by shaped detonation waves.2 A further limitation of an explosively ac-
celerated system is the extreme difficulty of controlling such a reaction.

As an alternative to explosion-driven accelerators, electromagnetic schemes
have been extensively studied. The Germans during World War II developed elec-
trically driven guns which accelerated several gram pellets to over 1000 meters
per second, and their work was analyzed and carried on after the war at Armour
Research Foundation.? Other laboratories at which electrical gun development
has been carried on include Air Force Cambridge Research Cen‘l:er,)1L University of
Utah,h Zenith Radio Research Corporation,h The Rand Corporation,5 and Holloman
Air Research Center.6

1. Conference on High Powered Electrical Impulse Techniques, Univ. of Mich. Eng.
Res. Inst. Report No. 2522-4-T, Ann Arbor, May, 1957.

2. Cook, Univ. of Utah, as rep rted by W. S. Partridge, Conference on High Powered
Electrical Impulse Techniques. -

3. Electrical Gun and Power Source, ATI 90 Til, Armour Research Foundation Tech.
Report No. 3, Project No. 15-391E, May, 1947.

4, Conference on High Powered Electrical Impulse Techniques.

5. Huth, J. H., and Holbrook, R., "Linear Generator," Hypervelocity and Impact
Effect Symposium, U. S. Naval Research Laboratory, 1957.

6. Millsaps, K., and Pohlhausen, K., The Acceleration of Large Masses by Elec-
trical Means, Holloman Air Development Center, Operations Research BEfice,
Summer Research Group, Tech. Memo. No. 3.
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Two general types of systems have been considered in the above-mentioned
studies. In one configuration, the projectile acts as a shorting bar across two
parallel conducting rails. When a voltage is established across the rails caus-
ing current to flow through the projectile, a force on the projectile parallel
to the rails results.

In the alternate scheme, acceleration of the pellet is derived from inter-
action between the magnetic field of a current-carrying coil and the magnetic
field of currents in the projectile. The projectile current is most easily de-
rived as current induced by the driving field, so this system is often referred
to as an "induction" gun as contrasted with the "rail" gun described above.

C. BACKGROUND AND QUALITATIVE DESCRIPTION OF THE PARTICULAR SYSTEM TREATED IN
THIS REPCRT

The electromagnetic gun system being considered in this report was origi-
nally conceived and briefly reported by University of Michigan personnel in
1948. Although a proposal for further study and for construction of such a de-
vice was advanced at that time, no further work was done on the subject until
the present contract was activated.

The University of Michigan accelerator is essentially an induction-type
system mentioned earlier, but the unique feature of this particular system is
a series of switches which control the currents to the individual turns of the
driving coil. The current, thus controlled both in time and position in the
coil, establishes a magnetic field configuration which has both a constant or
bias component permeating the projectile and a transient component. As shown
in Appendix I, this leads to greater efficiency than in the basic, or impulse,
induction acceleratpr briefly described in the following paragraphs.

In the basic form of the induction accelerator, a cylindrical conaucting
pellet is placed coaxial with but centered slightly ahead of a cylindrical
wire coil. When current is sent through the coil, the resulting magnetic
field induces in the pellet circulating eddy currents which are normal to the
radial components of the magnetic field, and which therefore result in axial
forces being exerted within the pellet. Since the pellet is not centered,
these forces will not be symmetric, and if the pellet is free to move, it will
be accelerated out of the coil.

Now if a long solenoidal coil be considered as a series of coils such as
described above, and if each coil section receives current as the projectile,
already moving axially within the solenoid due to impulses from the previous
coil sections, passes by, then a continued thrust is maintained on the pellet.
This is a brief description of the accelerating system which is analyzed in
this report.



There are two ways in which this sequentially switched accelerator may be
operated. In both, each turn of a long sclenoid constitutes a single-coil sec-
tion as described in the previous paragraph, and the projectile is idealized as
a conducting ring whose radius is only slightly less than the solenoid radius.

In one instance, the operation is identical to the procedure outlined in the pre-
vious paragraph, while in the other, the solenoid initially carries current, and
current is switched out of each section as the projectile passes by. Although
the source of thrust is the same in either case, the particular geometry employed
has important bearing on stability and heating of the projectile.

D. SUMMARY OF REPORTED RESULTS

Following a more thorough description of the accelerator, the projectile

velocity is solved in the following sections in terms of the current in the
driving coil and the dimensions of the device. One finds, of course, that ve-

locity increases with current, but eventually one of two limits 1s reached;
either the projectile becomes excessively hot or mechanically ruptures. Before
making numerical estimates, therefore, calculations are made of maximum allow-
able currents considering heating and mechanical strength. For sample dimen-
sions considered, allowable maximum currents are in the range of 10,000 to
100,000 amperes, and these result in exit velocities on the order of 10,000
meters/sec. In all cases acceleration is assumed to take place over a lO-meter
length, and the accelerated masses range from 3 grams to 2 kilograms.

The report concludes with treatments of stability and circuit aspects of
the device.

Two relevant topics are included as appended sections. In one, a more
generalized approach to the theory of electromagnetic acceleration is considered,
and it is shown that a constant-bias magnetic field increases the efficiency of
the acceleration process. In the other, estimates are made of temperature which
might be attainable when the kinetic energy of a moving mass is randomized to
heat by collision. For a lithium projectile, it turns out that, assuming all
kinetic energy is converted to heat in the original moving mass, a velocity of
about 83,000 meters/sec is required to raise the mass beyond complete triple
ionization temperature, perhaps 100,000°K.



IT. DETAILED DESCRIPTION OF ACCELERATOR

When a conductor which is carrying an electric current is placed in a mag-
netic field having components normal to the current, a force is exerted on that
conductor. This force is directly proportional to the magnetic field density,
the magnitude of the current, the length of the conductor, and the angle between
the current and the field density vectors. Symbolically this is represented as
follows:

> >
F = |[B||lI|] £ sine ..... (2-1)
where
F = force on the conductor, newtons,
E = magnetic flux density, webers per square meter,
I = current flowing in conductor, amperes,
1 = length of conductor, meters, and
@ = angle between E ana 1.

If the magnetic field is due to a current flowing in another conductor, and
if the two currents are parallel and in the same direction, an attractive force
exists between the conductors, pulling them towards each other, but when the
currents are in the opposite direction, a repulsive force exists, tending to
separate the two conductors.

Since forces can be made to exist between current-carrying conductors,
schemes can be developed by which electromagnetic accéleration of an object
is achieved. Two such systems are analyzed here. The first utilizes attrac-
tive forces, the second, repulsive forces.

A. ATTRACTION CASE (See Fig. 1.)

A long stationary solenoid of N turns is energized with a current +I, flow-
ing through each turn. The projectile, represented as a conducting ring, is
brought to the starting end plane of the solenoid (z=0) in such a way that the
net current in the ring at this position is zero. At this position the first
turn of the solenoid is de-energized, thus inducing a current in the ring. As-
suming perfect coupling between the ring and the solenoid turn, and taking in-
to consideration the fact that induced current always flows in such a direction
as to oppose the decrease in flux, a current +I, is established in the ring.

Since the currents in the ring and the solenoid are in the same direction,
an attractive axial force is developed between the two, thus moving the ring
axially In the +z direction towards the remaining energized portion of the
solenoid.
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Fig. 1. ©Sequentially switched electromagnetic
accelerator coil geometry.



As the ring moves into the magnetic field of the solenoid, a voltage 1s in-
duced which opposes the current already flowing in the ring. It will be shown
later that when the ring gets adjacent to the second turn, its net current will
Jjust be reduced to zero by this induced voltage.

Just as the ring reaches the second turn, this turn is caused to be de-
energized, making current again flow in the ring and resulting in further for-
ward thrust on the ring. The process described above is again repeated at the
third and succeeding turns of the solenoid with the current in each turn being
interrupted Jjust as the projectile passes.

Subsequent analysis will reveal the following characteristics of the device:

1. There will be an average axial force on the ring through the whole length
of the solenoid; thus continuous acceleration of the ring in the 4z direction is
achieved.

2. Energy originally stored in the magnetic field of the solenoid and in
any external driving source which might be present is transferred into kinetic
and magnetic energy in the projectile.

3. The current in the ring varies between zero and +I, through the major
portion of travel through the solenoid. However, it builds up towards the end
so that the ring emerges out of the solenoid with a net current which depends
on dimensions and on the value of the driving current in the solenoid.

B. REPULSION CASE (See Fig. 1.)

In this case the solenoid does not have any initial current, and the pro-
jectile ring, also with zero initial current, is placed slightly to the right
of the first turn. At this position the first turn of the solenoid is energized
with a current of +I,, thus inducing a current in the ring. Assuming perfect
coupling between the ring and the solenoid turrn, and again noting that induced
current always flows in such a direction as to oppose the increase in flux, a
current (-I,) is established in the ring.

Since the currents in the ring and the first turn of the solenoid are in
opposite directions, a repulsive axial force is developed between the two,
moving the ring axially in the +z direction, that is, away from the energized
solenoid turn.

As the ring moves away from the first solenoid turn, a voltage is induced
in the ring which again tends to c¢ancel the current already present. It will
be shown later that, as the ring moves -through the first turn, the induced vol-
tage will be very small, resultihg in the ring reaching the second turn with an
appreciable portion of its initial current remaining. As the ring just passes
the second turn, this turn is energized, thus inducing an additional (-Io) in
the ring. The process described above is repeated through the whole length of
the solenoid, current being switched into each turn as the projectile passes.
The results of this process will be shown to be:

6



1. There will be an average axial force on the ring through the whole
length of the solenoid; thus continuous acceleration of the ring is achieved.

2. The energy from the driving generator is transferred into kinetic and
magnetic energy in the ring plus magnetic energy in the solenoid.

3. As the ring travels through the first few turns of the solenoid, the
ring current builds up to a certain value (-IRm), but through the main distance
of travel, this current varies between -Ipy and -(Igy-Iy). The ring will emerge
out of the solenoid with a current equal to -Igp,, but this current will be driven
to zero by the opposing emf induced in the ring as it travels out of the solenoid

magnetic field.



NOTATION
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III. DERIVATION OF VELOCITY EXPRESSION

energy in an external storage device

energy of the total system immediately after the nth turn is de-
energized (attraction) or energized (repulsion)

energy of the total system Jjust before the ('n+l)th turn is de-
energized (attraction) or energized (repulsion)

energy extracted from the external storage device during the travel
of the ring from the n*h to the (n+1)'R turn

ring self-inductance
self-inductance of the n*P solenoid turn

self-inductance of solenoid turns (n+l) through N (attraction) or
turns 1 through n (repulsion)

mutual inductance between n®P turn and the remainder of the solenoid
mutual inductance between ring and energized solenoid turns

mutual inductance between ring and energized solenoid turns when
the ring is in a plane 4, distance out from the end plane of the
energized portion of the solenoid

mutual inductance between ring and energized solenoid turns when
the ring is in the end plane of the energized portion of the sole-

noid

solenoid current

‘ring current

current in ring just after nth turn is de-energized (attraction)
or energized (repulsion)

current in ring just before nth turn is de-energized (attraction)
or energized (repulsion)

current which would be induced in ring as it travels from the nth
to the (n+1)™ turn

maximum value to which the ring current builds

ring velocity as it passes the n®h and (n+l)th solenoid turns,
respectively

IRm/IO



One could presumably analyze the kinetics of the system by applying Eq.
(2-1) after first solving for the current and radial magnetic field at the pro-
Jjectile ring at each instant. It turns out, however, that in the case of an
electromagnetic accelerator in which the radii of the ring and of the driving
solenoid are approximately the same, Br, the radial component of magnetic field
at the ring, varies rapidly with position as the ring moves toward the end plane
of the solenoid and is in fact infinite at the end plane when the radii are ex-
actly the same. It is therefore very hard to determine the exact value of Br
on the ring at every instant.

Since B, is hard to determine with any accuracy, it becomes awkward to ob-
tain the veiocity from Eq. (2-1). An energy balance may be resorted to, however,
to determine the velocity of the projectile. That is, the stored energy from the
solenoid plus the energy supplied by the source should be equal to the stored
energy in the ring plus the kinetic energy of the ring. The analysis using
energy considerations follows.

A. ENERGY BALANCE

1. Attraction Case

Assume that the ring reaches the n® turn of the solenoid with a velocity vn,
and assume that we want to find the velocity when the ring reaches the (n+l)th turn.

When the nth turn is de-energized and its energy is transferred to the pro-
Jectile ring, the energy of the total system resides in the following places
(using the symbols defined above):

&) ring motion (1/2 mvy2) ,
b) ring self-magnetic field (1/2 Iglfns) »
c) solenoid s'élf-magnei;ic field (1/2 IgIZ) ,
d) ring-solenoid mutual field (MRdCSIRnan) , and
e) external storage device (Egyy) 3
that is,

..Lo *tc}»t (3'1)

¢ *..L = -l. * -L- “ T
EW\*ZV\&U—V\ +2 L‘ZI\ZV\Q+ 2 L$Io + Mﬁdcg -LR\/\Ci

When the ring gets to the (n+l)th turn, but just before this turn is de-
energized, the total energy will be (again using previously ‘defined symbols):

- 4 - 1 2 L L S
Ef'w‘ z M ?-LKIV-[\@A: + > \«S 1,

+ MlzosIZ(\A«Bb Io + Ea& - S E,



8E 1s the energy from the external source required to keep the current in
the solenoid I, constant; i.e., energy required to counter the induced emf in
the solenoid due to the movement of the ring toward the solenoid, that is,

<
SE :/ eI, ot (3-3)

Q

where
e = 1induced voltage in solenocid due to the movement of the ring
48 _ f-l—'(z Mg )
dp T dbTers
o .
°B = - J Iocl (Iz \\’\zs\' (3-3")
o
But . = E{_
W W
(3-4)
o e 2 w41 (L - Ty
Z.WGVH—[— ZW\)‘\'\ -+ Z L‘Z —.2“& IE(‘(\H\)b

Substituting Eq.(3-3) in Eq. (3-5) and solving for v, ;, we get:
2 [ T < t N 5
N :[ =13 S Lo ~ 8
R E™ [»?.W\U‘v\ +3 e (e " Lt

_ T
T Ics O\Alzelﬁztm_‘\/‘us Lz(vwh \3)' IoA<I\ZN26> (5-6)
(¢}

By a similar procedure, an equation for Vorl for repulsion operation can
be derived.

2. Repulsion Case

Just after the nJCh turn is energized, assume that the velocity of the ring
is v and the current is I . Then the total energy at this instant is (using
symbols already defined): =@

10



T
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When the ring reaches the (n+l)th turn, the total energy will be:

_ SRR T 4+
r\‘ :'\{ 2 "dans YQ\‘H) +%LS‘\‘O + \\/\PJ‘CS IQ(VH'DbIO
+E€,\H: -_ &E.
Now . _
Ein= t{'\f\
\ 2 A R
7 MU = —?):W\\’V\ +32le <szo\ —E(M*DQ
LIS (MRGSIQ,V\Q_N RAQSIR@\M\ b) té E.
But
T
§¥ = - L 15 <'}‘<Ie\‘\/\zs\>

Substituting in the above equation and solving for v

{ .
_j 2 1 {
\rm.\ - i\W\[ZW\\Y +7 2 \”T—l <"‘\2\AQ ﬁéﬂ")b\)

nt+ls We get

oty d I T 4 &
5, 2, 43 ke Lo T Zhe Yo 4 Meas Long =0 + Boy -

(3-7)

(3-8)

(3-3")

(3-10) |

+ T, ( Meos Tona ™ Meas L fiﬁ\*‘)*) [YL CMIQ ¥ @J} a

Evaluation of projectile velocity now reduces to the problems of determining

projectile current and projectile-solenoid mutual inductance.

B. CURRENT IN THE RING AT EVERY INSTANT OF ITS TRAVEL THROUGH THE SOLENOID

1. Attraction Case (See Fig. 1.)

it.

11

The entire coil is initially energized with a current +I, flowing through
The ring is then given an initial velocity VRO and an initial current +Ip4



such that it arrives at the first turn of the coll with zero velocity and zero
current.

If the ring is moved from (-«) towards the energized solenoid, a current
is induced in it such as to establish a flux ¢R Jjust equal to and opposite in
direction to the flux ¢C threading the ring from the solenold. Symbolically,
this is represented as follows:

Qo =~ Qe . (3-11)
de L

T = — = 7 ‘ (5"12)

R Ly R

where Ip 1s the self-inductance of the ring. However,

. - T -
CQC, s \M RS (3-13)
where Mpq is the mutual inductance between the ring and the coil, and 1s rep-

resented as 2m where (m) is the mutual inductance between the ring and each
turn of the solenoid. It follows from Eq. (3-12) that:

— G

T_= ————\ZVVL (3-1k)

where

m o= tTay . (3-15)
For rg = n,,

w =+ <L (}k\/\)) (3-15')

where ry is in cm, and f is tabulated with respect to the parameter

5 - distance _ Z_
diameter 2ry
or
A = diameter
distance

whichever is less than unity.8

(. Grover, F. W., Inductance Calculations, McGraw-Hill Book Co., New York, 1946,p.T77.
8. Grover, p. 82.
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Since the turns of the coil are separated by a distance d,, m is repre-
sented as follows:

N- |
%+jdc
ng:(—bz '9< Z~rb > (3-16)
jz.O

.

Also9 LQ :4_‘1(\: \:IVL %“__Yh-—\,h(%:[ \C)-‘

:ATT‘_\D[\\A % +O'33J \C)-—! (\AQ\M‘L&SB ) (3-17)

where

-
il

radius of ring wire ,

ry = major radius of ring in meters .

Therefore, substituting into Eq. (3-1k4)

. % (%+j4:>
I *0 Jo @+ "% (3-18)

When the ring reaches the first turn of the coil, and just before this turn
is de-energized, the induced current in the ring Ip would be

; § 4<_1"L
1=\

I x\o 9 o,

T =—1,— = (3-19)
¥ At [ Iw =+ 0,33] )

and in order for the ring to have a zero net current at this instant, an initial

current IRi’ given by kq. (3-20), must have been previously established in the pro-

Jectile ring, since infinite ring conductivity is assumed.
N-)

JS 4 ‘>
T, -aT, =L SE) (520
® ° 4| \n = +6.E'31

9. Americ_an Institute of Physics Handbook, McGraw-Hill Book Co., New York, 195T,
pp. 5-29.
13



At this instant, with a zero current in the ring, the first turn of the
coil is de-energized, thus inducing a current +I, in the ring. Since the cur-
rents in the ring and the solenoid are in the same direction, a force is created
on the ring which pulls it towards the energized portion of the solenoid. As
the ring moves toward the energized portion, a voltage is induced in the ring
which tends to cancel the already existing current in it.

Let I'gz be defined as that current which is induced in the ring as it
travels from the first to the second turn of the solenoid. This current is
equal to the induced current in the ring as it travels from negative infinity
to turn 2 minus the induced current from negative infinity to turn 1 with turn
1 de-energized. This is represented symbolically as follows:

— @ de -
IIEZ = "Lw\uc_ec\ ‘:(-ob—b@>-<"°°'—”@\] ew_a‘\rq\gad ) (3-21)

K e
"&HO 4‘ -g- ('Z.('b

‘QTT[)\k :&: +—C3£§3—1
2+
L ivduced [(W—v@ﬂ:— . [\\; 63;1*’ ) (3-21")

where

Tiduced [:C"’“ "’@ﬂ =T

(3-21")

and

Y
\ T \03 [- (N- \)c\ (3-22)
X =-T1T = :
R 7 —e  An[ln 24a3) [

If N is large enough, f[(N-1)d./2ry] will be very sma,ll,lO and the second
turn on the right in Eq. (3-22) can be neglected.

1 =- I, . (3-221)

The net current in the ring just before the second turn is de-energized
will then be:

Iegp, =TI, - I, =0. (53-23)

10. Grover, p. 82.
’ 14



When N is small the second term on the right of Eq. (3-22) cannot be neg-
lected and so:

IQZ\:\: 4‘_{[:\:%*033] 2“(—\:

When the ring just reaches the second turn, this turn is ‘de-energized, thus in-
ducing an additional +Io in the ring, and so the net current in the ring Jjust
after the second turn is de-energized is:

3 -
\O
< ¥ {— M (5_21‘_)

Tooa= Tot Loy . (3-25)

By a similar procedure it is shown that when the ring reaches the third
turn, the net current in the ring will be:

3 i i .
- _ I, x0 (N=1) de o f [ Yd l (5.26)
B T N ze, |
Tiln 2 xo. 5 b &)
and
Tosa = Lot IRBB . (3-27)

Taking the above analysis into consideration, general equations may be
written designating the net current in the ring at the nth turn, just before
and just after the turn is de-energized. These equations are:

I = To \03 { (N—l)C‘Q
Wb An[\v\c\‘;éf@ggli Ir[‘—i;:b—]
+ L [N (n-2)de ] N {_'(N_M\\C}CJ] (3-28)
)

(E‘VS

-

which expressed as a sum i1s shown below:

N-v+\
o] 2 (3=)
T = (3-29)
ewh 4 [\ *033 4‘ )
4 q=N-|
‘and
I W T o T 4 enb .

(3-30)
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Equations (3-29) and (3-30) apply for any n except n=1. At n=1, TRyp = O
and IRia = +IO.

It 1s seen from the above analysis that if the solenoid has a large number
of turns, the current in the ring will oscillate between +Ig and zero as it
moves from one turn to the next until the projectile nears the end, in which re-
gion the ring current builds up to a certain value depending on the current in
the solenoid and the dimensions. Therefore the ring will emerge out of the
solenoid with a current flowing through it, and since the solenoid is left with
no energy, its magnetic field is zero and has no effect on the current in the
ring. The magnetic energy stored in the ring must therefore be eventually con-
verted into heat in the projectile.

The current in the ring as it travels through the solenoid is plotted in
Fig. 2 to help clarify the previous analysis. This plot is for specified di-
mensions, namely:

i

Yo ~ Ty 10 em

d.c = 1lcm .

It is worth noting here that the general shape of this curve is the game
for any dimensions, but the current in the ring as it leaves the solenoid is a
function of the dimensions.

Equations (3-29) and (3-30) show the magnitude of the current in the ring
Jjust before and Just after each turn is de-energized, but they do not indicate
how the current in the ring varies between one turn and the next. Since this
is of importance, the current in the ring as it moves from the first to the
second turn will be derived as a function of z, where O = z = d,.

It was shown previously that at z = 0, Iz = +I5 and at z = d;, Ig = O.

The current induced in the ring as it moves from zero to z is, from Egs.

(3-16) and (3-18) ,

N-Z
, T, w0’ (d- =)+ f‘*c
T + = o (3-31)
4“' I—IV\ v_'\'O.B_S] 1:6 L >
l
= (3-31')
Lo = Io+ I

When IR is calculated from Eq. (3-31') for different values of z between
zero and d, it is found that the current in the ring varies approximately linear-
ly with position as it moves from one turn to the next.
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2. Repulsion Case (See Fig. 1.)

This case is very similar in principle to the attraction one. In this case,
however, the coil has no initial current, and the ring is placed slightly to the
right of the first turn, and it also has no initial current or velocity.

At this position (z=0+) the first turn of the coil is energized with a
current +I,, thus inducing a current (-Io) in the ring, as explained previously.
Since the currents in the ring and the coil are opposite in direction, a force
is created on the ring which pushes it away from the energized turn of the coil
in the +z direction.

When the ring moves away from the energized turn, a voltage is induced in
it which tends to cancel the already existing current. However, the current
in the ring will always be such as to cancel the flux threading the ring from
the coil., Symbolically, this is represented as follows:

Q.= - <P (3-11)

Lo ™ —L:Z T L 18
where Lp is the self-inductance of the ring.
However,
Qe = TMyg (5-13)

where Mg is the mutual inductance between the ring and the coil, and is repre-
sented as Zm, where’m is the mutual inductance between the ring and each turn
of the solenoid. Substitution in Eq. (3-12) gives:

TrT_= - § WA (3-1L)
also

11
m = fNrgrp, (3-15)

2

and for \(_o. \{_b 3

m= £ (o) (3-15')
IR A
where rp 1s in centimeters, and f is tabulated with respect to the parameter

5 = distance _ z

diameter 21y,

11. Grover, p. T77.
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- A = diameter
@ - ————————
distance )

whichever is less than unity.12

Substituting in Eq. (3-14) we get

IQ;-— ‘- Z 1C<2rb ‘ (3-32)

Bu’cl5
~°l
"where r = radius of wire
r, = radius of ring in meters.

a

This gives

3
I, *\O Z 2
T =- ° = \> -
R 4An(ln > +0733) K %/ .

The current in the ring just after the first turn is energized is (-I,),
and since the distance between each turn and the next is d., the current in the
ring when it reaches the second turn and just before the second turn is ener-

gized is

X \O C£c,
T _— o ¥ (—— ) (3-34)
R2b 4u (In 24 0.33) i e,/

and IRsg Just after the second turn is energized is

Lpee =~ o+ Toob . (3-35)

12. Grover, p. 82
13. A.I.P. Handbook, pp. 5-29.
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From the above, general expressions showing the current in the ring just
before and just after the nth turn is energized are expressed as follows.

-
Tewh = Lo YO Z 1‘—( 5 (3-36)
e 41‘7 (lv\-- FO, 333 rb

)

l

QV\C\

IRV\& =-T.+ L znb (3-37)

The current in the ring as it travels through the solenocid is plotted in
Fig. 3 to help clarify the analysis. This plot is for specified dimensions,
namely, rg ~ 1, = 10O cm, d, = 1 cm.

It is seen from the above plot that if the solenoid has a large number of
turns, the current in the ring will build up to a certain value, (-Igy), de-
pending on the current in the solenoid and the dimensions. This buildup of
current occurs during the travel of the ring through the beginning few turns of
the solenoid, and the current in the ring oscillates between (-IRm) and -(Ipy=Io)
through the major portion of travel.

The ring emerges out of the solenocid with a current flowing through it,
but since the solenoid is left energized, the field of the solenoid tends to
cancel the current in the ring as the ring moves out of the field of the sole-
noid. The current in the ring as a function of distance beyond the exit is
plotted in Fig, 4 for both operating modes assuming infinite conductivity.

It is also noteworthy here that, like the attraction case, the current in
the ring varies approximately linearly as the ring moves between one turn and
the next.

C. MUTUAL INDUCTANCE BETWEEN THE RING AND THE SOLENOID

The mutual inductance between a solenoid and a circular current filament
in its end plane is given in Eq. (5-58EA Dimensions are illustrated in Fig. 5.

ROS

M, = 0.00zT () x o N Qg C}A‘A\ (5-58)

14. Grover, p. 11lk.
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where 2

c
z Qa
QT T o (3-39)
o}
c
oL =  — (3-40)
a-
N = total number of turns, and

Qo 1is tabulated as a function of p2 and Q.

d
¢

{ :
L

c{b 3
e
4

Fig. 5. Dimensions for mutual inductance calculations.

But for short solenoids and circles of the same radius (p2 and @ in the neighbor-
hood of unity), the value of Q, cannot be accurately interpolated from the table.
In such cases this difficulty is avoided by the use of the following formula:®?

6 < -\
Meos = o.cozmNAL K, (‘V\ﬁi .—2—{1*&“ %_2\)(5-”1)
where
A
< = (\=4)

T ( |- (il\

5 = o ] (3-43)

and the value of Ry is tabulated as a function of ¥2 and 2.

15. Grover, p. 116.
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Now returning to Eq. (3-38), we see that, for s >> ry,

R T
kA (0- ~ <—O~
_.-——1'—-—;_‘: -
R o ¥ S S
and
__(Q
Q 5
also
N=n18,
where

nm = turns/unit length.

Therefore, from Eq. (3-38) we get
-~

For the general case where the circular filament is not in the end plane
but is at a distance d, from the end plane,

Mgd g =Meo(std ) — MszedC (3-44)

where
Mro(s+de) = mutual inductance of the solenoid of length (s+d.) and the
circle in its end plane,
and
Mﬁodc = mutual inductance between a solenoid of length d, and the circle

in its end plane.

But when d, < s, M{odc_ & Mlo (“:-\-C-\C\ J

o~ AN
MRc\CS - N\Ros - MO y

This shows that the mutual inductance between the ring and the solenoid in
our case is almost constant through the major portion of travel, but starts to
vary appreciably when only a few energized turns are present in the solenoid.

Therefore, in the attraction case, the mutual inductance between the ring
and the solenoid is almost constant until the ring approaches the last few turns
where the mutual inductance starts dropping.

In the repulsion case, however, the mutual inductance starts low, builds
up to a certain value in the first few turns, and then stays almost constant at

that value through the major portion of travel.

Graphically the mutual inductance will be as shown in Fig. 6.
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Having now expressions for current and mutual inductance, we are now in a
position to simplify the velocity equations.

=
[0}
0]
=
2
83 2
ﬁ 6| Mgg = 0.002 #= rgry omp Qg
O G) - « ca———— -
5 /7 :
+ w0 / N\
S \
5 2 /
g0 /Repulsion Attraction'
—~ %) / Case Case \
R \
LN
= \
oL |
) o |}
S 0 | \
]
L O
>N
3 o -
0 N

turns

Fig. 6. Mutual inductance.

D. FINAL VELOCITY EXPRESSION

1. Attraction Case

Through the major portion of travel (except towards the end of the solenoid),
we have:

a. Ring inductance (LR) is approximately equal to the self-inductance of
each solenoid turn (Lp).

b. Ring current just after a turn is de-energized is approximately equal
to the solenoid current (Io) and in the same direction as Ij.

¢. Ring current just before a turn is de-energized is approximately zero.

d. The mutual inductance between ring and solenoid is approximately constant
as the projectile moves between the nth ang (n+l)th turns calling this
My, it has been shown that
25



M, = Q.OOZT ¢ (c@rb(@\ o @ ( }Lm (3-38")

where n; = turns per centimeter.

Since the current in the ring varies approximately linearly as the ring
moves from the nth turn to the (n+1)th turn, being I, at the nth turn and zero
at the (n+l)th turn, and since both Mpg (=M,) and I, are constant, we can eval-

uate the integral ﬁ'__

o)
as follows:

o

) T
L:A@EM%} = [ T,d(T M)

TM, [ 4Te

o *
T
(9]

{
—{

= IaMoX__IE]

= Io M0<I?T ﬁIRO) )

)
but

:’EE’T:Q ) Lra = Lo-

Therefore

b
[ Tl = TM, o
Q

Substituting back in the velocity equation (3-6), we get

.Z.. -\ T _‘. 2 kd T \7
LT AT T,

- 2
AL
- W\r\z + —'Va' <LR+4 Ma) (3-L6)

The kinetic energy gain in traveling N solenoid turns is then

26



= ENTD (LerAM), (347

(L <+ AM (3-48)

2. Repulsion Case

Through the major portion of travel (except near the beginning-of the
solenoid), we have:

a. LR ® Lp as in the attraction device.
b. Ring current Jjust before a turn is energized (IRnb) is equal to some
value*ﬁRm~I°)(see Fig. L) dependent on dimensions and solenoid current

I, and is antiparallel to I,.

¢. Ring current just after a turn is energized (IRna) is -Igy, again di-
rected oppositely to Ig .

d. Ring-coil mutual inductance is again approximately constant and is
given by:

M,= 0.002 T ¢¢(¢m3 Vb(m@ OW\,@O (}J\‘/\B , (3-381)

where
n; = turns per centimeter.

As before, the back emf integral may now be evaluated:

[T, dEMe) = TM, (Toe -5,

]
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But g =-<Ilw\" 'Lc) y Tro =7 Lew
S0, as in the attraction situation,
2

/T'_Ebc\(IKMzs> = - I, M. (5-43)

Letting Igy, = KIp, and substituting back in the velocity equation (3-10),
we get

Tyyy = JZ[% W\\y\/\ 'L?(?‘k-”l"\l‘l‘ +-¢N\+I M]

DL 4M,] (5-49)

From the above analysis, then, the kinetic energy gained by the ring as it
moves over N turns is:

_ 1
CE. = Tw (0-0)
=N I:[% (2x-NL, +iM°] (3-50)

Assuming that the initial kinetic energy of the ring is zero, we get an
expression for the final velocity as follows:

. M= e[RRI (3-51)

Equations (3-L8)and (3-51) derived above, apply through the major portion
of travel, but they fail towards the end of the solenoid in the attraction case
and at the beginning in the repulsion case.

The failure of these equations in the end regions will be due to what we
shall call "end effects." These end effects impose certain limitations which
will be treated in a later section.

For purposes of calculating the velocities attainable by the e.ectromag-
netic accelerator, however, Egs. (3-48) and (3-51) will be quite adequate since
the end reglons constitute a negligible percentage of the total length of the
device and therefore contribute little to the ultimate kinetic energy of the
projectile.
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IV. LIMITATIONS

The limitations on the electromagnetic accelerator are thermal and mechani-
cal in nature. The thermal limitation results from the fact that the tempera-
ture of the ring cannot exceed a certain value which depends on the material
used. The mechanical limitation arises from the interaction of the current in
the ring and the magnetic field on it, which produces radial forces that tend
to destroy the ring. The magnetic field on the ring is that of its self-field
plus the field of the solenoid.

The mechanical limitation is assumed here to be an instantaneous (not time-
dependent) factor. In most of the specific cases treated in the section of this
report on numerical values (Section V), this turns out to be the dominating fac-

tor.

Heating of the projectile is of course a time-dependent function if there
is no process for heat loss, as is approximately the case in the electromagnetic
accelerator. Thus, heating will in all cases be the eventual controlling limi-
tation if acceleration is carried on over a long enough time.

A. THERMAL LIMITATION

Heating will be analyzed in two parts. In the first part we will consider
the ring as it travels from the beginning to the end of the solenoid. The sec-
ond will take into consideration the magnetic energy stored in the ring as it
emerges out of the solenoid. It 1s worthwhile to note here that, in the attrac-
tion case, this energy is converted into heat, while in the repulsion case, the
current in the ring is wiped out by the solenoid field and does not contribute

much to heating.
1. Attraction Case

The energy Q dissipated in the ring as heat is:

Q = IRt (b-1)

where
a-c resistance in ohms
time in seconds.

o =
LI}

The a-c resistance of a straight round wire conductor at very high frequen-
cies is:16

l
\2/\'\.(_‘ = TG & (chm/umT ‘ﬁw‘ﬁm (4-2)

16. Ramo, S., and Whinnery, J. R., Fields and Waves in Modern Radio, J. Wiley
and Sons, 1953, p. 245.
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where
o
e}

conductivity "M\l\e / \MQJYQX"
skin depth, wetecs .

Applying this to our case, where we consider that the current in the ring
flows in a skin depth & which is distributed uniformly over approximately half
of the periphery instead of all around it, we get

! l
= (h-21)
and _ firr.(]j
Rye = T, G 8
. = (4-3)
c é; )
where
|
g— -g"‘\:re <Q_ %3
—_ I - ) W2, . bk
\\W-@/AG' ) Q\’ v (k=)
and for copper
§ = 2966  welers . (h=bt)

T

Therefore
0NF
et = & . (4-5)
Substituting back in the equation for Q, we get

Q? = Jg?ow T_'g t (4-6)

It should be noted that the above evaluation of the a-c resistance was based
on sinusoidal variations. The current variation in our case does not quite meet
this econdition but it can be considered sinusoidal as an approximation. A more
exact treatment will be found in Appendix I.

1L ve £
o 2 /N (1-7)

where v = avg. velocity = Vf/2, and A\ = wave length 4 de.
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Therefore

fo ot
2d,. -
Also
~ 25
t= A (4-9)
where S = length of the solenoid.
Therefore t 1
— 3®IE'§E <_Z__§__> <10m\e8>
Q) -G 23 S
(4-10)
~To 9
—- -lote ( celoces) |
T\ Ve
The amount of heat required to give a temperature rise AT will Dbe:
QAT = mx AT x € calories, (4-11)
where
m = mass of ring in gm
= qr2 . 207 - , and
an = density in gm/m3
¢ = specific heat in cal/gm°C.
Therefore
& — P < AT <« (Qodanes) (4-12)
AT b N\

and in order that the ring temperature does not go above a given temperature
(TO +AT), where Ty 1s the ambient, the following should hold:

‘Lg 2 —
(R é‘Z_n—z‘{' C‘\) QMA\ C (4-13)
SNOS
or
1 1 1 ZE
¢ L AT ¢ & AV i
]‘_229‘2\‘ & Cwe £¢ (h-14)
But IR = Ky I,, where K, is a constant determined from the current derivations
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developed previously; in this case (attraction) it is equal to 1/2. Therefore,

T & 'ls" L, QAT T A\vd, (4-15)

We must also consider the effect of the magnetic energy stored in the ring
as it emerges out of the solenoid. This magnetic energy all goes into heat and

is:

_ ¢ ( ' ) 4-16)
Q. = 7 Lom L-EL :ysuiefs , (
where
Ipm = KIp is the current in the ring as it emerges out of the solenoidj
K depends on the dimensions (as shown previously).
Therefore

v b4 '
0, = 9—'22—4- (k1) Ly (calevies ). (4-17)

Now in order for the ring temperature not to exceed (T, + AT), the follow=-
ing must hold [combining Eqs. (4-14) and (4-17)]:

Lt Oka T S L o tt AT 4-18
0.2k T, Ly+* S onela Quble, a8
e ¢ \v.d.

and

2 VA v 2 - | b-
T, £T0T,Qubt e QKL + Q—\GQ\;: :f |
& ¢

2. Repulsion Case

By a similar procedure the current 1limit in this case is as follows:

T -—
2¢O Cu AT c e \%d, (1-20)
‘- L
.~ S
The only difference in this equation from that of the attraction case is in the
value for K,.. Here K, depends on the dimensions and is different from Kg.

N A
]

™~

|

It was shown previously that the magnetic field of the solenoid wipes out
the current in the ring as the ring moves away from the end of the solenoid.
Therefore there is a negligible amount of heating contributed by the stored
magnetic energy in the ring and Eqg. (4-20) will be adequate for determination of
maximum allowable current.
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B. MECHANICAL LIMITATION

1. Attraction Case

The mechanical limitation arises from the fact that the mechanical stress
on the projectile cannot exceed the tensile strength of the material involved.
This mechanical stress appears as a radial pressure and will be due to two fac-
tors, the interaction of the projectile circumferential current with its own
magnetic field, and with the axial component of the magnetic field from the ex-
ternal driving coil.

Consider a ring carrying current with major radius ry and minor or cross-
sectional radius r. If there is an outward directed radial force F' per unit
peripheral length distributed uniformly around the ring, then the stress within
the ring can be derived as follows (referring to Fig. 7).

PROJECTILE
RING

» A

Fig. T. Mechanical stress diagram.

2F" = total downward force acting within the ring normal to the bisecting
plane A-A* (newtons).

radial force per unit circumferential length acting on ring
(newtons /meter).

FY

*Plane A-A is horizontal and bisects the projectile ring along a major diameter.
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In order that equilibrium exist, the sum of the vertical forces on the
ring as shown in Fig. 7 must be zero; that is,

v w \
r =f PSMQ_PC\DAQQ (4-21)
3]
which results in
F' = F'r, . (k-21')
So that the ring is not destroyed, however, the following inequality must hold:

FN
5O % (4-22)

where
A = ring cross-sectional area

= qr?
- J
0y = tensile strength of the ring material,
1
or ¥ (TD A
—= =G (4-23)
wo© T.

The axial magnetic field on the ring due to the driving coil will be ap-
proximately:

Red = + PN e (h-2L)

where
Io = coil current
n, = coil turns/unit length.
Therefore the external force Féxt is given by
—! l T
= == pw L L (1-25)
ek BQ*L%IZ. 2./“1 o TR )
where
IR = ring or projectile current.

The internal force due to the self-magnetic field of the ring current may
be calculated by noting the change in stored energy caused by a small change in
ring radius, keeping current constant.

Q

\ T -
W=+, T (126
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1\ | AW

Fwk = Znc c\(‘b

Y
<
_ I dlw
—"4 Co4q (4-27)
Ty (}) .
The inductance of a conducting loop is given approximately byl7
| B .
L2 e ln == yheee =41, (4-28)
R }A b < ) ‘F\D
Therefore
RY]
dhe - o lu =2 +/m
Aty /‘L S
— C\V\%_r_\z + \B (4-29)
pond /LL -
and
T
i '_r gr
_ [ﬁ [
k. = A o I ,(," + l> (4-30)
Now

F:‘ = Fint. + Flext, (4-31)

Tp 20 z - sl
=ﬁ:<\“7¢h+\5+ Z/J\’\\IQ'LZ- (k-31")

Introducing Eq. (4-31') into Eq. (4-23) gives

Wl /1 % N\,
Gy 2 A 'O"\ ?“H\*—z‘(b}‘,“arark (4-32)
ot

In attraction-type operation, the above analysis holds exactly, and through
the major portion of travel IR < I,. Although in the end region IR rises con-
siderably above I,, the magnetic field strength from the solenoid at the same
time falls off due to the shortness of the active coil, so we need not consider
"end effects" in this analysis. Substituting I, for Iy and 1/d. for n in Eq.

(4L-32), then, the limiting conditions are given by:

17. A.I.P. Handbook, pp. 5-29.
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. Z o & T+t |"\>( @rbH) (4-53)

47 Crv Y ‘&3 [A)

2. Repulsion Case

When the projectile is accelerated away from rather than toward the ener-
gized portion of the driving solenoid, as in the repulsion case, the radial
force is inwardly directed, and the above derivation is therefore inapplicable.
Mechanicalilimitation may in this case arise from two distinct types of failure.
If the ratio rb/r is small (say, less than 10), the ring is considered to be
thick, and failure is reached when the axial stress around the ring exceeds
the compressive strength (or) of the ring material, that is, when F’ =(ﬁr2/ITJCk-
The procedure followed for the attraction case is therefore also applicable
with substitution of o¢ for ot, and the resulting maximum radial force in re-
pulsion is higher than in attraction in the ratio of cc/ct.

When rb/r becomes larger, however, as in gengral will be the case in the
electromagnetic accelerator where velocity rather than mass is desired (leading
to small r), deformation instability becomes the limiting factor. That is,
beyond a certain radially inward loading (F newton/meter of circumferential
length), any slight elongation which appears in the nominally circular ring
will grow so as to buckle the ring.

The analysis of the "slender" ring buckling limit is carried out in the
literaturel8,19 for a ring of rectangular cross section (radial width r, axial
extent £, major radius rp, and the limiting condition is given by:

! e J
i, (Copulsion) = === (ot
\wA N
b
where
Fiim = maximum radially inward force per unit length around circumfer-

ence of ring (newton/m)
modulus of elasticity (newton/m2)
moment of inertia (m4)= 4r3/12.20 (4-35)

oy
n m

18. Timoshenko, S., Theory of Elastic Stability, McGraw-Hill Book Co., New York,
1936, p. 216.

19. von Sanden, K. B., and Gunther, K., "The Strengths of Cylindrical Shells
Stiffened by Frames and Bulkheads, Under Uniform External Pressure on All
Sides," Werft and Reederei, 1, Nos. 8-10 (1920), 2, No. 17 (1921), trans~-
lated by E. N. Labouvie, Translation No. 38, March, 1952, Department of the
Navy, David W. Taylor Model Basin, Washington, D. C.

20. Timoshenko, S., and MacCullough, G. H., Elements of Strength of Materials,
D. Van Nostrand Co., 1943, p. 350.
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In the repulsion device, the maximum ring current I, is given by
Igm = Ko (4-36)
where I( is a constant (>1) depending on dimensions.

From Eq. (L-31!'), then, (noting again l/dc = n), the limiting conditions
for a rectangular cross-sectional ring are given by:

sz B (P e g pn kT

Trfl>

A

T, %Vb ZW Vb (+-37)
S (U Ry

or substituting in Eq. (k-35),

3
E oz B |me WEE )+ | o

A Y L

Comparing Eqs. (4~38) and (4-33), one notes that the driving coil current
I,, and therefore the final velocity [see Eg. (3-49)] will be somewhat less in
the repulsion device than in the alternate scheme. More quantitative estimates
will be made in the later section covering numerical results.

Two methods exist for raising the mechanical limiting point of the repul-
sion-operated accelerator. In the first place, bracing or spokes could be used
to oppose the collapse of the ring. The limiting Eq. (L4-34) has been derived
on the basis of buckling in the form of a single wavelength around the entire
ring. A simple strut arrangement would necessitate at least a two-wavelength
buckling configuration, which would not become .unstable until a higher exter-
nal load was reached. For further discussion of these matters, the reader may
consult Refs. 18 and 19.

The other improvement of the mechanical strength situation may be brought
about by having the projectile traveling coaxial with but outside of the ac-
celerating solenoid. Referring to Fig. 1 this means that ry > rg and the radial
component of force on the ring is now outwardly directed. In calculating the
velocity attainable by this geometry, the mutual inductance between ring and
solenoid depends only on the ratios

o = .]:L
Iz
(ri1 € ro always)
T2
p =
T22 + 82
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regardless of whether the ring is larger or smaller than the solenoid (i.e., re-
gardless of whether r, = ri, r, = rp, Or ry = rp, Iy = r; in the above equations).*
The current expression already derived (Fig. 3) is still applicable.

*See Ref. 7 and the section in this report on mutual inductance, p.20,
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V. NUMERICAL RESULTS

A. AVERAGE RING CURRENT IN TERMS OF SOLENOID CURRENT

It was found previously that the current in the ring depends on the dimen-
sions of the system. Table I shows the current in the ring for several typical
dimensions for both the attraction and repulsion accelerators. In this table

dc = 21‘.
TABLE I
RING CURRENT

Attraction Case [Using Egs. (3-29) and (3-30)]

Avg. IR Through

r (em) rp(em) Majority of Travel* Try(at end) = k Io
0.1 2 0.5 I, 3.6 I
0.5 10 0.5 Io 4.8 I,
0.5 20 0.5 Io 8.0 I,
0.5 30 0.5 Ip 10.5 Ig
0.5 40 0.5 Io 13.0 I,
0.5 50 0.5 Ip 15.5 Io
0.5 20 0.5 Ig 8.0 Ip
0.k 20 0.5 Ip 9.5 Io
0.3 20 0.5 Io 11.5 I,
0.2 20 0.5 I, 15.5 I,
0.1 20 0.5 Ig 26.5 I,

Repulsion Case [Using Egs..(3-36) and (3-3T)]

r(cm) rp(cm) Igy = k I **
0.1 2 3.6 I,
0.5 10 4.8 I,
0.5 20 8.0 Iy
0.5 30 10.5 Io
0.5 Lo 13.0 I,
0.5 50 15.5 I,
0.5 20 8.0 I,
0.4 20 9.5 I,
0.3 20 11.5 Ig
0.2 20 15.5 I,
0.1 20 26.5 I,

*IR varies approximately linearly between I, and O.

*% .
IR varies vetween -Igy and -(Igy - I,).
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B. FINAL VELOCITY CALCULATION

With the current in the ring now determined for different dimensions, the
mechanical limitation will be considered next. From this, a maximum allowable
ring current is obtained, which in turn from the above tables determines the
maximum solenoid current. Knowing the ring and solenoid currents, the final
velocity can be obtained. This final velocity will then be substituted in the
heating limitation to check if the inequalities (4-19) and (L-20) hold.

Copper will in all cases be used as the projectile material. Physical con-
stants for copper are:zl

tensile strength (oy) = 60,000 1b/in.2 =5 x 10® newton/m?

modulus of elasticity (E) = 15 x 108 1b/in.2
density (py) = 8.9 x 106 gm/m3
specific heat (c) = 0.094 cal/gm - °C

]

conductivity (o) 5.8 x 107 mhos/m

1. Attraction Case

a. Maximum Allowable Currents Considering the Mechanieal Limitation.--From
Eq. (4-33), the following inequality results:

) 2
2 2.‘5‘[\\0‘ <
pA
I, = (5-1)
AE [— +624r‘ (‘V\ - +3\)1
But for the range of values involvéd here
L2 \ S
- >> (\ -2
that is
Féxt >> F'int 3
therefore,
e L ..L 15 ¢ \> 1
I, =& S (25 ~10% + c\»(_ ) (5-1')

where r, rp amd d, are in meters, and Iy is in amperes.

Maximum allowable values for I, from Eq. (5-1') are listed in Table II.

21. Handbook of Chemistry and Physics, 34th ed., Chemical Rubber Publishing Co.,
1952.
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TABIE II
MECHANTCALLY ALLOWABLE CURRENT (ATTRACTION CASE)
[Using Eq. (5-1')]

dc = 2r
r (cm) ry, (cm) To(max) (amp)
0.1 2 1.58 x 104
0.5 10 7.9 x 10%
0.5 20 5.6 x 10%
0.5 50 3.54 x 104
0.5 20 5.6 x 10*
0.3 20 2.6 x 104
0.1 20 5 ox 104

b. Final Velocity as a Function of Dimensions.—From Eq. (3-48), using the
dimensions of Tables I and II, final velocities have been calculated and are
tabulated in Table IIT.

TABLE ITI
FINAL VELOCITY FOR N = 1000 TURNS (ATTRACTION CASE)
[Using Eq. (3-48)]

r(em)  rp(em) Lp (bys) o (hys) n(kg) vy
0.1 2 8L x 1077 3.95 x 1077 .0035 1.1 x 104
0.5 10 4.18 x.10-7 16.2 x 1077 RV 1.0 x 10%
0.5 20 10. x 10°7 2.  x 1077 .89 1.0 x 10%
0.5 50 31. x 1077 480. x 1077 2.225 1.1 x 104
0.5 20 10  x 1077 72 x 1077 .89 1.0 x 10*
0.3 20 11.3 x 1077 120 x 1077 .32 1.0 x 10%
0.1 20 1h x 1077 360 x 1077 .035 1.0 x 104

The above table was calculated for a constant N, namely, one thousand turns in
each case. If the table is calculated for a constant length of solenoid S = 10 m,
we get the final velocities in Table IV.
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TABIE IV
FINAL VEILCOCITY FOR S = 10 METERS (ATTRACTION CASE)
[Using Eq. (3-48)]

r(cm) Iy, (cm) Ve 2 Ve ik

sec sec
0.1 2 2.5 x 10% 8.3 x 104
0.5 10 1.0 x 104 3.3 x 104
0.5 20 1.0 x 104 3.3 x 104
0.5 50 1.1 x 10% 3.5 x 104
0.5 20 1.0 x 104 3.3 x 10%
0.3 20 1.3 x 104 L,3 x 10%
0.1 20 2.% x 104 7.6 x 10%

c¢. Maximum Allowable Current Due to Heating Limitation.-—The inequality to
be satisfied is

< < l
T £ 20<¢ < AT o (4-19)
o ) QWL _0,\2K1L2+ 5\0 Kal q J
< )
where ° \T\TT <
~ 6 g
Om 8.9 x 10 >
¢ = o.o9k 2E
gm°C

AT will be taken as 500°C ,

S = 10 meters ,
¢ = 5.8 x 107 §%§5 ,
K, = 1/2 , and

K depends on the dimensions.

Maximum allowable currents according to Eq. (4-19) are listed in Table V.
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TABLE V
MAXIMUM THERMALLY ALLOWABLE CURRENT (ATTRACTION CASE)
[Using Eq. (4-19)]

r(cm) ry, (cm) Max. Allowable I,
0.1 2 2.9 x 105
0.5 10 10.7 x 10°
0.5 20 7.k x 105
0.5 50 3.42 x 10°
0.5 20 7.4  x 105
0.3 20 2.9 x 10°
0.1 20 .375 x 105

It is seen from Table V that the maximum allowable current is limited mechani-
cally for all dimensions given above. Therefore, the final velocities calculated
previously are the maximum velocities obtainable.

2. Repulsion Case (1< ry)

Again 1/d. <<(k/2nry) 4n(8rp/L) + 1], so the maximum allowable current is
given [from Eq. (4-38)] by:

1 N ELl (}ji_t; A
IO (VQ_'? - '2/,\\”; (\b K(lwg%_ 1""') (5-2)

s

Comparing this with the equivalent attraction device equation [from Eq. (4-33),
written for rectangular rather than round cross-sectioned ring],

2 l /< [ Zrr O
T (aft) & €5 & — ) ST (5-1")
o v T ) )
shows that
~ = l I 2
T “(ve. = T (att (5-3)
e (\_C@ WMoy G't 4 V\Z \r\? ° ( ) woay ¢

Typical results are shown in Table VI. From this table one concludes that inasmuch
as velocity is proportional to I, [Eq. (3-49)] the attraction device is far su-
perior from the mechanical strength standpoint when r, < rg.
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TABLE VI
COMPARISON OF MAXIMUM SOLENOID CURRENTS
IN ATTRACTION AND REPULSION CASES

r(cm) ry,(cm) To(rep) |max
I5(att) |pax

.5 10 6.9 x 1073
.5 20 6.1 x 107
5 50 2.5 x 107°
.1 20 2.25 x 1078

3. Repulsion Case (ry, > r,)

The calculations here are straightforward following the procedures used in
the attraction case above. Results are given in Tables VII and VIII.

TABLE VII
MECHANICALLY ALLOWABLE CURRENT (REPULSION CASE)
[Using Eq. (5-1)]|

r(cm) ry(cm) Max. Ipy(amp) Max. Ig(amp)
0.1 2 1.58 x 104 Jh ox 104
0.5 10 8 x 10% Lhox 104
0.5 20 5.6 x 10% 1.66 x 104
0.5 50 3.54 x 104 .23 x 104
0.5 20 5.6 x 10% .53 x 10%
0.3 20 2.6 x 10* 228 x 10%
0.1 20 .5 x 104 .02 x 10%
TABLE VIII

FINAL VELOCITY FOR N = 1000 TURNS (REPULSION CASE)
[Using Eq. (3-51)]

m t

r{cm T cm — —

(cm) b( ) v sec Ve sec
0.1 2 8.65 x 10° 28 x 10°
0.5 10 2.5 x 108 8.2 x.108
0.5 20 1.24 x 103 4.1 x 108
0.5 50 1.07 x 103 3.5 x 10°
0.5 20 1.24 x 108 4.1 x 103
0.3 20 1.h x 108 k.6 x 10°
0.1 20 1.12 x 10° 3.7 x 103
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If Table VIIT is calculated for a constant solenoid length, namely S = 10 m,
we get:

TABLE IX
FINAL VELOCITY FOR S = 10 METERS (REPULSION CASE)
[Using Eq. (3-5\)]

m £t

ricm cm VP —— VP e

( ) I‘b( ) £ sec £ sec

0.1 2 19.3 x 103 63 x 10°
0.5 10 2.5 x 108 8.2 x 10°
0.5 20 1.24 x 108 h,1 x 103
0.5 50 1.07 x 10° 3.5 x 103
0.5 20 1.24 x 108 L1 x 108
0.3 20 1.8 x 108 5.9 x 10°
0.1 20 2.62 x 103 8.65 x 10°

TABLE X

MAXIMUM THERMALLY ALLOWABLE CURRENT (REPULSION CASE)
[Using Eg. (4-70)]

r(cm) ry,(cm) Max. I,(amp)
0.1 2 18.5 x 10%
0.5 10 17 x 10°
0.5 20 12 x 10°
0.5 50 9.5 x 10°
0.5 20 12 x 10°
0.% 20 .63 x 105
0.1 20 T3 x 10°

It is seen from the above tables that the maximum allowable currents are
limited mechanically in all cases considered, and therefore the final velocities
obtained in Tables VIII and IX are the maximum obtainable velocities for this
type of operation.

We conclude therefore that the attraction operation is superior to the re-
pulsion one when final velocity is the goal.

45



VI. STABILITY

Two types of instability might arise in the sequentially switched accelerator.
The axis of the proJjectile could suffer either a lateral displacement or a tilt
with respect to its equilibrium position coaxial with the driving coil. If the
forces on the projectile are such as to cause these displacements to grow, the
system will be unstable.

A. TLATERAL INSTABILITY

We are concerned here only with the radial variation of the axial component
of magnetic field emerging from the end of a long solenoid. Over the end plane,
this component is uniform, but at any small distance out, the axial component is
maximum on the solenoid axis, and diminishes with radial distance away from the
axis.

The projectile ring is shown in Fig. 8, displaced off axis in both attraction
and repulsion cases.

In the repulsion case |Fo|>|Fi|, so the lateral perturbation will amplify
and the device is inherently instable.

Under attraction operation, again [F2]>[Fl|, but now the net radial force is
in the direction to oppose the .displacement, and the system is therefore stable
to lateral disturbances. This would lead then to less frictional loss than in
the repulsion device.

B. ROTATTONAL INSTABILITY

Now we must explore the behavior of the radial component of magnetic field
issuing from a long solenoid since this will account for axial forces on the ring
which will either oppose or enlarge any ring tilt which might appear. By con-
sidering Fig. 9, one can see that the radial field component, a distance rp from
the axis of a solenoid, must peak between z = O and z = d,. Specifically, let
all turns through the nth e energized with current I,; let the field at z = 0O,
r=ry, be called By,. Now, if the solenoid is long enough, and the (n+l)th turn is
energized with Io current, then the radial field at z = d,, r = ry must also be
Bro' But the (n+l)th turn can contribute no radial field in the z = d plane,
so returning to the original conditions we may say that B, = Bro at z = 0 and
de, r = rp with turns only through the nth energized. Knowing that the radial
field approaches zero eventually in both tHe +z and -z directions, the radial
magnetic field at r = rp as a function of z takes the form shown in Fig. 10,
peaking at z = ¢ < d,.
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Defining two regions A and B in Fig. 11, and referring to the forces as
defined by Fig. 11, in each case F; > Fp and Fy > F3. The result of this is
that each operating mode will have both stable and unstable positions as shown
in the chart below.

ROTATTONAL STABILITY

Region Attraction Repulsion
A Stable Unstable
B Unstable Stable

The ring current and resulting axial force are higher in region B and A ,
and from this one might be able to show that the rate of growth and decay of the
disturbances differ in the two regions. This would then favor one system over
the other.
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VII. ENERGY STORAGE, CIRCUIT, AND SWITCHING REQUIREMENTS

The previous sections have derived expressions for velocity of the electro-
magnetic gun in terms of the gun geometry and driving current. It is also of
interest to study the acceleration process in terms of energy storage and power
since these will determine the form of the primary power source as well as re-
veal further the principles of operation of the device.

If one considers a mass m being uniformly accelerated to velocity v in a
distance d, then the ultimate acceleration is given by

-:zéz- (7-1)
= Ta
force on the mass is uniformly
F = ma, (7-2)
and the transit time is
b ZG\ (7-3)

TE=L T Y

The velocity at any instant t is given by

c=a (&-t.) (7-1)

assuming initially vo = O at time t = t
being consumed is

os and at the same instant, the power

P = Fv, (7-5)
T>"=- (VMCQ\ (lfét"taf)

- 5% ()c-{—é) ‘ (7-6)

As an example, let 10 gm be accelerated to 3 x 105 cm/sec (~10,000 ft/sec)
in a 10-meter length. Then

or

6.7 x 1072 sec ,

T .=
and or
P(r) = 136 x 107 ==

136 megawatts.

At these power levels, one is naturally led to think in terms of an inter-
mediate electrical storage device supplying the driving power rather than con-
sidering withdrawal of this much power directly from the primary power lines.
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In the case of the "attraction" type of system analyzed previously, this
energy storage could conceivably be in the accelerator coil itself since it ini-
tially carries a current and therefore has energy stored in its magnetic field.
This would result, of course, in current decay in the coll during the accelera-
tion period due to back emf's induced in the coil by the moving projectile, and
the constant current solution previously derived would not be striectly applicable.

Of course, in either operating mode, the accelerating current could come
from a primary driver such as a series inductance or parallel capacitance. In
this case, ultimate velocity for a given coil geometry and a given maximum coil
current would be higher than in the self-driven situation.

The possible configurations for the switching type of electromagnetic ac~-
celerator can be categorized both by the manner in which the driving coil turns
are connected and by the means used for initial electrical energy storage; the
two divisions turn out not to be completely independent.

Accelerator turns may either be in series or in parallel, as shown in Fig.
12. Note also that either circuit is adaptable to both "attraction" and "repul-
sion" operation.

In the parallel circuit situation, assuming something approximating constant
current operation is desired, the energy source must be essentially a constant
voltage device able to provide up to NIy current, where N is the total number of
driving coil turns, and I, is the current needed per turn. A capacitive circuit
as shown in Fig. 12a would therefore perhaps be best.

The series arrangement, on the other hand, requires a driving supply which
need handle at the most Ip current, although the supply voltage will vary with
number of turns energized. This would suggest the inductive circuit of Fig. 12b.
The series circuit is advantageous because in this case the accelerator coil it-
self can, in the "attraction" type of operation, easily be the energy source, as
has been suggested earlier.

We will cohsider in detail the circuit of Fig. 12b. Initially, when used
as an "attraction" device, all switches except Swy are open, and current I, is
established through the coil via Swy.

The proJjectile begins at the N'R turn and is given initial acceleration by
closing Swy.j and then opening Swy. This procedure maintains a continuous path
through Swy_y fgﬁ the coil current as well as transferring to the projectile the
energy of the N'" turn. As the projectile passes any turn (n), the switch Swy.3
is closed and Swy is opened.

Although it might appear that opening the high current circuit would be a
very difficult task, especially considering the speed with which this circuit
must be broken, one must keep in mind that the projectile assumes most of the
magnetic energy initially held by the turn, and only the leakage flux need be
dissipated by the switch.
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The switch requirement then is not so much ability to handle large dissi-
pated energy but rather ability to be timed accurately and to open very quickly.
Reagsonable criteria might be that the switch must be timed to open before the
projectile passes beyond a turn by one tenth of the turn spacing and not to be-
gin opening until the projectile is at least adjacent to a turn. This means that
for the projectile which is traveling at 300,000 cm/sec with a turn spacing of
one cm, the total time in which the switch must act, including both initiating
time and opéning duration randomness is only about 3 usec.

In the repulsion situation using the circuit of Fig. 12b, the requirements
are essentially the same since very little energy will be dissipated in any one
switch, but timing is again critical.

The switch~timing problem becomes increasingly difficult as the ultimate
desired projectile velocity is raised. At some point, however, one can begin
to consider an automatically timed structure where the phase velocity of a pulse
injected onto' the accelerator coil would be synchronized with the projectile
velocity.

In this "traveling wave" mode of operation, one might contemplate using a
periodically loaded helical delay line which would simulate the action of the
switched circuits described above, but would not require actually switching of
currents into or out of coil turns.

Slow wave structures of this type would be feasible for velocities above
perhaps 50,000 ft/sec, S0 an ihjection device giving the projectile this much
initial velocity would be required.

A three-stage system might actually be considered, where a chemically driven
gun would be used for initial acceleration. This would be followed by a section
of the switch-operated electromagnetic accelerator:leading into the self-time or
"traveling wave" type of system.
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VIII. REVIEW

The foregoing analysis has shown that acceleration of smell masses to 10,000
meters per second is at least theoretically possible. The primary practical dif-
ficulty is the switching problem; consideration of the switch and timing circuit
designs would perhaps be the next logical step to be taken in a development pro-
gram of the sequentially switched accelerator.

Of the two operating modes considered, the "repulsion" device, having signif-
icantly higher proJjectile current than the "attraction" device, is more severely
limited, both mechanically and thermally. Repulsion operation is also handicapped
by "lateral" instability.

These considerations, plus the fact that the attraction accelerator may serve
for its own energy storage, lead to the conclusion that attraction operation is
the more applicable of the two operating modes. It will, however, require break-
ing rather than making a high-current circuit, and guides will be required to con-
trol the 'rotational" instability.

For numerical values, copper has been the only projectile material considered
in this report. Other metals such as aluminum, titanium, or beryllium might prove
to have more advantageous combinations of electrical conductivity, specific heat,
and mechanical properties.
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APPENDIX I

MAGNETIC PRESSURE-—A GENERALIZED APPROACH TO ELECTROMAGNETIC ACCELERATION

Electromagnetic acceleration of an electrically conducting mass may be ana-
lyzed on the basis of the Lorentz force given by

> > >
f = jxB, (I-1)

where F is the current density field, B is an externally applied magnetic field,
and ¥ is thé force per unit volume in the field.

The thrust on the projectile may also be thought to arise from a gradient
of magnetic field pressure across the projectile, and either viewpoint may easily
be derived from the other, as will now be shown. Consider a conducting sheet
(Fig. 13) which is of finite thickness Ax in the x direction but infipite in the
other two dimensions, and which carries uniform current density 3 = ayj . Let
the whole system be immersed in a uniform external magnetic field Bg = %ZBOZ.
Here, unit direction vectors are indicated by gj-
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The force on a small area Ay Az of the side of this conducting sheet is,
from the Lorentz expression:

F = (j,Ax Ay) Bghz , (1-2)

{

s0 the pressure becomes:

P = JPOAX . (I-3)

In the absense of displacement current, the current density and magnetic inten-
sity vector must be related by

> >
VxH = j, (I-k)
or in this case simply Sty
2 ——— -t
Iy Sl (T-4')

Since Jy is constant and independent of x, the pressure then may be written:

PR, 5% A%

=B, AN (1-5)

|
BAR . -5
/LL (1I-5")

Now since the change in magnetic field is constant through Ax, and taking the
magnetic field due just to the current j as iB at the surfaces x = 0, Ax, the

pressure becomes:
8. R (1-6)

o=
(4BQ+% Tﬁ + Q°- Q)

- g};[u(ﬁ reY (B~ @) |

- A<2E/TI> ) (1-6')

where Bp = total magnetic field. Since BT2/2U is Just the density of energy
stored in the magnetic field, the mechanical pressure now is shown to arise
from a gradient of stored magnetic energy.

Iro

If jy is a function of x, then the force expression myst be written

T oI xE ]
v :(lj S (1-7)

where v = volume

A
E = %QAjA%[O jjdx) (1-8)
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and the pressure is: A

P =B, quﬂdx

A% 54 (1-9)
Iy
= B, f an )

(<3

leading again to

2= ﬁg<o leki
6
N (E—;} | (-6

All electromagnetic acceleration schemes may therefore be considered from
the standpoint of thrust arising from gradients of BT2/2H- Two distinct cases
are of interest:

1. Current with no external magnetic field.

2. Current in a uniform external magnetic field. (See discussion on page .)
Inasmuch as heating is one of the primary limiting factors, the ratio of kinetic
to thermal energy delivered to the accelerated proJjectile will be derived in each
of the above cases and will be taken as a measure of the efficiency of the accel-
eration process.

ACCELERATION PRODUCED BY A CURRENT WITH NO EXTERNAL MAGNETIC FIELD

There are two general ways in which a current can be produced in a conduc=-
tor. Either an electric field may be applied directly across the conductor, or
the electric field may be induced by a changing magnetic field.

1. Directly Applied Field

In the instance of a conductor subjected to an applied electric field in the
absence of any external magnetic field, if the field is distributed symmetrically
with, respect to the conductor, as in the case of a voltage applied to a long
straight wire, obviously there is no net lateral force experienced by the conduc-
tor regardless of its cross-sectional slope.

If one thinks in terms of a curved conductor, however, & net force does re-
sult. Consider a section of a cylindrical .conductor having length L, inside
radius R, and thickness AR, as in Fig. 1h. ©Now if an electrical field is estab-
lished across this semi-cylinder, as by the battery and rail arrangement shown
in Fig. 14, causing circumferential current of density Jo to flow, then since
the path length and therefore resistance increases linearly with r, Jo will de-
crease directly with r. This leads to a nonlinear variation of H with r:
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RAAR
Hzmz = H\z - J :\9 ar (1-10)

R o\
b - V_Lf\_ﬂﬁq’-]m&
= e T e, T T A&
-k
= H,-§H (1-10")
where
A
Sh= 3%zm2+ A e (1-11)
jgllé je &+ \(_:2 )
Pa) —
A= 1o, ~ To0ne - (1-12)
The net outward presiu?e on the conducting surface at r is then:
i)
- i/u (I-6")

T "
Nl 9
-~Fl
f L N
~VN R
w e
"’ 1

0

© W

| I o~
~ I
<,
—

\o\,\ere EE*—AR = BR + 8B
= BRSH- - %}LSH'-Z
=8. (4 AmZA»—-L (4 )
AP lo 2 - /\\BEAK+?Ai&§. (1-13)

The usual rail-type electromagnetic gun can be analyzed along the lines of

reasoning applied above as will be shown with reference to the somewhat idealized
geometry of Fig. 14. The axial force on the incremental area LRAQ is
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so the total axial forq; on the proJjectile is
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(I-15)
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Kinetic energy at time t, being the integral of power over this time, is:

€ = f F v dt
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e
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(I-16)
T
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Energy per unit volume which goes into ohmic heating over this time is:
; - T 1
s |
{; = 5&9 = = - fﬁé@t
»\.{ j g At q /a [ﬁgz 3‘( (V“Ev} C“t
—)— . Z _ s 'B 9 +<s % 1 (I~l7)
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The greatest heating will take place at r = R where
S
‘ .
Che= T 192 t. (1-18)

Combining Eqs. (I-16) and (I-18) shows the efficiency of the device to increase
linearly with time.

2. Current Induced by a Changing Magnetic Field

This case will be studied with reference to the geometry of Fig. 15, con-
sisting of two infinite parallel plane conductors of dx and Ax thickness. Let
a constant current I, per unit z length be introduced in the y direction into
the 3x conductor at time t = 0. This will establish a uniform magnetic field
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Fig. 15. Geometry for transient magnetic field derivation.
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B = uHy in the space between planes and especially at the x = O surface of the
Ax conductor. If this conductor has conductivity o, the magnetic field will
penetrate it governed by the following differential equation:

D L 1 5
A TG e _—

For the transient type occurrence considered here, the solution to this
equation is:22 D4

ZFZ‘K_): 2
B, (1) = R, "‘%Z‘f erp(-§)d5§

<}
(1-20)
R
9 ZJ"*:/G/{L
From this, the pressure on the Ax conductor is
BN L (W -H
(P:A(?.}A) -E}L HO—HAV\\

(I-21)

)AH erj; ) {/G}l T - @.r{'(zm‘>

and if this plane is free to move, the kinetic energy per unit volume at tlme t
becomes:

t
G0
€,<<)Q = Aq L Pvdt
l
3 [ T
l T < 2 2
L Ak \[ f A
— Q(A’IQI 74%‘ Ho et (—ZF) T-exy ‘2——_‘_“/ 'tc\'t
d P c}* 1
22, Churchill, R. V., Fourier Analysis and Boundary Value Problems, McGraw-Hill

Book Co., New York, 1941, p. 123, problem 2; or see A.I1.P. Handbook, pp.
5-93.
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The current density within the moving plane is again given by

_ _ M,
147 >

> I K
, -— = \ - ('(; —_— 1-2
%L%'t 3 H, e 3 ,_—*/Q}A (1-23)

ch 2 et 2=)

= Hé X (Z tc

The heat energy generated per unit volume in time is given by the integral of
j 2/0 over time t, so this becomes a function of x:

LT "
Q\q(%,ﬂ: g-c‘ — @\"@ " JC/G_/A At (1-24)

The kinetic to thermal ratio in this case is then:
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(I-25)

ACCELERATION ARISING FROM CURRENT IN THE PRESENCE OF A UNIFORM EXTERNAL MAGNETIC
FIELD

As in the previous section, both induced currents and currents driven by a
directly applied electric field may be produced. The former condition under
proper circumstances will result in a steady or "d-c" force, while the latter
again will be a transient phenomenon.

1. Directly Applied Field

A current flowing in a magnetic field will always have a force acting on it.
Either curved or straight currents will result in net force in both transient and
steady-state operation. For illustration we will analyze the case shown in Fig. 1k,
where an infinite plane of thickness Ax carrying uniform current density Jy is im-
mersed in a uniform directed magnitude field By and is free to move,
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The kinetic energy per unit volume at time t is
|, |
- — v
£ ) =ix | Prdt

p t

= oy | bt o

2 By G P
Q Wy )

using the notation of Eq. (I-6).

In the same time heat energy per unit volume generated by ohmic losses is
given by:
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Finally: }L G‘([yﬂ)

-EE(E)= < % T (1-28)
SN

2. Current Induced by a Changing Magnetic Field

If a uniform magnetic field B = a, By is included in Fig. 15, then the re-

sulting configuration is applicable to the case considered in the following para-
graphs.

Establishing a constant current Io per unit z length in the dx plane at t = tg,
the magnetic intensity within the Ax plane is given [from Eq. (I-20)] by:
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Net pressure across Ax therefore is:
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This leads to the kinetiec energy expression:

¢ (1)~ @mf Pt 4t

(I-31)
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Since induced current density is a function only of BHZ/BX, the current and heat-
energy equations will be identical to those derived in the induced current-—no
external magnetic field situation:

¢ | (at)= = “ot Jt’ 2 oy Q( 5 (T-24)
w7 S [ J%’A}

The energy ratio now is given by
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Comparing this with Eq. (I-25) shows that the external field H; increases
the efficiency of the accelerating process.

In the case of the switching-type induction accelerator analyzed in detail
in this report, the action is similar to but not identical with the above situa-
tion. Somewhat simplified, the applicable geometry is shown in Fig. 16. Here,
the solenoid and projectile turns are represented in cross section as large ra-
dius coaxial cylinders having AR and 8R wall thickness, respectively, and ex-
tending over the axial length Az. The radial component of the fringing field
due to the excited solenoid turns is idealized as a uniform radial field, B...
Introducing current per unit z length Ié into the OR shell, a magnetic field Hy,
will be produced at the R + AR surface by Ié, and this will "diffuse" in the
(-r) direction into the projectile inducing tangential currents in the projec-
tile. But due to radial symmetry the only net force on the Ar cylinder is 2z
directed, that is, in a direction normal to and therefore independent of the
diffusing field Hy.

One must therefore follow a "quasi-steady-state" analysis since at any
instant the current Ig in the projectile is uniform with z, and therefore the
magnetic fields B due to IR fore and aft of the projectile at an instant are
equal in magnitude but oppositely directed.

This leads to a pressure expression identical with Eq. (I-13), but where
in deriving the kinetic energy equation analogous to Eq. (I-31), one must re-
member that B is now time-dependent, as determined by the process of Hy dif-
fusion radially through AR.

The important thing to note, however, is that, in the sequentially switched
device, the projectile is permeated by a radial magnetic field which is essen-
tially uniform in time and space and carries on top of this the transient field
due to the decgying projectile current. One gains therefore the advantage of
the bias field.
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th

* proJjectile

solenoid turn

Fig. 16. Idealized sequentially switched
accelerator field and conductor geometry.

By is the radial component of the magnetic
field produced by all excited solenoid turns
except the nth; Br is assumed uniform through-
out the projectile cross section.
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APPENDIX II

IMPACT HEATING

When a proJjectile having high kinetic energy suffers an inelastic collision
with another mass, a portion of its energy is randomized into heat, and the pos-
sibility of attaining high temperature by a collision process therefore exists.
Because of the present interest in high temperature systems and because of the
obvious applicability of the electromagnetic accelerator in such a process, a
brief analysis of this process will be presented here.

A pellet of mass m (kilogram) traveling at velocity v (meters/second) will
have kinetic energy

Ex = 1/2 mv® (joules) . (I1-1)
Assuming all this energy is converted to heat upon collision, and assuming this

heat remains within the original mass, the temperature obtained is calculable
from the following energy equality:

1/2mv2 = cmJ (Tp - Ty) (11-2)
where
Te = final temperature (°K),
T; = initial temperature. (°K),
c = specific heat (cal/kg-°K),
J = mechanical equivalent of heat (4.2 joules/cal).

One must keep in mind when applying this equation that in practice it would
be impossible to realize complete conversion of energy from kinetic to thermal,
but results will at least be accurate to the right order of magnitude.

The specific heat used in Eq. (II-2) will vary with temperature and must
include such things as phase changes and, in the higher temperature ranges, ex-
citation and ionization. In higher atomic number materials having many orbital
electrons, the latter two phenomena consume a large amount of energy and make
attainment of high temperature very difficult; due to this, one is led to con-
sideration of the lowest atomic number material constant with other requirements.
In the case of the electromagnetic accelerator pellet where an electrical con-
ducting solid is required, perhaps lithium metal is the most applicable. Physi-
cal constants for lithium are given below.
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23

Thermodynamic Constants

specific heat (solid) ¢ ps = 720 cal/kg-°C

specific heat (liquid) cpy = 720 cal/kg-°C

specific heat (ideal monotomic gas) cyg = 3/2 R cal/gm-atom°C = 430 cal/kg°C
latent heat of fusion Lf = 105 cal/kg

latent heat of vaporization L, = L.64 x 10° cal/kg

melting point Ty = 180°C

boiling point Ty = 1331°C

2k

Tonization Potentials

VI = 5.36 ev/atom
VIT = 75.26
VIII = 121.8

YV = 202.42 ev/atom

The velocity required to melt the projectile, assuming it is initially at
0°C, is given by:

1/2 mv?

v

it

Jepst Ty + JLem
N2J(epsTy + Lr)

]

1390 meters/sec

To vaporize lithium, again starting from 0°C, the required velocity is
1 (8 —
—MWMY = | +J W
> M Je lW\+JL(_\M JCP(W\< \ L

J’ZJ[CPS wthe T Cor Ty =T, ) + Ly

6900 W\o:\’ers/ seC .
Up to about 10,000°C there will be little ionization or excitation, so this
temperature is obtained by the following velocity:

:JETEQ rL{, +c’\9[(\ "‘w\>+L ‘\'CUC'_\(‘Q-\ )1

N

"

i1

= 2a00 welers/sec .

By the time 100,000°C is reached, approximately complete triple ionization
of the lithium vapor has been achieved. To achieve complete ionization, each

23. Stull, P. R., and Sinke, G. C., Thermodynamic Properties of the Elements,
American Chemical Society, Washington, D. C., 1956.
24. Handbook of Chemistry and Physics, p. 2177.
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atom must receive energy equal to the sum of the three ionization potentials, or
per kilogram:

otom ot _ 3
€ on = 2024 o= ¥ &Y O%c&w-@:w\ ¥ %‘1\3 ;‘:‘“ x 15915 ™ 4gule i —i\k%

= 2% el \\ouu\es / \(ﬂ

In addition, assuming thermal equilibrium among electrons and lons, both the
ion and electron gases must be raised to the high temperature. Here for simplicity
we will assume up to 10,000°C, no ionization exists, and above this point, all
atoms are completely stripped. Under these assumptions, the velocity equivalent
to. 100,000°C is given by:

V= {Zﬁm-\—?.:f [CYQ W\+L-(-+ Q‘?}_ (.T lw\)’\'L\y
+ Coq (o'-Ty) +4 e (\6 \G‘)]}
= ?3,500 weters feec

Finally, the velocities necessary to reach one million and ten million degrees

are:

It

v 1.41 x 10° meters/sec
108

3.9 x 105 meters/sec.

i

The above results are summarized in the following table.

TABLE XTI
VELOCITIES NECESSARY TO ATTAIN REPRESENTATIVE TEMPERATURES

Temperature,®C Velocity Condition
180 1,390 meters/sec melting
1,330 6,900 vaporization
10,000 8,900 no ionization
100,000 83,500 complete ionization
1,000,000 141,000
10,000,000 390,000
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