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Prenatal exposure to excess testosterone modifies
the developmental trajectory of the insulin-like growth

factor system in female sheep
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Experimental elevation of maternal testosterone (T) from 30 to 90 days of gestation leads to
intrauterine growth retardation (IUGR) and increased prepubertal growth rate in female lambs.
This study tested the hypothesis that prenatal T treatment during mid-gestation alters the
trajectory of the fetal insulin-like growth factor (IGF)—insulin-like growth factor binding protein
(IGFBP) system to promote IUGR and subsequent postnatal catch-up growth in female lambs.
Plasma IGF-I and IGFBPs were measured by radioimmunoassay and Western ligand blot,
respectively, on 65, 90 and 140 days (d) of gestation, at birth, ~5 months (prepubertal, the
catch-up growth period), and ~9.5 months (postpubertal). Northern blot analysis was used to
measure hepatic mRNA content of IGF system components during fetal stages. At fetal 65d,
plasma protein and hepatic mRNA content of IGFBP-1, an inhibitor of IGF bioactivity, was
elevated in prenatal T-treated fetuses although body weight did not differ. There was a transient
increase in plasma IGF-I and IGFBP-3 concentrations at fetal 90 d in prenatal T-treated fetuses.
Hepatic IGF-I mRNA and plasma IGFBP-3 content were reduced by 140 d when body weight
was reduced in prenatal T-treated fetuses. Plasma IGFBP-2 content was significantly reduced in
prenatal T-treated newborns, but by 4 months these females had significantly higher circulating
IGF-I and IGFBP-3 concentrations and faster growth rates than control females. After puberty,
plasma IGF-I remained elevated in prenatal T-treated females. These findings provide evidence
that prenatal T excess programmes the developmental trajectory of the IGF/IGFBP system in
female sheep to reduce IGF bioavailability during IUGR and increase IGF bioavailability during

prepubertal catch-up growth.
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Epidemiological and experimental studies have provided
evidence associating intrauterine growth retardation
(IUGR) and subsequent postnatal catch-up growth
with later onset of health disorders, including glucose
intolerance, insulin resistance, type II diabetes, obesity,
cardiovascular disease, and osteoporosis (Barker, 1994;
Gluckman & Hanson, 2004; Ong & Dunger, 2004). Because
the incidence of IUGR and postnatal catch-up growth
are highly correlated, it is currently unclear whether the
later onset of metabolic and cardiovascular disease is
a result of IUGR, postnatal catch-up growth, or both
(Cianfarani et al. 2001; Holt, 2002). Therefore, to design
appropriate intervention strategies for preventing adult
onset of diseases, it is essential to understand the nature of
disruptions in key mediators of growth during both IUGR
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and catch-up growth, as well as the environmental factors
that cause these disruptions.

The growth hormone (GH)—insulin-like-growth factor
(IGF) axis is a complex system of ligands (IGF-I and
IGF-1I), receptors (type 1 and 2), and binding proteins
(IGFBP-1 to -6) that primarily regulate fetal growth
and mediate anabolic effects of GH after postnatal
maturation of the GH-IGF axis (Baxter, 2000; Duan
& Xu, 2005). Because IGFs bind to insulin receptors
and insulin stimulates the GH-IGF axis, IGFs also play
important roles in glucose metabolism (Holt ef al. 2003).
It has been proposed that the fetal environment can
affect the expression and development of the GH-IGF
axis in the fetus and permanently alter the growth
trajectory throughout life (Holt, 2002). If the in utero
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environment programmes adult GH-IGF signalling, then
alterations in the GH-IGF axis may provide a mechanistic
link between IUGR and postnatal catch-up growth, and
possibly between fetal growth and later-life metabolic
disease (Cianfarani et al. 1999; Holt, 2002; Ong & Dunger,
2004).

Regulation of the IGF system in the fetus is extremely
sensitive to environmental conditions. This is evident in
adverse or stressful conditions such as maternal under-
nutrition (Gatford et al. 1997), fetal hypoxia (McLellan
et al. 1992; Green et al. 2000), or infection (Tarantal et al.
2002) when an alteration in circulating IGF is believed to
be involved in the inhibition of growth. IGF bioavailability
is determined by the relative equilibrium between levels of
circulating IGF and the various IGFBPs, some of which
effectively increase while others decrease IGF signalling by
regulating the transport, stability, tissue distribution and
receptor binding of IGFs (Baxter, 2000; Duan & Xu, 2005).
Specifically, IGFBP-1 reduces the amount of free IGF
available to bind to receptors, and elevations in IGFBP-1
are associated with reductions in growth rates during
adverse environmental conditions (Duan & Xu, 2005;
Kajimura et al. 2005). IGFBP-2, the dominant binding
protein during the fetal stage, has a positive association
with growth; however, elevations in IGFBP-2, which
reduce free IGF for receptor binding, have been associated
with stress-induced growth retardation (Cianfarani et al.
1999). Plasma IGFBP-3, the dominant binding protein in
circulation after birth, binds with acid-labile subunits to
sequester IGF and increase IGF bioavailability primarily
by extending IGF half-life in circulation (Baxter, 2000). It
is therefore conceivable that the environmental effects on
growth rate are mediated by the coordinated regulation of
expression, secretion and stability of the IGFBP complex
(Duan & Xu, 2005).

While it has been well established that sex steroids can
modulate the GH-IGF system after birth (i.e. sexually
dimorphic growth, Gatford et al. 1997; Golub et al. 2003;
Rosenfeld, 2003), our recent studies found that prenatal
exposure to excess testosterone (T) was associated with
IUGR and postnatal catch-up growth at 2—4 months of
age (prepubertal) in female lambs (Manikkam et al.
2004). Similarly, in utero exposure to diethylstilbestrol,
an oestrogenic agent, also is associated with IUGR (Lang
et al. 1996). Given that human fetuses may be exposed
to excess steroid hormones via continued exposure
to contraceptive steroids, use of anabolic steroids, or
inadvertent exposure to steroid-mimicking environmental
compounds (Smithells, 1981; Cotton, 1994; Bahrke et al.
1998), there is a need to understand how these hormones
affect the development of the GH-IGF axis in utero.

This study addressed the developmental changes in the
IGF system induced by prenatal T excess and tested the
hypothesis that IUGR and postnatal catch-up growth in
prenatal T-treated females are a function of changes in
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IGF bioavailability manifested as changes in circulating
IGF levels or the IGFBPs, regulators of IGF bioavailability.
We recently found that T injections given twice weekly
from 30 to 90 days (d) of gestation (term = 147 d) caused
IUGR and significant changes in IGF-I and IGFBP profiles
measured on postnatal day 25 (Manikkam et al. 2004). In
this study, the same dosage of T was used to determine the
effects of elevated maternal T on the IGF axis in female
offspring throughout fetal and postnatal development.
The prediction was that IGF/IGFBP changes would be
consistent with the inhibition of IGF signalling during fetal
development (e.g. lower IGF-I and/or higher IGFBP-1, 2)
and the converse during prepubertal catch-up growth (e.g.
higher IGF-I and IGFBP-3 and/or lower IGFBP-1).

Methods
Breeding and maintenance

Two- to three-year-old Suffolk ewes were purchased from
local breeders and moved to a nearby United States
Department of Agriculture-inspected and University of
Michigan Department of Laboratory Animal Medicine-
approved farm for breeding. Ewes were randomly assigned
to treatment. Starting 2—3 weeks before and continuing
until the time of breeding, ewes were group-fed daily with
0.5 kg shelled corn and 1.0-1.5 kg alfalfa hay per ewe to
increase energy balance. Day of mating was determined by
visual confirmation of a paint mark left by an intact ram
on the hindquarter of bred ewes. After breeding, all ewes
were maintained on pasture under natural photoperiod
and supplemented with 1.25kg alfalfa—brome mix hay
per ewe. After birth, mother and lambs were individually
housed for the first 3 d and then group-housed in a barn
under natural photoperiod except for a 60-watt bulb in the
lamb feed area at night. When group housed, lambs had
ad libitum access to commercial feed pellets (Shur-Gain,
Elma, NY, USA) containing 18% crude protein and alfalfa
hay. All lambs were weaned at 8 week and transferred to
the Sheep Research Facility (Ann Arbor, MI, USA) where
they were maintained outdoors and fed commercial feed
pellets ad libitum.

Prenatal treatment

Pregnant ewes were injected with 100 mg T propionate
(Sigma-Aldrich Corp., St Louis, MO, USA; T) in
cottonseed oil (2 ml volume) twice weekly from either
30-90d or 60-90d of gestation. The first set of control
breeders received an equal volume of vehicle. The second
set of breeder sheep did not receive vehicle due to lack
of postnatal differences in the growth trajectory between
purchased controls and controls receiving vehicle from
first breeding. Changes in circulating IGF-I and IGFBP
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Table 1. Sample sizes for each developmental stage and molecular analysis in this
study

IGFBP Western blot and

IGF RIA (protein) Northern blot (mRNA)

Control T 30-90 T 60-90 Control T 30-90

Prenatal Samples 7 (6) 9(7) — 6 (6) 7@@)
Fetal day 65 7 (6) 9(7) — 6 (6) 6 (6)
Fetal day 90 8 (6) 8 (6) — 6 (6) 7(7)
Fetal day 140 7 (6) 8(7) —

Postnatal Samples 6 (4) 5(4) 15(9) — —
Birth 6 (4) 5 (4) 15 (9) — —
Prepubertal 18 (17) 5(4) 12 (9) — —
Postpubertal 12 (12) — 11(9) — —

Numbers in parenthesis indicate the number of dams (mothers) the offspring came
from (dam is the experimental unit for all analyses). For mRNA measures, only
one of two randomly selected fetuses was used. Due to fewer number of control
females born at the facility, an additional set of female lambs born around the
same time were purchased within two weeks of birth from the same breeder, who
provided the experimental dams. They were reared in parallel with the treatment groups.
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levels were determined at all developmental stages: 65, 90
and 140d of fetal life, birth, as well as the prepubertal
and postpubertal periods. Changes in hepatic IGF-I/Il and
IGFBP mRNA levels were determined only during fetal
life.

Blood/tissue samples for this study were generated over
a 2-year period and involved two sets of breeding ewes
(see Table 1 for sample sizes). The first group of ewes were
bred in October 2002 and blood samples were collected
from fetuses (umbilical artery) on day 140 of gestation,
24 h after birth, and during prepubertal (20.0 = 0.4 weeks
of age) and postpubertal (38.5 = 0.2 weeks of age) periods
(jugular). Postnatal samples (birth, pre- and postpubertal)
were also collected from a second group of sheep bred
in parallel and exposed prenatally to T from days 60—90
of gestation (no fetal samples). Due to fewer number
of control dams delivering female offspring (n=4), an
additional set of female lambs born around the same time
was purchased from the same breeder who provided the
experimental dams, and was brought to the Sheep Research
Facility at 4 weeks of age to be reared in parallel with the
treatment groups. Growth trajectories of these animals and
controls reared at the Sheep Research Facility were similar.
Blood samples from purchased controls were not available
at birth. Weekly weights were also taken from animals to
monitor changes in growth rate over time starting 24 h
after birth until 35 weeks of age.

The second group of ewes was bred in October 2003
and fetal umbilical arterial samples were collected under
anaesthesia on days 65 and 90 of gestation (during T
treatment). Anaesthesia was initiated by administering
20-30ml of pentobarbital 1.v. (Nembutol Na solution
50 mg ml~'; Abbott Laboratories, Chicago, IL, USA) and
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animals intubated to maintain a plane of anaesthesia with
1-2% halothane (Halocarbon Laboratories, Riveredge,
New Jersey). Following collection of blood samples,
pregnant ewes (65, 90 and 140 d of gestation) were killed
with a barbiturate overdose (Fatal Plus, Vortech Pharma-
ceuticals, Dearborn, MI, USA) and fetuses removed. After
recording body weight and body measures, liver tissue
was harvested from each individual and frozen at —80°C
until Northern blot analysis (see Table 1 for sample sizes).
The University Committee on Use and Care of Animals
(UCUCA) approved all procedures used in this study.

IGF-1 RIA

Plasma IGF-I concentrations at each developmental stage
were measured using a validated radioimmunoassay (RIA)
as previously described (Manikkam et al. 2004) based on
the methods of Berrie ef al. (1995). The sensitivity of the
IGF-I assay was <3 ngml™!, and intra- and interassay
coefficients of variation were < 10% (n=3 assays).
IGF-1 was measured because it is the dominant IGF in
circulation during late gestation and postnatal periods.
Lack of availability of reagents precluded measurement of
IGF-1I, the dominant IGF in fetal circulation (Dupont &
Holzenberger, 2003). However, earlier studies have found
that directionality of changes in liver IGF-I expression and
secretion during fetal life track changes in IGF-II (Ali &
Cohen, 2003).

IGFBP Western ligand blot analysis

To measure the relative concentrations of circulating
IGFBPs at each developmental stage, Western ligand
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blot analysis was performed as previously described
(Manikkam et al. 2004) and based on the method of
Hossenlopp et al. (1986). Briefly, 2 ul plasma from
each individual mixed in 3x non-reducing SDS buffer
was loaded onto a 0.8% stacking/10% separating poly-
acrylamide gel for electrophoretic separation of proteins.
Proteins were transferred to nitrocellulose membranes,
blocked overnight in buffer with 1% bovine serum
albumin, and then incubated in '*’I-labelled IGF-I at
200 000 c.p.m. (ml buffer)™! for 12h. Autoradiography
was carried out on Biomax film (Kodak, Rochester, NY,
USA) at —80°C for 24-48 h. Film images were digitized and
IGFBP bands were quantified using ScionImage software.
Band intensity, calculated in arbitrary densiometric units
(ADU), was used as a measure of IGFBP quantity.

Northern blot analysis

Total RNA was isolated from frozen liver samples
(150-200 mg) harvested from 65, 90 and 140 d fetuses with
TRIzol (Life Technologies, Carlsbad, CA, USA) according
to the manufacturer’s protocol. Fifteen micrograms
of liver RNA from each individual was loaded on a 1%
formaldehyde gel for electrophoresis and Northern blot
analysis. Primer sequences of Hastie et al. (2004) were used
to generate cDNA probes for ovine IGF-I, IGF-II, IGFBP-1,
IGFBP-2, IGFBP-3, and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH, housekeeping gene). The focus
was on IGFBP-1 to -3 because of differences found
in these binding proteins in circulation and because
their expression patterns have been shown to change in
other IUGR models (McLellan et al. 1992; Tapanainen
et al. 1994). Nylon blots were hybridized with Hybrisol
I (50% formamide; Intergen, Purchase, NY, USA) with
32P-labelled probes overnight at 42°C and washed initially
at low stringency (2x SSC, 0.1% SDS, 0.1% sodium
pyrophosphate; 2 x 5 min) at room temperature, then at
intermediate stringency (6.25 ml 20x SSC + 25 ml 10%
SDS + 20 ml 2.5% sodium pyrophosphate; 2 x 30 min) at
65°C. The blots were exposed to Biomax film (Eastman
Kodak) for 6-24 h at —80°C. Prior to hybridization with
a different probe, blots were stripped a maximum of 3
times with 1x TE, 1% SDS at 80-90°C. Densitometry was
conducted as described above; ADU values for each IGF
system gene were divided by GAPDH densitometric values
to normalize for loading and transfer differences among
samples.

Statistical analyses

For all statistical analyses, dam (mother) was used as
the experimental unit. To assess the effect of elevated
prenatal T on fetal growth, body mass of prenatal T-treated
and control fetuses at 65, 90 and 140d of gestation

J Physiol 572.1

was compared using analysis of variance (ANOVA). To
assess changes in postnatal growth trajectory, body weights
of each lamb were adjusted for age and the growth
trajectories among the control, 30-90d and 60-90d
prenatal T-treated groups were compared using linear
regression analysis to determine the relationships between
prenatal T treatment and postnatal growth trajectory. A
significant time—treatment interaction was taken to reflect
asignificant effect of treatment on growth rate. In addition,
weight gains between 4 and 6 months (prepubertal) and 6
and 8 months (postpubertal) were calculated. The growth
rates of prepubertal and postpubertal growth of the
prenatal T-treated lambs (since there were no differences
in growth rates between the 60-90 and 30-90 T-treatment
groups, the two groups were combined for this analysis)
were compared to those of control lambs by a two-sample
Student’s ¢ test.

Significant differences in IGF and IGFBP protein and
mRNA expression (densitometric values of bands on
blots) between control and prenatal T-treated groups at
65, 90 and 140d of fetal development were analysed
by ANOVA. Body size was used as a covariate in the
ANOVA for the 140 d analyses since this factor significantly
varied between prenatal T-treated and control fetuses.
For IGFBP protein analyses, because Ponceau-S staining
of nitrocellulose membranes after transfer showed that
sample loading was equivalent over all samples, no
adjustments were made for loading differences. For mRNA
analyses, arcsine—square root transformed ratios were used
and statistical differences in gene expression between
groups were assessed using f tests. To increase statistical
power to detect treatment effects in the birth and post-
pubertal analyses of plasma IGF and IGFBPs, data from
30 to 90d and 60-90d prenatal T-treated groups were
combined after establishing that there were no significant
differences between them. Because prepubertal studies
included two groups of controls and prenatal T-treated
(30-90d and 60-90d prenatal treatment) animals, a
two-way ANOVA was performed with treatment and
group as main factors.

Results
Effect of prenatal T treatment on fetal growth

Body mass did not vary between control and prenatal
T-treated fetuses at 65 and 90 d of gestation, but prenatal
T-treated fetuses were significantly smaller than controls at
140 d gestation (t test, P = 0.0002; Fig. 1). Body measures
of 140 d fetuses have been published previously (Steckler
et al. 2005a) and are included for completeness of changes
in growth trajectory. Prenatal T-treated 140d fetuses
also had significantly smaller head circumferences and a
lower body weight/head circumference ratio, consistent
with TUGR (Steckler et al. 2005a). There were no
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differences in body weight at birth (C: 4.314+0.53 g,
T30_90d2 4.51 £0.60 g T60—9Od: 4.86 +0.25 2 ANOVA
P =0.603). However, regression analysis revealed that
prenatal T-treated lambs tended to be heavier than control
lambs throughout postnatal growth (P =0.079), and
there was a significant treatment by time interaction
(P <0.001). Individual analyses of the change in body
weight during specific postnatal periods showed that
prenatal T females grew faster than controls during the
prepubertal period (ttest, P < 0.05), but not during the
postpubertal period (Fig. 2).

Developmental changes in IGF-I

Developmental ~ changes in  circulating  IGF-I
concentrations are shown in Fig.3. Circulating IGF-I
concentrations were approximately 2- to 3-fold higher
during postnatal stages than prenatal stages. Prenatal T
treatment from 30 to 90 d of gestation had no effect on
plasma IGF-I concentration at 65 d gestation (P = 0.16),
but significantly increased plasma IGF-I at 90d of
gestation (P < 0.003). Circulating concentrations of
IGF-I were not significantly different between prenatal
T-treated and control fetuses at 140d (P =0.45). At
birth, plasma IGF-I concentrations did not differ between
treatment groups, but prenatal T-treated females had
higher IGF-I levels than control females during the
prepubertal (P =0.0073) and postpubertal (P = 0.0078)
stages (Fig.3). Hepatic IGF-I mRNA content did not
differ between prenatal T-treated and control groups at
fetal 65 or 90d, but was significantly lower in prenatal
T-treated fetuses at 140 d of gestation (P = 0.02; Fig. 3B,
Table 2). There were no treatment differences in hepatic
IGF-II mRNA expression at any fetal developmental stage
(Table 2).
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Figure 1. Effects of prenatal T treatment on fetal growth

Mean (& s.t.M.) body weight of female fetuses after 65, 90 and 140 d
gestation of control (white bars) and T-treated (black bars) dams

(n = 6-7/treatment). T-treated fetuses weighed significantly less than
controls at 140 d (*P < 0.05; ANOVA).

© 2006 The Authors. Journal compilation © 2006 The Physiological Society

Prenatal testosterone excess on IGF bioavailability 123

Developmental changes in plasma IGFBPs

Western ligand blot analyses of fetal and postnatal
samples revealed a 36-42kDa (doublet, IGFBP-3),
32kDa (IGFBP-2), 27-28kDa (phosphorylated and
non-phosphorylated IGFBP-1, IGFBP-5), and 24 kDa
(IGFBP-4) band at all developmental stages (Fig.4).
ANOVA showed that relative expression (percent total
protein) significantly differed through development
for IGFBP-1 (P < 0.0001), IGFBP-2 (P < 0.0001) and
IGFBP-3 (P <0.003). The IGFBP-1 and/or IGFBP-5
concentration increased at 140 d of gestation relative to
earlier fetal time points, decreased during prepuberty
when growth is rapid, then increased during post-
puberty when growth slowed (see Fig.2). IGFBP-2,
the dominant IGFBP during fetal development, was
at its highest concentration during 140d of gestation.
IGFBP-3 became the dominant IGFBP during postnatal
growth and was at its highest concentration during
postpuberty. IGFBP-4 concentration remained relatively
constant throughout fetal development and tended to
decrease during postnatal development. Because of the
low sample sizes (1 = 3/stage/treatment), treatment effects
were not determined from these blots; effects of prenatal T
treatment on IGFBP expression at each development stage
were determined separately and discussed below.

Effect of prenatal T treatment on IGFBPs

Prenatal T treatment significantly affected plasma
concentrations and liver mRNA expression of IGFBPs
in female fetuses; however, the specific IGFBP affected
changed with developmental stage (Figs 5 and 6, Table 2).
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Figure 2. Effect of prenatal T treatment on prepubertal and
postpubertal growth

The change in weight of control (white bars) and prenatal T-treated
(black bars) lambs was calculated during the prepubertal period
(between 18 and 26 weeks of age) and the postpubertal period
(between 26 and 34 weeks of age). Because there was not a
significant difference between the two prenatal T groups (30-60 d
and 60-90 d treatments), these groups were combined in this analysis
(refer to Table 1 for sample sizes). Bars indicate mean + s.E.M.;

*P < 0.05, t test).
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Table 2. Densitometric results of IGF/IGFBP mRNA expression in fetal liver from Northern blot analysis

Day of gestation Treatment n IGF-I IGF-II IGFBP-1 IGFBP-2 IGFBP-3

65 Control 6 1.20 + 0.07 0.93 +£0.07 0.67 +0.14* 0.94 + 0.07 1.08 + 0.06
T-treated 6 0.98 +0.09 1.00 + 0.08 1.20 £ 0.16 1.02 £ 0.09 0.97 £ 0.05

90 Control 5 1.05+0.14 1.15+0.15 1.15+0.19 1.11 + 0.06* 0.99 +0.03
T-treated 6 0.98 +0.06 0.90 +0.09 0.89 +£0.14 0.91 £ 0.07 1.01 £ 0.04

140 Control 5 1.29 £0.18* 1.07 £ 0.08 1.07 £0.08 1.01£0.12 1.18 £0.16
T-treated 7 0.84 +0.06 1.03 +0.09 0.97 +£0.13 1.01+0.7 0.92 +0.09

Numbers represent the mean =+ s.e.m. of the ratio of IGF/IGFBP mRNA and GAPDH mRNA densitometric values. n =sample size;
asterisks indicate significant differences in treatment means (P < 0.05).

At 65 d of gestation, prenatal T-treated fetuses had greater
circulating IGFBP-1, 5 (P =0.380) (Fig.5, top panel)
and liver IGFBP-1 mRNA concentrations (P =0.032)
(Table 2) than control fetuses (Fig. 5, top panel). Prenatal
T treatment did not alter circulating protein levels (Fig. 5,
top panel) or hepatic mRNA content (Table 2) of IGFBP-2
or -3 at this time. The increase in plasma IGFBP-1 in pre-
natal T fetuses was associated with an increase in a larger,
secondary band on the Western ligand blot (Fig. 5, top
panel), which likely indicates the phosphorylated IGFBP-1
isoform.

At 90 d of gestation, plasma IGFBP-3 protein content
was significantly higher in prenatal T-treated fetuses
(P=0.0162), but IGFBP-1 or -2 did not vary between
groups (Fig. 5, middle panel). Hepatic IGFBP-2 mRNA
was reduced (P=0.045) in prenatal T-treated 90d
fetuses, but IGFBP-1 and IGFBP-3 expression were not
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affected (Table2). By contrast, at 140d of gestation
plasma IGFBP-3 was significantly lower in prenatal
T-treated fetuses (P=0.0016; Fig.5, bottom panel).
Hepatic IGFBP-3 mRNA expression tended to be lower
in prenatal T-treated fetuses, but did not reach statistical
significance (Table 2). No differences in liver IGFBP-1 or -2
mRNA content were detected at this developmental stage
(Table 2).

Circulating IGFBP-2 levels were significantly lower at
birth in prenatal T-treated females compared to controls
(P =10.049; Fig. 6, top panels), despite the small sample
size. Circulating concentrations of other IGFBPs also
tended to be lower in prenatal T-treated females but did
not achieve statistical significance. During the prepubertal
stage when prenatal T-treated females exhibited a faster
growth rate, plasma IGFBP-3 concentrations in prenatal
T-treated females were significantly higher compared to

Post-
pubertal

Figure 3. Plasma IGF-lI concentration varies with
developmental stage and prenatal T treatment

A, circulating IGF-I concentrations in control (white
bars) and prenatal T-treated (black bars) female lambs
throughout development (see Table 1 for sample sizes).
B, Liver IGF-I mRNA (7.5 kb transcript, the dominant
band) in control and prenatal T-treated female lambs at
fetal day 140 (n = 6-7/treatment); there were no
significant differences in IGF-I on fetal day 65 or 90.
Asterisk indicates significant differences in
concentrations as determined by ANOVA (P < 0.05).
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Figure 4. Developmental changes in plasma IGFBP content

The plasma samples in this analysis were a randomly selected subsample from each developmental stage. (Prenatal
T-treated females shown on this blot; control females showed similar trends in IGFBP concentration and are not
shown.)

controls (P =0.01; Fig. 6, middle panel). No significant = Discussion
differences were detected in the other plasma IGFBPs
during prepubertal period, when catch-up growth occurs
or any of the IGFBPs during the postpubertal period
(Fig. 6, lower panel).

This study tested the hypothesis that prenatal exposure
to excess T during mid-gestation programmes the
developmental trajectory of the fetal IGF-IGFBP system to
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Figure 5. Effects of prenatal T treatment on plasma IGFBPs in 65 d (A), 90 d (B) and 140 d (C) gestation
female fetuses

Plasma IGFBP content was determined by Western ligand blot analysis (representative blots for each stage shown,
n = 6-7/treatment) and densitometric analysis of band intensities (ADU = arbitrary densitometric units). Refer to
Table 1 for sample sizes of each developmental stage. Bars indicate mean =+ s.e.M. (control — white bars, T-treated
— black bars). Asterisks indicate significant differences in IGFBP protein as determined by ANOVA (P < 0.05).
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promote [UGR and subsequent postnatal catch-up growth ~ Findings from this study are consistent with this
in femalelambs. Previously, we found that plasmaIGFBP-1 ~ prediction. An increase in liver mRNA expression and
was elevated and IGFBP-2 was reduced at postnatal 25din ~ plasma concentration of IGFBP-1, a binding protein
prenatal T-treated female lambs that were growth-retarded  that reduces IGF bioavailability, were evident as early
at birth (Manikkam et al. 2004). Detailed analysis of the  as fetal 65d of prenatal T-treated females, well before
IGF system throughout fetal and postnatal developmentin ~ TUGR was observed on fetal 140 d. Results from Western
this follow-up study allowed us to unequivocally determine ~ ligand analysis also suggests that prenatal T treatment
that in utero exposure to excess T perturbs the fetal IGF ~ may have caused increased phosphorylation of IGFBP-1,
system to reduce IGF bioavailability in a manner consistent ~ which dramatically increases binding affinity to IGF-I in
with IUGR, and induces postnatal changes in the IGF ~ humans (Baxter, 2000). Considering that IGF signalling
system to increase IGF bioavailability to account for the  is involved with early developmental processes, including
increased growth rate during the prepubertal period. bone differentiation, muscle formation and angiogenesis
(Dupont & Holzenberger, 2003), a reduction in IGF
bioavailability on fetal 65 d will reduce growth potential
that is likely to manifest later as IUGR.

Increased hepatic IGFBP-1 expression seen on fetal 65 d
Based on our findings that prenatal T excess leads to = may be the result of direct steroid action (T treatment
IUGR (Manikkam et al. 2004; Steckler et al. 2005a), spans days 30-90 of gestation) on hepatic tissues. In vitro
we predicted that IGF bioavailability would be reduced.  studies with cultured hepatocytes and in vivo studies

Impact of prenatal T excess on fetal IGF system
and IUGR
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Figure 6. Effects of prenatal T treatment on plasma IGFBPs at birth (A), and prepubertal (B) and post-
pubertal (C) periods

Representative Western ligand blots and densitometric analyses are shown. Bars indicate mean =+ s.e.Mm. (control —
white bars, T-treated — black bars), ADU = arbitrary densitometric units. Asterisks indicate significant differences
in IGFBP protein by ANOVA (P < 0.05).
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in adult humans and other mammals have found that
oestradiol treatment increases IGFBP-1 expression (Goya
et al. 2002; McCarty, 2003; Veldhuis et al. 2005). This raises
the possibility that the altered IGFBP-I programming may
stem from oestrogenic but not androgenic actions of T.
Alternatively, increased IGFBP-1 expression may be an
indirect response to T-induced reductions in nutrient
transfer from the placenta, as IGFBP-1 expression has been
shown to increase in response to decreased insulin (Holt,
2002) and amino acid deprivation (Takenaka et al. 2000).
In prenatal T-treated female sheep on day 65 of gestation,
placentome differentiation was advanced and placentome
efficiency increased (Astapova et al. 2005), suggesting
that fetal tissue is responding to a reduced supply of
nutrients.

In contrast, increased IGFBP-3 and IGF-I
concentrations seen on fetal 90 d, while not consistent
with TUGR, may be reflective of a compensatory fetal
response to overcome the reduced IGF bioavailability seen
in 65 d fetuses. However, the decrease in hepatic IGFBP-2
mRNA expression in the 90 d prenatal T-treated fetuses
suggests reduced IGF signalling at the tissue level. Because
paracrine actions of IGFBP-2 have been associated with
cell differentiation and antiapoptotic effects in embryonic
or fetal tissues (van Kleffens et al. 1999; Allan et al. 2001;
Wood et al. 2005), a decrease in IGFBP-2 expression in
liver (and potentially other tissues) may partially explain
why growth increases in prenatal T-treated fetuses were
not seen in the face of increased IGF-I and IGFBP-3 at
this stage.

At 140 d gestation, when significant [UGR was observed
in prenatal T-treated fetuses, the significant reduction
in hepatic IGF-I mRNA expression and circulating
IGFBP-3 concentration are consistent with reduced IGF
bioavailability. These fetuses also had significantly reduced
circulating glucose concentrations (Steckler et al. 2005b)
and decreased placentome efficiency (Astapova et al.
2005), suggesting that changes in the IGF system and
growth may be secondary to reduced nutrient transfer
across the placenta. Indeed, the expression and secretion
of IGFs and IGFBP-3 have been shown to be nutritionally
dependent (Greenwood & Bell, 2003). Paradoxically,
plasma IGFBP-1 (this study) and cortisol (Steckler
et al. 2005b), two potential indicators of nutrient stress
(Langford et al. 1994; Cianfarani et al. 2001; Ali & Cohen,
2003), were not altered in 140 d prenatal T fetuses, but
it is conceivable that IGFBP-1 expression is altered only
in more severe states of nutrient restriction and hypo-
insulinemia (Ozkan et al. 1999). In addition, given that
circulating GH concentrations were not monitored, it is
possible that excess T treatment delayed the maturation
of the neuroendocrine GH-IGF axis, which typically
develops after 100 d of gestation in sheep (Rhoades et al.
2000).
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Impact of prenatal T excess on postnatal IGF system
and prepubertal growth

While exposure to excess prenatal T caused a significant
reduction in plasma IGFBP-2 and a general tendency for
decline in other IGFBPs and IGF-I at birth, body weights of
prenatal T females were not reduced at this time. This result
contrasts with the significant reduction in body weight
found in prenatal T-treated fetuses right before birth
(140 d gestation), and significant [UGR measured at birth
in a previous study in which larger sample sizes were used
(Manikkam et al. 2004). Failure to detect a reduction in
birth weight in this study may be due to the combination of
small sample size and the confounding effects of multiple
births and sex distribution on fetal body size: the control
and T5¢_99 samples each contained 1 singleton, 2 twin, and
1 triplet birth, and the Tgy_g9 sample had three of each
litter size. Yet, the reduced plasma IGFBP-2 concentration
atbirth in T-treated lambs is in general agreement with our
previous study (Manikkam et al. 2004), as well as others
(Albertsson-Wikland et al. 1998; Ozkan et al. 1999) that
reported reduced plasma IGFBP-2 in IUGR lambs shortly
after birth.

During the prepubertal stage, however, T females
grew faster than control females, as previously shown
(Manikkam et al. 2004), and this acceleration in growth
was associated with greater IGF bioavailability. It is well
accepted that during postnatal growth, IGF-I and IGFBP-3
are positively correlated with GH secretion and are good
indicators of liver responsiveness to GH (Ali & Cohen,
2003) and circulating insulin (Holt, 2002). Therefore,
the prepubertal increase in plasma IGF-I and IGFBP-3
concentrations of prenatal T females likely represents
a hyper-activation of the entire GH-IGF axis. While
manipulations of sex steroid concentrations during the
perinatal period have been shown to alter GH-IGF
function after weaning (Gatford et al. 1997), our findings
definitively show that the sex steroid milieu experienced as
early as mid-gestation also programmes postnatal growth
axis function.

The mechanisms through which in utero elevations
in T affect later-life hyperactivity of the IGF axis are
not clear at this time. One possibility is that excess T
exposure in utero causes permanent changes in pancreatic
function. In support of this premise, Recabarren et al.
(2005) found that prenatal T-treated females lambs were
hyperinsulinaemicat 5 weeks of age, a comparable window
to the prepubertal group in this study. Alternatively,
prenatal T may cause postnatal catch-up growth via the
masculinization of social behaviour. Excess prenatal T
or early postnatal T exposure has been associated with
androgen-mediated masculinization of female behaviour
in humans (Berenbaum & Resnick, 1997; Ramirez, 2003;
Cohen-Bendahan et al. 2005). Likewise in this study,
prenatal T-treated and control females were housed
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together with a common food source after weaning, and
prenatal T-treated females exhibited social dominance
(Lee et al. 2003). Therefore, increased growth and hyper-
activity of the GH-IGF axis of prenatal T-treated females
may have resulted from greater food intake or decreased
energy expenditure needed to access food relative to the
subordinate control females. Although food intake was not
monitored, other studies have found that dominant social
position is associated with faster growth rates (Blanchard
et al. 1993; Pohorecky et al. 2004).

Prenatal T programming of late-onset of disease

The link between IUGR, postnatal catch-up growth, and
adult onset of metabolic disease is thought to be the
result of fetal development in a poor in utero nutritional
environment followed by exposure to a postnatal
environment of abundant food supply (i.e. the thrifty
phenotype hypothesis; Barker, 1994). Mechanistically, this
hypothesis predicts that exposure to chronically low levels
of insulin and IGFs during the fetal stage will lead
to insulin resistance when insulin/IGF concentrations
are elevated shortly after birth (the catch-up growth
hypothesis; Cianfarani et al. 1999, 2001). Indeed, female
sheep exposed to excess T in utero also exhibit hyper-
insulinemia and increased insulin response to glucose
(Recabarren et al. 2005; Rosser et al. 2003). In addition,
because IGFs can bind to the insulin receptor (Holt et al.
2003), the increase in IGF-I throughout pre- and post-
puberty in prenatal T-treated sheep may contribute to
insulin resistance and hyperglycaemia later in life. Taken
together, these studies support the hypothesis that, like

Excess maternal T

v

Androgen/estrogenic actions

\

J Physiol 572.1

prenatal nutrient restriction, prenatal T excess predisposes
females to late-onset insulin resistance and altered glucose
metabolism (e.g. type II diabetes) due in part to the
persistent hyperactivation of the IGF axis throughout
postnatal life.

Effects of prenatal T exposure on growth trajectory:
a model

Our findings for the first time document the impact of
prenatal T excess in altering the developmental trajectory
of the IGF system in a manner consistent with the
timing of IUGR and postnatal catch-up growth. Figure 7
summarizes the potential mechanisms by which excess
prenatal T exposure may programme the IGF axis to
produce an altered growth trajectory in female lambs.
Prenatal T excess, either through androgenic or
oestrogenic pathways, reduces IGF bioavailability by
increasing IGFBP-1 expression during T treatment
(65d) before growth differences are expressed and/or
decreasing hepatic IGF-I expression and plasma IGFBP-3
concentration during late gestation when growth is
reduced. The effects of T in reducing IGF bioavailability
and causing JUGR may be mediated by direct actions
at the level of the fetus or involve reduced placental
nutrient transfer. Postnatal catch-up growth in prenatal
T-treated females is associated with increased circulating
IGF-I and IGFBP-3, resulting from either direct effects of
T on the development of brain and peripheral organs or
indirect effects of T on social behaviour that may increase
food intake or decrease energy expenditure. Future work
is needed to test these hypothetical pathways that link

Figure 7. Schematic diagram of hypothetical

Placenta
—» Reduced
nutrient
+ flow

Fetus

mechanisms through which excess maternal T is
associated with IUGR and postnatal catch-up
growth

brain, liver, l IGF IUGR Prenatal T excess, by androgenic or estrogenic
pancreas, bioavailability (aromatization of T to estradiol) effects, may act directly
muscle, bone at the fetal level or indirectly via the placenta (reduced
| placental nutrient transfer to the fetus) to decrease fetal
IGF bioavailability leading to IUGR. Postnatal catch-up
V. . growth and increased IGF bioavailability in prenatal
MaSCL!hnlzed T-treated female may be the result of T programmeed
behavior changes in the developmental trajectory of the fetal
+ Lamb brain and/or peripheral organs. This may involve
Increased brain, liver, fIGF Catch-up increased food intake and/or decreased energy
food intake pancreas, bioavailability growth expenditure stemming from increased dominance

muscle, bone

behaviour (Lee et al 2003) displayed by prenatal T
treated females.
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prenatal T exposure to life-long growth patterns, none
of which are mutually exclusive, and identify whether
these effects are the result of androgenic or oestrogenic
signalling.
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