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SUMMARY.

Cognition is not directly measurable. It is assessed using psychometric tests, which can be

viewed as quantitative measures of cognition with error. The aim of this article is to propose a model to
describe the evolution in continuous time of unobserved cognition in the elderly and assess the impact
of covariates directly on it. The latent cognitive process is defined using a linear mixed model including
a Brownian motion and time-dependent covariates. The observed psychometric tests are considered as
the results of parameterized nonlinear transformations of the latent cognitive process at discrete occasions.
Estimation of the parameters contained both in the transformations and in the linear mixed model is achieved
by maximizing the observed likelihood and graphical methods are performed to assess the goodness of fit of
the model. The method is applied to data from PAQUID, a French prospective cohort study of ageing.
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1. Introduction

In cognitive ageing studies, cognition is generally evaluated
through a battery of psychometric tests, which are quantita-
tive measures of various dimensions of cognition. Describing
cognitive evolution and assessing the impact of covariates on
this evolution is an interesting approach to help us understand
the process of cognitive ageing. As the various psychometric
tests are highly correlated, multivariate longitudinal analy-
ses of several psychometric tests are often performed using
multivariate linear mixed models (Hall et al., 2001; Harvey,
Beckett, and Mungas, 2003; Sliwinski, Hofer, and Hall, 2003).
These models highlight both the differences in the shapes of
evolution for each dimension and the strong correlation be-
tween the dimensions.

The idea of a latent cognitive process explaining the cogni-
tive decline in the elderly is hypothesized in neuropsychology.
This latent cognitive process can be viewed as a common cog-
nitive factor across all the psychometric tests (Salthouse et al.,
1996; Fabrigoule et al., 1998) and is supposed to be a better
predictor of dementia and cognitive decline. As a consequence,
it would be of substantial interest to focus the analysis on this
latent process by describing its evolution and evaluating the
impact of covariates directly on it.

In a cross-sectional framework, Sammel and Ryan (1996)
proposed a latent variable model in which covariates could
affect directly the latent variable, and the multiple out-
comes were assumed to be measures of the underlying latent
variable with error. In a longitudinal framework, Gray and
Brookmeyer (1998) proposed a marginal regression model,
with estimation via generalized estimating equations, to

1014

assess an overall treatment effect on several continuous and re-
peated outcomes. Roy and Lin (2000) also extended the linear
latent variable model of Sammel and Ryan (1996) to repeated
multivariate data. In practice, the assumption of a linear rela-
tionship between the outcomes and a Gaussian latent variable
is frequently too strong, because the psychometric tests often
have non-Gaussian distributions due to different metrological
properties and different behaviors with ageing (Hall et al.,
2001; Amieva et al., 2005). For instance, some tests may be
more sensitive to changes at high levels of cognition than at
low levels of cognition, while others may have the same sen-
sitivity at high and low levels of cognition. Thus, we propose
to introduce parameterized flexible nonlinear transformations
to link the quantitative tests with the latent process. The la-
tent process is defined in continuous time by a linear mixed
model including a Brownian motion, and nonlinear transfor-
mations of the psychometric tests are noisy measures of the
latent process at discrete occasions, the shapes of the esti-
mated nonlinear transformations giving information on the
metrological properties of each test.

This extension of mixed models to latent variable mod-
els is related to structural equation models (SEM), mainly
developed in psychometrics, because in both approaches the
quantity of interest cannot be measured directly and is eval-
uated instead by a set of outcomes or items (Muthén, 2002;
Dunson, 2003; Rabe-Hesketh, Skrondal, and Pickles, 2004).
Thus the formulation of the model has two components, a
measurement model which links the latent variables with the
observations and a structural model which explains the la-
tent variable structure. In the last decade, there have been
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major improvements in SEM (Sanchez et al., 2005). These
include (i) to handle clustered or repeated data (Longford
and Muthén, 1992; Dunson, 2003; Rabe-Haseketh et al., 2004;
Skrondal and Rabe-Hesketh, 2004; Song and Lee, 2004), (ii)
to allow mixture of count, ordinal, and dichotomous out-
comes (Dunson, 2003; Lee and Song, 2004; Rabe-Hasketh
et al., 2004), (iii) to relax linearity of the relationship be-
tween the latent variables by using nonlinear structural mod-
els (Joreskog and Yang, 1996; Arminger and Muthén, 1998;
Wall and Amemiya, 2000; Lee and Song, 2004; Song and Lee,
2004), and (iv) to relax linearity between the continuous re-
sponses and the latent variables (Yalcin and Amemiya, 2001).

Our modeling approach differs in a number of ways. First,
we focus on the change over time of a single common latent
process, while the main interest of SEM lies in the relation-
ship between several latent variables. Moreover, when deal-
ing with quantitative outcomes, SEM generally assumes a
Gaussian or a Poisson distribution for the outcomes. Except
for threshold models for ordinal data (Dunson, 2003; Lee and
Song, 2004; Rabe-Hesketh et al., 2004), when nonlinear trans-
formations link the latent variables and the outcomes, they
do not depend on parameters to be estimated. As thresh-
old models are not appropriate for quantitative scores with
many possible values, we estimate the shape of the transfor-
mations by using parameterized nonlinear functions. Finally,
our model includes a continuous-time latent process; this gives
a description of the evolution of the latent cognitive level for
all times in the range of the observations and furthermore,
it can easily handle data where the number and times of
the observations are different for each subject and for each
outcome.

Nonlinearity in SEM either in the structural model or in the
relationship between observed outcomes and latent variables
requires the development of suitable estimation methods. For
models including products of latent variables, Joreskog and
Yang (1996) proposed a frequentist approach based on the
maximization of the likelihood, while Arminger and Muthén
(1998) proposed a Bayesian approach using a Markov chain
Monte Carlo (MCMC) algorithm. For models with nonlinear
relationships between the responses and the latent variables,
Yalcin and Amemiya (2001) proposed to compute a quadratic
approximation of the nonlinear transformations, and then
maximized the approximate likelihood. In contrast, to han-
dle the nonlinear relationships between the responses and the
latent process, we propose to maximize the exact likelihood
of the observed data, which is a product of the likelihood of
the transformed data (the transformed data are multivariate
Gaussian in our model) and the Jacobian of the nonlinear
transformations.

The main characteristics of our methodology can be sum-
marized as follows:

(a) it can be applied to multivariate longitudinal non-
Gaussian quantitative outcomes;

(b) it can study the evolution of a continuous-time latent
process representing the common factor across all the
outcomes;

(c) it can estimate the shape of the transformations link-
ing the quantitative outcomes and the underlying latent
process;
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(d) it can handle any type of unbalanced data (number and
time of measurements, covariates,...) and missing at
random data;

(e) it can estimate impact of covariates on both the latent
process and the observed outcomes.

The next section focuses on the formulation of the model
for the latent process and the outcomes on the parameterized
nonlinear transformations. Section 3 is devoted to maximum
likelihood estimation (MLE). In Section 4 we discuss goodness
of fit and Section 5 focuses on an application of the method
to data from the French prospective cohort study PAQUID
(Letenneur et al., 1994).

2. Methodology
2.1 The Latent Process: Structural Model

Consider the continuous-time latent process A; = (A;(t))i>0
representing the common cognitive factor for individual ¢ with
it =1,...,N. A; is defined at time t,t € R according to a
linear mixed model,

Ai(t) = XT84+ Zi(t) us + opwi(t), t>0, (1)
where X ;(¢) is the ¢ vector of time-dependent covariates as-
sociated with the vector of fixed effects 8. The (p + 1) vector
Zi(t) = (1, t,...,t")T is a time polynomial of degree p (or
any vector of functions of time) and the vector of random
effects at subject level u; ~ N(u, D), where D is an unstruc-
tured positive definite matrix. The process w; = (w;(t))s>o is
a standard Brownian motion; w;(¢) models local variation and
departure from the polynomial trend while the random effects
account for the variability of the trend across the subjects. No
independent error is added because this latent process is as-
sumed to represent the actual cognition in continuous time.
Note that the linearity in 3 or in the covariates is not crucial.
Any function of time could be included in the model, because
the model is still linear in the random effects, to ensure the
normality of the latent process. Moreover, the Brownian mo-
tion also adds flexibility to the parametric function of time.

2.2 The Measurement Model

Now consider K quantitative outcomes. Each outcome could
be an individual psychometric test, or the sum of scores from
an itemized test. For subject i and outcome k, we observe the
ny vector of measurements yir = (Yitk, - - -, Yijks - - - Yingk)
where y;;, is the score of subject 7 at occasion j for test k. The
number and times of measurements may be completely differ-
ent for each subject and each outcome. In the spirit of latent
growth curve modeling (Muthén, 2002) and SEM (Yalcin and
Amemiya, 2001), we assume that this measurement y;; is re-
lated to the latent process at time t;; through the following
flexible model,

I

Ik (Y M) = i = N (L) + o + Xzi(tzjzc)T’Yk +ep,  (2)

where the function g, comes from a family of nonlinear trans-
formations G depending on the vector of parameters 7, which
will be estimated; the random effects ;. are independently
distributed according to an N(0, o7, ) distribution; the vec-
tors Xo;(t;) and v, are, respectively, a ¢ vector of time-
dependent covariates and the associated vector of contrasts
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for the test £; €;; are independent Gaussian errors with mean
0 and variance o2 .

As in Dunson (2003), the random effect o, accounts for the
fact that for a same value of the latent process, two subjects
can score differently in the cognitive domain associated with
psychometric test k. The contrasts 7, make the relationship
between the outcomes and the latent process more flexible by
allowing some covariates to be differently associated with the
various outcomes. The sum of the contrasts over the K tests
for a given covariate equals 0. Thus, parameters 3 in (1) cap-
ture the mean association with the covariates contained both
in Xj;(t) and Xy (t), while parameters v, in (2) capture the
variability of the association for each test around this mean
value.

2.3 The Choice of the Family of Functions G

For all the outcomes, the transformations gy (y; nx) come from
the same family of functions G. The choice of the family is a
key aspect of the model; it determines the flexibility of the
link between the joint outcomes with various behaviors and
the underlying latent process. The transformations must be
monotonic and increasing functions of y and depend on few
parameters to make the estimation of the model easier. So,
the choice of the family G is a compromise between flexibility
and parsimony.

The first transformation considered here is the beta cumu-
lative distribution function (CDF), which can take very differ-
ent shapes, including concave, convex, and sigmoid, according
to the parameters, as illustrated in Figure 1. It is defined for
y € [0, 1], mg > 0, and 7y, > 0 by

v aMeH(1 — )2kt

9\Ys Mk, N = —_— dx. 3
(i s 7o) / — 3)
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As the beta CDF is defined in [0, 1], for each psychometric
test, a preliminary step consists of rescaling the tests to the
unit interval.

The main drawback of this transformation is its computa-
tional complexity. As a consequence, simpler transformations
have also been considered to compare the fits of the models:
the linear transformation, the logit transformation combined
with a linear transformation, and the Weibull cumulative dis-
tribution function (details in the Appendix). When using a
linear transformation, the model is a multivariate linear mixed
model similar to Roy and Lin (2000) or Rabe-Hesketh et al.
(2004), with an additional Brownian motion term. In that
case, constraints have to be added to make the model identi-
fiable: we assume the intercept p equals 0 and the variance of
the random intercept wuy; equals 1. In contrast, when using a
CDF, the requirement that g;(y) is in [0, 1] avoids additional
constraints on the latent process.

3. Estimation

Parameter estimation is achieved using maximum likeli-
hood techniques assuming that missing data are missing at
random. A nonstandard aspect of the model is the pres-
ence of parameters both in the nonlinear transformation
gy of the outcome and in the model for the transformed
response {; = (ﬂm, cee 7?3m“17 ey Uiy ey YiLK - 717in¢KK)T7
where ¥y = gr(yi). The log likelihood of interest is the log
likelihood of the outcomes in their natural scale, and thus
includes the Jacobian of the transformations g;. It is given by

L(y;0) = L(7;0) + In(J(y;0))

N N
=D L)+ Y (I (v ), @)

0.8 | Beta(0.5;2 B
Beta(3;3)

0.6 | B
=
k<3
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Figure 1.
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Examples of beta transformations for various pairs of parameter values.
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where 0 is the complete vector of parameters containing the
transformation parameters 7}, = (mik, n2k), k = 1,..., K, the
fixed parameters u, 3,71, - .., VK, and the variance-covariance
parameters vec(D), 0w, 0a,s- -3 0a,0crs---30cy- J(y;0) is
the Jacobian of the transformation given the data and the
vector of parameters 6. For the beta transformation, the
Jacobian is defined by

Tyl (1 = )L

J(yi;0) = H H Yo B(("hk» o) ' ®

k=1 j=1

Formulae of the Jacobian for the other potential transfor-
mations are given in the Appendix.

L(y;;0) is the log likelihood of the transformed data for sub-
ject i. Let ZF = (Z(tan), ..., Z(tin,x))T be the ny x (p+ 1)
matrix of time polynomials for subject ¢ and test &k;
Xlkl = (X]i(t“k), PP Xli(tinlkk))T and X2kl = (Xgi(tﬂk), ceey
XQi(tin7kk))T are, respectively, the n; x ¢; matrix of time-
dependent covariates for the latent process and ny; X ¢y ma-
trix of time-dependent covariates for the psychometric tests.
Let I, be the identity matrix of size n, and J,, the matrix of
size n where all the elements equal 1. Then, the density of §;
is a multivariate Gaussian density of size n; = Zf:]nik with
mean E; = (EY, ..., EX)T and covariance matrix V; given by

7z} ¥ 0 0
Vi=| | D" - ZK) + v+ o . o |-
with  Xj =02 Jo, + 07, In, (7)

and V, the covariance matrix for the Brownian process with
argument o2 (min(t;, t,,)) for (I, m) € [1, n;]>. The contribu-
tion of subject i to the log likelihood of the transformed data
L(g;;0) is the logarithm of this multivariate density taken at
the observation values. The log likelihood (4) has a closed
form (except for the computation of the beta CDFs for which
standard routines are available) and is maximized using a
modified Marquardt algorithm (Marquardt, 1963), which is a
Newton—Raphson-like algorithm. The vector of parameters
is updated until convergence using

The step § equals 1 by default but can be modified to ensure
that the likelihood is improved at each iteration. The matrix
Hisa diagonal-inflated Hessian to ensure positive definite-
ness. V(L(y; 01)) is the gradient of the log likelihood (4) at
iteration /. First and second derivatives are computed by finite
differences. The program is written in Fortran90 and is avail-
able on the web site http://www.isped.u-bordeaux2.fr.
This algorithm is less computationally demanding than al-
ternative Monte Carlo approaches such as in Arminger and
Muthén (1998), who proposed a Bayesian approach for latent
variable models with nonlinear relationships between the la-
tent variables. Nevertheless, it is computationally intensive
and, for example, with a sample of 563 subjects (8227 obser-
vations) and a model with 36 parameters (the final model in
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the application), the CPU time is around 15 minutes using a
Bi-Xeon 3.06 GHz 1024 MB RAM.

Moreover, after convergence, standard error estimates of
the parameter estimates are directly obtained using the in-
verse of the Hessian. A bootstrap method using 200 resamples
of the N subjects is also performed for obtaining standard er-
rors of gi(y, "), where y is in the range of the psychometric
test k.

4. Assessment of the Fit

An unsolved question in mixed modeling is the assessment of
the goodness of fit. In this work, we propose two approaches
to evaluate the adequacy of the model, a residual-based ap-
proach and a prediction-based approach. The residual-based
approach consists of evaluating the Gaussian distribution of
the standardized marginal residuals €; given by

& =Ui(ys — Ey), 9)

where U; is the upper triangular matrix of the Cholesky trans-
formation of V;! and E, = E4(9;) is obtained by replacing the
parameters by their MLE in (6). A normal quantile plot with
the 95% confidence bands computed using the Kendall and
Stuart formula (Kendall and Stuart, 1977, p. 251) is then dis-
played to evaluate whether the empirical distribution of the
standardized residuals €, is close to the theoretical N(0, 1)
distribution.

To evaluate the fit of the data on the natural scale of
the tests, we plot the observed mean evolution of each test
versus the estimated marginal mean evolution or the con-
ditional mean evolution, which includes random effects es-
timates. The marginal estimated means E;(g;," (§%)) and the
conditional estimated means Ej (g,;1 (Gii) | Gi, g, W;) are com-
puted by numerical integration of g;l@ik) over the marginal

distribution of g, N (Ey(6); Vi(9)), or over the conditional
distribution N(Ezk(é) +VAV7;k;&kIw_’). Here the marginal ex-
pectation and variance of g, is given by (6) and (7) and
lek = Z;(tyn) T a; + Wi (t) + Gy is the empirical Bayes esti-
mate of the subject-specific deviation from the model.

5. Application: Cognitive Evolution in the Elderly
5.1 The Data

The aim of this analysis is to describe the decline with age of
the global cognitive ability measured by several psychometric
tests and to evaluate the association of covariates, especially
Apolipoprotein E (apoE) genotype, with the latent cognitive
process. Indeed, the presence of one or two €4 alleles of apoE
is associated with a higher risk of Alzheimer’s disease (Farrer
et al., 1997) but it is not well established whether the €4 allele
is more generally associated with cognitive ageing (Winnock
et al., 2002).

The data came from the French prospective cohort study
PAQUID, initiated in 1988 to study normal and pathologi-
cal ageing (Letenneur et al., 1994). Subjects included in the
cohort were 65 years and older at the initial visit and were
followed six times with intervals of 2 or 3 years. At each visit,
a battery of psychometric tests was completed and an evalu-
ation of whether the person satisfied the criteria for a diagno-
sis of dementia was carried out. Measurements at the initial
visit were excluded because of a first passing effect (Jacqmin-
Gadda et al., 1997). In the analysis, we included subjects who
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were free of dementia at the first follow-up and with at least
one measurement for each of four (K = 4) psychometric tests
during the follow-up.

The four tests considered are the Mini Mental State Ex-
amination (k = 1), the Isaacs Set Test (k = 2), the Benton
Visual Retention Test (k = 3), and the Digit Symbol Sub-
stitution Test of Wechsler (k = 4). The Mini Mental State
Examination (MMSE) evaluates various dimensions of cog-
nition (memory, calculation, orientation in time and space,
language, and word registration); it ranges from 0 to 30 and
the distribution is strongly skewed to left with a ceiling effect.
The Isaacs Set Test (IST) shortened at 15 seconds evaluates
verbal fluency accounting for the speed of execution: subjects
have to give a list of words (with a maximum of 10 words)
in four semantic categories. It ranges from 0 to 40 and the
distribution is close to a Gaussian distribution with a little
heavier left tail. The Benton Visual Retention Test (BVRT)
evaluates visual memory: subjects have to recognize 15 geo-
metric figures among four proposals. It ranges from 0 to 15
and the distribution is skewed to left but the ceiling effect is
less strong than for the MMSE. The Digit Symbol Substitu-
tion Test of Wechsler (DSSTW) evaluates attention: given a
table of correspondence between symbols and numbers, sub-
jects have to translate a sequence of 90 numbers into the right
sequence of symbols. In the sample, it ranges from 0 to 76
and the distribution is approximately Gaussian. For the four
tests, low values indicate a more severe impairment. In the
analysis, rescaled scores computed as the value of the test
plus 0.5 divided by 1 plus the range of the observed values
produced values in the open interval (0, 1) and were consid-
ered as continuous. For the DSSTW, the observed range was
76 while the maximum possible value was 90. An additional
analysis performed using 90 instead of 76 for rescaling led to
nearly identical results. More generally, we think it is better
to use the observed range for rescaling to avoid interpreting
the relationship between the score and the latent process on
an unobserved range of values.

The apoE genotype was collected on a subsample of the
PAQUID cohort, so the sample used in the analysis consisted
of 563 subjects having between 1 and 6 measurements per test
(median = 4). The covariates included in the analysis were
gender, educational level (graduated from primary school vs.
lower level), and the apoE genotype (€4 carrier vs. €4 noncar-
rier). The time scale was the age minus 65 years per 10 years
(t = =5,

5.2 Comparison of the Fit for the Various Families

of Transformations

We first assumed that the latent cognition was a quadratic
function of time without covariates in expression (1) and with-
out any contrast in expression (2). Using this model, we com-
pared the fit for the beta CDF, the linear transformation, the
combination of a linear transformation and the logit trans-
formation, and the Weibull CDF. According to the Akaike
information criterion (AIC) (see Table 1), the beta transfor-
mation gave a markedly better fit.

5.3 Estimations of the Model with the Beta Transformation

Using the beta transformation, the best fitting model included
a quadratic function of time with three random coefficients
and the three covariates (educational level, gender, and apoE
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Table 1
Fit of the data for various transformations in the model
without covariates and a quadratic function of time

Number of Log
Family of transformation parameters likelihood AIC
Linear transformation 20 —21584.1 43208.2
Beta CDF 22 —20387.1 40818.2
Logit + 20 —20876.4 41792.8
linear transformation
Weibull CDF 22 —20654.7 41353.4

genotype) in the model for the latent process. As it was sus-
pected that ability in visual memory, verbal fluency, and at-
tention could be differently associated with gender and educa-
tional level, we also included contrasts between tests for these
covariates. Interactions between apoE genotype and time vari-
ables were also included in the latent process. Interactions
between gender and time and between educational level and
time were not found to be significant and did not confound the
association between apoE and cognitive evolution. Thus they
were excluded from the final model. Estimates of the fixed
effect parameters in the final model are presented in Table 2.

Table 2
Estimates of the fized effect parameters in the best model with
the beta transformation (log likelihood = —19715.55; number
of parameters = 36; AIC = 39503.1)

Parameter Estimate SE
Intercept: 0.538 0.013
Linear slope: 1 —0.0044 0.0098
Quadratic slope: ps —0.0291 0.0040
Gender?® —0.0062 0.0071
Education® 0.111 0.0088
apoE* 0.0070 0.0096
apoE° x £ ~0.0103  0.0033
Contrasts on gender® (p = 0.027¢)
On MMSE (k= 1) —0.0095 0.0052
On IST (k= 2) —0.0052 0.0062
On BVRT (k = 3) 0.0148 0.0052
On DSSTW (k = 4) —0.0001 0.0047
Contrasts on education® (p = 0.136)
On MMSE (k= 1) —0.0117 0.0061
On IST (k= 2) 0.0108 0.0070
On BVRT (k = 3) —0.0044 0.0062
On DSSTW (k = 4) 0.0053 0.0058
m1 (MMSE) 1.409 0.097
121 (MMSE) 0.401 0.018
e (IST) 0.952 0.064
722 (IST) 0.697 0.041
ms (BVRT) 0.887 0.062
123 (BVRT) 0.569 0.032
M4 (DSSTW) 0.477 0.027
124 (DSSTW) 0.838 0.057

#Reference: female.

PReference: not graduated from primary school.

“Reference: e4 noncarrier.

dLikelihood ratio test for the contrast variables (X2 with 3 degrees
of freedom).
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The test-specific random effects a;; dramatically improved
the fit (574 increase of the log likelihood for four additional
parameters), which means that for a same value of latent
cognition, subjects score differently in cognitive domains asso-
ciated with the psychometric tests. Accounting for the within-
subject variability with a Brownian motion was also relevant
since it increased the log likelihood of 13.8.

Gender was not significantly associated with the mean com-
mon factor level, while subjects who graduated from primary
school had a significantly better mean common factor level.
Inclusion of contrasts between tests for gender improved sig-
nificantly the fit of the model, showing that gender does
not have the same impact on each psychometric test: men
tend to perform better on the BVRT than women, while the
trend is reversed for the other tests. Contrasts between tests
for educational level are not significant, which suggests that
the effect of educational level does not differ from test to
test.

The apoE genotype was only included in the latent process
evolution (equation (1)) because the hypothesis to evaluate
was an association between the €4 allele and the decline of
latent cognitive performance. We had no hypothesis regard-

1 T T T T T
0.8 | B
— 06
w
()
=
2
© 04} g
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MMSE
1 T T T T T T T
=
o
>
Q
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BVRT
Figure 2.

obtained by bootstrap).
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ing a link with a specific psychometric measure. We found no
association between the €4 allele and the mean level of the
common factor at age 65 years but found a strong association
(p = 0.0018) with the change over time of the common fac-
tor: €4 carriers have a steeper decline than €4 noncarriers as
shown in Figure 4a. The model including both the interactions
apoE x t and apoE x t?> had exactly the same likelihood as
the model including only apoE x t?. Thus we retained the
latter.

Figure 2 displays the estimated beta transformations for
the four tests with the 95% pointwise confidence interval com-
puted using a bootstrap method. The four estimated transfor-
mations are very different: the curve is convex for the MMSE
and the BVRT, concave for the DSSTW, and close to lin-
ear for the IST. Moreover, the BVRT and the MMSE scores
cover, respectively, only 80% and 88% of the latent process
range while the DSSTW covers around 95% and the IST cov-
ers almost the entire range.

These results suggest that the MMSE and the BVRT are
not appropriate to identify small changes in cognition among
subjects with a high cognitive level, because the maximum
scores of these tests are reached for a value of the latent

g(IST)

g(DSSTW)

0 ! ! ! ! ! ! !
0 10 20 30 40 50 60 70

DSSTW

Estimated beta transformation for each test (solid line) and the 95% pointwise confidence interval (dashed line,
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process lower than its maximum. These estimated curves
highlight the ceiling effect of the two tests. More generally,
the nonlinear shape of the MMSE reveals that a decline in
the MMSE should be interpreted by taking the initial level
into account: one point lost from a score above 25 represents
a more substantial decrease of cognition (about 0.06) than
one point lost from a score under 15 (about 0.01). For the
DSSTW, the curve is close to linearity above a score of 10
but one point lost under a score of 10 represents a more sub-
stantial decrease of the latent cognition. Subjects with a latent
cognition lower than 0.1 tend to score 0 on the DSSTW, prob-
ably because they do not even understand the instructions. In
contrast, the IST appears to be useful to evaluate cognition in
a heterogeneous population including high-level and impaired
subjects, because it is close to linearity on almost the entire
range of the latent cognition.

5.4 Assessment of the Fit

Figure 3 contains the normal quantile plots of the standard-
ized marginal residuals defined in (9) for each of the four psy-
chometric tests. The normality assumption of the residuals
seems to be well satisfied for each of the four psychometric

MMSE

_6 1 1 1 1 1 1 1
4 3 2 -1 0 1 2 3 4

Figure 3.
and 95% confidence interval).
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tests. In contrast, when using a linear transformation, nor-
mal quantile plots showed a poor agreement with the normal
assumption (results not displayed).

Figure 4b shows for each of the four tests the estimated
marginal and conditional mean evolutions with age compared
with the observed mean evolution and its 95% confidence lim-
its; the sample size used to compute each mean is also given.
The conditional estimated means, which include random ef-
fect estimates, are very close to the observed means for every
test, showing a good fit of the model. However, the marginal
estimated means, which include only fixed effects, are outside
the 95% confidence interval of the observed means for the IST
and BVRT at older ages and for the DSSTW in most cases.
These differences may be explained by the rate of missing
data, which is very low for the MMSE, higher for the IST
and BVRT particularly among the oldest participants, and
much higher for the DSSTW at all ages. Indeed, during the
interview, the tests were always completed in the same order
(MMSE, BVRT, IST, DSSTW) and recommendations were
given to the interviewers to avoid missing data for the MMSE,
because it is used for the screening of dementia. Hence almost
all subjects completed the MMSE but subjects with a poor

IST

4 3 2 -1 0 1 2 3 4

Normal quantile plot of the standardized marginal residuals for each test (solid lines = “y = x” reference line
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Figure 4. (a) Predicted mean evolution for the latent process for €4 carriers and for e4 noncarriers. (b) Estimated and
observed mean evolutions for each test with the number of subjects used for the computation of each observed mean (solid
line with crosses = observed mean evolution; solid line with dots = estimated marginal mean evolution; dashed line with dots =
estimated subject-specific mean evolution; dashed line = 95% confidence interval of the observed mean).

cognitive level tended to refuse the other tests and particu- 90 or more who completed the MMSE (N = 99), and 0.028,
larly the DSSTW, which is more difficult. Missing data are 0.042, and 0.056, respectively, for those who completed the
thus associated with random effects. For instance, the mean IST (N = 80), BVRT (N = 57), and DSSTW (N = 34). The
of subject-specific deviations Wﬂk is —0.0037 for subjects aged impact of missing data on conditional and marginal estimates
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has previously been discussed by Molenberghs and Verbeke
(2001).

5.5 Multivariate Model versus Univariate Models

For each test, the univariate model detected an association
between apoE genotype and cognition with a larger p-value
(p-value from the likelihood ratio test for apoE x #? param-
eter: p = 0.0043 for MMSE, p = 0.018 for IST, p = 0.020
for BVRT, p = 0.054 for the DSSTW) than for the multi-
variate model (p = 0.0018). By using a multivariate model
compared to four univariate models, we had a gain of power
in assessing the association between apoE genotype and cog-
nition. Moreover, note that interpretation of the association
with the latent process and with each psychometric test is
different.

The gain in efficiency can also be evaluated by comparing
the AIC from the multivariate model and the AIC computed
by pooling the likelihoods from the four univariate models
with the total number of parameters in these four models.
In our case, even if we added in the multivariate model the
constraint that apoE had a common effect on the four tests,
the AIC from the multivariate model was markedly better
(39503.1 vs. 40203.8 for the four univariate models).

6. Discussion

We proposed a nonlinear model for multivariate longitudinal
non-Gaussian quantitative outcomes when the outcomes are
indirect measures of a common underlying continuous-time
process. Such data are very frequent in psychometrics, but the
methodology has many other potential areas of application,
as, for instance, the study of the course of chronic illnesses
evaluated by several biological markers.

In this work, psychometric tests are analyzed by consid-
ering their sum scores as quantitative variables. This is the
most frequent way to consider psychometric tests in geron-
tology: the summary scores are used to evaluate cognitive
level and risk of dementia (Hall et al., 2001; Sliwinski et
al., 2003; Amieva et al., 2005). From a neuropsychological
perspective, the alternative approach, which consists of an-
alyzing item responses using SEM or item response model
(Skrondal and Rabe-Hesketh, 2004, Chapter 3), could be use-
ful if the objective was to understand the underlying compo-
nents of the tests. This methodology is interesting when the
tests consist of a limited number of items evaluating different
cognitive domains (such as the MMSE) or exhibiting differ-
ent levels of difficulty (such as the BVRT). On the contrary,
this methodology would be difficult to apply to the IST score,
which is the number of words cited by the subjects (except
for considering the four subscores for each semantic category)
and the DSSTW score, which is the count of symbols correctly
assigned to a sequence of numbers.

Given that the summary scores are quantitative discrete
variables, we could either consider them as continuous vari-
ables or as ordinal variables. However, threshold models for
ordinal data require estimation of one threshold for each pos-
sible value of the scores, which would be very challenging for
multivariate modeling of scores with so many different val-
ues. In our application including four tests, this would have
implied estimation of more than 150 additional parameters.
Thus, we decided to analyze the scores as continuous variables

Biometrics, December 2006

and to use nonlinear transformations depending on a limited
number of parameters as link functions between the Gaus-
sian latent process and the observed outcomes. Various link
functions have been considered, but we found that the beta
CDF was flexible enough with only two parameters. With
many fewer parameters than threshold models, the estimated
curves provide interesting information on the relationship be-
tween evolution of the latent cognitive level and evolution of
the observed scores. Moreover, goodness-of-fit analyses show
that the beta transforms of the four test scores fitted well
a Gaussian distribution. Nevertheless, if necessary for other
applications, it would be easy to include a different family
of continuous transformation for each test. This model could
also be extended to allow a mixture of continuous, binary, and
ordinal outcomes with few categories as in Dunson (2000),
Dunson (2003), or Rabe-Hesketh et al. (2004).

Another asset of this model is the way of accounting for
covariate effects. Using fixed contrasts, we were able to distin-
guish between the association with the latent process and the
differential association with the various psychometric tests.
Being able to compare covariate effects over the tests is also
an advantage of multivariate modeling. With a large number
of tests it may also be possible and advantageous to have the
effects of the covariates on the tests be random rather than
fixed.

We assumed the data to be missing at random and thus
ignorable using a maximum likelihood approach. Even if we
have shown that missing data were associated with random
effects, this does not preclude missing data from being ignor-
able. Indeed, if missing data at the last three tests depend on
the observed MMSE score or on the observed evolution of the
MMSE;, it induces a dependency on the random effects, but
the missing data are ignorable because missing values may
be predicted using observed data. This is an advantage of
multivariate modeling, in that by using more observed infor-
mation it is more robust to missing data. Nevertheless, as it
is not excluded that missing data are informative, it could be
useful to jointly model time to dropout using a shared ran-
dom effect model as in Roy and Lin (2002). However, this
would increase complexity of the estimation process and esti-
mates would depend on uncheckable parametric assumptions.
Another useful extension would be to jointly model demen-
tia, defining dementia diagnosis as the time at which the la-
tent process first reaches an estimated threshold (Hashemi,
Jacqmin-Gadda, and Commenges, 2003).
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APPENDIX

Details on the Transformations
For subject i and test k, we give the expressions of the function
and its Jacobian for the linear transformation, the combina-
tion of a linear and a logit transformation, and the Weibull
CDF.
The linear transformation is defined for y € R, 7, € R, and
ok € R* as
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The combination of a linear and a logit transformation is de-
fined for y € (0, 1), my € (0, 1), and 7o, € (0, 1) as
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The Weibull CDF is defined for y € (0, 00), m1x € (0, 00), and
N2k € (0, 00) as
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