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Summary. Consider a meta-analysis of studies with varying proportions of patient-level missing data, and assume that
each primary study has made certain missing data adjustments so that the reported estimates of treatment effect size and
variance are valid. These estimates of treatment effects can be combined across studies by standard meta-analytic methods,
employing a random-effects model to account for heterogeneity across studies. However, we note that a meta-analysis based
on the standard random-effects model will lead to biased estimates when the attrition rates of primary studies depend on
the size of the underlying study-level treatment effect. Perhaps ignorable within each study, these types of missing data
are in fact not ignorable in a meta-analysis. We propose three methods to correct the bias resulting from such missing
data in a meta-analysis: reweighting the DerSimonian–Laird estimate by the completion rate; incorporating the completion
rate into a Bayesian random-effects model; and inference based on a Bayesian shared-parameter model that includes the
completion rate. We illustrate these methods through a meta-analysis of 16 published randomized trials that examined
combined pharmacotherapy and psychological treatment for depression.
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1. Introduction
Over the last two decades, greater emphasis on evidence-based
medicine and the need for reliable summaries of the vast and
expanding volume of clinical research (Altman, 2000) have led
to an upsurge in the application of meta-analysis to medical
research. Because missing data are common in clinical studies,
it is important that these meta-analyses make appropriate
adjustments for missing data.

A typical meta-analysis includes the results of k indepen-
dent studies, where the ith study gives an estimate Ti of
some underlying treatment effect parameter θi . We are in-
terested in combining {Ti} to make inferences about the pop-
ulation treatment effect. In the context of meta-analysis, we
can classify missing data into three broad categories accord-
ing to the level of the missing data (Sutton et al., 2000):
(i) whole studies missing. A typical example is publication
bias where relevant studies are not published because of a
lack of significant results, and hence cannot be included in
a meta-analysis; (ii) data missing at the study level. For ex-
ample, investigators may not report estimates of treatment
effect size and/or study-level covariates in a publication; and
(iii) data missing at the individual patient level, such as
nonresponse or failure to record patient outcomes. The first
two types of missing data are analogous to unit nonresponse
and item nonresponse, respectively, in the survey sampling
literature.

Most of the research on missing data in meta-analysis fo-
cuses on the situations described in categories (i) and (ii),
which are problems commonly regarded as being unique to
meta-analysis (Pigott, 1994). Concerning publication bias,

Sterling (1959) reported that a large proportion of published
studies had rejected the null hypotheses, and later studies in-
clude Rosenthal (1978, 1979), Dear and Begg (1992), Hedges
(1992), Copas (1999), Duval and Tweedie (2000), Baker and
Jackson (2006), Henmi, Copas, and Eguchi (2007), among
others. A comprehensive discussion of publication bias is
Rothstein, Sutton, and Borenstein (2005). Some research has
also been conducted for missing data problems in category
(ii). For example, Bushman and Wang (1995, 1996) describe
methods to combine studies in which data to calculate an ef-
fect size and its standard deviation are not available from all
studies.

In contrast, the situation described in category (iii) has re-
ceived very little attention. This omission is partially due to
the presumption that there is no need to adjust for patient-
level missing data in a meta-analysis, given that each study
has already addressed the issue of missing data and reported
consistent estimated treatment effects. Researchers may also
assume that they can combine valid study-specific estimates
directly, using standard methods of meta-analysis based on
random-effects models, to obtain a consistent estimate of the
population treatment effect size. We show that these assump-
tions can be wrong. In particular, we show that if the patient
attrition rate depends on the (underlying) true treatment ef-
fect size of the primary studies, then a meta-analysis based
on a standard random-effects model may lead to biased esti-
mates, even though the estimate of treatment effect size from
each study is individually valid. We propose several methods
to correct this bias by utilizing the information on attrition
rates from the primary studies.
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Considerable research has been conducted to investigate
the relationship of baseline risk to treatment effect size as a
possible explanation of between-study heterogeneity in meta-
analysis. Brand and Kragt (1992) developed a simple linear
regression to examine the relationship between the effect size
and baseline risk rate in the control groups, without consid-
ering the measurement errors associated with the observed
effect size and baseline risk rate. Several methods have been
proposed to take into account the measurements errors in
the estimates. McIntosh (1996) proposed a bivariate normal
model for the underlying true treatment effect size and the
true baseline risk measure, together with an approximate nor-
mal measurement error model. Walter (1997) assumed a linear
function relationship between true treatment effect and true
baseline risk, coupling with an approximate normal measure-
ment error model. Arends et al. (2000) extended the approach
of McIntosh (1996) by using a more flexible mixture of two
normal distributions to model the baseline risk. This article
focuses on the bias caused by the relationship between the
attrition rate and treatment effect size. This relationship can
also be explored as a part of an explanation of between-study
heterogeneity.

Rubin (1976) and Little and Rubin (2002) classify miss-
ing data mechanisms into three types: missing completely at
random (MCAR), where the probability of missingness does
not depend on observed or unobserved data measures; miss-
ing at random (MAR), where the probability of missingness
depends only on observed data measures; and nonignorable
missing data (NI), where the probability of missingness de-
pends on the unobserved data measures. Surprisingly, when
attrition rates are associated with study-specific treatment
effect sizes, the missing data are nonignorable in the con-
text of a meta-analysis based on a random-effects model,
even though the missing data are ignorable (MCAR or MAR)
within each primary study. This issue was pointed out previ-
ously in the context of multistage sampling by Yuan and Little
(2007).

In Section 2, we investigate the bias of a meta-analysis
based on a random-effects model, in which the attrition rates
depend on treatment effect sizes across studies, and propose
several methods to correct the bias. In Section 3, we describe a
simulation study comparing the different approaches. In Sec-
tion 4, we illustrate the methods through a meta-analysis of
data from 16 published randomized trials that examined com-
bined pharmacotherapy and psychological treatment for de-
pression. We provide concluding remarks in Section 5.

2. Methods
2.1 Random-Effects Model Based Meta-Analysis
Suppose that data to be combined arise from a series of k in-
dependent studies with sample sizes n1, . . . , nk , in which the
ith study consists of ri completers and ni − ri incompleters,
with the observed completion rate φ̂i = ri/ni . Let θi denote
the true underlying effect size for the ith study, and assume
that the study reports an estimate of θi , say Ti , with asso-
ciated estimated sampling variance σ̂2

i , based on an analysis
of the ri completers, for i = 1 . . . k. We are interested in esti-
mating the population effect size θ.

Two standard approaches for combining the estimated
treatment effects T1, . . . , Tk are the fixed-effects model and

the random-effects model. The fixed-effects model assumes
that all the studies estimate a common underlying treatment
effect θ = θ1 = · · ·= θk ; a widely used estimate of θ is then∑k

i=1 Tiui/
∑k

i=1 ui with ui = 1/σ̂2
i (Cochran, 1937; Shadish

and Haddock, 1994). However, the assumption of common
underlying treatment effects across studies rarely holds in
practice, because heterogeneity almost always exists among
studies due to various factors, such as different study designs,
different treatment protocols, different within-study match-
ing protocols, or differences in characteristics of study partic-
ipants (Bailey, 1987). Tests of homogeneity are often used to
test the heterogeneity among studies. However, these tests
often have little power as the number of studies in meta-
analysis is often small. When the test of homogeneity is not
significant, there can still be a nonnegligible amount of het-
erogeneity among studies. Not being able to reject the null
hypothesis of zero between-study variation (i.e., homogene-
ity) is not the same as assuming it is zero. Using fixed-effects
models under conditions of heterogeneity underestimates the
uncertainty about the treatment effect size, leading to invalid
confidence intervals and tests.

In this article, we focus on the random-effects meta-analysis
model, which has become increasingly popular in medical re-
search (DerSimonian and Laird, 1986; Fleiss, 1993; Mosteller
and Colditz, 1996; Sutton et al., 2000). Unlike a fixed-effects
model, the random-effects model accounts for heterogeneity
among studies by assuming that θi is not fixed, but is itself
random and has its own distribution, namely,

Ti = θi + ei

θi = θ + e∗i ,

where ei and e∗i are independent random variables with mean
0 and variance σ2

i and τ 2. Typically, we assume that Ti is
sufficient for θi and independent when conditional on ran-
dom effects θi . The random-effects model becomes a fixed-
effects model if τ 2 = 0. Let τ̂ 2 denote a consistent estimate
of τ 2, and assume that the sample sizes of primary studies
are sufficiently large that we can ignore uncertainty in the
within-study variance estimates σ̂2

i . This assumption is stan-
dard in meta-analysis. Then a widely used estimate of the
population effect size θ is given by DerSimonian and Laird
(1986):

θ̂D L =
k∑

i=1

wiTi

/ k∑
i=1

wi , (1)

where wi = (σ̂2
i + τ̂ 2)−1, and τ̂ 2 is given by

τ̂ 2 =

{
0 if Q ≤ k − 1

[Q − (k − 1)]/U if Q > k − 1,

where

Q =
k∑

i=1

wi

⎛
⎜⎜⎜⎜⎝Ti −

k∑
i=1

wiTi

k∑
i=1

wi

⎞
⎟⎟⎟⎟⎠

2

,
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U = (k − 1)

⎛
⎜⎜⎜⎜⎜⎝

1
k

k∑
i=1

wi −

k∑
i=1

w2
i −

1
k

(
k∑

i=1

wi

)2

(k − 1)
k∑

i=1

wi

⎞
⎟⎟⎟⎟⎟⎠ .

A simple estimate of the variance of the DerSimonian–Laird
(DL) estimate (ignoring uncertainty in the estimated vari-
ances) is

Var(θ̂D L ) = 1

/ k∑
i=1

wi .

Commonly, the random variables ei and e∗i are assumed to fol-
low normal distributions, yielding the basic normal random-
effects model

Ti

∣∣ θi , σ
2
i ∼ N

(
θi , σ

2
i

)
θi

∣∣ θ, τ 2 ∼ N
(
θ, τ 2

)
.

In this case, maximum likelihood methods can be used
to estimate θ, σ2

i , and τ 2 simultaneously (Hedges, 1981;
DerSimonian and Laird, 1986). The DL estimate is consis-
tent (when missing data are MAR), but it ignores the sam-
pling variance of σ̂2

i and τ̂ , leading to a confidence interval
that is too narrow. This problem was discussed by Louis and
Zelterman (1994), Hardy and Thompson (1996), and Bigger-
staff and Tweedie (1997). In particular, Louis and Zelter-
man (1994) noted that a fully Bayesian random-effects model
would automatically take into account the extra uncertainty
induced by estimating τ .

The above meta-analysis only involves summary statistics
{Ti , σ̂

2
i } from k primary studies, and does not require patient-

level data. Provided the estimates {Ti , σ̂
2
i } from the analysis

of completers are valid—in particular, the completer analysis
is not subject to bias and the standard error σ̂i is based on the
completer sample size ri—one might think that the missing
data do not have any effect on the meta-analysis, and θ̂D L

is a consistent estimate of θ. However, this is not the case.
The random-effects model-based estimate θ̂D L may be biased
when the underlying completion rate of the ith primary study,
say φi , depends on the underlying effect size θi . In practice,
some study-level characteristics, such as geographic location
of the study, budget of the study, quality of the health care
provided, the amount of experience of the treating physicians,
and many others, are often associated with both the response
rate and the effect size. If these study-level variables are not
measured and controlled in the meta-analysis, then the re-
sponse rate φi will depend on the effect size θi . In these cases,
the missing data are nonignorable for the meta-analysis be-
cause the random effects θi are unobserved. A consequence of
the nonignorability of the missing data is that the DL esti-
mate is biased (Little and Rubin, 2002). This interesting fact
has not been previously noted in the meta-analysis literature.

The DL estimate is generally biased as the attrition rate
depends on the study-specific effect size. The bias does not
depend on the statistical methods used to adjust the miss-
ing data within each individual study. For example, multi-
ple imputation (MI) is a popular method to deal with miss-
ing data. Even we conducted MI using an appropriate model

and obtained consistent estimates of θi based on the multiply
imputed datasets via MI combination rules, the DL estimate is
still subject to bias if the attrition rate depends on the study-
specific effect size. In general, we assume that estimates of
effect sizes from each study are consistent. We do not impose
any restrictions on the methods used to obtain these consis-
tent estimates.

To see the bias of random-effects meta-analysis more di-
rectly, let T ∗

i and σ̂∗2
i denote the estimate of θi and the as-

sociated sampling variance without missing data. For ease of
exposition, we assume that the sampling variance of T ∗

i is
proportional to n−1

i , i.e., σ̂∗2
i = σ̂2/ni and σ̂2

i = σ̂2/ri . With-
out missing data, the DL estimate is given by

θ̂∗
D L =

k∑
i=1

(
σ̂2/ni + τ̂ 2

)−1
T ∗

i

k∑
i=1

(
σ̂2/ni + τ̂ 2

)−1

,

which is a consistent estimate of the population treatment
effect size. In the presence of ni − ri dropouts, the estimate
of the treatment effect size becomes

θ̂D L =

k∑
i=1

(
σ̂2/ri + τ̂ 2

)−1
Ti

k∑
i=1

(
σ̂2/ri + τ̂ 2

)−1

=

k∑
i=1

(
φ̂−1

i σ̂2/ni + τ̂ 2
)−1

Ti

k∑
i=1

(
φ̂−1

i σ̂2/ni + τ̂ 2
)−1

.

(2)

Based on our assumptions, Ti is a consistent estimate of θi ;
however, the weight assigned to Ti is distorted by φ̂−1

i . As a re-
sult, θ̂DL is biased. For example, if a higher value of the study-
specific treatment effect size θi is associated with a higher
value of the study response rate φi , θ̂DL is inflated, as studies
with high treatment effect sizes are overweighted in equation
(2). The degree of the bias depends on the ratio of the within-
study variance σ2

i versus the between-study variance τ 2 (i.e.,
heterogeneity among studies). If this ratio is large, then the
influence of φ̂i is also large, leading to a relatively large bias.

2.2 Methods to Correct Bias
2.2.1 Reweighted DL (RWDL) estimate. The foregoing bias

analysis motivates a simple approach to correct the bias of
the DL estimate by modifying wi to reflect the correct weight.
Letting νi = φ̂i σ̂

2
i , we modify wi in (1) to

wi =
(
νi + τ̂ 2

)−1
.

This RWDL estimate corrects the bias of the DL estimate,
but has two drawbacks. First, the resulting confidence inter-
val tends to be narrow because, like the DL estimate, it ignores
the uncertainty from the estimation of the between-study vari-
ance τ 2. Second, it implicitly assumes that the variance of Ti

is proportional to n−1
i . If this assumption does not hold, the



490 Biometrics, June 2009

reweighting estimate may be biased, but the bias is expected
to be smaller than that of the DL estimate.

2.2.2 Reweighted Bayesian random-effects (RWRE) model.
One way to address the underestimation of sampling variance
of the DL estimate is to take a fully Bayesian approach (Louis
and Zelterman, 1994). We thus propose the following RWRE
model to overcome the drawback of the RWDL estimate:

Ti | θi , σ
2
i ∼ N

(
θi , φ̂iσ

2
i

)
i = 1, . . . , k,

θi | θ, τ 2 ∼ N (θ, τ 2)

θ, τ ∝ Constant.

(3)

In model (3), we assign noninformative priors to θ and τ . In-
formative priors can also be used to incorporate prior informa-
tion about these parameters. Incorporating prior information
may substantially improve the inference for meta-analyses in-
volving a small number of studies, where data contain very
limited information to estimate τ . When lacking prior infor-
mation, care is needed in specifying the prior for τ 2. Various
noninformative priors have been proposed for modeling vari-
ance parameters. A uniform prior distribution on log(τ ) would
seems natural—working with the logarithm of a parameter
that must be positive—but it results in an improper posterior
distribution. A popular alternative is a vague inverse-gamma
prior distribution in which the shape and scale parameters are
set at a small value δ, say δ = 0.001. The inverse-gamma prior
is conditionally conjugate for normal hierarchical models and
convenient to use, but it is problematic for random-effects
models with a small number of clusters (i.e., studies) because
inference may become sensitive to the value of δ (Gelman,
2006). In the model (3), we adopted the noninformative prior
τ ∝ Constant, which generally performs well unless the num-
ber of studies k is very low, say k < 5. In the case that k is
very low, the half-Cauchy prior may be a useful alternative
(Gelman, 2006).

The estimate of θ based on the RWRE model automatically
takes into account the uncertainty associated with estimating
τ 2, addressing the first drawback of the RWDL estimate. How-
ever, it still makes the assumption that the variance of Ti is
proportional to the inverse of sample size, which often holds
in practice but not always.

2.2.3 Bayesian shared-parameter (SP) model. When the
study response rate depends on the study effect size, as we
noted in Section 2.1, the missing data are nonignorable. From
a modeling perspective, a systematic way to deal with nonig-
norable missing data is to jointly model the outcome process
and the missing data mechanism (Little and Rubin, 2002). To
this end, we propose the Bayesian SP model

Ti |αi , ϕi , β, σ2
i ∼ N

(
αi + βϕi , σ

2
i

)
i = 1, . . . , k,

ri |ϕi ∼ Binom(ni , Φ(ϕi )),

αi |α, τ 2 ∼ N (α, τ 2) ϕi |ϕ, ω2 ∼ N (ϕ, ω2),

α, β, τ, ϕ, ω ∝ Constant,

(4)

where Binom(ni , Φ(ϕi )) denotes a binomial distribution for
ni trials with a success probability Φ(ϕi ) with Φ(·) the cu-
mulative density function of the standard normal distribution.
Our model can be viewed as a variant of the SP model pro-
posed in the context of longitudinal data with nonignorable

(or informative) dropout (Wu and Carroll, 1988; De Grut-
tola and Tu, 1994; Follmann and Wu, 1995, Ten Have et al.,
1998; Albert and Follmann, 2000). Specifically, in model (4),
the first equation specifies the measurement process, and the
second equation models the dropout mechanism. By sharing
common random effects ϕi , the study-specific effect size is
linked with the completion rate.

The Bayesian SP model explicitly takes into account the
dependence between the study effect size and the completion
rate, thereby correcting the bias of the DL estimate if the
model is correctly specified. It also incorporates the uncer-
tainty induced by estimating τ 2 by taking a fully Bayesian
approach. Again, as we discussed in the previous section, spe-
cial attention is needed when specifying noninformative (or
weakly informative) prior to the variance parameters τ 2 and
ω2 in meta-analysis with a small number of studies.

In the Bayesian SP model (4), the regression parameter β is
of particular interest because it controls how the completion
rate affects the measurement process. If β = 0, the missing
data are ignorable, and conventional methods, such as the DL
method, yield consistent estimates without any missing data
adjustments. Unfortunately, the observed data often contain
limited information to estimate β precisely in SP models (Ten
Have et al., 1998). In this case, a sensible strategy is perform-
ing sensitivity analysis. For the Bayesian SP model, one type
of sensitivity analysis is to set β at a series of fixed values
(rather than estimating β based on the data), and then eval-
uate the sensitivity of the inference to the value of β (Rot-
nitzky, Robins, and Scharfstein, 1998; Rotnitzky et al., 2001).
Within the Bayesian paradigm, we propose to study the sen-
sitivity of our model by assigning informative priors on β. In
particular, we assign one (or several) informative priors on β
based on subject matter, and then evaluate how it influences
the results. If the inference shows no essential change, the in-
terpretation of results is straightforward. Otherwise, there is
some residual ambiguity of interpretation.

2.3 Model Assessment
We use the posterior predictive method (Gelman, Meng, and
Stern, 1996) to assess the goodness of fit of proposed models.
In this approach, a discrepancy measure D(T , θ), which is a
function of data T and parameters θ, is chosen to summarize
the model deviation of interest. The observed value of the dis-
crepancy measure is then compared to values of the discrep-
ancy measure evaluated at replicate observations simulated
from the posterior-predictive density to assess the adequacy
of the model.

In the posterior predictive approach, it is important to
choose an appropriate discrepancy measure to reflect infer-
ential interests. In the RWRE model (3) and the Bayesian SP
model (4), the parameter of interest is the population treat-
ment effect size, and we are not particularly interested in mak-
ing inferences about the random effects. Therefore, we chose
discrepancy measures based on marginal models obtained by
integrating out random effects from these models. In particu-
lar, for the RWRE model, we propose the discrepancy measure

DRE (T , θ) =
k∑

i=1

(Ti − θ)2

τ 2 + φ̂iσ2
i

;
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and for the Bayesian SP model, we propose the discrepancy
measure

DS P (T , θ) =
k∑

i=1

(Ti − α − βϕ)2

τ 2 + β2ω2 + σ2
i

.

It is easy to see that, given θ, both DRE (T , θ) and DSP (T , θ)
follow a χ2

k distribution.
Let θj , j = 1, . . . , J , denote a set of posterior draws of

θ conditional on T. To assess the fitness of proposed models,
we simply compare the realized discrepancies DRE (T , θj ) and
DSP (T , θj ) to their reference distribution χ2

k . Gelman et al.
(1996) recommend making the scatterplot of realized discrep-
ancies against the reference distribution. Alternatively, we can
calculate the posterior predictive p-value as

p =
∫

Pr
(
X2

k ≤ DRE (T , θ)
)

Pr(θ |T ) dθ,

where X2
k represents a chi-squared random variable with k

degrees of freedom. Once posterior draws from Pr(θ | T ) are
obtained, the computation of the posterior predictive p-value
is straightforward to approximate using Monte Carlo draws.

2.4 Estimation
Fitting the RWRE is straightforward using the Gibbs sam-
pler (Gelfand et al., 1990). The Bayesian SP model can also
be conveniently estimated using the Gibbs sampler by intro-
ducing latent variables (Albert and Chib, 1993). The details
can be found in the Web Appendix.

3. Simulation Study
We simulated a meta-analysis of 16 independent studies, each
of which consists of n = 100 paired observations (xij , yij ) for
i = 1, . . . , 16 and j = 1, . . . , 100, where xij and yij are pre-
and posttreatment measurements, respectively. For simplicity,
we assume that the pretreatment measures {xij } are always
observed in the studies, but that varying percentages of the
posttreatment measures {yij } are subject to data missingness.
These data were generated using the following model:

xij |σ2 ∼ N (0, σ2/2),

yij |αi , ϕi , σ
2 ∼ N

(
αi + βϕi , σ

2/2
)
,

zij |ϕi ∼ N (ϕi , 1),

rij ∼

{
1 if zij > 0

0 if zij < 0,

αi |α, τ 2 ∼ N (α, τ 2) ϕi |ϕ, ω2 ∼ N (ϕ, ω2).

(5)

The treatment effect size of interest is the change in the out-
come measurement after treatment. Within each study, given
a constant probability of being missing, the missing data are
MCAR and an estimate of the effect size, Ti , is simply the ob-
served mean difference ūi =

∑r i

j=1 uij /ri , where uij = yij −
xij . An estimate of the sampling variance of Ti is Var(Ti ) =∑r i

j=1(uij − ūi )2/[ri (ri − 1)]. We assume that the only data
published and thus available for meta-analysis are Ti ,
Var(Ti ) and the completion rate ri/n (not the individual pa-
tient data {xij , yij , rij }).

In the population model (5), β controls the missing data
mechanism at the level of the meta-analysis. If β = 0, the
missing data are MCAR; if β �= 0, the response rates are
associated with the underlying study-specific treatment effect
sizes, and the missing data are nonignorable. The degree of
nonignorability depends on the value of β, i.e., a larger value
of β causes more nonignorability. We simulated various values
of β, ranging from 0 to 10. As discussed in Section 2, the
bias of the random-effects model also depends on the ratio
of sampling variance of Ti (i.e., σ2/n) to the variance τ 2 +
β2ω2. In the simulations, we set ω2 = 1, τ 2 = 4 and varied
σ2/{n(τ 2 + β2ω2)} from 0.1 to 5. We controlled the overall
completion rate at 80% by setting the value of ϕ at 1.2. Values
of other parameters were chosen so that the population effect
size is 5. Under each setting, we generated 1000 samples and
imputed the estimate of the treatment effect size from each
method proposed in Section 2, including DL estimate, RWDL
estimate, RWRE model, and Bayesian SP model. We also
obtained the DL estimate before deleting the missing data
for comparison.

Table 1 shows the relative bias with respect to the popu-
lation effect size, estimated standard error and coverage rate
of the 95% confidence interval or credible interval (nominally,
we expect 95%) based on four methods under three different
values of β and three different ratios of within-study vari-
ance versus between-study variance. Across all scenarios, as
expected, the DL estimate based on the complete data is
consistent, but of course this estimate is not available. In
addition, it underestimates the standard error and leads to
confidence intervals that are too narrow. In our simulation
settings, the coverage rate is around 93%. In comparison, the
DL estimate based on observed data is unbiased only when the
missing data are MCAR (β = 0) at the meta-analysis level.
When the response rate depends on the study effect size (i.e.,
β = 5 or 10), the DL estimate is biased. This bias depends
on both the value of β, i.e., how strong the study response
rate is associated with the study-specific treatment effect size
(Figure 1), and the ratio of within-study variance and
between-study variance (Figure 2). In general, the bias in-
creases as (a) the association between the study-specific treat-
ment effect size and the study response rate becomes stronger
(the value of β increases); or as (b) the ratio of within-study
variance and between-study variance becomes larger. The pro-
posed RWDL estimate corrects the bias of the DL estimate,
but like the DL estimate underestimates the standard error, as
shown by the below-nominal coverage rates in our simulations.
The RWRE model addresses this problem, and yields con-
sistent estimates and reasonable coverage rates. The RWRE
model works well in our simulations because the sampling
variance of Ti is proportional to the inverse of the sample size.
The Bayesian SP model also effectively corrects the bias of the
DL estimate and yields coverage rates close to the nominal
value.

4. Application
Pampallona et al. (2004) reported a meta-analysis of 16 pub-
lished randomized clinical trials to determine whether the
combined therapy of antidepressant drugs plus psychologi-
cal treatment was more efficacious than the drug alone in
treating depressive disorders. The efficacy improvement of the
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Table 1
Relative bias with respect to the population effect size (%), mean square error (MSE ), and coverage rate of the

95% confidence (or credible) interval for four methods under three different values of β and ratio of the
within-study variance versus the between-study heterogeneity (i.e., σ 2

n (τ 2+β 2ω 2) ). RWDL denotes the reweighted DL
estimate; RWRE denotes the reweighted Bayesian random-effects model based estimate; and SP denotes the

Bayesian shared-parameter based estimate. The bias of the DL estimate is shown in bold.

σ 2

n (τ 2+β 2ω 2) β Before deletion DL RWDL RWRE SP

0.2 0 Relative bias −0.11 −0.13 −0.06 −0.17 −0.22
MSE 0.30 0.32 0.33 0.33 0.32
Coverage 93.1 93.3 93.0 95.3 96.1

5 Relative bias 0.15 8.69 0.57 −0.05 0.80
MSE 2.25 2.33 2.45 2.44 2.36
Coverage 91.4 91.3 91.9 95.4 95.6

10 Relative bias 3.22 19.43 3.56 2.00 4.11
MSE 8.18 8.59 8.81 8.62 8.63
Coverage 94.3 91.9 93.2 95.5 96.0

0.6 0 Relative bias 0.46 0.49 0.55 0.35 0.30
MSE 0.42 0.48 0.51 0.51 0.49
Coverage 92.4 93.0 92.6 94.5 95.3

5 Relative bias −0.63 12.60 −0.90 −1.84 −1.08
MSE 3.12 3.57 3.74 3.74 3.58
Coverage 92.9 90.4 92.5 94.0 96.2

10 Relative bias −1.96 25.60 −0.44 −2.58 0.21
MSE 11.11 13.29 13.75 13.42 12.94
Coverage 92.8 90.7 90.7 93.8 95.5

2 0 Relative bias −0.79 −0.41 −0.47 −0.91 −0.99
MSE 0.78 0.94 1.10 1.10 1.01
Coverage 94.3 93.3 92.9 94.5 96.4

5 Relative bias 0.67 19.00 2.14 0.36 1.81
MSE 5.57 7.19 7.57 7.45 6.75
Coverage 93.9 92.0 94.0 94.7 95.5

10 Relative bias 2.07 37.89 2.57 −1.41 6.75
MSE 21.13 26.54 27.58 26.09 24.32
Coverage 92.5 91.5 92.4 94.1 96.1

combined therapy over the pharmacotherapy only was mea-
sured by the odds ratio (OR) of the treatment response (pa-
tient response to treatment or not). Most studies used the
17-item Hamilton Depression Rating Scale (HDRS) to de-
fine response to the treatment (e.g., HDRS < 7), while other
studies defined response according to Beck Depression Inven-
tory, Raskin Depression Scale, or Quality of Life Depression
Scale. Because all these instruments are well validated, it
may be reasonable to pool the ORs of response across studies
via meta-analysis (Pampallona et al., 2004). Table 2 displays
characteristics of these 16 studies, including sample size, num-
ber of dropout, logarithm of ORs, and variance of logarithm
of ORs.

The estimated treatment effect size demonstrates substan-
tial heterogeneity across 16 studies. For example, study 9
has the smallest OR of 0.75, and study 15 has the largest
OR of 5.02. The χ2 test of heterogeneity (Cochran, 1937)
yielded a marginal significant p-value of 0.06, suggesting some
evidence of heterogeneity. Although the test of heterogeneity
often has little power, it still provides a useful informal mea-
sure of heterogeneity. We use a random-effects model to ac-
count for between-study heterogeneity and combine the ORs
across studies.

The 16 studies had attrition rates ranging from 2% to 50%.
To explore the potential for bias due to dependence between
the study effect size and the completion rate, we plotted the
completion rate against the estimate of the logarithm of the
OR for the 16 primary studies (Figure 3). A clear pattern
is evident, namely that studies with lower ORs tend to have
higher completion rates, which casts some doubt on the valid-
ity of conventional random-effects model based meta-analysis,
and motivates us to apply our methods to combine the loga-
rithm of the ORs across the studies.

Table 3 shows estimates of the (population) OR and the
corresponding 95% credible (or confidence) intervals from var-
ious methods. The DL method yields an estimated OR of 1.87,
while the three proposed methods, RWDL estimate, RWRE
model, and Bayesian SP model, lead to similar estimates
of about 1.94. Because a lower completion rate relates to a
larger effect size, and the larger effect size is downweighted in
the standard random-effects model, we expect that the DL
estimate underestimates the effect size. Confidence inter-
vals for the DL estimate and the RWDL estimate are nar-
rower than credible intervals based on the RWRE model and
Bayesian SP model, reflecting the fact that they ignore the
uncertainty in estimating the between-study variance.
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Figure 1. Bias of the DL estimate under various values of β
while the within-study variance (σ2/n) equals the between-
study variance (τ 2 + β2ω2).

Figure 2. Bias of the DL estimate under various ratios of
within-study variance versus between-study variance (i.e.,
σ2/n(τ 2 + β2ω2)) with β = 5.

For this particular application, the estimates of popula-
tion average effect based on the proposed methods are similar
to that based on the DL method. The attrition often has
a larger impact on the (posterior) study-specific estimates.
An estimate of θi under the standard random-effects model
is θ̂i = (τ̂ 2Ti + σ2

i θ̂D L )/(τ̂ 2 + σ2
i ). Following the similar argu-

ment at the end of Section 2.1, it is easy to see that θ̂i is
more susceptible to the influence of attrition because not only
the weight σ2

i is affected by attrition but also θ̂D L is biased.

Table 2
Characteristics of 16 studies included in the meta-analaysis.
Log(OR) denotes the logarithm of ORs, and Var(log(OR))

denotes the variance of logarithm of ORs.

Study Sample size Dropout Log(OR) Var(log(OR))

1 35 15 0.08 0.65
2 46 14 1.11 0.47
3 47 2 0.57 0.37
4 48 10 −0.07 0.55
5 48 14 1.2 0.37
6 46 14 0.69 0.36
7 48 24 1.5 0.42
8 58 16 0.84 0.29
9 71 12 −0.29 0.24

10 82 34 0.77 0.24
11 96 15 0.08 0.26
12 453 107 0.96 0.05
13 85 14 0.39 0.22
14 472 64 0.09 0.03
15 167 75 1.61 0.21
16 40 5 0.77 0.53

Figure 3. Logarithm of the OR against the estimated com-
pletion rate for 16 published randomized clinical trials. The
reference line is obtained by weighted least squares.

Although the average effect is often the main interest, some-
times meta-analysis is also interested in finding a particularly
efficacious study. The DL, RWDL, RWRE, and SP all identi-
fied study 15 as the most efficacious study with estimates of
the OR of 2.7, 3.5, 3.7, and 3.4, respectively, showing more
noticeable difference between the DL estimate and three pro-
posed estimates.

Parameter estimates for the Bayesian SP model and RWRE
model are displayed in Table 4. For the Bayesian SP model,
the regression parameter β has a point estimate of −1.08
with standard error 0.41, suggesting statistically significant
evidence that the study effect size depends on the response
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Table 3
Estimates of the OR of combined treatment versus

pharmacotherapy only and corresponding 95% credible (or
confidence) interval (CI) under different methods. RWDL
denotes the reweighted DL estimate; RWRE denotes the

reweighted Bayesian random-effects model; and SP denotes
the Bayesian shared-parameter model.

Methods

Estimates DL RWDL RWRE SP

OR 1.87 1.94 1.93 1.95
95% CI (1.37, 2.53) (1.43, 2.64) (1.39, 2.70) (1.37, 2.85)

rate (i.e., β �= 0). However, because the magnitude of β is
not large, the estimate of the population effect size based
on the Bayesian SP model is not very different from the DL
estimate. The quantity (τ 2 + β2ω2)1/2 measures the between-
study standard deviation. The posterior mean and standard
error of (τ 2 + β2ω2)1/2 are 0.53 and 0.18, respectively, suggest-
ing significant heterogeneity among studies. Compared with
the within-study variance listed in Table 2, this heterogene-
ity is substantial. This conclusion is confirmed by the RWRE
model, which yields the estimate of τ of 0.47 with a standard
error 0.16.

We assessed the goodness of fit of RWRE model and
Bayesian SP model by posterior predictive checking. Figure 4
is the scatterplot of realized discrepancies versus predictive
discrepancies, showing substantial agreement. The p-value for
the realized discrepancy is 0.61 and 0.81, respectively, under
the two models based on 10,000 Monte Carlo draws. This
analysis does not yield evidence suggesting lack of fit of the
two models.

We also conducted sensitivity analysis for the SP model.
We assigned six informative normal priors to β with different
means (i.e., −5, −3, −1, 1, 3, and 5), but the same standard
deviation of 0.4. The results are displayed in Figure 5, where
distribution curves on the bottom of the panel depict the pri-
ors of β and top curve denotes value of estimated population
effect size. The estimate of the effect size is insensitive to the
choice of prior distribution of β.

Some studies in this meta-analysis experienced high attri-
tion, for example, the attrition rate of the studies 7 and 15
were more than 45%. Under such high attrition rates, the
missing data mechanism in these studies is probably nonig-
norable. Our method does not assume any particular miss-
ing data mechanism within the studies. We only assume that
the estimates reported by the studies are consistent. As long

Table 4
Estimates of parameters for the Bayesian SP model and RWRE model

Reweighted
SP random effects

Model α ϕ β τ ω (τ 2 + β2ω2)1/2 θ τ

Estimate 1.42 0.70 −1.08 0.20 0.43 0.53 0.66 0.47
Standard error 0.33 0.12 0.41 0.15 0.10 0.18 0.17 0.16

as the original studies appropriately took into account the
missing data mechanism and reported consistent estimates,
our method applies. Because the estimates reported by these
studies were obtained by assuming MAR, they are poten-
tially subject to bias if the missing data mechanism actually
was nonignorable. Addressing this problem requires obtaining
patient-level data, and conducting more detailed patient-level
analysis.

5. Conclusion
In meta-analysis of studies with missing data, we have pointed
out that the standard random-effects model based DL es-
timate is biased when attrition rates of studies are associ-
ated with study-specific treatment effect sizes, because these
types of missing data are nonignorable in the context of meta-
analysis. The degree of bias is positively associated with the
strength of the association between the study attrition rates
and the study-specific treatment effect sizes, and the rela-
tive size of the within-study and between-study variance. We
have proposed three methods to correct the bias of the DL es-
timate. The first one, reweighting the DL estimate, is simple,
but ignores the sampling variance of estimating the between-
study variance, and requires the knowledge of how the within-
study variance is dependent on the sample size. The second
method is based on a RWRE model, which not only corrects
the bias of the DL estimate, but also takes into account the
extra uncertainty of estimating the between-study variance.
The third method uses a SP model to jointly model the out-
come and missing data mechanism.

Given these findings, a practical and important question
is how to assess if the completion rate is associated with
the study-specific treatment effect size. Plotting the observed
study completion rates against the estimates of the treat-
ment effect size is useful to understand the relationship be-
tween study-specific treatment effect sizes and study comple-
tion rates. If the plot does not suggest a clear relationship,
then the use of the DL estimate is justified. If there is as-
sociation between them, then the proposed methods may be
used to correct the potential bias. A precise determination of
the relationship between the study completion rate and the
study treatment effect size is not necessary. We could conduct
formal statistical tests to examine the correlation between
the study-specific treatment effect size and the study-specific
completion rate. However, when the number of studies in the
meta-analysis is small, such formal tests may have low power.
More importantly, if the completion rates seem to be related
to the treatment effect sizes, we can always apply several ana-
lytic methods and compare the results as a form of sensitivity
analysis.
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Figure 4. Scatterplot of predictive versus realized discrepancy measures for (a) RWRE model, and (b) Bayesian SP model.
The p-value is estimated by the proportion of points above the 45◦ line.

Figure 5. Sensitivity analysis of the SP model for 16 published randomized clinical trials. The curves on the bottom of the
panel are prior distributions of β.

6. Supplementary Materials
The Web Appendix referenced in Section 2.4 is available un-
der the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.

Acknowledgements

We thank the editor and associate editor for their constructive
comments that significantly improved this manuscript.

References

Albert, J. and Chib, S. (1993). Bayesian analysis of binary and poly-
chotomous response data. Journal of the American Statistical As-
sociation 88, 669–679.

Albert, P. S. and Follmann, D. (2000). Modeling repeated count data
subject to informative dropout. Biometrics 56, 667–677.

Altman, D. G. (2000). Statistics in medical journals: Some recent
trends. Statistics in Medicine 19, 3275–3289.



496 Biometrics, June 2009

Arends, L. R., Hoes, A. W., Lubsen, J., Grobbee, D. E., and Stijnen,
T. (2000). Baseline risk as predictor of treatment benefit: Three
clinical meta-re-analyses. Statistics in Medicine 19, 3497–3518.

Bailey, K. R. (1987). Inter-study differences—how should they influence
the interpretation and analysis of results. Statistics in Medicine
6, 351–360.

Baker, R. and Jackson, D. (2006). Using journal impact factors to cor-
rect for the publication bias of medical studies. Biometrics 62,
785–792.

Biggerstaff, B. J. and Tweedie, R. L. (1997). Incorporating variability
in estimates of heterogeneity in the random effects model in meta-
analysis. Statistics in Medicine 16, 753–768.

Brand, R. and Kragt, H. (1992). Importance of trends in the interpreta-
tion of an overall odds ratio in the meta-analysis of clinical trials.
Statistics in Medicine 11, 2077–2082.

Bushman, B. J. and Wang, M. C. (1995). A procedure for combin-
ing sample correlation coefficients and vote counts to obtain an
estimate and confidence interval for the population correlation
coefficient. Psychological Bulletin 117, 530–546.

Bushman, B. J. and Wang, M. C. (1996). A procedure for combining
sample standardized mean differences and vote counts to esti-
mate the population standardized mean difference in fixed effect
models. Psychological Method 1, 66–80.

Cochran, W. G. (1937). Problem arising in the analysis of a series
of similar experiments. Journal of the Royal Statistical Society
Supplement 4(1), 102–118.

Copas, J. (1999). What works?: Selectivity models and meta-analysis.
Journal of the Royal Statistical Society, Series A 162, 95–109.

Dear, K. B. G. and Begg, C. B. (1992). An approach for assessing
publication bias prior to performing a meta-analysis. Statistical
Science 7, 237–245.

De Gruttola, V. and Tu, X. M. (1994). Modelling progression of CD4
lymphocyte count and its relationship to survival time. Biomet-
rics 50, 1003–1014.

DerSimonian, R and Laird, N. (1986). Meta-analysis in clinical trials.
Controlled Clinical Trials 7, 177–188.

Duval, S. and Tweedie, R. (2000). A nonparametric “trim and fill”
method of accounting for publication bias in meta-analysis. Jour-
nal of the American Statistical Association 95, 89–98.

Follmann, D. and Wu, M. C. (1995). An approximate generalized linear
model with random effects for informative missing data. Biomet-
rics 51, 151–168.

Fleiss, J. L. (1993). The statistical basis of meta-analysis. Statistical
Methods in Medical Research 2, 121–145.

Gelfand, A. E., Hills, S. E., Racine-Poon, A., and Smith, A. F. M.
(1990). Illustration of Bayesian inference in normal data models
using Gibbs’ sampling. Journal of the American Statistical Asso-
ciation 85, 972–985.

Gelman, A. (2006). Prior distributions for variance parameters in hier-
archical models. Bayesian Analysis 1, 515–533.

Gelman, A., Meng, X., and Stern, H. (1996). Posterior predictive assess-
ment of model fitness via realized discrepancies (with discussion).
Statistica Sinica 6, 733–807.

Hardy, R. J. and Thompson, S. G. (1996). A likelihood approach to
meta-analysis with random effects. Statistics in Medicine 15, 619–
629.

Hedges, L. V. (1981). Distribution theory for Glass’s estimator of effect
size and related estimators. Journal of Education Statistics 6,
107–128.

Hedges, L. V. (1992). Modeling publication selection effects in meta-
analysis. Statistical Science 7, 237–245.

Henmi, M., Copas, J., and Eguchi, S. (2007). Confidence intervals and
p-values for meta-analysis with publication bias. Biometrics 63,
475–482.

Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Miss-
ing Data, 2nd edition. New York: John Wiley & Sons.

Louis, T. A. and Zelterman, D. (1994). Bayesian approaches to research
synthesis. In The Handbook of Research Synthesis, H. Cooper and
L. V. Hedges (eds), 411–422. New York: Russell Sage Foundation.

McIntosh, M. W. (1996). The population risk as an explanatory variable
in research syntheses of clinical trials. Statistics in Medicine 15,
1713–1728.

Mosteller, F. and Colditz, G. A. (1996). Understanding research synthe-
sis (meta-analysis). Annual Review of Public Health 61, 714–719.

Pampallona, S., Bollini, P., Tibaldi, G., Kupelnick, B., and Munizza, C.
(2004). Combined pharmacotherapy and psychological treatment
for depression. Archives of General Psychiatry 61, 714–719.

Pigott, T. D. (1994). Methods for handling missing data in research
synthesis. In The Handbook of Research Synthesis, H. Cooper and
L. V. Hedges (eds), 163–176. New York: Russell Sage Foundation.

Rosenthal, R. (1978). Combining the results to independent studies.
Professional Psychology 17, 136–137.

Rosenthal, R. (1979). The file drawer problem and tolerance for null
results. Psychological Bulletin 86, 638–641.

Rothstein, H., Sutton, A. J., and Borenstein, M. (2005). Publication
Bias in Meta-Analysis: Prevention, Assessment and Adjustments.
New York: John Wiley & Sons.

Rotnitzky, A., Robins, J. M., and Scharfstein, D. O. (1998). Semi-
parametric regression for repeated outcomes with non-ignorable
non-response. Journal of the American Statistical Association 93,
1321–1339.

Rotnitzky, A., Scharfstein, D., Su, T. L., and Robins, J. (2001). Meth-
ods for conducting sensitivity analysis of trials with potentially
nonignorable competing causes of censoring. Biometrics 57, 103–
113.

Rubin, D. B. (1976). Inference and missing data (with discussion).
Biometrika 63, 581–592.

Shadish, W. R. and Haddock, C. K. (1994). Combining estimates of
effect size. In The Handbook of Research Synthesis, H. Cooper and
L. V. Hedges (eds), 261–281. New York: Russell Sage Foundation.

Sterling, T. D. (1959). Publication decisions and their possible effects
on inferences drawn test of significance—or vice versa. Journal of
American Statistical Association 54, 30–34.

Sutton, A. J., Abrams, K. R., Jones, D. R., Sheldon, T. A., and Song,
F. (2000). Methods for Meta-Analysis in Medical Research. New
York: John Wiley & Sons.

Ten Have, T. R., Pulkstenis, E., Kunselman, A., and
Landis, J. R. (1998). Mixed effects logistic regression mod-
els for longitudinal binary response data with informative
dropout. Biometrics 54, 367–383.

Walter, S. D. (1997). Variation in baseline risk as an explanation of
heterogeneity in meta-analysis. Statistics in Medicine 16, 2883–
2900.

Wu, M. C. and Carroll, R. J. (1988). Estimation and comparison of
changes in the presence of informative right censoring by modeling
the censoring process. Biometrics 44, 175–188.

Yuan, Y. and Little, R. J. A. (2007). Model-based estimates of the
finite population mean for two-stage cluster samples with unit
nonresponse. Applied Statistics 56, 79–97.

Received July 2007. Revised March 2008.
Accepted March 2008.


