Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. "AA-RD- 0-122 4. Title and Subtitle 5. Report Date October 19 0 THE INFLUENCE OF MIXTURE DISTRIBUTION ON. P -nO C 6. Performing Organization Code EMISSIONS FROM AN AIRCRAFT PISTON ENGINE ______ 8. Performing O;go'- zjiori Report No. 7. Author/s) W. Mirsky and J.A. Nicholls PAA-7CT-80-62 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Department of Aerospace Engineering _ The University of Michigan 11. Contract or Gront No. Ann Arbor, Michigan 48109 DOT FA74NA-1102 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Final Report Department of Transportation June 1974-May 1978 Federal Aviation Administration Systems Research and Development Service 14. Sponsoring Agency Code Washington, D.C. 20590 15. Supplementary Notes This contract was administered by the National Aviation Facilities Experimental Center, Atlantic City, New Jersey 08405 L............,, 16. Abstract Cylinder-to-cylinder mixture ratio distributions were measured for both the injected and carbureted versions of the AVCO-Lycoming 0-320 engine to determine the effects of non-uniform distribution on the exhaust emissions of carbon monoxide, hydrocarbons, and oxides of nitrogen. Data for both normal and lean-out conditions were obtained. An experimental Turbulent Flow Manifold for the carbureted engine was tested as a potential means for improved cylinder-to-cylinder distribution. Results showed improvements for the low power operating modes but deterioration for the high power modes. An analysis based on test results predicts that the EPA emission requirements can be met, for this engine, by improving mixture distribution and leaning both the taxi-out and approach modes. Improvements in fuel economy are also predicted. 17. Key Words' 18.Distribution Statement Air pollution, aircraft piston Document is available to the U.S. engine, emission control, mixture Public through the National distribution, light aircraft Technical Information Service, emissions standards. Springfield, Virginia 22151 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Poges 22. Price unclassified unclassified 70 Form DOT F 1700.7 (8.42) Reproduction of completed page authorized~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

METRIC CONVERSION FACTORS Approximate Conversions to Metric Measures Symbol When You Know Multiply by') To Find LENGTH in ft yd mi inches feet yards miles'2.5 30 0.9 1.6 centimeters centimeters meters kilometers AREA in2 ft2 yd2 mi2 square inches square feet square yards square miles acres 6.5 0.09 0.8 2.6 0.4 square centimeters square meters square meters square kilometers hectares MASS (weight) cm - - =. 4 cm_ = cm mk~ ~ N 2m -q cm 2 - _ kg ___ ml _ ~ mh a __ _ _ km - _ orev ml co1 _ I I,_ _ I m_ - m3 =r ml - - u, mm cm m m km Approximate Conversions from Metric Measures Symbol When You Know Multiply by To Find cm2 2 km2 ha Symbol AREA square centimeters 0.16 square meters 1.2 square kilometers 0.4 hectares (10.000 m2- 2.5 square inches square yards square miles acres in2 yd2 mi2 LENGTH millimeters centimeters meters meters kilometers 0.04 0.4 3.3 1.1 0.6 inches inches feet yards miles MASS (weight) in in ft yd mi oz lb ounces pounds short tons (2000 Ib) 28 0.45 0.9 grams kilograms tonnes 9 kg t grams kilograms tonnes (1000 kg) 0.035 2.2 1.1 ounces pounds short tons oz lb VOLUME tsp Tbsp fl oz c Pt qt gal ft3 yd3 teaspoons tablespoons fluid ounces cups pints quarts gallons cubic feet cubic yards 5 15 30 0.24 0.47 0.95 3.8 0.03 0.76 milliliters milliliters milliliters liters liters liters liters cubic meters cubic meters ml.I 3 m3 milliliters liters liters liters cubic meters cubic meters VOLUME 0.03 2.1 1.06 0.26 35 1.3 fluid ounces pints quarts gallons cubic feet cubic yards fl oz pt qt gal ft3 yd3 TEMPERATURE (exact) TEMPERATURE (exact) Celsius 9/5 (then temperature add 32) Fahrenheit temperature ~F OF Fahrenheit 5/9 (after temperature subtracting 32) Celsius temperature OF OF 32 98.6 212 -40 0 40 80 120 160 200 j ~C o37 o n,.o~~~~~~~~~~~~~~~~~~~~~~'1 in = 2.54 (exactly). For other exact conversions and more detaled tables, see NBS Misc. Pub Units of Weights and Measures, Price S2.25, SD Catalog No. C13.10:286.

PREFACE This investigation was conducted by personnel of the Aerospace Engineering and Mechanical Engineering Departments of The University of Michigan, Ann Arbor, Michigan under Contract No. DOTFA74NA-1102. Professor J.A. Nicholls served as Project Director with Professor W. Mirsky as the Principal Investigator. Students, R. Pace and R. Ponsonby, assisted in the very early stages of this study. Assistance in the form of discussions of the Turbulent Flow Manifold (TFM) concept with Mr. F.J. Marsee and Mr. R.M. Olree of the Ethyl Corporation Research Laboratories, Detroit, Michigan, is gratefully acknowledged. The contract was administered by the National Aviation Facilities Experimental Center, Atlantic City, New Jersey. iii

TABLE OF CONTENTS Page INTRODUCTION Purpose Background Turbulent Flow Manifold EXPERIMENTAL WORK Experimental Equipment Engine Test Facility Emission Measurement Console Test Conditions RESULTS AND DISCUSSION Experimental Results Discussion of Results Case A: Standard Carbureted Engine (Runs 69-75) Case B: Uniform Mixture Distribution for Modes 2, 4 and 5 at the Lowest Measured CO Concentrations Case C: Lean Approach Mode Case D: Lean Approach and Taxi-out Modes Turbulent Flow Manifold Fuel Economy CONCLUSIONS REFERENCES APPENDICES 1 1 1 3 5 5 5 9 9 10 10 12 13 14 15 15 17 17 17 19 Appendix A. Appendix B. Appendix C. Experimental Results Development of Equation for Finding Mass of Pollutant Per Rated Horsepower Per Cycle Computer Printout for Runs 69-75: Baseline Runs of Normal Carbureted Engine iv

LIST OF ILLUSTRATIONS Figure Page 1 Schematic Diagram of the Turbulent Flow 4 Manifold (TFM) Concept 2 Schematic Diagram of the TFM used on the 0-320 4 Aircraft Engine 3 Engine Test Facility 6 4 Engine Control Room 7 v

INTRODUCTION Purpose This investigation was undertaken to obtain experimental data on the cylinder-to-cylinder distribution of air/fuel mixture ratios and the corresponding exhaust emissions from a typical small-aircraft piston engine. This information, together with curves showing variation of pollutant concentrations with mixture ratio, can be used to predict potential improvements of emissions resulting from improved mixture distribution. The Turbulent Flow Manifold (TFM) concept was tested as a possible practical means for reducing emissions by improving the cylinder-to-cylinder mixture distribution. Background The Environmental Protection Agency (EPA) has published regulatory standards for exhaust emissions from new aircraft piston engines manufactured on or after December 31, 1979 (reference 1). These standards are: Hydrocarbons 0.0019 pound/rated power/cycle Carbon Monoxide 0.042 " " " " Oxides of Nitrogen 0.0015 " " " " Emission levels are based on a time-weighted five-mode test cycle consisting of: Taxi/idle (out) 12.0 minutes (time-in-mode) Takeoff 0.3 Climbout 5.0 Approach 6.0 Taxi/idle (in) 4.0 1

Extensive testing of a current small-aircraft piston engine (AVCO LYCOMING LIO-320-BlA) has demonstrated that, in general, the standards for oxides of nitrogen (NOx) are easily met, hydrocarbon (HC) levels are marginal and that carbon monoxide (CO) levels are about 1.6 times the allowable level (reference 2). Compliance with these standards will require operating and/or design modifications which have been carefully considered and tested so that safety requirements are not compromised. The major cause of high CO emissions is the rich mixture ratios used in these engines, primarily for engine cooling and suppression of detonation. Air/fuel ratios in the range 10:1 to 12.5:1 are normal, whereas the chemically correct ratio is about 15:1. Since sufficient oxygen (02) for complete combustion is not supplied, the fuel-carbon burns to CO rather than carbon dioxide (C02). However, the air/fuel ratios cannot be increased to control emissions without considering the simultaneous effects on cylinder head temperature, possible detonation, and increased levels of NO. All piston engines have x slight differences in the amounts of air and fuel delivered to each cylinder, thereby giving rise to differences in delivered cylinder mixture ratios. This is largely responsible for the differences in cylinder head temperatures and CO emissions, since both are dependent upon mixture ratio. Therefore, any attempt to lean the overall mixture while limiting the cylinder with the maximum head temperature will cause the remaining cylinders to continue to run overly rich and to generate excessive amounts of CO. The magnitude of this effect and the extent of possible CO reduction will depend on the spread of cylinder-to-cylinder air/fuel ratios and the degree to which this spread can be reduced by the application of new design features. In this investigation, measurements of cylinder-to-cylinder air/fuel ratio variations were made on the AVCO-Lycoming 320 engine, for both the injected and carbureted engines. Tests were conducted for all modes of the 7-mode cycle using normal and several lean-out mixture ratios. 2

An experimental TFM, constructed at The University of Michigan, was then tested to determine the potential for reducing cylinder-to-cylinder mixture variations and the related exhaust emissions. Results from all tests were used to plot pollutant concentration against mixture ratio calculated from exhaust products. These curves provide the information necessary to determine the change in pollutant level from a given cylinder or engine that will result from a change in mixture ratio. The dependence of cylinder head temperature and brake specific fuel consumption on mixture ratio were also measured and plotted. Turbulent Flow Manifold The TFM concept was developed at the Ethyl Corporation Research Laboratories as a means for decreasing the cylinderto-cylinder variation of air/fuel ratios in piston engines (references 3 and 4). Experimental models have been built and tested for automotive applications, and these have generally shown improvements in mixture distribution. Figure 1, taken from reference 4, shows the principal features of the TFM as used in automotive test applications. However considerable modifications were required for the 0-320 aircraft engine. The resulting design, shown schematically in figure 2, was used in all tests covered in this investigation. The principal features of the TFM are: 1. A carburetor system having basically good spray and mixture characteristics. The more non-uniform the initial mixture, the more difficult is the task that the TFM must perform. 2. A high length-to-diameter (Z/d) ratio for the passageway immediately downstream of the throttle plate. An k/d = 3 or higher is recommended. This provides the necessary mixing length for the eddies which are formed just downstream of the throttle plate (see reference 3, 3

I/II 3^ -YF Coolant Jacket Cover Figure 1. Schematic Diagram of the Turbulent Flow Manifold (TFM) Concept from Reference 4. To Cylinder Oil Sump Heating Coils Carburetor Figure 2. Schematic Diagram of the TFM used on the 0-320 Aircraft Engine. 4

figures 3 and 4). With short passageways,the eddies form a highly distorted and directional flow and could cause an unevenly divided flow of fuel to the various cylinders. 3. A flow section which creates a moderately abrupt change in flow direction so as to centrifuge the larger fuel drops from the mixture. Thus, the remaining smaller drops are better able to follow the airflow in the intake manifold and provide a more uniform mixture to the various cylinders. 4. A chamber to collect and evaporate these large drops which have been removed from the mixture and to reintroduce this fuel, as a vapor, back into the mixture. This is accomplished by heating the base of the fuel collection chamber to 140~ Fahrenheit (a value recommended by the personnel at Ethyl). EXPERIMENTAL WORK Experimental Equipment Engine Test Facility - Two views of the small aircraft piston engine test facility are shown in figures 3 and 4. The test engine, an AVCO-Lycoming LIO-320-B1A (later modified for subsequent tests) was mounted on a dynamometer test stand and mechanically coupled to a 350 horsepower (hp) eddy current dynamometer rated at 5,000 revolutions per minute (RPM). A solid state control.system provided either speed or load control or any combination thereof. Cooling air was supplied by an overhead mounted centrifugal blower with a capacity of 10,000 cubic feet per minute (CFM) at 10 inches water (in. H20). Pressure was controlled by amanually positioned damper while temperature control, over a limited range, was obtained by automatically mixingproper amounts ofoutside air 5

9

N**4 ft.............................................. in............................................................................... P i t r,.. 0 I................................

with heated test cell air, using a temperature controlled damper valve. The temperature was limited to the range between outside air temperature and test cell temperature. Engine induction air was bled directly from the cooling air supply to minimize temperature differences between induction air and cooling air. Induction airflow rate was measured with a calibrated 2 inch Meriam laminar flow meter which provided large pressure drop readings even at low flow rates. To compensate for the effect of these pressure drops on intake manifold pressure, especially at high airflow rates, a supersonic injector using a 3,000 pounds per square inch (psi) building air supply was used to boost the engine inlet total pressure. In all tests this pressure was set to ambient pressure. Engine exhaust was collected in a common manifold from which the total exhaust gas sample was taken. The sampling probe was located 18 inches downstream from the Y-junction formed by the manifolds from the two banks of cylinders. An extension pipe of larger diameter carried the exhaust to an external vertical stack which was used to separate the exhaust from the induction air intake system and prevent contamination. Possible sources of air leakage into the exhaust system, including slip joints, sample probe fittings,and exhaust pipe mounting flanges, were sealed and checked. Four additional sampling probes were used to obtain exhaust samples from each of the four cylinders. These were located 3 3/8 inches downstream from the exhaust pipe mounting pads, a compromised location to get far enough downstream from the exhaust valve to avoid the high concentration of hydrocarbons that is present in the last portion of the exhausted gases and far enough upstream from the junction with the exhaust stream from the neighboring cylinder to avoid contamination by that stream. A shutoff valve in each of the five sample lines made it possible to change to any desired sample during engine operation. Fuel flow rate was measured using an electric timer and a weight and balance system. For a continuous visual check of the fuel flow, two rotameters with different flow ranges were installed in series and monitored during testing. 8

Recordings of the following pressure and temperature measurements were made during a test run. Pressures 1. Air meter AP 2. Air meter, static 3. Engine intake air, total 4. Engine manifold 5. Fuel 6. Cooling air, total 7. Engine oil 8. Injector 9. Barometric Temperatures 1. Cylinder head (4) 2. Exhaust gas (5) 3. Cooling air 4. Induction air 5. Induction air, dew point 6. Fuel intake 7. Oil 8. Dynamometer cooling water 9. Ambient (barometer) Emission Measurement Console - A modified Scott Laboratories Emission Measurement Console, Model 108-H, was used for this study. The unit is shown in figure 4 and consists of the following major analytical components: 1. Beckman Model 864 Infrared Analyzer for 02 2. Beckman Model 865 Infrared Analyzer for CO 3. Beckman Model 741 Oxygen Analyzer 4. Scott Model 125 Chemiluminescence Analyzer for NO/NO 5. Scott Model 415 Flame Ionization Detector (FID) Hydrocarbon (HC) Analyzer Concentration measurements of CO2, CO and 02 were "dry" measurements since the sample gas for these instruments passed through a water trap before entering the analytical instrument. The flow to the HC and NO/NO instruments bypassed the water trap, x resulting in "wet" measurements. Test Conditions Three configurations of the AVCO-Lycoming 0-320 engine were tested. 9

1. Standard LIO-320-B1A (fuel injected engine) 2. Carbureted engine, standard manifold (carburetor: Marvel-Schebler MA-4SPA) 3. Carbureted engine, turbulent flow manifold All three configurations were tested using the different modes of the test cycle shown below. The cycle is based on the EPA test procedure described in reference 1, except for a separation of the idle and taxi modes. Time Mode Power Speed in Mode (Percent) (RPM) (Minutes) 1. Idle out --- 700 1.0 2. Taxi out --- 1200 11.0 3. Takeoff 100 2700 0.3 4. Climb 80 2430 5.0 5. Approach 40 2350 6.0 6. Taxi in --- 1200 3.0 7. Idle in -- 700 1.0 Lean out tests were run with the carbureted engine using both the standard and turbulent flow manifolds to obtain emission data over an extended range of air/fuel ratios. These runs were made at essentially stabilized conditions corresponding to the idle, taxi, takeoff, climb and approach modes. Test results were used to show the effects of mixture ratio on pollutant concentrations, cylinder head temperature, and brake specific fuel consumption. RESULTS AND DISCUSSION Experimental Results Results are shown plotted in appendix A. FigureA-1 gives results for the fuel injected LIO-320 B1A and shows calculated air/fuel ratios for each cylinder for the first five modes of the 7-mode test cycle. 10

Figures A-2 - A-6 show similar baseline results for the carbureted engine. Two runs were made with the normal manifold and three runs with the turbulent flow manifold. A complete 7-mode cycle was run for each of these tests, and overall air/fuel ratio values, plotted versus "E" in the figures, were also calculated. Figures A-7 - A-16 present lean-out data for the carbureted engine and show calculated air/fuel ratios,at different mixture settings, for each cylinder and total exhaust. Results for each operating mode appear in a separate figure. Plots for both the normal and turbulent flow manifolds are included. Figures A-17 - A-24 show the effects of mixture ratio on cylinder head temperatures for the various operating modes. The separate curves, representing the different modes, are labeled as follows: idle (1), taxi (2), takeoff (3), climb (4) and approach (5). Each figure is for a single cylinder and both normal and turbulent flow manifold results are given. Figures A-25 and A-26 show engine brake specific fuel consumption (BSFC) as a function of overall mixture ratio. Results for only the takeoff (3), climb (4) and approach (5) modes are presented, since the values at the idle and taxi modes were not considered significant. Curves are shown for the normal and turbulent flow manifolds. Figures A-27 - A-31 show the effect of mixture ratio on the exhaust products CO, HC, NOx, 02 and CO2. All test data from the carbureted engine (both normal and turbulent flow manifold, individual cylinder, and total exhaust data) appear in these figures. After the plots were made, the data for those points falling outside the main band were examined for possible errors. In cases where errors were found the points are circled in the figures. To separate the modal effects on NO in figure A-29 the various points are identified with the following mode symbols: idle (I), taxi (T), takeoff (0), climb (C) and approach (A). 11

Discussion of Results A large number of tests of the 0-320 engine have shown that the major exhaust pollutant from these engines is CO and that the levels are approximately 160% of the EPA standard of 0.042 pound/rated power/cycle. The contribution to this total by the various operating modes varies greatly, and typical results from the University of Michigan and NASA-Lewis (reference 4) are shown below (see Case A, this section). Michigan NASA Runs 69-75 Cycle Run 329 (Percent) (Percent) Idle-out 1.3 1.4 Taxi-out 30.3 28.1 Takeoff 5.8 5.1 Climb 62.8 58.2 Approach 52.4 61.2 Taxi-in 7.8 7.3 Idle-in 1.3 1.3 161.7 162.6 It is clear that the major contribution is due to the climb, approach and taxi-out modes. Therefore, effects to reduce CO emissions should focus on these modes. When considering the potential benefits to emissions reduction through improved mixture management one cannot consider only the positive aspects of improved cylinder-tocylinder distribution and better control of absolute levels of air/fuel ratio, but must also consider the possible negative effects on both NO emission and increased cylinder head temperature. Results of this investigation indicate potential reductions in emissions through the use of improved mixture distribution and a change in mixture ratios for some of the 12

operating modes. This is brought out below through the use of a few examples. In appendix B,expressions are derived which give pollutant mass per rated horsepower per cycle in terms of the exhaust concentrations of the pollutants for each of the modes. The expressions for CO and NO are given by: x 7 MPC(CO) = 8.0786 * 106 [V. * TIM. * X(CO)i] i=l 1 1 1 and 7 MPC(NO ) = 1.3270 * 10- Z [V. * TIM. * X(NO ) ] x il 1 1 x i where MPC = mass per cycle, V. = exhaust volume flow rate, TIM = time in mode. The expression for CO is now applied to a number of cases to indicate a potential means for substantial reduction in the CO emissions. Case A: Standard Carbureted Engine (runs 69-75, appendix C) - In this case we take the emission results measured in the total exhaust in the standard carbureted engine test and calculate the normal output of CO from this engine. The contributions of the various modes to the EPA standard are obtained directly from the computation and the final result is compared with the EPA standard. In the expression below,we have substituted the modal values for the exhaust volume flow rates, the time-in-modes, and the dry-to-wet water correction factors which allow usage of the dry concentrations of CO obtained directly from the computer output (appendix C), using the program FAA described in reference 2. MPC(CO) = 8.0786 * 10-6 [952.329 * 1 * 0.86661 * X(COD)1 + 1638.132 *11* 0.87142 * X(COD)2 + 1388,6.210 *0.3* 0.86651 * X(COD)3 + 10206.350 * 5 * 0.86676 * X(COD)4 + 6313.937 * 6 * 0.86717 * X(COD)5 + 1652.663 * 3 * 0.87022 * X(COD)6 + 946.534 * 1 * 0.86405 * X(COD)7] 13

Combining terms, and giving the results in terms of the model contributions, we get: Mode 1 2 3 4 5 6 7 CO Contribution (lbm/hp/mode) 6.6673 * 1.2685 * 2.9162 * 3.5733 * 2.6539 * 3.4855 * 6.6071 * 1-3 10-1 * -1 10 * 1-2 103 * -3 10 * 0.084033 = 0.100445 = 0.083451= 0.073866 = 0.082949 = 0.094069 = 0.081518 = 0.00056 0.01274 0.00243 0.02639 0.02201 0.00328 0.00054 0.06795 Fraction EPA Std 0.0133 0.3033 0.0579 0.6284 0.5241 0.0781 0.0128 1.6179 lbm CO/hp/cycle = These results show the total output of CO in. pounds CO per rated horsepower for the 7-mode cycle, which agrees with the computer output value of 0.06796 (appendix C). When compared with the EPA Standard of 0.042, the result is shown to be 1.62 times the Standard. As indicated previously, the major contributions are from the taxi-out, climb,and approach modes. Case B: Uniform Mixture Distribution for Modes 2, 4,and 5 at the Lowest Measured CO Concentrations - The reduction in CO emissions due to a uniform cylinderto-cylinder mixture distribution in a normal engine for modes 2, 4,and 5 is considered next. It is assumed that all cylinders for each mode operate at the leanest mixture ratio (lowest CO) measured for that mode. The results for this case become: Mode 1 2 3 4 5 6 7 1. 3. 2. CO Contribution (lbm/hp/mode) 0.00056.2685 * 101 * 0.082369 = 0.01045 0.00243.5733 * 101 * 0.065928 = 0.02356,6539 * 101 * 0.077146 = 0.02047 0.00328 0.00054 lbm CO/hp/cycle = 0.06129 Fraction EPA Std 0.0133 0.2488 0.0579 0.5609 0.4875 0.0781 0.0128 1.4593 14

The result is a slight reduction in the CO emission, from a factor of 1.62 to 1.46 times the EPA standard. Case C: Lean Approach Mode - An examination of figures A-17 through A-20, for the approach mode, shows that cylinder head temperatures for all cylinders are well below the maximum allowable temperature of 435~F for all mixture ratios. This fact, together with the strong dependence of CO on mixture ratio shown in figure A-27, suggests the possibility of operating as in Case B, but leaning the mixture for the approach mode to 0.07 (fuel/ air ratio) where the value of X(CO) is approximately 0.012. Converting X(CO) to a dry value by dividing by KDW, we get: Fraction Mode CO Contribution (lbm/hp/mode) EPA Std 1 0.00056 0.0133 2 0.01045 0.2488 3 0.00243 0.0579 4 0.02356 0.5609 5 2.6539 *101 * (~0012) = 0.00367 0.0874 6 0.00328 0.0781 7 0.00054 0.0128 lbm CO/hp/cycle = 0.04449 1.0592 Thus a substantial reduction in CO has resulted and the level is only 6 percent above the EPA Standard. Case D: Lean Approach and Taxi-out Modes - In considering the possible leaning of other modes, figures A-17 - A.20 show that the mode 4 cylinder head temperatures are already close to the limiting value, so that leaning in mode 4 is to be avoided. However, the same figures show that some leaning in mode 2 may be possible but may require some slight improvement in air cooling. These curves also show some slight reduction in cylinder head temperature with lowering of the fuel air ratio below 0.07. Assuming that a value of 0.07 can be used with or without some improvement in engine cooling, the resulting CO levels become: 15

Ml ode CO Contri 1 2 1.2685 x 1 3 4 5 6 7 Lbution (lbm/hp/mode) 0.00056 -1 012 L * (87142 ) = 0.00175 0.00243 0.02356 0.00367 0.00328 0.00054 lbm CO/hp/cycle = 0.03579 Fraction EPA Std 0.0133 0.0416 0.0579 0.5609 0.0874 0.0781 0.0128 0.8520 In this case the CO level is only 85 percent of the EPA allowed level. A similar check of the NO levels shows the fraction x of NO Standard increases from 0.32 to 0.78. X\ Mode 1 2 3 4 5 6 7 Normal.0006.0491.0098.1607.0922.0039.0007 0.3170 Case D.0006.1036.0098.1607.5027.0039.0007 0.7820 These results indicate that operation of the engine with improved cylinder-to-cylinder distribution and using a fuel air ratio of 0.07 for the taxi-out and approach modes will generate emission levels well within the EPA Standards. The expected values for CO and NO are: x CO NO x 85% of EPA Std 78% of EPA Std This can be accomplished without excessive cylinder head temperature except at the taxi-out mode where the limiting 16

temperature may be closely approached. These same changes can be expected to decrease the hydrocarbon emissions as well, since figure A-28 shows a slight decrease in hydrocarbons with leaning in this fuel/air ratio region. Turbulent Flow Manifold - Test results with the TFM show good improvement in the cylinder-to-cylinder mixture ratios for the idle, taxi, and approach modes. However, results for the high power takeoff and climb modes show a large increase in mixture ratio spread. This is believed due to the centrifugal action on a large portion of the fuel in the air stream, causing the fuel droplets to strike the wall and form erratic streams on the chamber surface. Similar effects were also detected in some of the work at the Ethyl Laboratories. With design improvements it should be possible to get more uniform distribution even at the high power modes and thus improve the fuel and air management over the entire test cycle. Fuel Economy - Figures A-25 and A-26 show potential improvements in fuel economy when leaning the mixture ratio. It is interesting to note that a considerable deterioration of the fuel economy results from the poor cylinder-to-cylinder distribution in mode 3 with the TFM. CONCLUSIONS 1. The carbureted version of the AVCO-Lycoming 0-320 engine has a cylinder-to-cylinder air/fuel ratio variation of about 1 air/fuel ratio for all seven modes of the test cycle. 2. The injected engine shows a greater spread in cylinder-tocylinder mixture distribution, especially at light loads. A maximum difference of slightly over two air/fuel ratios occurred at idle. 3. Predictions show that the 0-320 can be made to pass EPA emission standards by operating both the taxi-out and approach modes at a fuel/air ratio of 0.07 and by slight improvements in cylinder-to-cylinder mixture distribution. 17

4. The TFM shows good improvement in mixture distribution at light loads but causes large differences in distribution at heavy loads. Further development of the concept, with emphasis on the high power runs, could yield promising results in terms of better fuel-air management and hence lower emissions. 5. Improvements in fuel-air management to lower emissions also results in substantial improvements in fuel economy at the high power operating modes. 18

REFERENCES 1. Federal Register, Vol. 38, No. 136, Part II, July 17, 1971. 2. Mirsky, W., Pace, R., Ponsonby, R., Nicholls, J.A., and Geister, D.E., "Critical Assessment of Emissions from Aircraft Piston Engines," FAA Report: FAA-RD-78-82. 3. Adams, W.E., Marsee, F.J., and Lenane, D.L., "Lead-Compatible Emission Controls -A Route to Improved Fuel Economy," National Petroleum Refiners Association Paper No. F&L74-60, Houston, November 7-8, 1974. 4. Adams, W.E., Marsee, F.J., Olree, R.M., and Hamilton, J.C., "Emissions, Fuel Economy, and Durability of Lean Burn Systems," Ethyl Corporation Research Laboratories, Report 76-3, February, 1976. 5. Meng, P.R., Skorobatckyi, M., Cosgrove, D.V., and Kempke, E.E., "Emissions of an AVCO-Lycoming 0-320-D1AD Air Cooled Light Aircraft Engine as a Function of Fuel-Air Ratio, Timing, and Air Temperature and Humidity," NASA TM X-73500, August, 1976. 19

APPENDIX A Experimental Results

APPENDIX A LIST OF ILLUSTRATIONS Figure A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8 A-9 A-10 A-11 A-12 A-13 A-14 A-15 Air-Fuel Variation, Air-Fuel Variation, Baseline Data Air-Fuel Variation, Baseline Data Air-Fuel Variation, Baseline Data Air-Fuel Variation, Baseline Data Air-Fuel Variation, Baseline Data Air-Fuel Variation, Leanout, Idle Air-Fuel Variation, Leanout, Taxi Air-Fuel Variation, Leanout, Takeoff Air-Fuel Variation, Leanout, Climb Air-Fuel Variation, Leanout, Approach Air-Fuel Variation, Leanout, Idle Air-Fuel Variation, Leanout, Taxi Air-Fuel Variation, Leanout, Takeoff Air-Fuel Variation, Leanout, Climb Page Injected Engine, Baseline Data A-1 Carbureted Engine, A-2 Carbureted Engine, A-3 Turbulent Flow Manifold, A-4 Turbulent-Flow Manifold, A-5 Turbulent Flow Manifold, A-6 Carbureted Engine, A-7 Carbureted Engine, A-8 Carbureted Engine, A-9 Carbureted Engine, A-10 Carbureted Engine, A-ll Turbulent Flow Manifold, A-12 Turbulent Flow Manifold, A-13 Turbulent Flow Manifold, A-14 Turbulent Flow Manifold, A-15 A-i

LIST OF ILLUSTRATIONS (cont.) Figure Page A-16 Air-Fuel Variation, Turbulent Flow Manifold, A-16 Leanout, Approach A-17 Cylinder Head Temperature, Carbureted Engine, A-17 Cylinder 1 A-18 Cylinder Head Temperature, Carbureted Engine, A-18 Cylinder 2 A-19 Cylinder Head Temperature, Carbureted Engine, A-19 Cylinder 3 A-20 Cylinder Head Temperature, Carbureted Engine, A-20 Cylinder 4 A-21 Cylinder Head Temperature, Turbulent Flow Manifold, A-21 Cylinder 1 A-22 Cylinder Head Temperature, Turbulent Flow Manifold,A-22 Cylinder 2 A-23 Cylinder Head Temperature, Turbulent Flow Manifold,A-23 Cylinder 3 A-24 Cylinder Head Temperature, Turbulent Flow Manifold,A-24 Cylinder 4 A-25 Brake Specific Fuel Consumption, A-25 Carbureted Engine A-26 Brake Specific Fuel Consumption, A-26 Turbulent Flow Manifold A-27 Exhaust Carbon MonoxideVersus Calculated A-27 Fuel-Air Ratio A-28 Exhaust Hydrocarbons Versus Calculated A-28 Fuel-Air Ratio A-29 Exhaust Oxides of Nitrogen Versus Calculated A-29 Fuel-Air Ratio A-30 Exhaust Oxygen Versus Calculated Fuel-Air Ratio A-30 A-31 Exhaust Carbon Dioxide Versus Calculated A-31 Fuel-Air Ratio A-ii

1: i t t~~~~~~~~~~~~~~4 I r i 1 t i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Tt ~ t~ i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~L'' i f"~~~~~~~~~J —E i i~ tit 9 t i, l I RFU- ftC-fllt-tt C —1 — M tt lt + I.1 4 -+-I —-4- 1 1 t I ', ,, 4 , 4 I -WaRIE- 4-ME==LM -alg -~~W i i & I mi I: I i IiI- Itt u n..w I7 I I iff 6 LlTs! f f f Mt I ~ H tin. I V! - tI H-:I.?'! t'; T I mm 00 Itm.L 1 f + t 4 4 f 4 ~,; i! ~~~~~~~~~~~~ i' f~~~~~~~~~~~~~~~~~~ I; -i-;~ ~ ~ ~ FT 4-m t- III I irI ~ -- 1 tt 7I * -4...,.,,4..' 4...- 4.,..7 4 2 I* I I: I -' I - L 11 I I i i, I;ill I' I I I I I l; I n i Li -I. I I. I i L~~~~~i i -+-~ ~~~~~~~+4- i r i i:~ ~~~~~ ~ +-I i-tS-C; L t IC-C r i i ~~~~~~~~~~~~~~~~~~~~~~~~~~~~t i i t~ ~ ~I14 f H I - I t f i. I i ic~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ It t t f i t~ H -~~~~~~~~I~ t-~~~~~~~~~~~~~~~~~t tt........... Ti ttS I i i i~~~~i i t~I T Ti ~ 1 i + -1 t t t i T~~~~~~~~~~~~~~4 rt:7e i 1 t-, i;tiL-tt-t t — 4 I 4- +4 I~~ ~+ li ~ t i 4- r(-t-i ft ~ ~ ~ ~ ~; t44 ~~i LL I~I~/ L ~r'~-f tit t ~~~~.4-At4 -i7 I:' i~..'-i...... -';'i', -.-i —'T. if! ~' -.-it-I -.-'- -4t''' —'.... 41 4 4 -C!. ~ jl I ij t -r- i ~ cct ilt i~ttj+~:: i t-4V- +c- ~~ iij'tt t't C I-+t-rtt~r'l ttrf i tA f1471.7f I~ltIif tt" i-1I l+-.I i I:., tt-+-F it1. 1t- -t -: T'-T- t'i' 4-tiIt i 1 41 -i fft -t't' l':' t-11 r in im T.itnra::.. I i n i i i.'14 4 ITWI$TTBt1 411 ~.~ ~+;::;.1~-_~ _?~-~ +!~:~.... 74 l1w.I I L14 - - *'. I - i {I i I: - I I;, I.1............. f1hL- ttI;tf..... 1I; I.....-.. t iif f I~~~~~+t- E'~ -t 4 - VIL-!t i!!:-i j!! tTr {:~::{ -44-........................:.~:.:::,;":'~............::::.................. 44... >.., -.. A zi-: _ 4 -1 t -~~~~~~~~~~~~~ ~ i ~ ~ ~ I ii.;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 V r T ~:~ ~~ ~ ~ / r? "44't 4-4 44 r.4. 4-..... I.:..: I' -... I ... _-_ I -'_L_:'''I':x~:Iu t-z'.1 J _i_ FigureA-l. Air-Fuel Variation, Injected Engine, Baseline Data

IFF~''T!~f ~~ UFT I~l~~ril:I iT TT TI Hi 11 WI II'I 41-t i II I —-~ 14~- - C mWTTV7ThTFT~CCLflTITI K. I It;:{.i 11t 7 ~ I 11 1+ 74' ~4+ -I V, 74H;f1Tt~th t i':'if'; ~~~ I~ I~~ I~'~I I:f~~~~ti~ii iItt'C.,.4;I K. U *'- h.'- 11 Vit + l h i1 i ~ ~~~~~~~~~~~~~~~~~~~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~ IfII I III I I i I i i I i I I IIII IIII I i I I I I I I 1 t t~~~~~~~~~~~~~~~~~~~ t f~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i j -I -t~~~~~~ I W FatiI 4 44 -~~~~~~~~~~~~~~~~~~~~~~~.r~t —tt f t t~t Ltt.. 1 t I t~~~~~~~~~~t 1 i I ii If~~ ~~~~~~ ~~~~~~~~~~~~~ it I a I I ii i i ~ ~~~~~~~~~~~~~~~~ I f-I 4 L4 1 t i I I I i t 1. L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ f4 4 4 ii tt r 1 t I: i L/ I ii~~~~~~~~~~~~~~'~~ rtI`-r Intt~~~~~~~~ ~~~i:~~; i i i iii i tt~~~~~~~~~~~ ~- i, c..t t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-,...t.,. I ~: r r ~ i ttt i. t f~-i f-ti t i 44 m -tt t i T i!:' t~; -t~~~ i't t i f i 1~~T T t 1~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~' ~~~~~~~~i f-t; i ii +; i~~~~~~~~~~~~~~~~~~~~~~~~~ I 1 i:;:' i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +~~~~~~~ iL. 4 1 1. -4 tt itii 001 t7- i.' I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~F t i; 1:~~ r~;~ I.e~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(I c i -f.-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~sI i1L.. -7 7 7 j 77 7$i. tt ~- j t I -iii:ii~ 1 i.t~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ft -4.-4 -44i: I tI I. I... _ I t Figure A-2. Air-Fuel Variation, Carbureted Engine, Baseline Data: i::.. I, T- t -. — t t t I: I:! l _..,. I.. I I, I,'..........,.-.. _.:., v........ T,........... I~~~~~~~~~~~-.

- - - - - -.~~~~~~~~~~~~~~~~~~~...................... ~~~~~~~1..... H i1j1 q~~~~~~~~~~~~~~~~~~r-~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 777 - i T I T It I~ ~ ~ ~ ~ ~~ii:T~ -14~~~~~ ti IH 7 - ___ II~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t H11 tI - V 4, i-h ~~~~~44 4L 4... V 7 $ + 1 V ~~~~~~~~~~~~~~~ ~~~' 4- 1~~4~ J-77- ~ ~ ~ ~ 7........+1+.-... -.4~~~~ 4144 ~~~~j VVI::4;it 41.t.....l4.-. 4-I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —J __49I _ 44II - 4 4 -t'44 I -- II I 1. 1 I I I; -. -1- I -t Figure A-3. Air-Fuel Variation, Carbureted Engine, Baseline Data

.................... - - - - - - - -....~ ~ ~ ( - r ~ ~ —I - -~ it tH i —..~~~~~~.-; ~ ~....... JI M........ i i'+t —-- -1-t —- Lt..~~~~~~~~~~~~~......... I I I I n_: i'~~111I ji I 1 i I. - /.... i1 I I I I f I -" - -1. --.. c... -...........-.. - -.... - -c......... I - 4. - - - _ -., -.. -.. -... - - -.... IL H-:J I hi pJ rCD H pi Ph 0 HnCD r1 Ptzr 0 3 CD P) 0) I LJL — L. -j -L — L — I — I -M-+ ------ - ~~~~~~~...... W.~~~~~~~~~~~~~~ —t?-!**~~~~~~~~-. —' —-r-4 — ttf^t?- _tw- j!L-............. ~....j i ~~ -.1.. —. _.~-.-~I~~ —; —.^ ---.1 —-+ - -4.-..- | i — J j k! - —.+ ~ — * -- -- (L -- C. --. — L -c.. — V___ __~~~~~~~~~~~~~~~ — ~- ~:___ *t-t'~ i —- -~~ t-e-~-1c:~:+ --- -s -:..-I:^ ^a.:^,^ ^^^ ^:-: ^. ir^J- -~F~C —=l:r.:^._:::.:-_- ~( ~ I i L 1I!t — f-4-: -c i 1I — T -— u -r -T --- ;.:. 1 .-t 11 ". IF +1 --.- — t-*W. 4 —i - - IIV I.......... A -- -1 - -- --. t,L1 -LT - -— A S — ow~~~~~-I-'1 —t~~~~~~~~ —Cc c. -I.. I -: " i d-.a I g? I,- I -ii i4 I I i ti - T tt - t H-H - H-j I I I I I -t- -.J.- - i 4 — i — -t - -- — T I t — - E --- 4 -- -~ f i 4 F-", 1: - i7 — F7 - --- -— t i - -- i_~' *" I n I 4 F1 L. I lfw.T: t Iiil i L! ""-ttr -fm — A fa. -~ r -- t,. I.,+ f~~tt 4.k m -I, -. — -t I d trar -. —c. -i — -'-ft — e -— C ~ —- -~I- --------- Tt -e -— e~- + —-, -i - ---- -c —i c - I ~ — ------ ------- — ~ —C.~-i- —.- L-. — 7iR. L i --- - i.:: 1.-_- i 4 p!, I —l Z- t- I -4 4 - -I IT ff t1^~ 2. 1 [ ~i, t. -++ ~t

i i i t I~~~~~~~~~~~~~~~ 4 I F........... -. 1....2.4.:17-47:~~~~~~~~~~~~~~I 7 77 IJA I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~V t -'tit'' - - LLLJ 414.....4-;H 1:t............... ~ ~ ~ ~ ~ ~ s K t-.-...._... 1 4......4 -- A~~~~~~~~~~~~~~~~~~~~4 —-~~~~~~~~~~~~~~~~~~~~~~~~~-~~~~~~~~- - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 7 ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ — t.'....,.. i -4H t 41 44 tit F -4-41TTT' T14 JI -4-4 FT; I { {P I P1 ~+-~ ~ - ~ 4 7..,...A:- i * I:: I * -I.1J i!.3 ~WA2 ~ ' -~ -F i: i I --..: .,.-L t +-.: - m. -... - I I,,.. t, I I.:: i 1 fmHmlmlF-9FQ! HIHI!;: k +'i 1, 1 i i- 1!+ +-, I-! I!G I*4 1- -- i -— I "Ir: J I,..II ii:. -I...... - t-L -,; 4'.., 4... I i.;. 4 1, 1> It i., -. T; — f - i I Figure A-5. Air-Fuel Variation, Turbulent Flow Manifold, Baseline Data... I.;. I..... I _,. _..-, * 1 I...... i

4..... Tt44- I I 41 ut V ft F~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i iti 141 1 f - 4T-4 1j71.tit f I - f. I 11 11.i i tt:!f i l i1 1. I L -]I I1- III III II i r II I I rIrII tr III III 111..! I I ----— f-T ri-rIr1Ir. wP H1r -4-~~~~~~~~~~~~-Fj U F FF1-~ =U-L 1l 41 1 T 1t I.I'?: I!::!'. -, LI I] 1171 ift —'1 r"I I I':'rDI. [t12 t 4 f I v-I _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IL ~~~~~~~~~~~~~~1~~~~~~~~~~~~ 4,, i- ~~~~~~14 If lb -#4 211 1~~~~~~~~~~~~ <4 ~ 4n- 4 1 -~~~~~~~~~- fi +1 ~ 4~~~~~~~~ -41 -t f f44~~~~~~~~~~4- -4- "F: — -!:: iv I a r: r* i i. *'11 — t -4.40 —' - i'tH-f-" I-,:. I I r4 1,; -., i f' 'f...'i " t"'T ". t-H-K71 i-i I -1I I I II,;-~I it i S i' t:l.:-1 itL -— i I':I, 1 I 1 I? I1.- _-: -t:'.".1I.;. I.!: 1,I.I'.'"-.. -1 II J. 1i-{ tIt — H't-'' 4 1-11. ut -trt.i.i. ^. Ht Ii tT-I It. 1 4 -Ti.1 t I tI4 -t4 i;-1, I I I tH-H-t t-i t 4- I [I..HLi. I. I.. I.. I. I I I I I I I I I I I I I I I I I I I, I I -. I P I -4, t-, -,,- ,-, 1-11, J." 1. I e N11 1t 1 i1ili i -1 1~ L 4-~I IIII -I 4 —'_14L1 F t _ i- i t- I i -i It ilT Il i ll-t - l l — II;! i. I i1 I I:: I 1 ~~~~~~~~~tl —Fl-~~~~~~~~~~~~~~~~t 7-1 <B-at 41 - -- w ~ t^ ^ -^ t ^ ^ ^ — 1 —T-! i,: 1:"::.:-;;T:^r~-;i: -;*:,:::.. ft~-,flT~ft,-L to: ^rt^ ^:,:^^ ^7^ ^ ^^1:: -t 144~~4 -4'' — -'' 1 T~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4 4 1' 44 44t 4 1 4-4 4~~~~~' -~~~~~~~~~~~~~~~~~~- 4 4 4+ -ill t+-H >1t. —..441.... 44. —". 4................4.... -...4. 4~I4 it vim, )n. dis~~~~~~~~~~~+2 4o24.~ot — h- u ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'....... -l —4- - - - -~- -— 4+- -4- -— 4 -4 -4-7 - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I1 NU C-1 cl. 1:I -.. -- - I-................_..I. P|:..:.I... — t-..' ii - I I _-L *-I*..'.'. ~* * * * i-" L.-.-.. ~ _.!. r-. r *' FigureA-6. Air-Fuel Variation, Turbulent Flow Manifold, Baseline Data

; T i I. I: I p -i - -4 — - i i I I f-14- 1: I.- - I -t- - f- - i T -- -7 7-t- -- i ------- T ~ —-J -- r+ I t _ t_ -S i,. m IJ.-1 *i -I,, t~ T owtc — 4; - -t~-t C ~ ~' L II UVU I & U t 1 +I4ILJI -t' LI ii-l^ ^~~~~c~t-~l —t I-Cr-+- r -- - I zs 1 - I Kfti 41 E I lil71-. I* -* - I! 41 — 45 ~t I -r W-4F; -4 I. J I~~ liL AMA -1 t I: r kik rr7 - 1 L L' -— r 1 12 I I ~ -.__. - l 1- -- I / ji_ _ I _ i _. -i -4 jzrI - 7 — t -, - IL fIrwp r% jkr r _. -1 — ti,. - L [ -.+ - c, iI0II i —I -.. — - - i -4 F. 4... -.. - - I i t li ^ _ —;. l f,,`]! i a l I i -i l l -4 r_...1-.. I I I -T i! i i --- — t - l 1.,I.-I -;,-..-: t,.. EL. —~- ~~-.-~-c...-,........ - - ---- ---- - - - -- = 1 + < 4 f + + 0 < + -- < —-L -_r._-.-::.:;-:::-::-1,,i,.. -=~ - -.4 -4 f - t.- 1..... 4 -- 4*m 4- ---- - -:44 444-4-j 1-M _ -4 - I *.F t:::f; —I'+ —t-0-d.... i f.....---------— t-'-t,....' _......-4 --- I - T -.... - * r - - - - t - - -; f., 5 _..:.... +... - I - I -i 4. 4- I::. 6 -- 4 --- t O':- - -:-1 - -1: - ~~~- - -.:1:,-I;:.:::;:-..-7-;4:;1,::;:;::1;;;,:;-~-t i;-; 7..... 1j FigureA-7. Air-Fuel Variation, Carbureted Engine, Leanout, Idle K A-7

1Iti 1 1 ii fi II'I I I I I i W i I I Ii I 4I 4 tHtitJt 14tff P-1 (D I-1 CD H I r(D COj 0 P-1 C PI CD P) rirt, H pi HJ(D (D pi:5 rt, Pi x fii'' It' ii f-ll ~~~~~~~~~~~~~~~~~~~~~~~ tt'tI ft- t tI I I 1t 1 t I t 1 tI t tt t ittiC- i ft ttli -t i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- t t it 4 4~: i i t i I 1 t i If~~~~~~~~~~~~i i r i i i t i i i: I i i i I i 1- t 1. I~ ~~~~~~~~~~~~~~~I I 1; i i~~ ~~~ i T iL 7 1,'t t t tf t i i t~~~~~~ t -44 -111I III~~~~~~~~~~~~~~~i iA. rtfl F I I 7779 ]I t t. I i i i i~~~~~~~~~~J i I f~~~~~~~~~~~~~~~~~~I I II ~ ~ ~ III Jf m I T I lIIF i t 1 if 1 ~i 1. J:i~~~~~~~~~~~~~~~~ t _ t Itt._ -t+ I_*tif f1~iF~i;j I~~~~~~~~~~ I i~~~~i f t' ~ i I i i t~~~~~~~~ t fi I VT~i i -I f~.1 i 1 ~ I 4 tl ii-ii; tt~~Tli t i-; i i i I-4 i- 1 t i f i i i t-t c i f rl: iI i t t: ic ~ ~ T awl=......... 4..........I; t:' t I -C; i i i; i; i r-~~~~~~~~~~~........ i -~~~~~~~~i~;f'i i I;, ttt: 1 i i 1 t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~A "'~~~~~: fii ii': -i f:-it ~t i t~~~~~~~~~~~~~~~~~~~~~~~~~.t- tII"ii +f J4i V -4, T T 1 -t i;. - - - -I m I i -.1. i. i i... I.I i:. i t I I! 4. -I I. Il I I. -i -II I I,;. I..... I 1 tr Lt i!j1-( i1 i it iiiI i 1. 1 ~ -,, ii ft' 1 i I i-i -1 i —t ~t- IL i: Ti r; I 11 I I t —T f - 1, i..,:-.I I I.-I. 7 l,:.. I, " i _ i.,..Ii ~t it i! _ r - h- ".i. ** 1 -4.'~: i. t~; 1.... 1- t r it-! L' __I

rI I i —t-ti.. I... i.J i.4Tt -: *; I:,: r L L i l u i L:: I! ~~~~~~~~~~~~~~~~~ —-it.T -)..1. Pl t1 --- --- K. i.-' t4 _ i — - -- ---- 4- -— ~ —. -- i ii I V rr m. -? — t r i. i —t- I;.. I -~ c, 11"T'.4i. r Ir 144 t - T-4 -t t'' pil/~~~~~~~~~~~~~~~~~~~~~~ im - i! i -t l I -I Tr — t-:............ -.....I,~ ~:....I.- -.i ii I I I I! I i... _ + - Hw _.... I If IL I' 1 1.1 t - - i - T 4 4 4 4I i i:a j... i t T 4-t, I I r.t V -. -: I:I - i 1 1... i4i;, L 4 t iict + -t -t-i t-1 t _ -— t it - I. / I i/..:-1 r:t~... -. +t t..~ I t, I -1 I. I — l -1: t — M~rl[E3 _]L- r^i~ 1 J i i 1 1 1 I,I1 l 1 -V 11; 1-..... 1 1' 1.. 1.... i i-IfI1 MI tI,/ / I...t.I Ii i i p:. t. 4. i i -- + -l4 f l_ i: I i XM.: I: II:; ~A:: AntI - 3(!1 t ___ iT Tj —i V-v -.: i.. t!. t....i.. - t. XL At A::, X'; I;!!:,!. It! I i i! t 14I i I it!!;. t: 44 I4. L I 1 r 1 0 U) Cd Cd U) U) -id U) Cd.r-ICd U) 0~ 0%l U) 4 t tM i t f 177 4:1. — T li H iii j ii~~~~i ilil i Itii~ ~ ~ ~ ~~ lll4 -tl 1I I. t M J 1 Ii f I 1 1 1 1 1 I! t i I. 1 1 1! i l 1 1 i l

;-t ~t't-tti t'' t t —-i-:, 1t t_- 1'' - r i -1i7 ~.. 2;4t... -...1. T —— T? TT..... ~....I FT,Th44i fi...... 1 r4.: i i - i I'.'..:t 1- I T.... -- ----...... I. - - - t --! -.. I II..... I! I 1 t I I I I I. I 1.... t * t I' I I I I II I I t I Iit,. I I:: -- - -- V -t — -,..... _ I_ L. 1. If 1'4 t|.' l -..:'-1'I:' /:. i 7 N.. rf I /.: i V. - i — +~-1 ~ t t i'' ri ~: it -'f'-""-' ( C-c —L ~ t r ~ ~ 1 t f' i I: i i. i: 1. i., i.L_, -I I 14:fIH I/I f Ij~ V I i--i-,..-tlFt ii -i-L:] 41 I.,i i - - I I - t i-... It —_ f t - _ —I _ _ _.-t —' —'il'ii._:::-':**;?.'*:.* |*_I' "'t|'t - V,/ t: t t-: f I c i t ~. f | ~ t t* I -: I: t -t t.,. L_:. —, t t'+ Le-$-4 4 mxmttljtt-tF. 1 _W I - i I t-iii::tt r; -ti.....t t t I I, L..,I F" -4 L p-i T1 c (................ i I. i. -..I -L - I I i I i 0 11. 1 1 -- - -4 HHHU:. 1 1 1 1 1 1 1........ i I 11, I I I i ~~~ .I -I: i t-l -I i-f: iI -tf|;;;:.::: I *H r-1 U 0 ] c) O ci) W (D U) 4Q) ci) o Cd U 0: cd:H r ci)T k ] (D U) CO F 4: t *:: o f *dl -d e f0: i { i:: _1! i <u: tp *H: t M -t t t f' i _tT 0 -i I, -I-f - mIII' I I-H- -I — ],HI 4 - I H -- 1 H 41-Ii 1-...i- l+-..T-.I r'I'I I' F I II IITITFT I r T T T r 1T T''' r. T T.r, IFF TF f I I-TT nT.-m'~tfflXs t t i; * i ] I I IIt: u 1 I I1I. I I i -- I t I S l-witM0-il^ tt

(I) CD PJ: CD I P -Q 0 0 OQ L —... m. 1 i 11 t m r 4i441' r tMtiW d -T T im I I-S; 1 1 -f,.4 It.' I ii. 1 ii;i -t ti~ t 4t 4 -1 i4t!-I i.'i- t- 1ti4t' l it SW; t4:1:1WW.t tit; ttipi |:!;14|CEIttTW||X4Tiot|>Tt~t1| |T|04|44TWit;ELI It J-H I f 1li- ii'iiaT''I-;'ItItt tln ts'it24 lf4- t4 i iti -t: f iit ~ ttrtt 71trf7 ^- " r lT n T^ - t: ^:r *::::77lt- tif t" - fttt:""-* # - **I IIr** *; r~:-~t f~-:*:: * " t4 ": - 14 t 1 ti ii 4 41 i - t IH1 4-lii! ly t t 0Ttt I 4 L; 4 t i4: i U^1"T-f^44-^"""" r +t-4~t I +4t t t~~~~~~]' iI r T -4.11 +4 I: m r;t-TT-t 1-4 4 t 4T 4 4 it I - I T F- T I-TTT-fF I rI I- T41 -I 4tt4-4t + i i I i t I I I It I T T I Ii T TI - I I I I I I I. I j I I I i I t I I l I I I I mJ T 4-Hi -- tt1 t! f I - q-, g!Si:iEIffl| T4 -nT l 1 4 TT FT T l T i Al — I I rI I I I t I... I TI. r T P-it i + IU-~f tt i i 4 t-. — t.U 4-fH -T ^f~~~ai-Ei^&M~~~~ rn= I I I iI 1': 1 1 - II I I I I I. r 4 II I.i I I fi T I 4 +- -t t-i ITT #Jt+I - tI+ a > $ j i E -- 1 1 i l I l tI I I I I --- -I I I I I 11-4t LII L: —-i t — 4. - 1 -t l i 7 -14 I Bi4 LL I 4 +114 4- ~~r r1 -ji. -t tT- t a t —t I T _ 44I —4 I I': T ttt;-i t - Tr-i t t i l-ilt t-r —-~ -~ i | t- I -t c 7 I 7 T A L -. I I i I: I 4It I I 4- H- t i.4 - i -+- t * Ir, L It 4 I 4-44i BH-t- 4+T - — T II i I. e - t ti I +litlc -i:: I it it;Ctiiii tl -i. t-i i -it. t f rtt i 7 Lff 414+4+-4-1 ffl 4ff rI -. I.... I I - * -. t- - 4 -t 41 *i - 4-i i L — L-,- - - -" 4 - -T ^ - -^^ -ii^ ^- - -a, - 1 -. 1 __ __ __ _ ___I 1.._........_...:_. [........ t-i-.' — L I. i I. TII -.. — T --- I or IE-..... i.....I. I. II I... I. i: i. I..:.... I., p 1 i i 4T i.' I -tl-.. i; -, -.i 1.;. I.. 1::. I,.. 1:.;.....,.. I......,... {i... i.... I I...- t-! I t -... -!... t I -! - I' I I -- I:: I

IC( I~J I'-I J(D I C rt -'0 0 P-. H (D i-i P-J rt 1 PiH CD 1~ i!ttt III!' "'' I:iilttt I i i t i i t tf t!'l i t i i f i I t t t f J I .:.-tt. I t tJ tsf -l- i f: I:, i!ji —i;I ii i t: r it i * 4 I! mr t II.I i i i i I t i ~ L~ t i I t t t I~ f t' ti. t 1 ii - t:: - i ~i~. ~ —H T +- =1 f;rt -n',, i 7:IITt t-T t LI t1; -~ Iti11 t Ii I. +i t; t i-ii I t I~t t;: I' t t I -t I t t it1: i I l i I I 1! I i: 1 I I I 1 1 1 111 1H 1IIH'i if, I., j~~~~t i i i +t —l i - - 1 L-4-4-L 1 1 1 1 4L-1-i- I- -.L I.;.. - ij t:t 4-i + ~L... _ L 4-4 I!.? +T-,, I 24 - - Ai4L4-i444-4fI1' II V t btf-tT1I till TT[T H iiL,., U tf i r ni PIT t CrTT _mii___Tff Ii 1 1 1 1 _ _.. _._. _..... i1t i 1 i. TYH 1 77.. - Lii I jit 4-tt —— tt — t, j i 4 t —:. 4-t I I 4 —, T I_ I' I fi I I..... I.I.....II.,., t-+ —: I m'. I, m!:,. I i i I 1..., 1; I I..; I i. I I, I.. I. - I,.. I a I 1 7,,.. I.. I I! -! - I... I. I i"' i. itt'.i y-t::idm;m-:it-tt' -ti - 4' ~!jl i t-:;lii t i 1: i 1_; it-it C C I — ft I-1- i,: -1 -I 1 t.- f t i - - -1 r.- I II i i I o +1 1-i 4t -,-j.~,I ~ t ~-3-. iI: I i.: I. -T ti I.. i i.. f t i! I. I. -4I Lc4 - -4 4.-............. L |!' |'- -|'''' — 1|': I S-1 "T. I C:+ -.. T i Ilr I - t 1L — I — i.... i.. I -....:;. 1. I...I.1 A --, i!~li

I. I<I 1CD 1'0 > tp LJ (CD 0 (: H0 d0 I% ^ I I II; i I! i!i!1..1 f1'.1 1 "! 1- 1 I i H - 1 1 l 1 1 1 " i I I' tHt l.;.t*I: i I l I I! 1! I * 1 I! I. i I I I! i I I i; 1 i i 1 1 1 1 I[ I 1! I 1 i I. I I t t 1 t t I t~ij I: I: t11 nI +1i 1iitl - 1/ii rjt 4- tIri1 t J i t t T r _ t I. + I T i lH i-i' i I t l i j I - ftT Hl It- III JiIt J-t t- If IV 111124tti'Vftt I t ltt t I ttI 111 111 i i it'14 jI If I 1-1-41-1-ft 44i -14 t 4 LI L~~$iii JIB -;2f. j~~J44j I IT-7ITT 11 t i:c:jIi t J'j 4 j. i I I r ~~~~t t T:C- c "'j F-tT' t1 tt i J iI I LL I i I I I 1 I I I I I71 I I I I I 1-4 —W - -4"'4 2 - I-i 4 I iP 1 —I! ^ ^^ ^.,...,. ~t......................... l^ Ife^ ^^; -cp -^^^'^^l^l i I - - 2 c-4 4I I t c.-.. 8 1 f Hii III -t t,-I im -iIt f t' itt -::I*i rtv i.T i i i it IL - -1I I i.-1 -4 — f...j _4 t. I i 4 1 t t fi, I, 4-! - I 4' t - -ri::.:, i, i t [,ti I I I'i +- - I I +t~ I:! 1 - - *-4-~%1 T4 - t 4-L 4 if -. m it..m ~ I.: III -_ -1-~.... _.,..... mE - i..i I, i -i 4 i- -I-, T t, i I - r 44 1414I t1 I i1 ~ I i —1. tt -4 -c, tl -1. - t — t t. t. t H+ t+H — 41 t i t i I,'F. -f. I- 14 - -— t- i- ---- I i —— I —--- 4 — i —-I-Ilt-i —-s —t —-T —, 1111111 I I i I 111 11 1 I... I ~~~~~~~~: ~-: _+ 4 B iti:.li;It~~~~~~i1 i. 4-! I IF 4-1-4-4 "- -; i I i i i r1 i F - I i i Ii ii;ti -t li-t-i -ii 1 T t i t-it t I I it-C! I 4' I-. 1 1, t II I. [i +-tt f4 4. Ii.. t... I -'1 1 ]ir - ii - — i - -| t_-'' I+:4U I i I F t L...i

I-1 (D I.: > II Pi Hpi r1 ct P) 0 h 0 r+ H P0 O r+ rt t i iT I:. I i I II I t ITT I I7Vfl i ii i: i.[ mLiH-14f m.TfHi L I I, I t II t ti. -t —+ ti 1.1 I i i I f I. I, I.:t f If -i- it f i~~~~~~~~~~~~~~~~~ i 4 wT 1T T na rrnTf i f t I I J. ti -rIii 1 i, i -t. - ti I; I i: -j I. 4-4 ~ir t: i-t'f - I -1.1 I 44I4 r - t t t tt I. LA... $.. - I m i I i f-t I -t-,7' —1 — i -t';;: 4- t i *... tI:'t' 1-.I:: E I - t I! - I c c I i ii l T i: I t, 1 1I I i L tI-f1 l +44 -t. -+4-+ i i i..:. I. i' t! I.. 1 ~.. I I.... 1 -..,. t i.'. Hi- i I it tt tLL i i IILI -m m H.1II1II 1 —i ti ti 44t -i+ I1' II! I,iit - I i -! f i t 14 t~~-f t. I,I i tif I Ii i, i ri K] * +t-Itt *' tt.; " -1 - i t I l I: I I i I I I I.. I. I I I'; 1 I —C r i;~r t ti tit i+tIt i 1. -t 11. t -t I I-: thft t-t-+-ttI Vt-44 4412 v.ir It-t` +-' i l -J —-L ~~~~~~~~~~~~~~~~~~~I I 10~c I~~~~~~ 14 t 44 4-H t tttt't ~~~~~~~~~~t71 i I.: t -C' — ~ ~ ~ ~ ~~~~IIIf -44 I - - -. t;!. - --.. -. Ii i i... t. I..i...... t.........I-. I - -r-.i i... -. - -.-!-..-.. i j...I i4 It ilL LL —ff-. — Lf -' 1 -% - T I +; -.. I r i:;L. L;i-!- Cc ttt-t: r ilf: -~ t1liI t-, ~i t-ijf- F7 -f 42] pi 1!t. 1 - 11 I._.I -i --- I T I I 7 t I4 1 1 I I~ t T ~ b i2 i t i t t

H(D I-' in H-I 0 p0 th 0 H' i6 Mi Ht 44 — 44 t I i t f:14 It ------ f if 4 t 444 i'h ill[ 14 J4 A 16 f t i t t t t I t - ti -4 1 TT, 1 -4 H -IT...... t T Tj 4tt I I I. 1 T'I II 44 -444 4 I. f t [11 I t fI 11 4. I - I - t I I -4-tI — I 1 ".; I II!I i,!1 i,,4" A, IT I', I T T I T-7- T'IT,:: I-....::....:' "t' ^ -I Tt: L i.-f1 * i 1 tt t!'!! i. Zt... T; I,Vi. I h~~~~t 4-4 — ~~~~~~~~~~~~ 4 t4~~~~4 III~~~~~I ~ -.2 4T.......: 4.. - 4-~ l - - ~''., t - ~ 4 - 5 4 -4 4.+ t-. t 1 $ th3 +A ~~~~~~~~~~~l -,4 fIX X I I I 4,,.,.... I I I I I I I' in i e f+ ------— I —-— 4 —4 —i —--------- ~ 4 —-I —4 —4 —— 4 —-l —-— 4 —4 —~1 -il -— t —A -— 4 —4 —--— 4 —4 —+ —4 —-+4 4 —- ---- I I I Ii l x! + 1 1 II I I II'III 11 11H 1 A l II11 I. 4. Ti'' 44 +~~~~~~~~~t-i 14: ~~~~ ~~ ~~4-44 414 ~~~~~~ - 4- tt l,!i + 1; t t +.i4_ tt[. i~ ~: I + -t t4 - t - t41 -4 i 4 t L 1-ni ti4<444.r&L-T.14.1 m'I 1 I i~iid- i i H - t ittt! ft 1 tt4 " ~i t Ph I-, tf t~b W ~ t 4-1 t-t 4 t T I4 1 t 1 TT - t - 11 t+ T~~~~~~~~~~~~~~ L7L14~~~~~~~~~~~~~~~~~~I-' 4 +u 1-4+ -t-W _ _ iI 4. I li j4I 2 I TI 1 11 I i _ l.. I, f i [ -i4tfi... f: T I. 4 " - 1, i'l,'Ti 1-1 f I KIl iiiiS f11 i,I*11__i'_I.____',_;. 1IUi I -lw -r ~~itiii jjjt~~~~~~~t 4i t - -............ i... I i. I!Mi i i I _ _ _ _............................... _t +7: L I -4 1.11 i-tl-. t. -,, I, l i, -, I I,, I -i il-...... -. _ Ti I! T - I __...A t ^1:i I L1ETlE t-1-, 4 -~- - ---.I I, 1 _1.-..'1I.: _+i! 1-f:1u412 I.Tt t. i.-'m —-. V tl -, -, 1, - I E i I4I 71 ++-. - I11- - 42 i, -, J -ii.- I:. I; i.:. ... f; H,: -.11. I - LI, 1, 7; Pt1414t4'V I K I.

::: i I.. [r'1 tL-.). 1 i..- -... I 4. _. + II +... I-., _ >. _ 4 i ---- 2Th!~,:."I -V- --, - I - f - ----. — --- - e — - --- -- — —.-~ -- ~.-'- -- p -~ — I- ------ -- -- -r-r --—,- L —--- --- i _ i~ -- ---- ---- -- t - -c — -— ~- ~ —1 —-C- ~e - — -—' --- - cr c - ~~i -~ -- -~ —~- -- --- --- ~~ --- -- --— ~---- -- — ~. —~ i — r - I -.-' — -- __ -' —t- L_ — " --- ---— r~ c — C —-- ----- - ------ ------- ------- ----- -- c — — .__.__ - __ __,....._ r:1T-: r,...l.. — ~ —--- --- ---—'- -~- -- -- — ~-~ ~~~ —~ -- - — -- - -- - - ------ ---— ~ ~ —-- — ~-~ I- --- --- -. -.... ... —..- -..- -.....-.-.-.. c,.._. ,... 4 d-t __ _ I -~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~- - -t t - -4- ~ ~ ~~~~~~-i Ii p i - I t.t4-........ —;: -1:::t: T I 1, 1-: I 1 I t t S — - - -- -.. 1 +T ---' Sttt t ~1 l I. -... t —- -~ ~- -+-+~-t --- C~ --- - I 5 t...: t I I I I t r. I I I..I t...... - - -.. - _ - - - —.-tt ='.... -. - -- -- _ l -. - -.......:................ t~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~1 - - - - -. _. = t t- 1 -.t-: -, 1 t - ~ ~ f ~ ---— ctc ~-c+t f2 tS 2 t, t tt- - t ~ t-1'tt ~ + -. F t; t -,. 0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ t: ~-10 i0 — -f- ---- l —+ i -t~ 10t t-tt —+-t~ tt i- 1 1. lV -X f e -f -t l -r t-;- 1000- 1 E V t-t _#4 t T - 1 t - - - ~ ---.L-7 0 | | - - j. -. - L' | - - -t L X < t S S A 1 1 I = _ r * _ -t C l-t p - 1 -! t I: -:-iit t -:-:: -: -. t:::: L_. -.:: t *.1 -::- —.;-:-:::.:.i t.c; -1: t:::::; t:l- -+~.t.+ L' ii''js aH - —. - _ r-~ i.:1 I-T -i, I; -., i 7 -tl t -: ~ -- -— t -- _I.. It - 1-! - min 4 -- -- -t-r | +-f _ I t —t _-_-It- -r - - -...!' i - -4 ~' -. - j t, I,.. _ |-.._ - -t.-...... *- t.,........ o.. I, I_., -, 7. 4. I... I-.................!- I -- -. t I t.... t4 t...- 1 t-I — I _ I _ - I r -T It-tt lwitffB T- 47 4 1mi;1 t- -_ la — t -. 1- -+ - - I.- - I.. I.1... I i -4 —.., *__t*w - t r;- *.,. -',. s. -1 Figure A-16.Air-Fuel Variation, Turbulent Flow Manifold, Leanout, Approach A-16

JD cU (D H Ln I0 C I-i 0 P, 0 P' 0 O Ht 53 t P it 41 -. I-I jj I - f ii I I ii ti i Tjl 114: i I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~..1 I 1 j; j i i 1 f i I i:~~~~~~~~~~~~~~~~~~~~~~~~~~I I I I I T I TT -j4 t 4. I I T T f — I tt t f f ill! 1 i i it j t 1 1 j i i cI -ii ijt I t I i i I r t~~~~~~~~~~~~~~~~~~~~~~~~~IN —1i I- I t f 4 i i T -- I t T I t ii i ~ i''~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...... I -.,..1 H i t i It 4-... I::. ~~ A 1:..! i i i l~ ~ it t4!.' w - I +ri ri4I f;It 1 Ff44 t 4i I4 ti~ - iiji,, Vij4~i jjfi 1+ t V I4imT4FrT I t; w ttt tI t'tI 411 7 t i ~1 h li I I.I i 1 1 -fi Ti t, I.! t. l:, i f Ct! I'... I... I T! I — ML I t t F 1 ~~~~~~~-! tf i I f i~j _ 4 14 -ITf: m I, r + I j ~ 1,; I! I i.... I - I~~~~~~~~~~~~~~i., i 1. t. r - l I t I1it1:ii 11 +1- + +', I t + I: ~ ~'~ + i H i N i l I I t Ii PITh 1 VT ft Ifi + I A EThIThT TY TT -VFT HW 1 ~TBV4 *;I I 4 t t tI i t t! I t t t't t I I I t I r- i -t i -t I 1 i -t T t 47V 2> fl -f Ffi1 111 1iti: ~SFIftit- 4-141 9Ff ~tm~: /t-tt -~~ ~~~~~i j4 - -11 i~- Ii V TtIL —C-JitS Lii4- 14 J-4. i.:t- 4 + 1+ 4 -l-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1-TT~~~~~~~~~~~~~ 1 - +I N~ ~ ~~~Ti4M I1 t1 I' I:.4.... I +t iti f f i~~~~~~~~~~~~~~~~~~~~~~~~+.. i It t- 7 T ~ ~ i i t l t. -~ 4i Ii t it j~~~~~~~~~~~~~~~~~~~~~~~~~ Ft TLIT-tf - 4` i t.I 1~,;;; t 41 T -1 4 F Iffy 4 t 1 t i t t t f 1-~~~~~~~~t i It t- t i - i t4 it - - 4f -+ 4 -+t — I- + H4 t- I-t t' t tH 4 t +t tt-r-i tf i - I _i: fffTTF TT I I I I I I I t1 I L i 4 H i 1. i i. I i.!! II _! i}\i I. t i t i t t 41t t 4hi? m titn~, 4-.'....'..... _',...:: I' J -'i + t t -'7 1~~~~~~~~~ +'t+VI~tEU~14R44 I I I I - -I..... I........................ I.... - -.....,,,.. 1 I, ---- i.' 4+ i. i - I-+'iliA. l HL i...: i tI t i ~.': I.....*'. —'-1' j 1 T'r i I <ti1' Fi' —~t t.i 4444 t44T4T - t 1H tH I t i~ 7 +1. It I,I ti i 1 i4 t. 4.. -, t -. t-l i ti.f. L..... i. i i I i 1 1- ji! -! b a; *1I re _ r |- X.41 - - j l-r, T TT fi 1:'qI -' ~i' ~.q i _ V::..,i4. L.. I t 1 i j Ii:1ti 1t. -1 It. | i 4;::: _.... -I I it I, -1 -.I fit.......... i..,, -f,:,, r —..... I i. - --..4 i. - - -..... - - --— t - I a - i 1 -4.-........;; 4 —... i I..... I I I I...... I..... I...

(r CD a(' I Phi 0 riI0 P) Qj tr0 _; 0 PS =T 1 t i t I i C t 1.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i 1 ji I I 1~~~~~~~~~~~~~~~~~T r I~~t: ~ t ~.......... le A i i ii t' 8 Wm " i:alT!:a I III 96 W [A L:i r.-i i;::.[.i J IT.....'T I T I. }tI!!!f! I I I-r -r I 1, I. ~~~~~~~i I I I-I. -I-I, I. I.. I Ii, I i f"'t H — Q - IT LI rt~ -t- ~; ~ ~ ~~~ ~~~~~~~~~~~~~~IIk - i i f f f i f i f Ii t t r i t i*ff f+ i -+++ f'r ~2'~ i I J I - HI lt' t I I -— F-l i tt r I: 11 I''~~~~~~~~~~~~~~~~~~~~~~~~A I~~~~~~~~~ i'; ti ~' I I 1~ I' I i i r ~ t': ~ I r~ ~'I ~ ~' t ii r I 4tt I:i i I I I I I 9Ffl i V I H 1 r; te ls i.1 ti - - -, I H 4- ii 14 + H.i,:it,:.. ~ ~~I~~.~t~~~ ~,::.,:.... i.,,: t - ~7 i 1` 1'.f,-;ii H'i' H -I i tri- iIt-i I r H III I- 1~ i v Ct I r 1-i ii 4 1 7i }it ItH ~- I II I I I I'4III.- i - ~ 4 ~ Ft 4tF-1 nIF~ 4 I I hi -T tt.; i I: i T I' tf- al I Ii 4~Mt [4 { 4 I -t4-v4 I 444 TTti.u-h I m... -.- -'t -:- I,.... - t -ti AR iIfl 4'i-1 HI-t t-t —i L-L +4 i t 4 H ii: r I -1-~~~~~~~~~~~~~~~~~~~~~~ - ti t + t ~~41- T~~~~ i jtl I i t > It!['T I!!: I. r I li l~ I i I H, - c.! -i -i - -i:i-: - 1. ":t-i. " —' tt~~ ~:i~ +4-1 fII t-i I I 4. - F it- - " - - 1 4 - -! " - H m ~ - - I i - iF IrH - " - A - * H - I - -' - i F i — I- ] -r " - - F - b I I i r r- - - - - - - - i! -4 i rmK I. I::~..LL. [ s-4-L... i -.-..'.-. I- L.;I.~.~.._L_.JIL_..L..I I I I_ I L I I I I I I I I I I I I I.L._L._I4_L._ _...;!. I... i. I I.. 1 j, I II,1 w *\w w i- f:1 r-+-4 +-tr:-. -. — I } - - -.;,.:.. I,,I;..; I, m...!..,... 1 1 F, I. 7 -: I l i -... I. tiI t Ii i..I..r i i 4.:1 f:, I -t.i- I -t- 4 -f - I i. - 7 fl ifv 4I4 II -4 Il.. E. - r, _1 I WE I L T' - I...I 1' 7 S: I;.. ~!!~ ~ ~~ I.! t ~ti~ ~~: t t t l~t ~ IJ i. I., It 1''I I- ti TI: 1 I F ka -A

. 1' I i! I,, I..,i i ii i t i, I.., i i I II IT [Iii 4 TrTm t1tt I t ~: 1-4-;- i r 1 I' I I; i 4 4.Zi4 It t t It it 1.1 tt117 lit t 1! I j;! I',...:.;,, 1111; I'.-i — I I ~ l i i i it ~ 1 Ii I IX i 1 II h I I j I rl 1 _T t, t il -t 1 i ft tiI i i Ilt: j f i tt i 1 ri i't i —~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I-H-4- II 1 +4 - 1~~~ ~~~ X1X t LI l lX t i~ i~ it i -t- I t t it4m tft:tt+W4 -TtF- 4..;t4W 1aa-4I4 t lI — 44 4L t 1177 fk t I T i t L/ r lilli~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FnJLLI I, i r t -i ~~~~~~~~~~~~~~~~~~~~~~~~4 II-71- i i t r:t r~~~~~~~~~~~~~~~~~~~~~~~~~~~IH t t t t-t-t~~~~~~: 4 Ir -t i i t. t-4 -C i t t: r 1 f I1 fit _+i i t- I t WT-etT', - 4 T t f 1:r WttiLi - t t tI. tTj ti t| X + a + T + T+L. T + L 1 J -T;+4L 01Xi m>H X 4W fX Xc Ii T I.. I I IrrnITTtVr1 4 f I 1. Idle 2. Taxi out 3. Takeoff 4. Climb 5. Approach i,!:.+ti Tt-t I JE L IJ I I JJtTTf 1- IJJ1 - t I T IXLL I- tL tLIJI liJIt I tI.:. - 1YYI L iI I i I.1 I 1.. l ",IMw..;t... I I I I ttr r- 4 I i L4 -4-4 i 7..,t-I jE+4 4 44 T r I I i c....i" ti i-t i 7 1i I-; — t t. I i i f I, I ",:. i I. I.....;;! i; I. I; 1,. 4 - ".: I I :. I i !:.:! T t -1 -I 1. T....... I - I,,:,I r4rt - T__,I _ _,_i4b- T -i hN It M17 U-TiIT' I 4ff 4. tL.&LL 11I FigureA-17. Cylinder Head Temperature, Carbureted Engine, Cylinder 1 —:.::: 1" 1 F.. T....I. i.. -.__ -— jt 4 -t I... t 1i. 111 i I - ~...

~4: 4~ 4 I t 1'.. 4 1 rt tt tt t; tttr t t tt1 4TI 44 4. i - _._. 1. i. -_ — fill _++_ - E. I- _.-., __ __.. __ _-, -- f I.- - _ __._..... I It -4 11 I 1-4+-4+ —— —---— + —-4-t —----- 41, I -1 -4.~~~~~~~T4 - " Ft.- - I _ -t r ff J 4 11 L~~~~~~~~~~1 L 4.4 4-C 4t 4 t~~~~~~~~4I IitIttfl' 11 tt 44 41 4 It- i 4 +4 - I i -..I:.l. 4 t4 tf ff F.. i1 t i 1ttItt - 1t. T, -.. L I -. -. - 1. Idle 2. Taxi out 3. Takeoff 4. Climb - 5. Approach FF - T-rT -!T T T I I I I I I I I I I I I l 44t-4 T - i I i.i t;.. +, i i L. I ~ 4T' itf -~+t~t ii t' i t1 1 I! I' r II''' I! 1 i' 1 -; -i tn t t t I tj t-tj i t II i! I t tt tt f n-r I j 1L I! L -it -X f Wt: 0 -tmml AI' ~Fl. 1 MP' I L... mp I I I I Il It.r= T I I 1 I i TT - -I [I-44T4- T E 1t t T A — 4~~~~~~~~~~~~ i~ iT t I'' t' 1 1~~~~~~~~~~~~~~~~~~~~~~~~~~~~4 1 t i'~ ~ —I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-I —':1;:' 1 T-I4 Ti T.L I - -, 4'tt1L:t"-'[ - Figure A-18. Cylinder Head Temperature, Carbureted Engine, Cylinder 2 - f t ^ f^ e te itfnitiiii 4I; fl fi:^^ -1:EI:i --' IFIti~~~I......... i I t ~~~~~~~ f: j / / i j i j j 1 I...................... -4i' f-4

^*TffF" ttHl IIi|i 1.ji i H tiU 4 it l i ltN i ltiU ttt fi - Wt T MT +f vi -t+4+ -i 41 2-I -4 — ti f -4 q r,- t t f 4iT - I KV441i TrTF4 121 H I i' i i il f H+f H-l': -F: 4 -T ++-H I I. I T I I i T H -tt tttttm:ii *itfI~I ~-i i^ ti l +i 1 1', fiU-l it 4 j i i If t *i1"1 TH Tfh'4 H — V~~~~~~~t- t lI- T I T Lw2La 44~~I ji4f, 4 lint I 44.44 $ 144 I-it'. I I I [Or" I I!! I I f I ]-FJF —T —T —T —T-,. -T-F, -r —-` -,- T, T, I -, I -T- T I! I I I i 1 -1 -1 f! i I I I I I I 1 1 1 I I. -4- --. I L.1 L I I 1 i li - I I -4 — -...I I I L 1 i - I t - I I I l 11 I h, -4,44 f. l: I i; I + H-t I. I I. - I T7 I I I I I I I I I , " 1 — 7 I I I I I i 41 1 1 -- 4 IHm -i-i T I-1 H- -H I -I I1 1 - i -~ -1.1 -~ ~i ii ii i ii7~hlttJtltti i i u i im i ii.L4441!-u +. h K~ W4 I +- i-4-; I! {L4 -4lH-l-FT 1. Idle 2. Taxi out 3. Takeoff 4. Climb 5. Approach 1f II II IGPNM II -H II Ill!xm II I I Idow I I - I I I I I I I I I I! I I II! I I I I I. I I I I I I I I I - 1. 1 1 1, ----- I -- LLI I -t' -14 — t i. *HU-41 1.,, I, 1 1 4.. -H I, i- t 1,; -, F, I;:;;. I v , I -4 H-if - i I I -... : - t, 4 4.. - —,-, j I I:! - I I. I I I I T I, — 1 I:- 1. --' I,! 1.- I. I I: L..t, -; -. ---— H I t r I I - I.. I F d I i M 4It Ir 1 — -:- i;;n m 4 14 I +4-v — 4-' ~ 14 +: 4 '. -, i ,;, " i -l 4 +.I-;, t! -!. - 4 +4:.....I. t — t - [ -t! - 4- 1 - _, _-f -1 4- -., -I -f I T' 7 1 4- - -.. -t JL_ I 14 1 I i -n-n —, -Jfi4-I.-_ r-TLIP -fI r4 1 i h 4 T1 1, — tt4 4 — 4 - I I Th4.. r: f If IIi44.411 rt#+4li +4t~ ~ ~~~A 11 IlR"I i IiII110 IIi ~~~IH~~~~~~~ IEU 442-F14T - -r7- -- -+. I, 4.1 T. A -r -- -L I —.. -,,.,. j -. i.;. 41- t i tt! i'.. I N 7 I mI i:I I I Lr idta!m:mf L. L'- - -, i. IM ll,F1-1 _ -T, I i r-..... -L; -, I I I. - - -.. I ,j. ~imz 4 42 ~~~1 ~~ ~ V I hut 19219~~44 H I r T 7 r 7 -7 i -I I. I I i I;, HHHH 11 11 i Atlanta:: 1,;. I... I.. a...... Figure A-19. Cylinder Head Temperature, Carbureted Engine, Cylinder 3....__ I __.....J.. L. -—... __ I i 4.Vt4< - ***- -1-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. I I-. It~.. I.__ _. r4

A-20

41 rC F ii l Hi 4,1 1 iHWJ't4i 44 47 i~ ~ ~ ~ ~ - it I -.II Ii, tt ii i i i i f i ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ii 1i f:'Hil mT Ii t ifI 2 T 1% t!i i.: I,TM4 41t ti ll 1 i...... it ~!!..'.~,.~~~~~JM7 -Joel VII-I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r r~~~~~~~~~~IT -,i 4. I- i l.'It 44 ii4^^ -^+t1::i t 1 I4 Vt-VK =::::::: -: ^ ^ - -^ t +^ --:::-: == = ^*^^i~~~m~t U M ^ i ^i - ^^"^B^^^^T^^^^Mtr^^"^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+ fi - [:J:Tz::i:TJnLPTMTl'i.i:1;!;Ii * -:I:.... - i t!F i _1_.-:,,;I..... i-i: lt iit tItI -4 I3 + H \ *: ** -2 12 i H H { iiI.......................... + 4HI Pu f - I I i I it 1. I_1; LL f t~~~~~~~~~~~~~t i i ~t Ifi + I.!,t' *~~1-4 - _ _.- - 1_u-^ 1...:......,. -...,,. i. (,. t 4 W ^'- i i. * * 1 i I 1 * 1:-:::!^^ ^ l^ ti ^ ^ 1 t t N-r h — ~~~~~~~ VVPT..ii 1i1IIiL~ I i; Li t i'Iti KI i. t i:, I;,. i 1 i l l I Hi -iOO 1. Idle 2. Taxi out 3. Takeoff 4. Climb 5. Approach I - t i:. 1- t! - 4 I l I 1 i I I i t I t LI I.: it I i. 4;4! I l ii I t i +H-i-l- - 1~ 1.1;:1...1 ~.!......... I I 1' iM- if.i.I WIVW - I ttf _._1i:J I-r -tt;-'t''~~ - it I. i Ht- P1 l i m it.I i J i IVIWIYrVII-I-tw d ---- -- I I. Figure A —2,1. Cylinder Head Temperature, Turbulent Flow Manifold, Cylinder i l 1 I u4 T -i- -i I: -_ L L4__t K_ 4 1.....-..:..

i i t t r ii, i iii iif i i i i i tt I f i 1 wF i 1...:; I -1 I; I..:::, I I.... -L I t i ii i. ti! t t I t I III 4!nt Wt IfF t il -EH t ii r~~~~~~.b - ittl.; 4 $I 14 44 4 4.4~~~~~~~~~~~~~~~~~~~~~~~~~~~-! I I'' 1t II ~*I _ t. " i r t - 1; 1i 4 1tt!t! t + f ji t t I i I' I I I II -t4 tt.f Jff 1-44-4 thin i H f t f4 1 — 4 44! 41; I i t tti i -t 41 ll ~~~~tlI it i IIII L 1 F T T I T. T T T I fI -1 IF f f I I i T T I T- I II T1 i AL t iiI iIi ii i-t: i I i-1 i r Ii i j; t i. fT t t! i.'%I- Li I' i I Illi i -4 I L LL! " I. j 4 Jt 1- i4 I fi:~ I I i I It rk it I t I ii i i i i ii~~~~~~~~~~~~~~~~~~~~~- i t ii I:: i t ~C t i I i: i r tl t! -t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r t i i i ~~~~f~-t t~ i~~~l~C; i~~~ 4 it tf i 1 ~ ~ ~ 1 1 4 4 Mw I~.~ i(t 1. Idle 2. Taxi out 3. Takeoff 4. Climb 5. Approach * i'! t' t' t.-tttl: t' 1t 1,, -4 4-d —. I t, i I 1 t -4 j i 4 -;, - Tt. 1 1 t tt - I I I I! - 1 i- i I1 0. _4 -i 1 i I 44I4e 42T I' i i t iii i t I,;i.ii;ti CIT C' i i i:1~i; t i t~t t I I I: ~ r I i \... I..': 1!.:: +I,. I..'.::.. I:FUL-.i 7wrl.w 7.-r: r 1ii.1 8:`f~~~~.. Figure A-22. Cylinder Head Temperature, Turbulent Flow Manifold, Cylinder 2 1 -.i...f i r T1 tII-1 N, -.4.4.II'* < 1....4 -- I 1 7: F T.- 1 - -~ ~ ~~ ~~~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~ -.-c - I I,... c........... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~.t 1.,., 1 I 4li:. T 4-~ ~~~ ~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ K.. A _ L El K i~i 4. - t i Uri "! i 4..l I,_.,.. i I.I - " —__ L

.. I I. 1. I f I I I ll I Ii I i.j. 1; i, ! I I, f, I. m - I , illi ll il I I WTrIW mT.Ir FFF1FI i IF[TT If i H II II I 1I IM i 1 1 1 1 r1 I tF I I II 1 I l i ll 1.4I 1 I 1-4I A LLI I j IL L4 I IL i i t 11 flIIffl I-tL 17 i IVH eil I4! I tI t-ti t-tif'-i- t f ti TT It li Ti IlI 1111i'i tra 1 7i-7 7 t t l Ct! 1 — +. t. I i-, +; tj 41: I ~ i I I I ". I I.:,!_. - TT' I, - I I f,ILtI tui',![:t 4 i i i 4-l4 -I-i;:`:: fI 1!1!;:;*: m,; -m i; rrIi t r t: t T Ii.. i... I 1-44-1 i f i I I II I t'.i i:. F.4n. I tit'^^^- — ^^I 71 —;trh-W I 1i Tff 4 K I I I' fII I II I il i i t: ~i 1'l'l ll.'? t-" tFI. I I l LI LTj I i I I I~- tt —t~! t. -! — L 4 i mI;t:i: JI I i-? I n.i4lt. i i ll- i — I I I, I I i I I t:-ltt t i -- 1 -1 1 — T f1l -1-i -i &4 -1 —I I TI Jo 1. Idle 2.. Taxi out 3. Takeoff 4. Climb 5. Approach K — iff, 41! 1- I i1 —v t r t Si-t~~~~~~~~~~~~~~~~~i — r I ti ~~-et-'' L r.I!l:: ~llm' i I I4 4 itl i l i1ii rl ^- ^;; i-r;;i; m ~ tii i!:- l — i +^-L 1I lll l l I I Iq I 4 11 I!t' -t ll'l iIi':ti I i i;, I, I -^n4f'^:tr74'1 t -i......~~Ltt r^I Il ll tIl - ir - -i;;:;;l; 4 4n ih4.: -f 4i m\L I I If I-I I 1 I 4-4 4 4 -4444 1-44 - Figure A-23. Cylinder Head Temperature, Turbulent Flow Manifold, Cylinder 3 ~'..............I.................................... I_ Il I I I I I I i I I I I I I I I. l -tI... I I L I -I- i L I t t t i —, i-i -L +c~L ~~.........

* TT rFi p1. v I t. I 1 7'i ll _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I4 I I I Iit ii: -: i i~i i i!i I.int lt{ it - I + I i fi i i I t:,, ti, iii; H ~f iij' I I I L I Ia e E T1 Itii+ var -W! _ 4 i i I - i i i tII t ii - 41 -, I~ Lt;i5 Z i!! ti I Tr mTttta CTff I i i I I:,.. 1 -1- I-t'i ci I i I.- i 1 .. J I i; I 1 t, 1 i:1 -11 i 411 -H t w;, tl i i t+~-., 4m-4tm.. 4 I t F T i-tiitft1 II I'I s' 4-4I I F h i it*; III I! I I I IIIII! I I I I I I I I I I I I i i I It t i II I I I!! I I i 11 I I! I!I I I I I I I I I I I I I I I I I JUL I I I I i -!1 t'V f I t #4I +(;; I -i; - " - T f - +t. r.! iI-.i ~! - "u~'t~, U, i I *I:L I I I! i4 M I-l * -. j;, 7 t —t't i i I +i M-4 f I - 1- - 4 - -- - J- -..- t-+ * -t-. -rt i I.1 t.t. I t 1 -4. -4 - I' 44 -';''......! "..'.I J- I 4; - ~. I,_L. -u T. i.4 -.- t -4 11 -it t~i rht l L i I I! Ir -1t1r1_ 11444 I I I i - tj -iiI -t4~ i i t- t -t,. t.... - I'4 11 t~n + - -+1 ^(SB44U-m I l-4i-~ it utF _~l-urnm n.nii~ 4K'- t: fI^ 4tiM+4 I f -t t 11 t -+ tt^l I-.4.4-.;'t. i_;4i. 4- 4 I N 0f t+-. i -4.i' i I" tV' 1-It! t I I I I 1. Idle 2. Taxi out 3. Takeoff 4. Climb 5. Approach t i i -tt rif i' ttf. — — * \ i U::1;.. 0 i... 1.:,, 1I4-tH 1 It i l —: 4- ti TT74 + t+i 1, i! 4IL; I lV" fti 1 II iL- I i: tL lt 44. TrmjF~-Tii + q'm M41, + —-H4fi: I I~~.i;;; I I - i I -. t.Ll i L. -L-:I-4 1 1 4 i=_: —— l:t-4 —4 i - 4 1 1 l.-I-4. —. 1. 111 1 1 -..-. - 4-1.1-4-_.-1-.i- -.-t1 —. —1-i: Figure A-24. Cylinder Head Temperature, Turbulent Flow Manifold, Cylinder 4. t.-.. ~ ~ ~ ~ ~ ~ ~ /.i.- I'If'~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ t. i I;I1: 11 - 1 _4 w. i I I!t 4! ----:

f -.;. I, i.: I;; I:; i I:! & 0 1:: - I I - I I i I I;;! I I I 1 1 1:: I 1 1; I I 1; I I i 1 i I:; 1: i j; I! I I I I j I I i I I 1 1 1 i4 4 - I I i; I I I I I I i I +1 I - 4 1 4- I i i I 4 I t - +i I I I I I I t -l I', I I I I, I I 4-4-L 4 4 -~~~ ~ ~ ~....... L::;;... t, 1, -'' i, f;, I' l.~~i-k -t''I ~~I I i..... - - - -~~~ i: -1 i:,. iI.1 il!j!,;!l;; i:, :-;i!i 1!.!.;,.i.!II 1 ",m if1 ttilt | u r -4 i~iI I 4 tl -T 4T t " i'4'44 fi i i 4 + __f Lt 4 - IF 77 -~ C~Fiit 4~~~~~~~~~~~~~~~~ t~~~~~~~~~~~LL ~ ittf:nc —~tnrllmvlll t t T- iit:.t'j i-t P T F fill.f-i;i i t i~~~~~~~~~~~~~~~~~~~r _i~~~~~~T K t-11,19 R _ _ _ _ _ 4 -, I 1 4 44 4 r -1. T I I. 1.1;. 1 1 i; t ItE t t tI i I I I I I I I I I - l; t i tt )~~ i-iti t: -c-i -ti- ti h) ~ ~ - 1. Idle 2. Taxi out 3. Takeoff 4. Climb 5. Approach -.1:. i- -; t i -t I I, -~ 4.. B _. _... r r i i-i C +~ttS Stfft t!-iI t- t- t +i -t- -f —t ii rt i i-e ri i. t 1 I 0. I I I....... -! -4 tt; i im'I 1 i I ~'; I ~ wt itt I - I - qp _ _ t t... -. I -m w i. i.II; I aU -I-. I. I I. 1 P~~2-..,~ c;~~~~_ I tf i'-I i-+ I I I I-,-' i a til.i:. m [ I! 1i4 I-TT t!-+. I, t~ 4T -I,...... - -.. C' iF t L T Figure A-25. Brake Specific Fuel Consumption, Carbureted Engine -:.,. i. _. —-. iiL — t _j:- ----- _ — t -; - -.t * - ** ~ 7 ~: -i- 1 ^^. t:-?-:~ ~ _-~_ i 4-4il1 ii

i f i j i I j: I; I i: I I t I / / I i: i if;; i i.t 4i-!' Itt'. t t I!n WI ni f i I:H- t1 i t ti. L.. SLft! \i \ a \} MM UlilMlill.Ar'i:1 i ITTI I; -b-H4441 4t - 4.1...-.44.4. m 4.m. 44444.. t.. I- - H -- i - " I It;,: I ALZ I T ~ I, -4 4 4 4v 14 1 I W 4 - t 1. 2. 3. 4. 5. Idle Taxi out Takeoff Climb Approach i: - , H, 1 H II I -4 i. t-4 1 - i. ! i I, 11 urmipu t 171v711-iIIIt{4 l. i I i4 Ii i t.IiI 4+ V 44~~~W44K2i 111 1 j i fS i t i4T Lti J 4 1' - 4 I....... Flow IB1ifl -I Flow Manifold' t - i-ILI - FigureA-26. Brake Specific Fuel Consumption, Turbulent r A-26...........~ i

t JCD N) Qt iPI rt 0 >4 PC hi CD n (D o CD Di >] lJ:0 -.w - I - 4L T I _i I.tI I, I:I.I,-I I = Ii I tl tt li!l i? _ I 1;; l i tj i -i'.I i]tL it-ft - IT,,.. i:! II:! i G I! I j. I. I i -4 It- t ti 41 I I z~1zi u z1: it'~i~tIz;~ifiiI:Iir~nFN 2 I 4Y4: f' I'Thffltidt t:btftj4NmHiitg ttitt t'fIi h4tmIh#H I, I. -T — - i.- -:, I',.,..:,; i;'!::!: i~ ft; I;:;; I ~ jI e! 1. i,, t' i *. i. it i.,l! I U-2 7+-t miii..j= I. I T C v:71 t:7-iK ti7T 4T7 Ifi I ^ pmRFT ~,iam i -T I I I I I I I ~1 4-; ~' I, t: t 44-4 1....... 1: 1 H i I i: 111 i i ~I f I i tt — t' l-;,A I...I t i. i. i f 1 t 4 4 i t It t.! i!Ft it t c,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 71 t i 1 t-. t i i i t tt t i;~~ 1_ E 1 i- i. 1-r if. I rF I -"!!':I i t! i!'!!'i:: i tC i I- it tT.1 ii t f r. 77 UI S, t,..:...: 1:! i i *.. - >. ~ j! ji.:' i -.i i l X il, i,. t''.-.'! t i -: 1. t! - -... Ii LL i r, i |EIE!+ 4!;+ I "r i I+,5 t it4t II 1 F-i $4't-,N - t Id 1 I tt.. i - -7:. TX a w e,tT + tt-i4 P H f..' — I. i i -L4- t -1I ft I 4- I - ILL i? _ I I! i 4 -'-1-." LiS.-t Ts @. "j. _4 _-~ -.... t - -'..; t~_,4.. 4. T,................~,.'~.~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~..._...._.... rrt I iiJ.:...l.... rii ci t f 1 I I t i ~ -Lt ~ — I:-' - ~ ( ~ ~ ~ ~t..:...-............:....'.!..................... IA 12

j I j......:, l j I; - I! ~ - I lt i:1::L: t14 4 -1(D co rii rt M I-1 O' 00 F-J C) I-1 rt, t\) 0 CD IFF-JPi U) 0....... ii i r i, i i T: i f i f 71 i i i j i i r - - —..I, i I I - I! f I I I I i - I I i..........' i. tT i i i- ~~tjft t t tt' t1i I i Ht I t t t I I I i tt I Ti-i fll i II! i IL i i.: I;. I!. 1 i ii I I'l I!:I 4IlI. I 1.ii V!t 2K2i;;TI I! t i It tf * * I. t t-itt:i 1! -ii -cr, 1 1, 1: I -- i t I _! _.... _' T. I -..1 It: — -1: - i - I t - I I i T -- i* t 14-4-t t Jit II it!-4 t -4 II VI i. I! i I4 I < { T'4~~tt -tt, I~~~ ~~~' | 1^,,1.,,. -I - I [L714t4 ~r; i -i - i 1, i I _ 1- - - - 1 -,-1. 1 V' f — i,1 -.Tt -7 T "C IT i 1 1 i i t I;I I - 4444 1i I I T I -.TT it t -t I.:...l.., lul —.iQ iVTI: *' - i. If 1tt I: I'! j I- "; i7l......... I I.i —. -- ---, - - I i.1 t —, I - ----- - {- ---- --... !.....!. 1...!...!;,......;...........:..... l.. i.............:.. '!..................... I...;..........

i t4lJt FI T I; i. I i- iiili -— I- t I~~~~~~~ t i I X _ _ _ W _ W.-F I;1 1l.;'t -;, W _ W t S 0. t. X~~~~~~-C i 1' t -, t t4- il 14 t. _+ttt + 4'W I a) -r Z; 0 (U O *H -- U) a, ra X 0 I (a N CNi 4. 0 -.H Id -H.: I I.. — t. l-4 I t - 1,' i, I t''' V l' - 7-, 17- 1- 71:71 ---- 1 —-- IJ tili it -'+j-t it: 4 i -I i',, I i i',;-4 ~ 1471 1 rl r 0) (d; r-: U (0d E-.u (1 U), rr I fT-rr -44 -' 1 -r I-i |7 I f tS I CN; mW i i 1LllW tI +B iU t+1 M?tl1 1 1 1 1 II I m I I I 1 1 1 r!.1 r 1 4- t 4 - I4- - 4-4- T4T1- II TTII -II II ^ t1I' - Ti t I I -, -it I.T-?11 i 1 Hft G t 5 i TH I j 1 I;; ti It. I t.lt TTTi - T. ilrr ] 141:1 114 |4t t6, 14 " I i i.tt-f l t.Nt Ii i t I I i t It,tl 4 t;i +lll t tI I I~ - i -t-i * tt i 14 I 41::;! ^ —-- ti^^-^^ li —-.- f t; p.i | | L f. | t:^ t t l- r1 011 ti.1 1 1i I t I-! i i S aLt. tl 1 f1....4.... t H t' -... i 1 2^r t | i ~- t' I tI 11 ft. 1 |~ ~ ~ ~ ~~~i 1, II,,XC|W. W X I, | i X X t i ffi I,, o S |., I i i 1,; 1 1 1 S.;. fl i, i I t X i. 1 i l.L ii 11 II 11t t.. 4 i ~~~~~~~~~~~~i II ~ 1; i I i' I I I i~~~~~~~~ I') 1 1! i i fX 14 W t4 T t4 1 1 1|'''' 5 ~t f,. -.';; i t t 4t -1 I i WI I IM XI344 tt!: i ^i iil. i4 iiiii I. I fl,t 1, I i i i i liI t H. - I t4 Itt Li' mi, I!, i II.-.. -41 4 LLt iil~ii.ft' -I ~I J'7tV' V I't t tj

7-r i TT 1.- t-f I f! t1tt t;iI iil.I,..+I. I. 4 iI1 -4.1 7 4 t: 42 ft. _ i t-i ti' IIi:*-* t-U4 I j;.t! i t-. i, i,, ti + | ffi- ~ 13X1 _-tt: t _ _ _. it: I t f, F+ F+ l Hill;I II I Hill I,.. I I -. (D I cU =r U) rt CD.0 (D Ij -C CO rP 0 IJ. rl........ 1 [..'_ _ _ _ _ _ _ _ _ _ _ _.. _._._._.H..f.j....J......K.'-'-........o...........

I.T~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.I; ~~~~~~~~~~~~~~~TI- T+ - i~~~i:.~::....... AL-t 1 IL i I~tl ~i( Id I I.......; pc ii ii::t;: ri~~~~~I- -T...... r t+-i t i~ i ~~ i i J-t-;-~ ii~t c i r t1- i-i ~~II ++4 tT H r 4 — t- f I -i/ c; -— CFl l lll~HH-LI!~ L.A I II t J iTT iI f f TT jl-! L~~~~~~~~~~~~t~~~~i ~ ~ ~ ~ I.4-t r~~~~~~~~~~~~~~~~r 44 It tt~~~~~~~~~~i~ i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r tit~i i j t J I ~i1 ii — ~ t; J t tt-!- ~ t + —4 ifi iI -t4 ~ ~ t-t+ if~~~~~~~~~~~~~~~~~~~~~~ f -f I — i T' t t I -HtI:i e +4 H H~~~~~~~~~~~~~~~~~~~:i ilI d HE HIa, 11~~~~~~~~~~~~~~~~~r I

APPENDIX B Development of Equation For Finding Mass of Pollutant Per Rated Horsepower Per Cycle

Let, KDW = water correction factor for converting "dry" pollutant concentration measurements to "wet" measurements MPC(Z) = mass of pollutant "Z" per rated horsepower per test cyCle MPM(Z) = mass of pollutant "Z" per test mode MW(Z) = molecular weight of pollutant "Z" P = absolute pressure R = universal gas constant RHP = rated horsepower T = absolute temperature TIM = time in mode V = exhaust volume flow rate at 14.696 psi and 60~F X(Z) = exhaust mole fraction of pollutant "Z", measured "wet" X(ZD) = exhaust mole fraction of pollutant "Z", measured "dry" p(Z) = mass density of pollutant "Z" at 14.696 psi and 60~F * = multiplication sign The mass per operating mode of pollutant "Z" is given by: MPM(Z) = V * X(Z) * p(Z) * TIM 60 Summing over the 7-modes and dividing by the rated horsepower gives the mass per rated horsepower per test cycle, where i is the ith mode, MPC(Z) = Z [V * X(Z) * p(Z) * TIM/60]/RHP i From the ideal gas relation, (Z) P * MW(Z) R * T B-l

Substituting and collecting terms gives: MPC(Z) = P * Mw(Z) — [V. * TIM. * X(Z).] R * T * RHP * 60 i 1 1 where X(Z) is a "wet" mole-fraction. When pollutant measurements are made "dry", the above equation is converted to "dry" mole fraction, X(ZD), by use of the water correction factor KDW. MPC(Z) = p * MW(Z).? E [V. * TIM. * X(ZD). * KDW.] R * T * RHP * 60 i1 1 R * T * RHP * 6 0 i Substituting numerical values for the fixed quantities, P 14.696(144) - 1544(528)'(150)(60) = 2.8842 * 107 R * T * RHP * 60 For CO (MW = 28.01), the constant term in the equation becomes: 2.8842 * 10~7 * 28.01 = 8.0786 * 10-6 and for NO (MW - 46.01) 2.8842 * 10 7 * 46.01 = 1.3270 * 10-5 2.8842 * 10 * 46.01 = 1.3270 * 10 The resulting equations for CO and NO are: x MPC(CO) = 8.0786 * 19 TIM X(CO)6 16 1 [i and MPC(NOx) = 1.3270 * 105 Z [Vi * TIM. * X(NO )i] B-2

APPENDIX C Computer Printout for Runs 69-75: Baseline Runs of Normal Carbureted Engine

The following runs were made using the University of Michigan computer program FAA, which is described and listed in reference 2. C-i

DATE: 9-14-76 ENGINE TYPE: LO-320-B1A t1OCATION: UNIV OF MICH SERIAL NUMBER: L-287-66A OPERATORS: IOTT, GRIFFIN, PONSONBY FUEL H/C RATIO 2. 02 IGNITION TIMING- 25DEGi RUN NO. 69. 1 MODE: 1 COMMENTS:CARB. BASELINE, MP(DB) = 89. 50F iEMP(DP) = 52. OOF TEMP(BAR) = 78. OOF BAR PRESS(OB)= 29. 43"HG BAR PRESS(CR)= 29. 30"HG SPEC HUMIDITY=O. 0083#/# C02 AMBIENT = 0. 045% CYL. 1 FUEL RATE= AIR RATE = F/A RATI'O PHIM - K = C-BALANCE= FUEL H/C = CHT EGT CONC( PPM) METHOD 1.2 0. MASS/MODE( LBM) METHOD 2. 1 0. MASS/MODE(LBM) METHOD 3. 1 0. MASS/MODE(LBM) METHOD 3. 2 0. MASS/MODE LBM) CYL1 390. 0 840. 0 C02 10136?. KWD XTC 86354 1. 01018 0. 16342 KWD XTC 87392 1. 00000 0. 16:344 KWD XTC 86789 O. 99415 0. 16987 KWD X TC 86:363 0. 32623 0. 16:342 CYL2 380. C 770. C 02 1761. MWEXF 27. 3- 66 0. 00201 6 MWEXF 2:7. 1973. 0. 0020/: MWEXF 27. 46346: 0. 0021. MWEXH 27. 7 4./-,:: 4: 0. COOOOC 5. 4585#/HR 70. 1649#/HR 0. 0778#/# 1. 1531 3. 5000 1 2. 0250: CYL3 ):340. 0 ) 8:40. 0 UHCC 266 5. 4 EXH FLOW 7 975. 931'. O. 00156 H4 EXH FLOW 3 964. 454:, 0. 00154 4 EXH FLOW 1009. 386 5 0. 00161 A EXH FLOW: 975.. 7 - 0 *. 00 1 56 ENGINE RPM(NOM)= 700 RPM ENG I NE RPM ACT) 689. RPM BHP<(OBS) = 4. 8HP BHP(CORR) -- O. OHP MAN VAC( -O') -17. 60 " - MAN PRESS(CORR) O0. 00"FHG EXH H/C RATIO =1. 850 CYL4 EXHAIUST 350. 0 790. 0 420. 0 CO NO NOX 73090. 84. 84. FACAL FAM ERROR 0. 0851:3 0. 07779 9. 437 0. 07464 0. 00011 0. 00016 FACAL FAM ERROR 0. 08788:. 07. 07777 1 2. 969 0. 07465 0. 00010 0. 00016 FACAL FAMN ERROR 0. 08300 0. 0777. 6. i'91 0. 07759 0. 0001 1. 0. 00017 FACAL FAM ERROR 0.'08:613: ) 0(. 077779- 10. 725 0. 0.7464. 00000 0. 00000 ""N NO. 6 9. 2 _jDE: 1 COMMENTS: C:ARE. E:BA:;EL INE, TEMP(DB) -= 89. 50F TEMP(DP) = F 52. OOF TEMP(BAR) - 78. OOF BEAR PRESS (;; ) -- 29. 4:3" HG BAR PRESS (<C:R) 29. 30 "HOI S'PEC: HUM I I TY-=. 00;:3t.:/":C02 AMBIENT -. 0. 045%" C:YL. 2 FUEL RATE — AIR RATE F/'A RAT I OF'HIM I - C - E: ALAN C E - FUEL H/C =. 1 1:. I 649 1 /' HF 1-.:-: # - 0778i /# 15:31 5000 CHT EGT CONC: ( P'M) METHOD 1. 2 MASS/MODE ( LBM) METHOD 2. 1 MASS/MODE ( LBM) METHOD 3. 1 MASS/MODE ( LBM) METHOD 3. 2 SS/MODE (LBM) C:YL 1 3:790. 0 840. 0 C02 9?20 1. KWD XTC: 0. 86,442 1. t0068-:4 0. 15956 KWDE XrC: O. 87139 1. 00000 0. 5'957 KWD XTC: 0. 8673::3 0. 99606 0. 16:375 KWD XTC: 0. 8644'.9.:32741 0. 159r56 CYL2 770. 0 02 1509. MWEX H 27. 33698 0. 00176 MWE X H 27. 20248: 0. 00176 MWEXH 27. 38 197 0. 00181'MWEXH 27.:381/7 0. 00000 2. 0250 C:YL3 340). 0:: 4 0. 0 LUHCC 2425. E7.. 7 FLO 72. 7_. 1. 0. 00142 EXH FLOW 965. 012 0. 0014.0 EXH FLOW 4.'P 0 0 0. 0014.5 EXH FLOW 972.., 30 0. 00142 EN GINE RPFM (NOM) - 77f00 RPM ENGINE RPF'1M(ACT)-= 689. RPM BFHP ( OBS ) - 4. 8HP BI'HP (:ORR) = 0. OHPF MAN VAC (OBS )."1 7. 60 " 1HG MAN PRES;'S(COR ) 0. 0 00"Ht-l EXH H/C RA: R -1. 85.0 CYL4 EXHAIUST:350. 0 79 0. 0 420. 0 CO NO NOX 75949.'7. 97. FACAL FAM ERROR 0. 08595 0. 07779 10. 485 0. 077::8 0. 00012 0. 00019 FACAL FAM ERROR 0. 08781 0. 07779 1 2. 875 0. 07739 0. 00012 0. 00019 FAC-AL FAM ERROR 0.'08:545 0 0. 0 777'-r 8. 6: 26 0. 07'?941 0. 3. 0001:3. 00019 FACAL FAM ERROR 0. 08663 0. 0777? 11. 361 0. 07738 C. 00000 0. C00 00 C-l

RUN NO. 69. 3 MODE: 1 COMMENTS: CARB. BASELINE, TEMP(DB) = 89. 50F MP(DP) =52. OOF IEMP(BAR) = 78. OOF BAR PRESS(OB)= 29. 43"HO BAR PRESS(CR)= 29. 30"HG SPEC HlUMIDITY=0. 0083#/# C02 AMBIENT = O. 045% CYL. 3 FUEL RATE= AIR RATE = F/A RATIO= PHIM K = C-BALANCE= FUEL H/C = CHT EOT CONC( F'PM) METHOD 1. 2 MASS/MODE( LBM) METHOD 2. 1 MASS/MODE( LBEM) METHOD 3.1 MASS/MODE(LBM) METHOD 3. 2 MASS/MODE(LBM) CYL 390. 0 840. 0 89606. KWD XTC 0. 86843 1. 00259 0. I40:39 KWD XTC 0. 87106 1. 00000 0. 14040 [KWD XTC 0. 86949 0. 99848 0. 14175 KWD X TC 0. 86,845 0. 3:3592 0. 140:39 CYL2 380. 0 770. 0 02 2012. MWEXH 27. 3 14'. 0. 00229 MWEXH 26. 97929, 0. 00229' MWEXH 27. 04r84 0. 0 02731 MWEXH 27. 048:84 0. )0000) 5. 4585#/HR ENOGINE RPM (NOM)-= 700 RPM 70. 1649#/HR ENGINE RPM(ACT)= 689. RPM 0. 0778#f/ BHP(OBS) 4. 8HP 1. 1531 BHP(CORR) 0. OHP 3. 5000 MAN VAC( OBSE) =17. 60" HG 1 MAN PRESS (CORR)= 0-. 00 "HG 2. 0250 EXH H/C RATIO =1. 850 CYL3 CYL4 EXHAUST 340. 0 350. 0 840. 0 790. 0 420. 0 UHC:C: CO Nii NOX -., 33.... 63 6:3. EXH FLOW FACAL FAM ERROR 943. 121 0 0 039 0. 07779 16. 1.99 0. 0'192 0. -08854 0. 00007 0. 00012 EXH FLOW FACAL FAM ERROR 940. 315 0. 09'11:3 0. 07779 1 7. 153 0. 001 92 0..088.:54 0. C: 0007 0. 00012 EXH FLOW FACAL FAM ERROR 951. 081 0.. 0898": 0. 07779'- 15. 4;69 0. 0)1. 0194. 083'9 0. 00007 0. 00012 EXH FL~OW FACAL FAM ERROR 94:3. 089 0. 09 067 0. 07779' 16. 55:_: 0. oo 1 92 0. 0. 8.54 0. 0C0000. 0 RUN NO.'"-tDE: 69. 4 I.,MMENTS: CARB. EBASEL INE, TEMP( DB) - 89. 50F TEMP ( DP) = 52. OOF TEMPF(BAR):- 7:-:. OOF BAR PRESS( OB) — 2'. 43"F-IG BAR PRE'S; (C:R) = 27.:-:30"H SPEC HUM I D I TY-=. 008:3t;!. C:2 AMBIENT = 0. 045% CH.:. MBIET C:YL. 4 FUEL RATEAIR RATE = F/A RATIO -- F'H I M K.::. -: B-ALA A.NC:E= FUEL H/C: - 5. 70.. 1. 1. 1_t 45854'/HF 1I6:49,:." /HF 07781.t-/-" 1 531 *_5000()I C:HT EOT CONC ( PPM) METHOD 1. 2 MA;SS/MCODEE ( LBM) METHODi 2. 1 MASS./MOIDE ( LBM) METHOD 3. 1 MAS=;S/MODE ( LBM) METHOD:3. 2 MASS/MCODE ( LBM) CYL 1:39' 1. 0 840. 0 8601 6.:WED X T C 0. 86:99:3. 1. 0f) 0211 0. 13:3192, [:WEl X Ti: KWED XTC: 0. 87208 1. 00000 0). 1:3424 KWD X TC: 0. 8699 "? 4 0. 340) 15 0. 13319 "-./ C:YL2:380. 0 770. 0 02 1 88 6. MWEXH 2/.:.' C3):2: 1 0. 00212 MWEXH 26. 6:011 0. 00-."212'MWEXH 26. 9 176: 0). 00214 MWEXH 26. 91763 0. 0080 C) 840. 0 IHC:C EXH FLOW 3:;. 4:: 0. 00188 EXH FLOW 9,28. 239, 0. ) 00188 EXH FLIOW 936 f. 888 0. i:o 1'89 EXH FLOW.9:30. 475 C). C)018 - ENG I NE RPMF' (N 1 700 RF'P ENG I NE RPM ( AC:T- /68 9. RPM EHFIF' P(OBS ) 4. 8HPF EB:(F' C:ORR) --. OH MAN VAC(O: S CIE') 17. (: F0"HG MAN PRESS C:ORR) = 0. r00" FIH EXH Ht/C RAT I =1. 8. 50 C:Y L4 EXHAUSl-_!;T:350. 0 7'0. 0 420. 0 CO NO NOX 95i 01. 3. 53 5:3. FACAL FAM ERROR 0. 09226 0. 0 777'79 18. 53, 0!''"":00. 09') 0 00,. 0 0 000) ( I9) FACAL FAM ERR'OR 0. /288: 0. 0777' 1.:392 0. 09:320. 000:1. C0. 09 FACAL FAM- ERROR 0. 09 178 0. 0 7779 17..'986 0). 09-:39:3 0. 00006 1. )0000' FACAL FAM ERR'OR 0. 0 249 0. 0. l7779 18.. 890 0. 09:320 0. 00C)00 0. C)0000 C-2

RUN NO. 69. 5 MODE: 1 COMMENTS:CARB. BASELINE, TEMP(DB) = 89. 50F MP(DP) = 52. OOF TEMP(BAR) = 78. OOF BAR PRESS(OB)= 29. 43"HO BAR PRESS(CR)= 29. 30"H SPEC HUMIDITY=O. 0083#/# C02 AMBIENT =. 0045% STACK FUEL RATE= AIR RATE = F/A RATIe= PHIM = K C-BALANCE= FUEL H./C =. 70. 0. 1. 3. 1 4585#/HR 1 649'#/HR 0778#/# 1531 5000 ENGINE RPM(NOM)= 700 RPM ENGINE RPM(ACT)= 689. RPM BHP(OBS) *= 4. SHP BHP (CORR) =. OHP MAN VAC (OBST) =17. 60" H MAN PRESS( CORR)= 0. 00"HG EXH H/C RATIO =1.'50 CYL4 EXHAUST CHT EGT CONC (PPM) METHOD 1.2 0O. MASS/MODE( LBM) METHOD 2. 1 0. MASS/MODE ( LBM) METHOD 3. 1 0. MASS/MODE(LBM) METHOD 3. 2 0. MASS/MODE( LBM) CYL1. CYL2 390. 0 380. 0 840. 0 770. 0 C02 02 93495. 1886. KWD XTC MWEXH 86661 1. 00\580 27. I15169 0. 14760 0. 00217 KWD XTC MWEXH 87252 1. 100000 27. 03566 0. 14762 0. 00217 KWD XTC MWEXH 86'903 0. /99662 27. 19':02:3 0. 15085 0. 002-21 KWD XTC MWEXH 86666 0. 333:-05 27. 1' 02 0. 14760 0. 00000 2. 0250 CYL3 340. 0 840. 0 ULHCC..:_../: -:. 3293. EXH FLOW 95.2. 329 0. 00188 EXH FLOW 945. 974 0. 001 -:7 EXH FLOW 970. 553..._.. 0. 001) 192 EXH FLOW.5- 2. 258,:T 0. S00188 350. 0 790. 0 CO 84033. FACAL 0. 08870 0. 08404 FACAL 0. 09034 0. 08405 FACAL 0. 08745 0. 08589': FACAL 0. 089:30 0. 08404 420. 0 NO NOX 75. 75. FAM ERROR 0. 07779 14. 024 0. 00009 0. 00014 FAM ERROR 0. 07779 16. 125 0. 00009. 000 1 4 FAM ERROR 0. 0)77'7 12. 413 0.00009 0. 00015 FAM ERROR 0. 0777?9 14. 798 0. 0 000 0. 00000 RUN NO. 70. 1'-'DE: 2,MMENT;: CARB. BASELINE, TEMP(DB) = 91. 40F TEMP(DP) = 52. OOF TEMP(BAR) 79. 00F BAR PRE-SS ( OB) 2'-. 40"HG BAR PRESS (CR)= 29. 27"HG SPEC HUM I I TY=0. 008:4/".t C02 AMBIENT 0. 045/ CYL. 1 FUEL RPTE= AIR RATE F/'A RAT I -IF'HIM C: —BA LANCIE FUEL Hf/C = 106.'-/ 1. 1. 3. 1 740:31:.:/HF'IR 3. — -1 7'"..' 09-12./") 3527 5:,. lz CHT EGT CONC (FPPM) METHOD 1.2 MASS/MODE( LBM) METHOD 2. 1 MASS./MODE(LBM) METHOD 3.1 MASS/MODE (LBM) METHOD 3. 2 MASS/MODE LBEM) C:YL1 390. 0 1030. 0 C02 94954. KWD XTC 3. 86593 1. 00566 2. 96491 KWD XTC 0. 87169 1. 00000 2. ", s6506::KWED XTC 0. 86830 0. 99671:3. 02880 KWD XTC 0. 86598 0. 33142 2. 96487 CYL2 385. 0' 40. 0 021 1383. MWEXH 2:;7. 20 38:3 0.:140 MWEXH 27. 09109 0. 03141 MWEXH 27. 24141 0. 0:3 208 JIWEXH 27. 24141 0. 00000 2. 0250.C: -,!.-, I:YL.:, 38:0. 0 1000. 0 IFUHCC -2275. EXH FLOW 1713. 6'.:53 0. 02-575 EXH FLOW 1702. 412 0. 02558 EXH FLOW 1745. 799.. 0. 0262:3 EXH FLJOW 1713..523. 0. 0)2575 ENG I NE RPFi( NCIM I'-:: 2:-00 RPM'ENG INE RPM ( ACT ) -.: 174. RPM BHF( -OBE:; )'= 8. 4HF' EFBHPF ( CORR ) 0 —. 0R OHP MAN VAC< CE:;) 1- 19. 120"H - MAN FRES;S( C:'CORR ) -0. i00" HG EXH H./C RATI'O 1.'850 C:YL4. EXHAUE;T:380. 0 9'50. C0 5.'-5. 0 O'O 40NX 82 9.:363. 363. FACAL FAM ERROR 0. 0877:3 0. 09125 — 3. 8 62 1. 231. 0 20 3 1 0 01.68. 203 6 FAC:AL FAM ERROR 0. 089.0 C0. 09. 125 - 2. 133 I. 6 2940 0. 00882.': -0:53 FAC:AL FAM ERR'OR 0. 08651 0. 0'9/1.2..-5. 1' 6 1. 664,442 0. 0.90'5 0. 01:: FAC:AL FAM ERROR 0. 088:31 C0. 09125 — 3. 227.1. 6 292'9. / 0. 00000 O. i) 000) C-3

RUN NO. 70. 2 MODE: 2 COMMENTS: CARB. BASELINE, TEMP(DB) = 91. 40F:MP(DP) = 52. OOF EMP(BAR) = 79. OOF BAR PRESS(OB)= 29. 40"HO BAR PRESS(CR)= 29. 27"HG SPEC HUMI I TY=O. 0084#./# C02 AMBIENT = 0. 045% CYL. 2 FUEL RATE= AIR RATE = F/A RATIO= PHIM K - C-BALANCE= FUEL H/C = CHT EOT CONC: (PPM) METHOD 1. 2 0. MASS/MODE ( LBM) METHOD 2. 1 0. MASS/MODE ( LBM) METHOD 3. 1 0. MASS/MODE( LBM) METHOD:3. 2 0. MA'.SS;./MODE ( LB: M) CYL 390. 0 1030. 0 C02:S6410. K W:D X TC 86 9' 1 0.'9.:22 2. 6:44:97 KWD TC 86810 1. 00000 2. 64491 1KWD XTC: 386918 1. 00(105. 62762 KWD XTC 86'9 0/. 33 34 9 2. 6 4 498 CYL2?40. 0 02 1258. MWEXH 26. 92690 0. 02:'719 MWEXH 26. 96:3-04 0.. 2..,7':T 9 MWEX H 26. 914 8: 0. 02780 MW EXH _26.';148:9' 0. 000':0 9. 7403#/HF 106. 7355#/HF 0. C)912#/# 1.:3527:3. 5000 1 2. 0250 CYL3:38:0. 0 10C;0. 0 1 7.'2.' I 5. EXH FLOW 1672. 197 0. _030i083 EXH FLOW 16-75. 6 _31 EXH FLIIW (. f:,'.'-:/ 1 EXH FLOFW 0i. 02991 16:.72'. 2 36 0. 0:300 C9: ENO I NE RF'M ( NOM) =1200 RPM ENG INE RPM(ACT)=1174. RF'PM IBHP < O; ) =. 4HP' BHP (C ORR) 0. OHP MAN VAC ( OB:3 ) ='. 20' "HIG MAN PRESS ( CORR)= O. 00 "HG EXH H/C RAT I.O =1 -. 850 CYL4 EXHAUST 380. 0'9.5 0. 0 58. 0 CO NO NOX.. 4:5..222.:- 322FA:AL FAM E R FCI R 0f 915 l. 0:9 1 1': 25 0. 6 54 1. 823:: 7' 0. 00769. 01179 FACAL FAM ERROR 0. 091:33 0. -915. 0. 08 1. 8.:2375 0. 00770 0. 0 1181 FAC:AL FAM ERROR 0. 0':224 0. 0'' 11. 0) 1.: 11:_4 0. 0f0764 C0. 01172 FACAL FAM ERROR 0. 166 0. 0'-125 0.. 442 1. 2380 0. 00C0 f 0 0. OC)!00) RUN NO. 70.:3 "'1DE: ~'2.jMMENTS: CARD E. E:AS'EL I NE. TEM I DE' ) -='1. 4 0F TEMP(DP) = 52. OOF TEMP ( EAR) - 79. OOF E:AR PF'RES:'S.; ( 0B:)- 259. 40" H-l; EAR FRE;SS (CR) 29. 27"HPFEC: -M I Di I TY —=..00:84#/.' C:l02 AMBIENT = 0. 045% CYL. -: FUEL RATE-= AIFi' RATE = F./ A R ATI 0F'HIM-1 -.: C —BALANCE —:FUEL H/Cl -. 0. 1. 3. I 740:3:!.:HF 7 45:-' H:" H -F 0912#/1':1:::35527 0.5 C1 I, #0. I *_ — r -, -7 5,_ C) _.i C CY L. C:HT:0. EOiT 1 C':. i C02 CONC: PPF'M) 0E:80. KWD XTC METHOD 1. 2 0. 8726'5. 9 - /: 7 MASS.-;/'MCODE ( LE:M) B 2. 4267 1 KWD XTC METHOD 2. 1 0. 871:31 1. 00C00 MASS/'MODE ( LM) 2. 4266:, KWD X TC METHOD:3. 1 0. 8721: 1. 0( 080 MASS/MOsDE( LBM) 2. 414 92 K:WD XTC METHOD:3:. 2 0. 8:7264 0.::44-95 MASS/MODE (LBM) 2. 42672 CYL2 385. 0C 940. 0 17,1. MWEXH 26. 7512:1,. 0:38 44 MWEXH 26.,. 751. 10 C). 0:384.4 MWEXH 26. 71449 f. WEX' H 26S. 7 1 4 4'90. 00000 2. _25 UHCC:-::35. 5 0. 035 EXH FLOW:.,:,1.. i 16. 0::5'7 0. 0,:57 EXH FLOW 162.:. 611 C).:, 35 EXH FLlO 1. 6:. 6r03 0. C,: —.57:-: ENG I PIE RFM ( NOM)..1 20:0C RPF:': ENG I NE RFM ( AC:T ) "- 7 74. RPM' BEF' OE:(-; )'-":8. 4HF' E:HF' ( CORR) - 0. 0HP1-' MAN VAC (,SE:S ) A 11 9. 20"H C. -i MAN F'Fi:ESS ( CORR )'.. i 00f!-"HG EXH H/'C RATIO "- 1.:350 CYL4 EXHAUST';:::C:,. 0 FACAL FAN ERR)OR 0. 0A 94Z 3 0. F 09125.. 24 I.'95104 0. 0 69C):9 0. 01 ) ll:'72: FACAL FAM ERROR 0. 0944:: 0. 09 125:3. 484 1. 5100 0. 0700 0. 1074 FACAL FAM ERROR 0. 514. 09 1 0.025 4. 2.57 1.'4155 0. 006 9.'6 0. 0 106: FAC:AL FAM ERROR f0 4 0. C-46::3. 760 1.'-5 105 0. 0C)00 0. C0 0 0C0 C-4

RUN NO. 70. 4 MODE: 2 COMMENTS:CARB. BASELINES TEMP(DB) = 91. 40F:MP(DP) = 2. OOF EMP(BAR) = 79. OOF BAR PRESS(OB)= 29. 40"HG BAR PRESS(CR)= 29. 27"HO SPEC HUMIDITY=0. 0084#./# C02 AMBIENT = 0. 045% CHT EGT CONC ( PPM) METHOD 1. 2 MASS/MODE (LBM) METHOD 2. 1 MASS/MODE( LBM) METHOD 3. 1 MASS/MODE LBM) METHOD 3. 2 MASS/MODE(LBM) 1o:co CF 754 KWD 0. 87524 1. C 2. 2C KWD 0. 87688 1. C 2. 20 KWD 0. 87587 0.: 2. 2' KWD 0. 87525 0.:: 2,. 2C CYL. 4 FUEL RATE= AIR RATE = F/A RATIO= PHIM = K C-BALANCE= FUEL H/C =;YL 1. CI:YL2?0. 0 385. 0 30. 0 940. 0 12 02 17. 1509. XTC MWEXH )0161 26. 4'94:38 )8:44 0. 0321:3 XTC MWEXH )0000 26. 4.60 19'8o51 0. 0:321:3 XTC MWEXH''902 26. 50575; 147 0. 0323 XTC MWEXH3.r,,5 S.r. 5r575;3- 44 0. 00000 2. 0250 CYL3 380. 0. 1000. 0 UHCC 3593. EXH FLOW 1589. 989 0. 0:3772 EXH FLOW 1587. 70., 58: 0. 03765 EXH FLOW 1598...,25... 0. 0:3792 EXH FLIOW 158.9.'-96 1 03. ):3 772 9. 106. 0. 1. 3. 1 7403#/H 7355#/H 0912#/# 3527 5000 FR ENGI NE RPM NOM1) 1200 RPM IR ENG INE RPM < ACT) = 174. RPM BHP OB.). 8. 4HP BHP(CORR) - 0. OHP MAN VAC ( 1BS; ) -=19. 20 " HG MAN PRESS, (CORR) =.- OOtHO EXH H/C RATIO 1-". 850 CYL4 EXHAUS;T:380C. 0 950. 0 585. 0 CO NO NOX 1 124:30. 23.. 30. FACAL.FAM ERR'OR 0. 0'-84 3 0. 09':3 1.... 7. 80:564 2. 08564.0..00522 0. 007'9 FArCAL FAM ERROR 0. 09 89 4 0. 0915.. 42 7 2. 08570 -. f 521 C0. 0)07 9 FACtAL FAM ERROR' 0. 0980::5 O. 091'5 7. 44.5 2. 09r77'.74 0. 00 524 f. 0080:3 FACAL - FAM ERRIIR 0. 098P2, 2 0.. 9.. 07 2. ). 00853 0. 0 0 0.' C 00 RUN NO. 70. 5 "'IDE: 2..MMENTS: C1ARE. E:ASEL I'NE, TEMP'(DB) -. 1. 40OF TEMP' (P) -= 52. OOF TEMPF(BAR) = 79':. OOF BAR PRE;S (OB)E: 29. 40 "H) - BAR PRE;S,(CR): 29. 27" F-Ci SP'EC HUMIDI TY=o. 00:-:4.-*./'C02 AMBIENT - 0. 045' FUEL RATE — AIR RATE: F/A.." RAT I -- F'H I: N -. C —BALANCE~:-..E'7. 10,C6. 0. 1..:3. 1:.3 7 40:31..' */HF 7355* /HF I-, #..:) " -::,: 712::; 352 7 FUEL F C:HT EGT CONC: ( PPM) METHOD 1. 2 MASS/"MODE ( LBM) METHOD 2. 1 MASS/MODE ( LBM) METHOD 3. 1 MASS/MODE ( LBM) METHOD:3. 2 MASS/MOlDE ( LBM) C:YL 1:39 /0. 0 10C::. 05 CO 2 8'2708. KWD XTC 0. 87142 1. 0c01 50 2. 484:38KWDEl x-rc: 0.:.=7'.-.'95 1. 0".'..)000 2. 48444 KWD X TC 0. 8 7 2 02' 0. 999..'. 10 KWDE XTC 0. 87143 0.:34 4:':6 2. 48.43/7 26. 0. 26. 0. 26. 0. J./C _ 92. 025C) C:YL2 C YL::3 3 5. 0 1 O. 0 940. 0,1000. 0'!02 UHC:C: 1509.': 44:3. MWEXH EXHI FLOW 77 -' 20 16 3. - 132 0:3 29 6 0. 0:3724 MWEXH EXH FLOW 74712 16.35:. 302 03296 - 0. 0 3718 MWEXH EXH FLOW 788:-:.5 1 646. 1 01 0:: 3314 0. 03743 tlIEXH EXH FLOW,7,1. 16 38. 102,00000,. 0 724 ENG I NE RFPM NOM )-= 120.') RPM ENGIINE RFPM(ACHT) 1174. RPM EBHP < OE) " -- 8. 4 HF' EH-F' ( CORR) 0. OHP MAN VACO: ( E:;) 1': 9. 20"H' MAN PRES:; ( CORR ) 0. C,'" Ho EXH H./C: RATIO -1..50 CYL4 EX t-AUS.;T:30. C0'9C'"0. 0 535. 0' C:O NO NOX 1 04 4.: -:.:03. FA:CAL FAM ERROR 0. 09417 0. 09125 3. 196': 1. 91 1:4 0. 00719 0. 01104 FACAL FAM ERROR 0. 09462 0. 09125 3. 69:3 1. 9/1139 0. 00 713 8 0. 01 102 FACAL FAM ERR F'i:OR 0. 0,1333 0. 0912.5 2. 821 1. 92197 0. 00723 0. 0110 9. FACAL FAM ERROR 0. 0 94.:34 0. 09 12.5 3.:38 0 1. 9 1133 0. C 0000 0)..)000 C-5

RUN NO. 71. 1 MODE: 3 COMMENTS: CARB. BASELINE, TEMP(DB) = 84. 50F.MP(DP) = 52. OOF TEMP(BAR) = 80. OF BAR PRESS(OB)= 29. 40"HO BAR PRESS (CR) = 29. 26"HG SPEC HUMIDITY=0. 0084#/# C02 AMBIENT = O. 045%. CYL. 1 FUEL RATE= AIR RATE = F/A RAT ICI= PHIM C-B:ALANCE= FUEL H/-C = 78. 0. 1. 3. 6370#/HF 9316#/HF 0846//# 2548 5000 CHT EGT CONC: (PPM ) METHOD 1. 2 MAtSS/MODE ( LBM) METHOD 2. 1 MASS/MODE( LBM) METHOD:3. 1 MASS/MODE( LBM) METHOD 3. 2 MA;SS/.MODE< LBM) CYL 405. 0 1220. 0 C02 881':'?. KWD XTC 0. 8697:3 1. 00:359 0. 59958 KWD XTC 0. 87339 1. 00000 0. 5:.'.-'./ 4 -KWD X TC: 0. 87121 0. 99789 0. 60770 KWD X TC: 0. 86977 0.:3:342/6 0. 5 998 CYL2 415. 0 129 0. 0 02 4276. MWEXH 27. 02116, 0. 02113 MWEXIH 26. 9 4875 0. 021 1:3 MWEXH 27. 045:30 0. 02 142 MWEXH 27. 045 -30 0. 00000 1 2. 0250 CYL3:380. 0 1270. 0 UHCC 4:36.4). EXH FLOW 136/: 19. 980 0. 0 10:,69 EXH FLOW i356.4. 21.0. 010 C)65 EXH FLOW 1:3780. 8:-:60 0. 0 1082 EXH FLOW 1361.:370 CI. 0 1069,' ENG INE RPM ( NOM) =2700 RPM ENGINE RPM(ACT )=2706.. RPM BHP(OBS ) =127. 6HP BHP( CORR) =144. 1HP MAN VAC (OIBS) -= 1. 30"HG MAN PRESS <CORR) =29. 47"HG EXH H/C RATIO =1. 850 CYL4 EXHAU ST 405. 0 12 35. 0 12:30. 0 FcO A4NO NOX 88:1'805. 205.. 205. FACAL FAM ERROR 0. 09009 0. 08465 6. 433 0.:38244 0. 0 010 0. 00167 FACAL FAM ERROR 0.'091., 12 0. 08. 46/5 7. 643 0. 38:2447 0.. 00108 0. O01-6 FAC:AL FAM ERROR 0. 08.930 0. 08465 5. 497 0.:38762 0. 00110. 0016'9 FACAL FAM ERROR 0. 09047 0. 08465 6. 882 0. 3:8::_'244 0. 00000 0. I.00000 RUN NO. 71. 2 "IDE: 3 -,MMENTS: CARE. BAr;EL I NE, TEMP (DE: ) =:-:. 50F TEMP (DP) F' 52. OOF TEMP (BAR) = 80.. OOF:BAR PRE;SS'. ( i OB )= 29.. 40 " HG BIAR PRE;S (C:R)= 29. 26 "H1 FG'.;F'EC: HUM I DI TY —. i0084=.(/. C:02 AMBI ENT = F0. 045% CYL. 2 FUEL RATEAIR RATE'-" F/A RAT ITE O — F'HIt 1' C'..PLANC E - FUEL H../'C':.-._ *_. 0. I. *3. 6:370./' 4/H 9r:31.) 6/H 254', C:~ C: C:I; i:.1 ENG I NE RF'M ( NO)M )-'2700i RPM ENC I NE RPM ( AC:T)::-2706. RPF'M E:BHPF' ( E:'.; ):- 12:7. /6HPF CHT EGT CONC( PPM) METHOD 1. 2 MASS/MODE ( L.BM) METHOD 2. 1 MASS/MODE ( LBM) METHOD 3. 1 i MASS/'MODE ( LBM) METHOD:3. 2 MA S./M. E DE ( LIBM) CYL1 405. 0 1220. 0) KWD XTC: WD XTC: 0. 65454 0. 86912 0. 99696 0. 66762 KWD XTC 0. 87225 1.:( 8000 0.:: XT6545: ). 8:,/ /70.:32f5:,5 0. 6545:3 CYL2 415. 0 12':.-./C. 0 02 352. MWE X H 27. 922540 0. 01773 MWEXH 27. 12169:. 0. 01773 MWEXHl27. 26:012 O. 0188.O MWEXH 27. 260.12 0. 00000 1' i50 3 80. 0 1270. C, UHC:C:34 00. EXH FLOW i:391. C)7 0. 00'852 EXH FLOW 13832. 980 c). 00C847 EXH FLOW 14158. 970 O. 00 867 EXH FLOW 1:3915. 750 0. 008f ":52 BHPF*: MPAN MAN EXH C YL4 405.. 0 1235. 0 CO 802t:3:3. FAC: AL 0. 08713 0. 35 191 FACA:L 0. 08::57 0. 3519 4 FACAL I HIL 0. 08::, 01 0. 35895 FACAL 0. 087: 66 0. 35191,:CORR ):.- 144. 1-F'P VAC: P BS:), 1.::30: HG PFRE SS;: C:lOR )R )2'. 47 H"t IH/C: T I 1. 850 E X H-U A -l S T' 12:3i. 0 NO NOX 282. 282. FAM ERROR 0. 0.84/65 2. 9'.34 0. 0 015:3 0. 002:34 FAM ERROR 0. 08465 4. 635 0. 00C 1 5.2 0. 002:33 FAM ER;iROR 0. 084-65 1. 6.05. 00155 C). 00:238 FrAM ERRORF 0. 08465 3. 562, 0s. 00000 0. 00000 C-6

RUN NO. 71. 3 MODE: 3 COMMENTS: CARD. BASELINE, TEMP(DB) = 84. 50F:MP(DP) = 52. OOF EMP(BAR) = 80. OOF BAR PRESS'(OB)= 2/. 40"HG BAR PRESS ( CR)= 29. 26"Ho SPEC HUMIDITY=O..0084#/# C02 AMBIENT = 0. 0455' CYL. 3 FUEL RATE= AIR RATE = F/A RATIO= PHIM = i..f_ C-BALANCE= FUEL H/C = CYL i CHT 405. 0 EOT 1220. 0 C02 CONC(PPM) 89404. KWD X TC METHOD 1. 2 0. 8686:3 1. 00:313 MASS/MODE ( LBM) C0. 60804 K'WD X TC METHOD 2. 1 0. 87181 1. 00000 MASS/MODE ( LBM). 608 07 KWD XTC METHOD 3. 1 0. 6''1 0. 9''/816 MASS/MODE (LBM)'::., 1 51 9:KWD XTC METHOD 3. 2 0. 86-,85 0..3:*-50:; MASS'-;/MODEE( LBM)::4 CYL2 415. C 12'0.'". C 02 251 5. MWEXH _7. 04 C)0 26. 9770C 0. 01244 MWEX27. C0-611 C 0. 01:25,00 MWEX t27. 06/11 C0. OOOO! 783. 6370#/HR 928. 9316#/HR 0. 30846:#/# 1. 2548 3.5000 1 2. 0250 CYL3 >:3:f0. i0 ) 1270. 0 UHCC 2906. - EXH FLOW 1:364:3. 300' 0- 0. 00714 ~ EXHt FLOW 3 i:3594. 120 I 0. 00711 i EXH FLOW ) 13783:.:380C 0. 007'- 21 i EXH FLCIOW 1:3642. 770 ) 0. 00714 ENG I NE RPM NOM) =2700 RPM ENG INE RPM (ACT) =2706. RPM BHP ( BS) -=127. 6HP BHP( CORR) = 144. 1HP MAN VAC (OBS) 1 = 1. 30"tHG MAN PRESS ( CORR ) =29?. 47"HG EXH H/C RATIO -1. 850::YL4 EXHAUST.c 405. 0 12 ":'". 0 CO 91'2. 0. 38:42:3 FACAL 0. (0908' 0 0.:38425 FH. 0. L f.: 38875 FACAL 0. 09' 0)'2,3 0:>.:3_4.2 12:0:. 0: NO NOX 1 55. 195. FAM ERROR 0. 08465 6'-. 207 0. 00104 0. 00159 FAM ERROR 0. 0 46 5 7;62. 0. 00103 0. 00158 FAM ERROR 0. 08 46:,5 5. 395.. 0. 00 1 05:. o l 01 l1 FAM ERROR 0). 084,65 6. 57 1. C.) -I 0 0 C. f0C0000 RUN NO. 71. 4..F-.. PR[E:::..:3 TEM' (D: ):; E:. 5:,. F TEMP'(!E"AF,) --- 80. O CF ).AR,:' RES:'.- < 0 ~:) — = 2".'. 4 (:!'"HO-lii:h'. F3'RE:E; -';-" C R ) - 2':-'. "..,:;, H'S;PEC HUM I D I T;Y-'O. 0,8":'4,:4./".4 C:l'.2 AMB I ENT 0. 0'45"' CFHT EOT 12 C-:ONC: PF'PM) 102 METHCOD 1. 2 0. 8-:6444 1. MAESST/MODLE E ( L) 0. 7 KWD METHOCD 2.:1 1. -571 MA:'-;;/MCIDE LBM ) 0. 7 KWD METHOED:3. 1 F0. 8649: 0. MAS.S/'MODE ( ILM) 0. 7 KWD METHODI:3. 2. 86446 0. MA;';SS/MOCDE (LBM) 0. 7 CYL. 4 FUEL RATEIR RATE - F.:/A RATI C - PHIM C — E'A L A N C: E-'= FUEL iH/C -=: 78. i..1..t L /::- 7 1 1-.HF 5' 0'..'... I._.5i -0C -2- r —- 4,' -- 5 Cl C-N C C:YL 1'05.. 0:46.4. X TC 00 125'306 XTC 0C0000 37:-3070 XTC 7:34178::319' 74 7:3068 CYL2 2:'90. 02 2:38'. MWEX H 27. 43:3:17 0. 012 3: 9 MWEXH 27..459 12 0. 0124..39 MWEXH 27. 491:33 0. 01245' MWEXH 27. 491::33 0.'0000'. 25.,..C C:YL:: 3.0. 0 i 277,f. C0 UHC:C 247 0. E-XH F LO0W EXH FLOW 14:3745:. 720 0. 00 6:3 EXH FLCIW 144:4. 40O 0. 00642 EXH FLOW 14:374. 4::! 0. 00 6 3'. E; ENGINE: RPM (NOM)::2.'0 i R PM ENG I NE R' M(ACT ) -270 6. RPMF: EBHP ( PBES':') "'- -127. 1 6HP':DHPF':C:RR) -144. 1 F rMAN VAf: (.: ES') = 1.3 " HIG ttMAN PF'FiES(C;: RR ) 2'-.. 47 "H i EX - H /..CI RA T I.: r;0 C:YL 4 EXHAU: t-ST 405. 0 12 35. 0 1230. I68140.:'38.::.:-:388. F- ACAL FAM ERROR 0. 0 363 0845 - 1. 204 0. 3078 2 0. 00'' 217 0.0033 FAC AL FAM E:FR.ROR 0. 08:.-:5 0. 084 65 --- 0. 8 2' 0 0.: 07.83 0. 002 17 0. 00:33:3 FACAL FAM ERROR i..083:3 7 0. 085465 -1. 511:3' -.'-. 0021 O. 003:34 AALFAAMt E RROR':.:08: 375 0. 0'8465 4 5 062 0. 3. 300007::. 0 0. O10000 C-7

RUN NC. 71. 5 MODE: 3 COMMENTS: C:ARB. BASELINE, TEMP(DB) = 84. 50F.MP(DP) = 52. OOF TEMP(BAR) = 80. OOF BAR PRESS(OB)= 29. 40"HG BAR PRE;SS(CR) = 29. 26"HO SPEC HUMIDITY=0. 0084#/# C02 AMBIENT = 0. 045X STACK FUEL RATE= AIR RATE = F/A RATIO= PHIM K C-BALANCE= FUEL H/C = 78. 928. 0. 1. 3. 6370#t./HR 9316#/HR 0846f#/# 2548 5000 2t }4ws siC\o ) CHT EiT CONC ( PPM) METHOD 1. 2 MASS/MODE ( LBM) METHOD 2. 1 MASS/MODE ( LM ) METHOD 3. 1 MASS/MODE ( LBM ) METHODEI:3. 2 MAS /MODE ( L.E:M ) CYL1. 405. 0 1220. 0 C02: 3910. K W E X Tzl: 0. 866.-51 1. 00664 0. 64847 KWD XTC 0. 87329 1. 00000 0. 644':84 KWD XTC: 0. 8/3928 0. 99.., 13 0. 6,6502 KWD XTC 0. 86657 0. 7:3- 3092 0. 4.:46 CYL2 415. 0 1290. 0 02 2389.:_.,, X H. MWEXH 27. 19298'. 0. 01200 MWEXH 27.:.0187 0. 012 00 MWEXH 27. 2:373'2 27. 23732.:' C. i.00000 1 2. 0250 CYL3 3:180. 0 1270. 0 UHCC: 159. 0. 003:92 EXH FLOW 1:3778. 770 0. 00389: EXH FLOW 14195. C050 0. 00('401 EXH FLOW 13885. 020 0. C)O:'/' EN I NE RPM <(NOM) ==2700 RPM ENGINE RF'M(ACT) -=2706. RPM BHP ( OBS ) - 127. /HP EHP( CORR) = 144. IHP MAN VAC:(OB ) = 1.:30 "HG MAN PRESS( C:OFRR)=i')9. 47"HG EXH H/C RATIO I 1.':.850 CO. NO NOX }}'I)5i. g;, 0. 0. C.. 1 0846.5 3. 157. 36505 0. 00 143 0. 0 02/20 FACAL FAM ERROR 0. 0E 817 0. 0'846:5 5. 435 0. 36506 0. 001 42. 0. 00218 FAC:AL FAM ERROR 0. 08588 0. 08465 1. 458 0. 37436 0. 00147 0. 00225 FACAL FAfl ERROR 0. 08800 0. 08465 3. 956 0. 374:3 - 0. 0001 0 0. 00C00 RUN NO. 72. 1'...IDE: 4 4~ — MMENT'S: ICA-RB. EBAS. AEL INE TEMP ( DE) 8=-' 7. 70F TEMF'(DF) - 52. COF TEMF' (EAR') 8-0-:. O:OF EAR F'RE;S ( E: ). 4." G BAR FRE-'; (CR) 29. 26" HG S'EC: HUM IDI TY'. 4L.I'!:4/" C02 AMB IENT = 0. 0. 45"' C:YL. 1 FUEL RATE= AIR RATTE F/'A RATIO='PHIM C: —ALANC:EFUIEL H/C::..r"._ 1._ I:_::_:. 0. 1. 1:3Cl22.t/HF 0: — 19./ f H 2141 rS,1, i! I i:~ CI-HT EGT C:ONC: ( PFPM) METHOD 1. 2 MASS-;/'MODEE ( LEM) METHOD 2. 1 MAS;S/.MODE ( LM ) METHOD:3. 1 MASS/MODE ( LBM ) METHOD 3. 2 MASS'.-;/MODE ( LBM ) CYL 1 405. 0 12: 3:0. 0 100(81. 0. 86449 1. 00909 VKWD XTC 0. 87:3:75 1. 00000 8. 29015 KWD XTC 0. 86:,836 0. 9':4478 8. 58047. KWD XTC 0. 86457 0.:3:2541 8. 2886'-.f9 CYL2 400. 0 1245. 0 02 2767. MWEXH 27. 37810 0. 16659.-. MWEXH 27. 200 (30 0. 16662 MWE.X H 27. 43771 0. 172-.45.MWEX H 27. 4:3771 0. 00000 C YL:3:30. 0 I 28''0. 0 UHCC 323 3. EXH FLOW 1001 6. 440 0. 09'/721 EXH FLOW 9911. 801 0. 09620 EXH FLOW i 03: 22..53 0) 0. 10019 EXH FLOW 10015. 210 0. 09' 720;,: ENG I NE RPM NOM) =24:30 RPM i'. EENGINE RPM(AC:T)=2433. RPM BHPF' OS) P-: 94. 1 HP EHF' ( C:ORR) -0. OHP MAN VAC:O: (::) 3. 50" i HG MAN FRE:;SS ( Cf:'RR) C). 0C)) "H'G EXH H/FC: R.ATIO =:1. 850 CYL4 EXHAUST 390:. F 1190. 0 11 -5. 0 C:O NO NOX 73::364.:: 3.3.. 3 9. FACAL FAM ERROR 0. 521 0. 0:8 1 1 4. 0:30.3.:: 18. 0 2205 0. C)03380 FACAL FAM ERROR C.. 08:765 0. 0819'1 7. 016:3. 849C76 0. 0 21'. 00:. 3345 FAC:AL FAM ERROR 0. 083::30 0. 0819 1. 66 3. 98458 0.2272 0. 03484 FACAL FAM ERROR 0. 08610 0. 081'1 5. 124 3. 4908 0. 00000 0. 00000 C-8

RUN NO. 72. 2 MODE: 4 COMMENTS: CARB. BASELINE, TEMP( DB) = 87. 70F.MP(DP) = 52. OOF IEMP(<BAR) = 80. OOF BAR PRESS; ( O-) = 29. 40" HO BAR PRESS (CR) = 29.. 26"HG SPEC HUMIDITY=O. 0084#/# C:02M A1MBIENT = 0. 045% CYL. 2 FUEL RATE= AIR RATE = 6 F/A RATIO= PHIM = K C-BALANC:E= FUEL H/;C: = CHT EOT CONC ( PFPM) METHOD 1. 2 MASS/MODE ( LEBM) METHOD 2. 1 MASS/MODE ( LIBM) METHOD:3. 1 MASS/MODE ( LBM) METHOD:3. 2 MASS';/MODE ( LE:M) CYLi 405. 0 1 230. 0 C02 97708. KWD XTC 0. 86534 1. 00880 8. 04377 KWD XTC 0. 87430 1. 00000 8. 04497 KWD XTC. 86:906 0. 9'59492 8. 31686 KWDE XTC 0. -86542 0.:2745 8. 0 4::358. C:YL2 400. 0 12 4 5. 0 02 3018. MWEXH 27.:0713 0. 18065 MWEXH 27. 1:3:379 0. 18068 MWEXH 27. 36513:: 0. 18678 MWEXH 27.:36. 3 0. OC( )00 55. 97 01 /HF >83. 3022#/HF 0. 0819#/# 1. 2141 3. 5000 1 2. 0250 CYL3 380. 0 1280,. 0 UHCC 329'. 3. EXH FLOW 9'946. 527. 0. 095832 EXH FLOW 9 846. 000 0. 09733 EXH FLOW 10240. 130 0. 1012:3 EXH FLOW 9945. -:71 0. 09831; ENO I NE RPM (NOM) =2430 RPM z ENGINE' RPM(ACT)=2433. RPM BHP(OBS) = 94. iHP BHP CORR) - O. OHP MAN VA:C: ( OB) 3. 50" FH MAN PRESS;(CORR)= 0. f00"HO EXH H/C RATI 0 1. 850 CYL4 EXHAUST 390. 0 1190. 0 1155. 0 C:O NO NOX 76d751.:304. 304. FAC:AL FAM ERROR 0.08613 0. 081' 91 5. 15:3 4. 0 0269 0. 01 62 0. 0:3009 FACAL FAM ERROR 0. -08853 0. 0 8191 8. s 082 4. 00:329-' /. 01. 01943 4 0. 0297 FAC:AL FAM ERROR 0. 08426 0. 08.191 2. 871 4. 13 85: 0. 0202 0 0. 0:30.98 FAC:AL FAM E RROR 0. -8701 0 0819 1 6. 226 4. 00259 0. 00000 0. 00000( pRUNl N O. 72. f"ODE'E: 4 JMMENT:-;:..C:, S- 3. EL I NE, TEMP' <(,D) -- 87. 70F TEMF'(DEF' ) - 52. 0:!fF TEMF (BAR) -= 8C. 0 OF BAR FRE':;.; sOB 2. 40"HG BAR FRES. —CR-. 2 26"H.SPEC: HUM I TY=0. 00C4I T.. t C02. AMB IEN'T - O. 04.45 CYL.:FUEL RATEAIR RATE = F/.A RAT I iPHIM1 K C- ALA NCE-= FUEL H./C =. —..... 0!.,' 1. _3. 9 701:F' t-FR l,", 1'.-'.'#' j,'.1 0819 / 2141 50!00 c ENOGINE RF'M (NOM) =-24:30 RPM ENG I NE FRPM ( AC:"" 243:. RPM BH-F' ( OE:S) 9 4. 1 HP E:HFP ( C:O'RR) RR 0. OHF'. MAN VAC ( OS 3. ) 50" HG MAI'N F'RESS'E; ( C:ORR ) 0.' 0 " HGEXH FH/C: RATIO l1. -850::YL4 EXHAUST CHT ECiT CONC: ( PFFM) METHOD 1. 2 MAS;S/MODE ( LBM) METHOD 2. 1 MAOS;'.;./MODE ( LEM) METHOD:3. 1 MAS'.E;/MCODE ( LBM) METHOD:3. 2 MASS/'MCODEE ( LBM) CYL 1 405. 0 120:2:. 0; CO2 104712. KWD XTC. 86:..333 1. 00677 8. 85034:WD XTC 0. 87020 1. C)00C)00 8. 85105 KWDI X T 0. 8662 5 0. 99.- I 616 9. 08262 KWD XTC 0. 86:::39 0.::19 9 S. 8501 2 CYL2 400. 0 1'245. 0 02 2515. MWEXH 27. 53433 0. 15456 MWE X H 27. 40446 0. 15457 MWEXH 27. 578:3 7 0. 15861 MWEXH 27. 57837 0C. 00000 1 2. 02'750 EXHI FLOW 102 3'5. /660 0. 0786. EXH FLOW 10155. 660 0. 078043 EXH FLOW 0. 080:43 EXH FLOW 10234. 710 0. 07863 FAC:AL 0. 08293 3. 52997 FACAL 0. 08468 3. 53025 FACAL 0. 08153 3. 62261 FACAL C0. 08357 3:. 52990 1155. 0 P11NO NOX 400. 400. FAM ERROR 0. 08191 1. 247 0. 0C2654 ED0. 040:69 F FAM ERROR 0. 0819:71 3. 387 0. 0263:3, 0. 04038 FAM ERROR 0. 08191.-0. 459' 0. 02715' 0. 04162 FAM ERROR 0. 08191. 2. 033 0. 000000 0. 000000 C-9

RUN NO. 72. 4 MODE: 4 COMMENTS: CARB. BASELINE TEMP(DB) = 87. 70F MP(DP) = 52. OOF lEMP(BAR) =:0. OOF BAR FRESS(OB)= 29.. 40"HO BAR PRE';S (CR)= 29. 26"HG SPEC HUM I DI TY=O. 0084#/# C:02 AMB IENT = O. 045. CHT ECT CONC ( PPM) METHOD 1. 2 MASS/MODE ( LBM) METHOD 2. 1 MASS/MODE ( LBM) METHOD:3. 1 MASS/MODE ( LBM ) METHOD::. 2 MAP;S /MODE ( LBM) 1. C KWD 0.:36744 0. 8.. C. 84738 1.. r KWD 0. 8588-4 1. 7..:WED C. 867 2 5 0. S. r CYL. 4 FUEL RATE= AIR RATE =E F/A RAT IO= PHIM K C-BALANCE= FUEL H/C = CYLI CYL2 105. 0 400. 0 Z30. 0 1245. 0 _02 02 -7::2. 1761. XTC MWEXH 7': 7972 27. 4::5:39 5112 0. 11 C02. XTC MWEXH )000)00 27. 1717 50948: 0. 11027 XTC MWEXH 01144 27. 30449 3930 2 0. 10228 XTC MWEXH:3141 27.:30'44 51163 0. 00000 55. 9701#/HF 683. 3022#/HF 0. 08 19#/# 1. 2141 3. 5000 I'. 0250 C:YL3 380. 0 1280. 0 UHCC 2245. EXH FLOW 10384. 790 0. 06999 EXH FLOW 1062. 570 0. 07163 EXH FLOW 9'727. 0 27 0. 065r56 EXH FLOW 10:-:7. 690 0. 07001 EN I NE RPM ( NOM) =2430 RPM EN I NE RPM( ACT)=24:33. RPM BHP(OBS) = 94. 1HP BHP<CORR) = O. OHP MAN VAC < OBS) 3. 50" H MAN PRESSC (CORR) = O. 00"HG EXH H/Cf RATIO =1. 850 CYL4 EXHAUST 39-0. 0 1190. 0 1155. 0 CO N NO OX 6-8:9 41. 3:55. 355. FAC:AL FAM ERROR 0. 08441 0. 08191 3. 57 3. 76290 0. 02393 0. 03668 FACAL FAM ERROR 0. 079 r: 0. 11 -. 156 3. 76218 0o. 02449 0. 0:.3754 FACAL FAM ERROR.0. 088:6,.1 0. 08191 8. 183 3. 46 0. 4896 02 ) 241. 0. 03436 FAC'AL FAM ERROR 0. )3: 244 0. 081: 0. 655:3. 76::313 0. 00000 0. 00000 RUN NO. 72. 5'""-DE: 4,.MMENT.':; CARB. BASELINE, TEMPF' (:1Bi ) -:7. 7(F TEMF'(TD' P) -: 52. OO:F TEMP (E:AR) =.'8. 00)F BAR PRE;;SS ( lO' -..':. 40:" FH BAR PRE'.SS'; (C':R )'2.. 2 11"HG S F:EC H UMI 11 I TY O —. 0') 4'./ C102 APME:IENT ": 0. 045"/:'-; TA C K FUEL RATE=AIR RATE = F.r/A RATIO= PH IM.:: C:- EALANCE.=FUEL H/C: = C-:HT ECT C::NC: ( PPM) METHCD 1. 2 MAS-;S-./'MODIE LBM ) METHOD 2. 1 MASS/. MCIDE E (LBM) METHOD:3. 2 MASS/'MODE (LBM ) CYL 1 405. 0 I.1230 ). 0 C 02 9749 4.:KWD XTC 0. 86676 0. 98794 8. 249:3:KWD XTC: 0. 8547:3 1. )(')00000 8. 24881 K W D X T C 0. 836168 1. 006:.8 7. 3:3640 KWD XTC: 0. 86665 0 r. 3-1206': 8. 24'::/7 CYL2 400. C 1245. C 012 1 2.j, MWE X 27.:-355-:: 0. 077::, MWEX 27. 5872: 0. 0 773. MWE X!27. 27722 0. 0739:-'MWE X 27. 2772 0. 0000C 55. 97: 1.HF 68:3.:3f'>22.'2!:t:/HF; 1. 141 3. 5000 2. _25l ~ C'YL3 ):-.-: 0 ) 1280. 0 UHCC 1796. EXH FLOW 10206-. 350 0. 0.5503 EXH FLIOW 3 10349.:340 0. 05580 EXFI FLOW 9: 14.: 8 4 8 5 0. 0C 5'29" _.' - EXH FLOW 1020:-:. 0 20 0. 05504 ENG I NE RPM'(NOM:) 24:30 RPM ENG INE RF'M( ACT) =:24:3:3. RPM BHF-' (OBS.) 94. 1 P EBHF' ( ORR ).: 0.'. OH!F' M]pANP VAC(: (OB; ) -= 3. 50" H MAN F'RESS: C:ORR) =: 0. 00 "HG EXH H/C: RATICI 1 =. -:350 C:YL4 EXHIAUST 390.0 1190/. 10 1155. 0 COl NO:CI NOX. X 7 38 6{ 6t:,56. 356. FAC:AL FAM ERROR 0. 0, 550 0. 08191 4.:393 3. 9' 5938 0 1 1. 02361 0. 0:3620 FA::AL FAM ERROR 0. 08 2:37 0. 0811 0. 567 3.':-/10 0. - 1. 2: 3 4 0. 0::671 FACAL FAM ERROR 0. 0830 0. 08191 7. 481 3. 7.516 0. 0 2271 0. 034-: 1 FACAL FAM ERROIR 0. 08: 4:31 01. 08191 2.'40 *3. 9.5 52 0. 00000 0. )0000 C-10

RUN NO. 73. 1 MODE: 5 COMMENTS: CARB. BASELINE, TEMP ( DE) = 92. 40F IMP(DP) = 49. OOF iEMP(BAR) = 81. OOF BAR PRES-;S ( SB) = 29. 37"HG BAR PRESS (CR) = 29. 23 "HG SPEC HlUMID I TY=. 0075#./# C02 AMBIENT = 0. 45.% C CHT 4C EGT 12 CC CONC (PPM) 96.: KWD METHOD 1.' 0. 86685" 1. ( MAE;S/MODE ( LBM) 6.: KWD METHOD- 2. 1 0. 87224 1. ( MASS/MODE ( LEBM) 6. 1: KWD METHODr 3. 1 0. 86, 09 0.' MASS/MODE ( LEBM) 6 2/ KWD METHOD 3. 2 0. 86689 0. MASS/MODE( LBM) 6. 1: CYL. 1 FUEL RATE= 3. 8209#/HR AIR RATE = 422. 2913#/HR F/A RATIO= O. 0848#/# PHIM = 1. 2573 K: = 3. 5000 C-BALANCE= 1 FUEL H/C = 2. 0250::YL 1 CYL2 CYL3 >0. 0 385. 0 360. 0 0. 0 12:30. 0 1 80. o:2 02 UHCC: 326. 3018.. 3293. XTC MWEXH EXH FLOW )0532 27. 307:31 6:3-72. 422 C 3891 0. 1391 2 0. 07559 XTC MWEXH EXH FLOW )0000 27. 20259 33. 566 C'346 0. 13914 0. 0. 7513 XTC MWEXH EXH FLOW:/.3-: 27.:342 38'6485. 109 C:3-,65 0. 14195 0. 07692 XTC MWEXH EXH FLOW 32'.:;92 27.:42.38 6372. 008 (:2:::0. 00000 0. 07558 ENG INE RPM (NOM) =2349 RPM ENGINE RPM'(ACT)=2352. RPM BHP (OBS) = 49'. OHP BHP(CORR) = O. OHP MAN VAC(OBS) -11. 60"He MAN PRESS(CORR)= 0. i00"HG EXH H/C RATIO 1. =850 CYL4 EXHAUST 375. 0 1160. 0 10:35. 0 COl NO NOX 77146. 318. 318. FACAL FAM ERROR ). 08628 0. 08482 1. 716 3. 09851 0. 01578 0. 02420 FACAL FAM ERROR ). 08772 0. 08482 3. 417:3.,0879. 0. 01569: 0. 02405 FACAL FAM ERROR ). 08515 0. 08482 0. 384 3. 1 6147 0. 01 606 0. 02463: FACAL FAM'ERROR i;. 086,81' 0. 4:2- 2. 345:3. 09846 0. 0C00 0. 000 0 000 RUN NO. 7:. 2 "IDE: 5.,MMENTS: CARB. EBA EL I NE, TEMPF( IE:) -'.2. 40F TEMP IF'P) "- 49.. 0OF TEMP (BAR) -1.:OF BAR F'RE';SS OE' ) I:'E 2.: 37 "H EBAR PRES CR) 29. 23"H1PF'EC: HUMIDt I ET IrY -. 0:C975,$.t". C:02 ABIENT - 0. 0(45/; CHT~~~~~~~~~~~()4_ CYL. 2 FUEL RATE= AIR RATE F./A RAT IO - F'H I1 - C:-'E:ALANC:EFUEL H/,C - CHT EOT CONC: (FPM) METHOD 1. 2 MASS;./MODE ( LBM) METHOD 2. 1 MASE;S/MODEI LE:M) METHOD:3. 1 MASS/MODE ( LBM) METHOD 3. 2 MASS/MODE ( LBM) CYL 1 400. 0 124'. 0. CO 2 88788. KWD XTC: 5.5 -_34 KWD X TC 0. 872'95 1. 00'000 5. 50261 -: 4 K.:WD XTC 0. 87114 0. 9982:3 5l. 56446' KWD XTC 0. 8.699: 0.:33:400 5. 5'' 0;'29 C:.YL':385. C 123:-0. C 02 MWEXF 27. 0435-'MWEXF 26. 9829, 0. 1:359': MWEXF 2 7. 0 /,:3E;C 0. 1-3 75" MWEXF 27. 0638C 0. OOOOC 35. 82:09./'FIF 422. 29 134, /H F 0. * E: ~./' 1.. 573 3..5000 1 2. 0250 ~ I CYL:3:):-.:36 0. 0 ) 1280. 0) UHCC 32.:: 3. t EXH FLOW 6206. 809 R 0. 07228 9 EXH FLOW 7 6185. 4:34 0.. 072r04 - EXH FLOW ) 6267. 988 Z: 0. 07300 I EXH FLOW } 6206. 590 ) 0. 07228 ENGINE RPM(F NOM ) -.2349'' RPM ENG INE RPM (ACT) =-: 2352. RPM EB-HP< BS)E: " " -. 49. OHP' E'HF'(:CORR ).- 0. OHP MAN VAC: ( OES) -- 11. 60" H MANF PRESS;(C:'CORR) s. 0 0"lHG EXH H/C: RATIO 1 -1. 85 CYL4 EXHAUST 375. 0 1160. 0 1 035. 0 CO NO NOX'.8939::' 8.. 2' 09. FACAL FAM ERROR 0. 08995,- 0. 08482 6. 048 3. 509'5'/ 0. 01009 0.1547 FA CAL FAM ERROR 0. 09081 0. 08482 7. 057 3. 50976 0. 01005 0. 01542 FACAL FAM ERROR 0.'08929 0.;08482 5. 269 3. 5491 0. 01019 0. 01562 FACAL FAM ERROR 0. 09'02.-7 0. 08,482 6:. 422:3. 50957 0. 00000 0. 00000 C-ll

RUN NO. 73. 3 MODE: 5 COMMENTS: CARB. BASELINE TEMP(DB) = 92. 40F:MP(DP ) 49. OOF tEMP(BAR) = 81. OOF BAR PRESS(OB)= 29. 37"HG BAR PRESS ( CR)= 29. 23"HO SPEC: HUMIDITY=0. 0075#/#:C02 AMBIENT = O. 045. CHT EGT CONC ( PPM) METHOD 1. 2 MASS./MODE ( LBM) METHOD 2. 1 MASS/MODE ( LBM) METHOD 3. 1 MASS/MODE (LBM) METHOED 3. 2 MAS';S/'MODE ( L:BM) 4C 40: 124 CC 964 KWD 0. 8669 4 1. C 6. 1; K.WD 0. 8,67.-:1 1. C 6. 12 KWD 0. 867:3- 0. /:.. 1 KWD 0. 8/6:.695 0. 3 6. 12 CYL. 3 FUEL RATE= AIR RATE = F/A RATIO=. PHIM K = C-BALANCE= FUEL H/C =:YL1. CYL2 >0. 0 385. 0 t0. 0 1230:. 0:]2 02 t03. 1886. XTC MWEXH )0086'7. 2 2'.85: 371 0. 08711 XTC MWEXH )0000 27. 276:03.:377 0. 038711 XTC MWEXH'9951 27. 2'985 1 34 0. 0 7'':, XTC MWE X H 261 1 2'7. 2 98:, 51.:36'9 O. 0C)C.00 35. 820.9*#/HR -22. 2913#/HR 0. 0848#/# 1. 2573 3. 5000 1 2. 0250 CYL3 360. 0 128. 0 UHCC 2470. EXH FLOW 6::383:. 844 0. 05680 EXH FLOW 6377. 53: 1 0. 05674 EXH FLOW 6401. 793 3 0. 05696 EXH FLOW 6383. 777 r 0. 05680 MAN EXH CYL4 375. 0 1160. 0 CO 78182. FACAL O. 08658 3. 14607 FACAL }. 08681 3. 14610 FACAL ). 08639 3. 15622 FACAL ). 08666 3. 14606 ENGINE RPM(NOM)=2349 RPM ENGINE RPM(ACT) =2352. RPM BHP(OBS) = 49. OHP BHP(CORR) -=. OHP MAN VAC(OBS) =11. 60"HG; PRESS(CORR) = O. 00"HG H/C RATIO =1. 850 EXHAUST 10:35. 0 NO NOX 234. 234. FAM ERROR 0. 08482 2. 069 0. 01161 0. 01780 FAM ERROR 0. 08482 2. 343 0. 01160 0. 01779 FAM ERROR 0. 08482 1. 855 0. C01165 0. 01785 FAM ERROR 0. 08482 2. 171 0. 00000 0. 00000 RUN NO. 7::. 4 14,nIE: 5.,MMENTS-: C:ARE. BEL I NE, TEMP(F D) -= 92. 40F'EMP' DP) - 49. OF TEMP(E:AR) =' 81. O('OF -FAR PRESS ( O; )= 29.:'37" HG BAR PRE.SS(;CR )= 29. 2:. 3" HG SPF'E C HU1 M I DITY-. i:00I75'#::/ C:-02 AME:IENT 0. C).45% CYL. 4 FUEL RATE= AIR RATE - F/. A RATI -l PHIM C- BALANCI:E -- FUEL H/-C: 422..0. 1. 3. 1 0:48 T'./# 257:3 500:) CHT ECiT CONC: ( PPM) METH-OD 1. 2 MA;SS/;././MODE( LB3M) METHOD 2. 1 MAS'S/MODE ( LBM) METHOD:3. 1 MASS/MODE( LE:M) METHOD:3. 2 MASS/MODEE LBM) C:YL 1 400. 0 1240. C0 C:02 94515..'iKWD XTC 0. 86724 1. C0422 5. 93372 KWD X T'C 0. 8715::3 1. 00000 5. 9/3401 K:WD XTC 0. 86901 0.'997755 6. 0286: 3. KWD XTC: 0. 867'28 0. 3-: 2971 5. 93:365 rCYL 385. 0 12::3. 0 02 188:6. MWEXH 27. 21675 0. 08:-610 MWEXH 27. 1328 1 0. 08610 MWEXH 27. 24475 0. 08747 MWEXH 277. 24475 0. )00000 2. 0250 CYL3: -:60. 0 1280. 0 UIHC:C: 2575. EXH FLOW 6:307. 1:60 0. 05849, EXH FLOW 6276. 47-: 0. 05,21 EXH FLOW 6:39 5.,027 0. 059:31 EXH FLOW 6'30.: 3 0. 0.58::49 ENG I NE RPM ( NOM) )=2:349 RPM EN I NE RPM (ACT) -.2352. RPM BHF'(OCBS:;) 4- 49. OHPF E:BHP( CORR) - 0. OH:!IP MAN VAC: ( OBS) 11. 60" HG MAN PRESS ( CORFR): O. c0 "H EXH H/ C: R: ATIO -1.':50 C:YL4 E XH AUST 375. 0 11 60. 0 1035. 0 CO NO NOX:205 (). 22:7. 227. FACAL FAM ERROR C0. 0876 7 0. 08482- 3.:3. 3. 23:3:3 0. 01116 0. 01710 FAC:AL FAM ERROR 0. 0'88'-4. 08482.: 4. 733 3. 26349 0. 01110. 0 1702 FACAL FAM ERROR 0. 08676 0. 08482 2. 286 3. 3155-3 0. 01131. 01734 FACAL FAM ERROR 0. 08:3:810 0.. 0848:2 3. 864 3. 26:330 0. 00000 0. 00000 C-12

RUN NO. 73. 5 MODE: 5 COMMENTS: CARB. BASELINE, TEMP(DB) = 92. 40F MP(DP) = 49. OOF iEMP(BAR) = 81. OOF BAR PRESS;(OB)= 29. 37"HO BAR PRESS;(CR)= 29. 23"HO SPEC HUMIDITY=0. 0075#/# C02 AMBIENT = 0. 045% STACK FUEL RATE= AIR RATE = F/A RATIO= PHIM = K = C-BALANCE= FUEL H/C = CHT EGT CONC ( PPM) METHOD 1. 2 MASS/MODE ( LBM) METHOD 2. 1 MASS/MODE ( LBM) METHOiD:. 1 MASS/MODE ( LBM) METHOD 3:. 2 MASS;./MOCDE L:BM)) CYL1 400. 0 1240. 0 C02 94306. KWD XTC 0. 86717 1. 00505 5. 92646 K:WD XTC 0. 87230 1. 00000 5.,92664 K:WD XTC 0. 86927 0. 99706 6. 040:38 KWD XTC 0.:86721 0.:2::3006 5. 923' - CYL2 385. 0 1230. 0 02 1761. MWEXH 27. 21214 0. 08044 MWEXH 27. 11150 0. 08044 MWEXH 27. 24576T 0. 08198 MWEXH 27. 24.5 76 0. 00000 35. 8209#/HR 422. 2913#/HR 0. 0848#/# 1. 2573 3. 5000 1 2. 0250 CYL3 360. 0 1280. 0 UHCC1:326. I EXH FLOW 6313.937 0. 04153 EXH FLOW 6276. 992 0. 04129 EXH FLOW: 6419. 699 O0. 04223 i EXH FLOW 63 13. 551 0. 04153 CYL4 375. 0 1160. 0 CO 82949. FACAL 0. 08750 3. 302f22 FACAL 0. 08890 3. 30232 FACAL 0. 08641 3. 36570 FACAL 0. 08802 3. 30217 EXHAUST ENGINE R'PM(NOM) -=2349 RPM ENGINE RPM( ACT) =2352. RPM BHP(OBS) = 49.OHP BHP(CORR) =. OOHP MAN VAC:(OBS) 11.60 "HO MAN'PRE-S'S (<CORR=) 0. 00", HO EXH H/C RATIO 1. 850 1035. 0 NO NOX 275. 275. FAM ERROR 0. 08482 3. 161 0. 01351 0. 02072 FAM ERROR 0. 08482 4. 814 0. 01343 0. 02060 FAM ERROR 0. 08482 1. 879 0. 01374 0..02107 FAM ERROR 0. 08482 _3. 768 0.00000 0. 00000 RUiN NOI. 74. 1' — DE 6,MMENT-;S: CARFE. B:A'-EL I NE TEMF(DB) = 95.'0F TEMP(DPF) 1=- 4'. OOF TEMP (BAR) =: 8.1. OOF BAR PRES S(;:. OB:) 2'..::7 "H7 l i BAR FPRE:S; (C; R)F -. 2' 3" FG3 SPEC HLUM I I TY —0. 50075:/"' C:0 2 AMBE IENT -- 0. 045% CYL. 1 FUEL RATEAIR RATE — = F./' A RA'TI PHIM C:-B-ALANC:EFUEL H/.C CHT EGT CONC( PPM) METHOD 1. 2 MASS/MODE ( LBM) METHOD 2. 1 MASS/MODE( LBM) METHOD 3. 1 MASS;/MODE ( LBM) METHOD 3. 2 MASS/MODE ( LBM ) CYL 1 405. 0 1060. 0 C02 912:3'1. W::WD X T C 0. 86798 1. 00731 0. 7605C:3:KWD XTC 0. 8:7543 1. 00000 0. 760,r;9 tKWDEs XTC 0. 8710C0 0. -9571 0. 781 L.:3 KWD XTC 0. 86804 0.:33554 0. 76051 CYL2 405. 0 985. 0 02 1509. MWEXH 27. 08f:501 0. 009 1 4 MWEXH 26. 9:3712 0. 00914 MWEX H 27. 13402 0. 00940 TIWEXH 27. 13402 0. 00000'. /. 68::37.'"/HF 109. 6::347#f/HF I. 3 _092 3. 5000 2. 0".':5 0 C:YL3 405. 0 1040. 0 UHCC 2515. EXH FLOW 167:3. 555 0. 00758 EXH FLOW 1659s. 453 0. 00751 EXH FLOW 1714. -032. 0. 00776 EXH FLOW 1673. 411 0. 00757 ENG I NE RPM < NOP M) 1200 RPM ENO I NE RPM ( ACT ) - 11 99. RPM. BIHP( OBS).:6F BHP( CF:'RR) 0. OHP MAN VAC (OB:'-;) 19.00" HG MAN PRESS ( lCORR) -: 4. 00" HG EXH H/C RAT I l.:15 CYL4 EXHAUST 405. 0 990. 0 6:30. 0 fCO NO NOX 8: 8645. 2. 92. FACAL FAM ERROR 0. 08.964 0. 0883:.2 1. 489-: 0. 4681:3 0. 00060. 0. 00092 FACAL FAM ERROR 0. 0917:3 0. 0882 3. 863 0. 4:6817 0. 0o)4060 0. 2 000C91 FACAL FAM ERROR 0. 08804 0. 08832 -0-. 320 0. 4811.2 0. 00061 0. 00094 FACAL FAM ERRFOR O. 09041 0. 8. 032 2...35 0. 46812 0. 00000 0. 00000 C-13

RUN NO. 74. 2 MODE: 6 COMMENTS: CARE. BASELINE, TEMP(DB) = 9. 90F.MP<DP) = 49. OOF'IEMP (BAR) = 81. OOF BAR PRESS<(OB )= 29. 37"HG BAR PRESS(CR)=- 29. 23"HG SPEC HUMIDITY=0. 0075#/# C02. AMBIENT = 0. 045% CYL. 2 FUEL RATE= AIR RATE = F/A RATIO= PHIM = K C-BALANCE= FUEL H/C = CHT ECT CONC (PPF'M) METHOD 1. 2 0. MASS/MODE ( LBM) METHOD 2. 1 0. MAS=;S/'MODE ( L.BM) METHOD 3. 1 0. MASS/MODE ( LBM) METHOD 3. 2 0. MASS/MODE( LBM) CYL1. 405. 0 10 C60. 0 C:02 92C050. KWD XTC 86766 1. 00757 0. 768,38 K'WD X TC: 87537 1. 00000 0. 76845 KWD XTC 87079 0.'99:,556 0. 79048 KWD X TC 86772 0.:3 34:82 0. 76836 CYL2 405. 0 985. 0 02 1509. MWEXH 27. 11009 0. 00915 MWEXH 26. 95728 0. 00915 MWEX H 27. 16077 0. 00942 MWEXH 27. 16077 0. 00000 9. 6:837#/HF 109. 6347#/HF 0. 0883#/# 1. 3092 3. 5000 1 2. 0250 CYL3 405. 0 1040. 0 UHCC 2725. EXH FLOW 1676. 401 0. 00822 EXH FLOW 1661. 784 0. 08s15 EXH FLOW 1718. 425 0. 00843 EXH FLOW 1676. 251 0. 00822 ENGINE RPM(NOM)=1200 RPM ENGINE RPM(ACT)=11?99. RPM BHP(OBS) = 8. HP BHP(CORR) =0. OHP MAN VAC(OBS) =19. 00"HG MAN PRESS(CORR)= 0. 00"HG EXH H/C RATIO =1. 850 CYL4 EXHAUST 405. 0 990. 0 630. 0 CO NO NOX 87338. 1. 1. 101. FACAL FAM ERROR 0. 08936 0. 08832 1. 170 0. 46184 0.00065 0. 00101 FACAL FAM ERROR 0. 09152 0. 08832 3. 620 0. 46188 0. 00065 0. 00100 FACAL FAM ERROR 0. 08771 0. 08832 -0. 696 0. 47513 0.00067 0. 00103 FACAL FAM ERROR 0. 09015 0. 08832 2. 0.68 0. 46183 0. 00000 0. 00000 RULN NO. 74. 3 "'ODE: 6.,MMENTS: C:ARB. EBA;EL I NE, TEMP (DB) ='-5.'90FTEMP ( DP) -- 49. OOF TEMP (BAR) -- 81. OOF:AR' PRESS( OB)' 29.:37" HG BAR PRE S. -:C:R) = 29. 2:3 " IG SPEC HF1UM I D I TY= O. 007511#./1 C:02 AME IENT -=- 0. 045.".. C:HT~~~~~~~~~~~~~~~~~_! CYL..3 FUEL RATE= — AIR RATE -: F/.A RATI OPHI M f.:, C:-BALANCE — FUEL H/C CHT EGT CONC: ( PFM) METHOD 1. 2 ( MASS/MODE ( LBM) METHOD 2. 1 MASS/MODE( LE:M) METHOD:3. 1 MASS/MODE( LBM) METHOD:3. 2 MASS';/MODE ( LBM) CYL 1 405. 0 1060. 0 ). 8C7032 1. 00228 0. 72116:KWED XTC'. 87264 1. 00000 0. 72119 KWD XTC::. 87125 0. 9'/ 9865 0. 72730KWD X TC: 3. 87034 0.:337-:3 0. 72116 CYL2 405. 0 985. 0 2.2012. 47:) 1. MWEXH 26. 96111 0..01213 MWEXH 26. 9'.14'9 0. 0121:3 MWE*XH 0. 0122..,:3 26. 97652 0. 00000./. *687 /H F 109. 6:347*-/HF 0. 0:::8:3'*.:/ 3 1..309i.':3. 5 00) 1 2. 0 250 C:YL:: 4(05. 0 1040 C. UHCC:30:39. EXH FLOW 1659.. 551 0. 00908 1655. 20. o0. 00905 EXH FLOW:1671. 2881 0. 00915 I EXH FLOW 165'/. 507 0. 00908 ENG I NE RPM ( NOM) 1200 RPM ENG I NE RPM ( ACT)'= 1199. RPM BHPF(' <EOBS) = 8. 6HP BHP (:CORR) - 0. OHP MAN VAC: ( OBS.)' =19. 00" HG MAN PFRES; (I:ORR) = 0. 00"HG EXH H/C: RAT IO 1. 8:-=1.50 CYL4 EXHAUST 405. 0 990. 0 630. 0 CO NO NOX 9333:7. 8: 7. 87. FACAL FAM ERROR 0. 0 141 0. 08832:3. 498 0. 49011 0. 00056 0,. 000 )86 FACAL FAM ERROR 0. 09'.208 0. 088 32.' 4. 249 0. 49012. 00056 0. 00086 FACAL FAM ERROR 0. *09091 0. 08832 2. 925 0. 49427 0. 00057 0. 00087 FACAL FAM ERROR 0. 09166 0. 088': 32 3. 777 0. 49010 0. 00000 0. 00000 C-14

RUN NO. 74. 4 MODE: 6 COMMENT: CARB. BASELINE, TEMP(DB) = 95. 90F MP(DP) = 49. OOF IEMP(BAR) = 81. OOF BAR PRESS (OB)= 29. 37 "H BAR PRESS(<CR)= 29. 23"HO SPEC HUMIDITY=O. 0075#/# C02 AMBIENT = 0. 045% CYL. 4 FUEL RATE= AIR RATE = 1 F/A RATIO= PHIM K C-BIALANCE= FUEL H/C = C CYL 1 CHT 405. 0 EOT 1060. 0 C02 C:NC: ( PPM) 79105. KWD XTC METFHOD 1.2 0. 87420 0. 99956 MASS/MODE( LBM) 06. 64022 KWD XTC METHOD 2. 1 0. 87376 1. 00000 MASS/MODE ( LBM) O. 64021 KWD XTC METHOD 3. 1 0. 87403 1. 00026 MASS/MODE (LBM) 0. -63:KWD XTC METHOD:-3. 2 0. 87420 0. 34/644 MASS/MODE LBM) 0. 64022 CYL2 405. 0 985. 0 02 1886. 26. 67374 0. 01110 MWEXH 26. 682 85 0.01110 MWEXH 26. 67072 0. 01108 MWEXH 26. 67072 0.00000 9. 6837#/HR >9. 6347#/HR 0. 0883#/# 1. 3092 3. 5000 1 2. 0250 CYL3 405. 0 1040. 0 UHCC 3:219. EXH FLOW 1613. 193 0. 009:35 EXH FLOW 1613. 999 0. 00935 EXH FLOW 1610. 932 0. 00933 EXH FLOW 1613. 201 0. 00935 ENGINE RPM(NOM) -1200 RPM z EENGINE RPM(ACT)=1199. RPM BHP<(OBS ) 8. 6HP BHP(CORR) 0. -OHP MAN VAC(<OBS) =19.- 0"HG MAN.. PRESS( CORR)= 0. 00"HO EXH H/C RATIO =1. 850 CYL4 EXHAUST 405. 0 990. 0 630. 0 CO NO NOX 105516. 71. 71. FACAL FAM ERROR 0. 09.568: 0 08832: 8. 3:31 0. 5409'8 0. 00045 0. 00068 FACAL FAM ERROR 0. 09555 0. 088:32 8. 180 0.:. 54098 0. 00045 0. 00068 FACAL FAM ERROR 0.09 0. 7. 0832 8. 445 0. 4011 0.00045. 00068 FACAL FAM ERROR 0. 09563 0C. 08832 8. 275 O. =54098 0. 00000 0. 00000 RUN NO. 74. 5''..DE: 6 JMMENTS: CRB. BASELINE, TEMP(DB) 95. 90F TEMFR( DF) = 49. OOF TEMP (BAR) -= 81. OOF BAR PRESS (<OB )-' 29'.:':7"HG BAR PRE;SS; (CR) = 2'.. 2:3"HG S:;.PEC HUMI DI TY Y=. 0075t#' # C:02 AMBIENT = 0. 04 5X, CHT~~~~~~~~~~~~~~~~~~v STACK FUEL RATE= AIR RATE = F/A RATICOF'HIIM.. -- C —~EBAL ANC-E FULEL H/C: =../ 109..0. 1. 3. 1 -6837#/HF 6:: 47# / H-IF 088:3#/#:309'2 5000: z ENG I NE RPFM (NOM) = 1200 RFPM ENG I NE RPM ( AC:T ) -1 1'.-19. RPM BHF' (OBS) -' 8. 6-IHP CHT EOT CO:NC'PPM) METHOD 1. 2 MASS/MODE(LBM) METHOD 2.1 1 MASS/MODE LBM) METHOD 3. 1 MASS/MODE( LBM) METHOD 3.2 MASS/MODE (LBM) CYL1 405. 0 1060. 0: 8806 t KWD XTC 0. 87022 1. 00928 0. 71645 KWD XTC. 87972 1. 00000 0.71656 KWD XTC 0. 87401 0. 99449 0. 74184,:KWD XTC 0. 87029 0. 33877 0.71643 C:YL2 405. 0 985. 0:3270. MWEXH 26. 95511 0. 01962 MWEXH 26. 76445 0.01962 MWE.XH 27. 01826 0. 020:32 MWEXH 27. 01826 0. 00000 2. 0215C, CYL3 405. 0 1040. 0 UHCC: 3263. EXH FLOW 1652. 66:3 0. 0097 1 EXH FLOW 1635. 066 0. 00961 EXH FLOW 170:3. 812 0. 01001 EXH FLOW 1652. 487 0. 00'971 BHP ( MAN MAN EXH CYL4 405. 0 99C. 0 CO 94069. FACAL 0. 09116 0. 49.'./184 FACAL 0. 09389/ 0. 49191 FACAL 0. 08908 0. ~50927 FACAL 0. 09215. 0. 49183 CORR) = 0. OfHP VAPC: ( OB-1S; ) j1. 00" HG PRESS ( CORR )= 0. 00"HG H/C RAT IO -1. 850 EXHAU ST 6:30. 0 NO NOX 8:9. 89. FAM ERROR 0. 08832 3. 207 0.00057 0. 000:87 FAM ERROR 0. 08'832 6. 300 0. 00056 0. 00086 FAM ERROR 0. 088'2 0. =859 0. 00059 0. 00090 FAM. ERROR 0. 08832 4. 338 0. 00000 0. 00000 C-15

RUN NO. 75. 1 MODE: 7 COMMENTS:CARB. BASELINE, TEMP(DB) = 95. 20F.MP (DP) = 57. OOF I'EMP(BAR) = 82. OOF BAR PRESS (OB)= 29. 36"HO BAR PRESS(CR)= 29. 22"HG SPEC HUMIDITY=0. 0101#/# C02 AMBIENT = 0. 045% CYL. 1 FUEL RATE= AIR RATE = F/A RATIp= PHIM = K C-BALANCE= FUEL H/C = CYL1'CYL2 CHT 390. 0 380. 0 EGT 780. 0 785. 0 C02 02 CONC (PPM) 105914. 1886. KWD XTC MWEXH METHOD 1. 2 0. 86058 1. 0100027. 51114 MASS/MODE <LBM) 0. 17119 0. 00222 MASS/HP/CYC: (#/HIP/C) 0. 12725 0. 00248 KWD XTC MWEXH METHOD 2. 1. 87080 1. 00000 27. 31865 MASS/MODE ( LBM) 0. 17121 0. 00222 MASS/HP/CYC ( /HP/C) 0. 12726 0. 00248 K:WD XTC MWEXH METHOD 3. 1 0. 8:,492 0. 99432 27. 57617 MASS/MODE(LBM) 0. 177-88 0. 00230 MASS/HP/.CYC: ( #/'HP/C) 0. 13073. 00255 IKWD XTC MWEXH MET HOD:3. 2 0. 86:069., 0. 2:30.-9 27. 57617 ""%'SS'/MODE ( LBM) 0. 1.711: 0. 00000 SS./HP/' CYC (#./HP/C) 0. 12725 0. 00000 5. 3918#/HR ENGINE RPM(NOM)= 700 RPM 66. 9652#/HR ENGINE RPM(ACT)= 718. RPM 0. 0805#/# BHP(OBS) - 5. 1HP 1. 1935 BHP( CORR) O. OHP 3. 5000 MAN VAC( OBS) 17. 40" HG 1 MAN PRESS(CORR)"- 0. 00"HO 2. 0250 EXH H/C RATIO =1. 850 C:YL3 CYL4 EXHAUST 385. C 380. 0 850. 0 79. 0 430. 0 UHCC CO NO NCOX 2708. 65843.. 107. 107. EXH FLOW FACAL FAM ERROR 981. 821. 08:324 0. 08051 3.:390 0. 00160 0. 06741 0. 00014 0. 00021 0. 00147 0. 06379 0. 00032 0. 0050 EXH FLOW FACAL FAM ERROR 970. 417 0. 08587 0. 08051 6. 651. 0. 00158 0. 06742 0. 00014 0. 00021 0. 00145. 06380 0. 00032 0. 00049 EXH FLOW FACAL FAM ERROR 1015.084 0. 08117 0.08051. 823 0. 00165 0. 07005 0. 00014 0. 00022 0. 00150 0. 06551 0. 00033 0. 00051 EXH FLOW FACAL FAM ERROR 981. 664 0. 08420 0. 08051 4. 580 O. 001 60 0. 06741 0. 00000 0. 00000 0. 00147 0. 0637'7 0.00000 0. 00000 RUN NO. 75. 2 MODE: 7 CO-LMMENTS: CARE. BAS-EL I NE TEMP ( DB) = 95. 20F TEMP ( DP) -= 57.. OF TEMP(BAR) = 82. OOF BAR PRES;(-; (OIB) 29.:-36 "HG BAR PRE;SS (C:R) = ) 29. 22" tC; SPEC: HUM ID I TY=O0. 0l 101 t/ C:02 AMB I ENT = 0. 045%. CYL. 2 FUEL RATE-= AIR RATE = F./A RATIO= F'HIM I::: C-BALAINCE-= FUEL Ht./C = 5. 0. 1. 3. 1 391 8I'/HR 9:652'./ HF 0805X../ 5000 CYL 1 CHT 390. 0 EOT 780. 0 E:02 C:ONC( PPM) 104343. KWD XTC METHOD 1. 2 0. 86087 1. 01073 MASS/MODE (LBM) 0. 16764 MASS/HP/CYC ( /HP/C ) 0. 11961 KWD XTC METHOD 2. 1 0. 87186 1. 00000 MASS/MODE (LBM) 0. 16766 MASS/HP/CYC ( /HP/C ) 0. 11962 KWD XTC nalTFOD 3. 1 0. 86550 0. 99:388 MASS/MODE (LBM) 0. 17467 MASS/FHP/CYC ( #/HP/C) 0. 12204 KWD XTC: METHOD 3. 2 0. 86099 0. 3:2513 MASS/MODE ( LBM) 0. 16763 MASS/HP/CYC ( #/'HF/C ) 0. 11.-61 C'YL2 380C. C 785. 0 02 1761. MWEXH 27. 4.5 2-./2' 0 0. 00206 0. 00'250 MWEXH 27. 25116 0.' 00206 0. 00250 MWEXH 27..52924 0. 00214 0. 00256 MWEXH 27. 5.;29.24 0. 00000 0. 00000 2. 0250 CYL3:385. 0 850. 0 UHCC 2528. EXH FLOW 975. 604 0. 00148 0. 00147 EXH FLOW 963. 426 0. 00146 0. 00146 EXH FLOW 1011. 089 0. 00153 0.00149 EXH FLOW 975. 437 0. 00148 0. 00147 ENGINE RPM(NOM)- 7f 00 RPM ENG INE RPM(ACT) 718:. RPM:BHP ( OBS;) = 5. 1HP BHPF ( CO:RR)' O. OFIFP MAN VAC ( OBS) 17. 40" -G MAN PRE'SS ( CiORR)= 0. 00 "HF EXH H/C RATIO =1. 85 CYL4 EXHAUST 38:C0. 0 790.-.- 0. 0 4:30. 0 CO NO NOX 6868 6. 118. 118. FACAL F AM ERROR 0. 08:392 0. 08051 4. 235 0.06990 0.'. 00015 0. 00023 0. 06864 0. 00027 0. 00041 FACAL FAM ERROR 0. 08678 0. 08051 7 780 0. 0'6991 0. 00015 0..0002:3 0. 06865 0. 00026 0. 00041 FACAL FAM ERROR 0. 08169 0. 1 0 080.51 1. 461 0. 07284 0. 00016 0. 00024 0. 06990 0. 00027 0. 00041 FACAL FAM ERROR 0. 08496 0. 08051 5. 526 0. 06:990 0. O00 0..00000 0. 06864 0. 00000 O. 00000 C-16

MODE: 7 COMMENTS: CARB. BASEL INE TEMP(DB) = 95. 20F:MP(DP) = 57. OOF EMP(BAR) = 82. OOF BAR PRE:SS(<OB )= 2. 36"H BAR PRESS(CR) = 9 2. 2"H SPEC HUMIDITY=0. 0101#/# C02 AMBIENT = 0. 045% CYL. 3 FUEL RATE= AIR RATE = F/A RATIO= PHIM K = C —BALANCE= FUEL H/C = CYL I CHT 390. 0 EOT 780. 0 C012 CONC(PPM) 93553. KWD XTC METHOD 1.2 0. 8648 1. 00850 MASS/MODE(LBM) 0. 14568 MASS/HP/CYC( #/HP/C) 0. 12677 KWD XTC METHOD 2. 0. 87361 1. 00000 MASS/MODE(LBM) 0. 14571 MASS/HP/CYC( #/HP/C) 0. 12678 KWD XTC METHOD 3. 1 0. 86846 0. 99504 MASS/MODE(LBM) 0. 15043 MASS/HP/CYC (#/HP/C) 0. 128:50 KWD XTC METHOD 3. 2 0. 86499 0. 3350:3 "4SS/MODE(LBM) 0. 14568 iSS/'HPF'/CYC (./HFP/C:) 0. 12677 CYL2 380. 0 785. 0 02 2515. MWEXH 27. 12425 0. 00285 0. 00207 MWEXH 26. 95390 0. 00285 0. 00207 MWEXH 27. 18083 0. 00294 0. 00210 MWEXH 27. 18083 c0. 00000 0. 00000 RUN NCO. 75. 4 MODE: 7 CO:1MMENTS-;: C:ARB. BASELINE. TEMP DB ). 95. 20F TEMP (DP) " 57. OOF TEMP( BAR ) 82. OOF:BAR PRESS(OB) = E 29.:36 "HG BAR PRESS; ( CR) 29)'. 22" HIO SPEC HUMIDITY='0. 0101#./# C02 AMB IENT = 0. 045."% 5. 3918./HR 66. 952#/HF 0. 0805#/# 1. 1935 3. 5000 1 2. 0250 CYL3 385. 0 850. 0 UHCC 3460;. EXH FLOW 941. 214 0. 00196 0. 00128 EXH FLOW 931.965 0. 00194 0.00127 EXH FLOW 967. 883 0. 00201 0. 00129 EXH FLOW 941. 093 0. 001 95 0. 00128' 1 5.:39 18 )/HF 0. 0805t/: 1. 1935 3. 5000 1 2.0250 CYL3 385. C0 850.0 UHCC 3536. EXH FLOW 926. 619 0. 00197 0. 00124 EXH FLOW 918.329 0. 00195 0. 00125 EXH FLOW 950. 396 0. 00202f 0. 00122 EXH FLOW 926. 513 0. 00197 0. 00124 ENGINE,RPMk(NOM)=- 700 RPM t ENGINE RPM(ACT)= 718. RPM BHP(OBS ) 5. 1HP BHP(CORR) O.OHP MAN VAC.(OBS) -=17 40"HO MAN — PRESS(CORR) O. 00"HO EXH H/C: RAT'IO =1. 850 CYL4 EXHAUST 380. 0 790. 0 430. 0 CO NO NOX 840:33. 74. 74. FAC:AL FAM ERROR 0. 08:.864 0. 08051 10. 092 0.08289 0.00009 0.00014 0. 06448 0. 00031 O. 00048 FACAL - FAM ERRsOR 0. 09105 0. 08051 13. 086 0.. 0829 1. 00008 0. 00014 0. 06448 0. 00031 0. 00048 FACAL FAM ERROR 0. 086:79 0. 0051 7. 799 0. 08559 0.00009 0. 00014 0. 06518 0. 00032.. 0. 00049 FACAL FAMN ERROR 0. ) 08952 0. 08051 11. 188 0. 08289. 0.00000 0. 00000 0. 06/448 0. 00000 0. 00000 CYL. 4 FUEL RATE= AIR RATE - F./A RATIO=PFHI M K = C —BALANCE= FUEL H/C: CYL1 CYL2 CHT 390. 0 80. EGT 780. 0 785. 10 C:02 T 02 CONC: (F'PM) 89241. 2465. KWD XTC MWEXH METHOD 1.2 0. 86665 1. 00774 26. 97679 MASS/MODE(LBM) 0. 13709 0. v00275 MASS/HP/CYC: (#/HP/C) 0. 12196 0. 00171 KWD XTC MWEXH METHOD 2. 1 0. 87460 1. 00000 26. 81931 MASS/'MODE( LBM) 0. 13711 0.00275 MASS/HF'/C.YC (#/'HP/C) 0. 12195 0. 00171 KWD XTC MWEXH rtETHOD:3. 1 0. 86985 0. 99543 27. 0283 MASS/MODE ( LBM) 0. 141 13 0.00283 MASS./HP/CYC(#/HP/C:) 0. I11861 0. 00167 KWD XTC MWEXH *METHOD 3. 2 0. 8667:3 0. 33977 27. 02893 MASS/MODE(LBM) 0. 13709 0. 00000 MASS/HP/'C:YC:(#HP( /C) 0. 12197 0. 00000 EN I NE RPM ( NONM) 7-= 700 RPM ENGINE RFPM(ACT)- 718. RPM BHFF' ( IOBS ) - 5. 1HP BHP(CORR) 0 C. OHP MAN VAC: ( OB, ):17. 40" -H MAN PRESS ( CORR) 0 O. 00" HG EXH H/C RATIO =1. 850 CYL4 EXHAUST 380. 0 7 90. 0 4:30. 0 CO NO NOX 90769. 65. 65. FACAL FAM ERROR 0. 090'77 0. 08051 12. 740 0. 08833 0. 00007 0. 00012 0. 06761 0. 00%029 0. 00044 FACAL FAM ERROR 0. 09303 0-,: O. 08:051 15. 549 0. 08834 0. 00007 0. 00012 0. 06761 0. 00029 0. 00045 FAC:AL FAM ERROR 0. 08905 0. 08051 10. 609 0. 09093 0. 00008 0. 00012 0. 06624 0. 00028 0. 0004:3 FACAL FAM ERROR 0.09160 09160. 08051 13. 770 0. 08833 0. 00000 0. 00000 0. 06761 0. 00000 0. 00000 C-17

RUN NO. 75. 5 MODE: 7 COMMENTS:CARB. BASELINE, TEMP(DB) = 95. 20F:MP(DP) = 57. OOF TEMP(BAR) = 82. OOF BAR PRESS (<OB= 29. 36 "HO BAR PRESS(CR)= 29. 22"HO SPEC HUMIDITY=O. 0101#/# C02 AMBIENT = 0. 045% STACK FUEL RATE= AIR RATE = F/A RATIO= PHIM = K = C-BALANCE= FUEL H/C =. 66. 0. 1. 3. 1 391 8#/HF 9652#/HF 0805#/# 1935 5000 CYL 1 CHT 390. 0 EOT 780. 0 C02 CONC(PPM) 95441. KWD XTC METHOD 1.2 0.86405 1.01011 MASS/MODE(LBM) 0. 14932 MASS/HP/CYC( #/HF'./C) 0. 12215 KWD XTC METHOD 2. 1 0. 87443 1. 00000 MASS/MODE (LBM) 0. 149:34 MASS/HP/CYC:( /HP/C) 0. 12215 KWD XTC METHOD 3. 1 0. 86831 0. 99412 MASS/MODE( LBM) 0. 15515 MASS/HF/CYC#::./HP/C) 0. 12092 KWD XTC METHOD 3.. 2. 86416 0. 33350 *"'.SS./MODE (LBM) 0. 1 49:3 SS/HP./C YC: ( /HP/C) 0. 1 2215 CYL2 380. 0 785. 0 02 2515. MWEXH 27. 18367 0. 002S86 0. 00152 MWEXH 26. 98190 0. 00286 0. 00152 MWEXH 27. 25076 0. 00'297 0. 00151 MWEXH 27. 25076 0. 00000 0. 00000 2. 0250 CYL3 385. 0 850. 0 UHCC 3265. EXH FLOW 946. 534 0. 00186.0. 00101 EXH FLOW 935. 456 0. 00183 0. 00101 EXH FLOW 97.B. 652 0. 00192 0. 00100 EXH FLOW 94 6. 380. Oi.) 185. O. 00101 ENGINE RPM(NOM)= 700 RPM ENGINE RPM(ACT)= 718. RPM BHP(OBS) = 5. 1HP BHP(CORR) = O. OHP MAN VAC( OBS) - 17. 40" HO MAN PRESS(<CORR) O0. 00"HG EXH H/C RATIO =1. 850 CYL4 EXHAUST 380. 0 790. 0 430. 0 CO NO NOX 81518. 87. 87. FACAL FAM ERROR 0. 0877:3 0. 08051 8. 970 0. 08079 00. 00011 0. 0016, 0. 06796 0. 00031 0. 00044/ FACAL FAM ERROR 0. 09058: 0. 08051 12. 499 0. r0800 0. 00011. 00016 0...0679':6 0. 00031 0. 00048 FAC:AL FAM ERROR 0. 08555 0. 08051 6. 262 0. 08394 0. 00011 0. 00017 0. 06750 0. 000)31 0. 00047 FACAL FAM ERROR 0. 08877 0. 08051 10. 258 0. 08079 0. 00000 0. 00000 0. 06796 0. 00000 0. 00000 3 C-18