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The Stabuity of Parallel Flows
of Fluids with Memories

D. T. Mook
Virginia Polytechnic Institute
and

W. P. Graebel
The University of Michigan

Abstract

The equations governing the stability of plane parallel flows
are developed for three models of fluids with memories. Asymptotic
solutions valid for large Reynolds numbers are obtaired and t;hé effect
of the memory are shown to be destabilizing. The approach to the
problem allows evaluation of how fast a memory must fade to allow
evaluation of the stresses in power series in the time interval, An

alternate approach to inverting convected derivatives is also presented.






I. Introduction
A recent paper by Chan Man Fong and Walters {1965) considered
the stability of parallel flows of two visco-elastic fluids with very
short memories. The present work extends their analysis to such
fluids with long but still fading memory and also extends the analysis
to a newer model which has been proposed by Goddard and Miller
{1966). A discussion of the various convected derivatives is alsc
presented in a manner which aillows more ready phvsical interpreta-
tion as well ag a quicker way of obtaining forms for convected integrals.
Quasi-lineax models of visco-elastic fluids are usually writter

in the foarm

o+ Z,E An L?g = 2{/‘6(&“%& E:)i)

n=1

where D is related to the total stress t by

L=-pl +p

d: ig the rate of deformation tensor. and Lt is a time derivative
operator satisiving the principal of materi#l indifference. The
constants )\n and Tm are related to the stress relaxation times and
rate of deformation relaxation times, respectively. Several forms
tor these operators have been proposed in the past (See Oldroyd
{1968) for a review); we present here briefly three of these definitions
in a somewhat different manner which facilitates their physical
interpretation,

If 6 is 2 convected material reference frame, and *_y_a is a set
of covariant base vectors defined by 2z (r a position vector) so that

apg® -
they are tangent to the frame (see for example Sokolnikoff (1951},



Chapter 3), then a second order tensor x can be written as

L= T 9 Xe

or

T’Txx_{f

e
“wfown

ya being the contravariant base vectors defined by

- et lfs"lfp

The absence of a dot or cross between two vectors indicates the
indefinite, or dyadic, product. Oldroyd (1950) proposed two separate
definitions for Lt; denoting time differentiation with material
coordinates held fixed by D/Dt, they are

DT, A _ O‘AT .
LT = 538 )’}(Pf..__:.l.%y
for the model he called type A, and

LtDT___; “DT Y«.Y{ -%J'%é

for the model he called type B, Latin indices and base vectors here
refer to a space fixed reference frame, It is readily found by the

normal tensor transformation laws that



and that

where 2 is the vorticity tensor, Thus Oldroyd's definition of the
convected rate is the material rate cf those tensor components which
an observer would measure with respect to a coordinate system both
rotating and deforming with the material: for type A the components
are measured with respect to the contravariant base vectors, while
for type B the covariant base vectors are used, the base vectors in
both cases being both stretched and rotated with the material.

The present iorm of writing the convected derivative allows

ready inversion, for letting

W = 9‘1:‘..]:‘1
“J di
then since

DT
Wap D;P )




and since the 0“ are constant in time for a material particle,

Toe = 5 Wi (8,1) dt]
N | da“ JQP t ax:"‘ me
Tc; ® 9K oKd § 6% aBe W,... (k!¢ Jt’

(X ox”
i g %x‘: ox3 WM(X',f')oH)'

and tlmilarly for the type B derivative. These integrals were
pressated first by Oldroyd (1950); they were used by Walters (1962}
!n'mcdcu designated as A' and B' by writing

axl"ﬁ x!“\

t _é____ |
wpig = 20 Yl 5 B dul (it @

and

.t COK
o = 2 Wit-1) 5= G55 At o

respectively, where \(t) is a material relaxation function.* When

J(t) cengists of a2 combination of exponentials and Dirac delta functions,

*(it i» frequently more convenient to work with N, the distribution of

relaxation times,; defined by Y(t) = Y:N(P)GXP‘? f/P) dP/P' )



equations (2) and {3) are exactly equivalent to equation (1); ctherwise

they are generalizations cf equation (1), (For exam.ple when =M= 1,

equation (1) is obtained by taking N{p) = [ 1 S( )+ 1"‘ 3S(P )\ ].
Jaumann (1911} proposed a different de:fmz.talon of L, whmh we

shall designate 28 L Introducing new base vectors l".( by

£tC"°

Lo = S° X

where S satisfies the equation

DS. ~ 5 .
5t * = Sa dif

and reduces to the identity matrix as an initial condition, then,

denoting the inverse tensor with a minus unity superscript,

~ ~ -l -
;‘; = T“P Ec‘-_fp ) Tn‘P’_ TS€ SS& Sélﬁj

as before it ig readily found from the transformation laws that

deTey DTy
atr Dt"+w.LT “'COT

and that



DL« _ .6 - §
5t - s O« Yoo

Since by Ricci's thaorem and the above dﬁ@‘ildt’ 0, ralaing and

lowering of tndices commutes with the operatien of Jaumann differentia-

tion.
The above results car be put in a simpier appearing form by

introduciag a further tensor é, defined by

then
‘]
D_i - J“"
Br 7 R
and

vk ; "“ J
Rg Q=3_,)ar &:IQ& .
where R ls equal initially to the identity matrix, Thus g is the tensor
rotating the material base vectors Y, into the material base vectors
_r‘g » and R is the tensor rotating the material base vectors _!:d.
into the fixed base vectors & Ae has been shown by Goddard and
Miller (1965), R corresponds to an orthogonal transformation, and

hence its Inverse and transpose are equivalent. Thus the Jaumann

derivative is the material time rate of those tensor components which



an observer would measure with respect to the base vectors _E
'r’étatirig"iocally with the same rate as the vorticity, i.e,, moving

- with the princi;ﬁal axes of % The length of these base vectors changes
also, but not directly with the material, Inversion of the derivative

again follows readily from the definition; if now

Yoy = 4t

then

and

=R/ R S (R Rl Y i)t
= Ri™R;™ Y (x'.t')dt;



the initial conditions on Rij being imposed at time t'. A material

of type C' could now be defined by

t
PUS =7 g_wq’(t" t')R:M IQJ' Hd‘m‘ (X',i‘}df/, (5)

We note that equation (5) is the constitutive equation presented by
Goddard and Miller (1966), their integration being presented by other
arguments. No simple relation has so far been found relating the
various Oldtoyd and Jaumann integrals.
II. Governing equations
The solution for steady flow between stationary parallel plates
is next presented for materials of type A', B', and C', The
stability problem for parallel flows is then formulated for each by
superimposing a wavy infinitesimal disturbance on the primary flow
and then determining under what conditions this disturbance will grow,
Cartesian coor'dinates are used, the z-axis and the y-axis being
chosen parallel and perpendicular to the plates, respectively. For the

steady flow the velocity components are assumed in the form
U=V - O, W - W(‘a))

with W = 0 at y = +h. By inspection the motion is
K= ) | %';. ’3) Omo( i_"'-‘ 2‘W(3)(f‘f'))

primed coordinates denoting the position of & particle at time t'. The

only non-zero component of the rate of deformation is



d,s =2 DW,

where D represents differentiation with respect to y. The non-zero

displacement gradients and rotation components are
!
Bx %?—: 2% 1. ‘& = “(‘f't.)DWJ
(QM.: l ) sz = RB3= cos ["{(f'f')DW]J

and  Rox= ~Ray= —sin 4 (t-¢)00]

Substitution of these into equations (2), (3) and (5) and the
equations of motion yields the non-zero partial stress components and

velocity as shown in Table I, where
=Y " 0O
G TN AT ), e

and

§°: T"NI(T) [1+(er)”‘]%0(7‘, (7

Hence, fluids A', B', and C' all predict different normal stresses,
Normal stress differences are consistent with the sudden expansion or
contraction of the stream when some non-Navier-Stokes liquids
suddenly emerge from a tube into the atmosphere (the Merrington
effect, which would occur in A' and C') as well as with the differences

in the shape of the free surface for such different liquids undergoing
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Couette flow (the Weissenberg effect, which wouid also occur in A'
and C'). Only C' shows a variable effective viscosity.

In the development of the Orr-Sommerfeld equation (the
stability equation for Navier-Stokes liquids), consideration is limitéd
to a disturbance that corresponds to a velocity field which is both
temporally and spatially (in ) periodic. Subject to this limitation,
Squire {1933) has shown that it is sufficient to consider a disturbance
that corresponds to a two-dimensional velocity field, In the visco-
elastic case, only such disturbances will be considered also, althqugh
no proof of the sufficiency of this exists for these fluids, (In fact,
Listrov (1966) has shown that at least for a Stokesian fluid three
dimensional disturbances are less stable than two dimensional
disturbances.) Accordingly, the disturbance velocity components

are taken in the form

u*:o) ,U""z'"U(‘a\E) and (¥ :"(J(\a\E)

where E = exp iA{z - Ct); A is the (real) wave number, and c the
{complex) wave speed.

We first derive the stability equation for materials A' and B',
The total displacement i{s assumed to be the sum of the primary flow
displacement and the displacement resulting from the disturbance,

namely,

I
A= X,

!

1

i

2" 2 - (wiy) w iy 619l )l

vy

4 + ?(ta,t,t) - & (%.',-z',t"),

and

11



Taking
et —"

n:1

and similar expressions for % and k_ , since

ryt—_—

D« | Dy . DY,
Dt'%‘éf t“o)

the solutions are readily obtained as

£ 2 ~vfinlw-C),

fouy = (10U - U DL [iA (W-C)

, * - (ly + wrifcAalw-c)

Qe * (=, + *g.Dv-vDg. ) lw-c)
\21 = 4 DW/A(W-C),

e

= (le. D - Dleu)fiAlw:0),

12



Expanding all quantities about values at time t, it follows that to the

lowest order

| _ v E(1-F)
% " % t A (W-C)

and
- . oDWEF (t-1')
2'= 2 - (W A RT=T
e A e o F)”

where F = exp iA(C-W) (t-t!).
If consideration is restricted to & short time interval, then
equations (8) and (9) can be approximated by expanding F in a power

seriés in (t-t') and retaining only the first order terms, Hence,
3 | ) -
% : «(JT - v (t-t'E

and

2' r P -—(W - D_lf; E)(‘t‘i').
- ¢A
These . 2 the expressions used by Walters (1962). The more general
f’orm's given by equations (8) and (9) will, however, be used here,
We note alse that equations (8) and (9) are wéllebehaved at the
critical point where W a,nd C have the same value. Applying the

limiting process WaC results in

13



L (y'-y) = - VE(t-1)

and wacC

. NIRY Y
Lo (2" -2 s W t-t)] = TR E(tH)
W= e -4 vEDW (t-t)
in agreement with the limit as t approaches t' to the order of the

linear terms in t-t',

The non=zero rate of deformatign components at time t are

daa": ”(ﬁ.z% = EDU

and
)
I (A - D \E
&‘é! = 7 DW*-LA'U A TE |,
To the same approximation used for the displacements, the non-zetro

rate of deformation components at time t' are

oQH: -d,, = Dv EF

dvég- =4 lpw (A - ]%% JEF
- UD*WE (14:)]
AW -CY

Making use of the continuity equation, the non-zero derivatives of the

displacements can thus be written as

1h



Ay _ yDW, E(L-F)
3%.' - 1."(1)7}' W~ C\ CA(w“C)F)
3y _ _ vE(L-F)
‘a:%. W-C )
/ !
R ?’D-\-,‘f‘;é* 4 (o
- DWW L

and

L = - (t-thow + (1) S lov

uDW (t-t')E . |
- WG )+ c‘A(WvE:}(UDW"DvDV
_ U(DW)Z.) t(l F} [
W- A (W-C)
ZOVDW * 4 ‘D‘

Combining these results with the canatitu ive equations far A

S+ 227 (pW)’
VT TR

e

(equation (2)) leads to the disturbance streasses
Pag &7 2K Dv -2.ADW Ki v,
- S
Pye =~ Tk DV 2K DW DY
*AKS - KD WH2AKE K|y

15



and

- oW
P%% = %(K;*-K )D ’U’+2{K

+ 2(0WlAW-C)(KE+ 2 ) | D
+2[ oW D'W (2K} + K} )
- 2 oW iAlKE 4 )= A Dw KE

The functions K;n'(y) » are generalizations of Walters' constants and

are defined by,

§T N[t AT I T

Upon considering the equations of motion, one obtains, after
subtracting the equations satisfied by the velocity components of the

primary flow and eliminating the pressure by cross-differentiation,
dw-ciD-A) - DW |
= (AAD(pyy - Fee) - (O+A) By
In order to write equation (11) in terms of non-dimensional variables,

the following dimensionless functions of y are introduced:
Po= Ko lpWoh E‘g Ky lph,
P,- xt W/(o’n“ .('\/\/’3/(: N



Putting these and the previous expressions for Eyyg | pzz and P‘yz

into equation (11) results in
(U= D -0 - vDﬁUJ
=B (pew)ar- <P (U
- cl2DU)D v - (U-cll2p,0 U
~24(U-BJTv - « (U
- )4« DU (DUr-D U
- )P, - (2.0 DU-DUIB D
+{[4DU(e DU+D U)+(U-<JBU
+3(TUV] « B, = [« (U-e)
+3(U-)BU - 2(00) ]2 LU,
+c DU P&’U') (12)
where o is the non-dimensional wave number Ah, ¢ is the non-=
dimensional wave speed G/wo” U is now the non-dimensional primary
flow velocity, W/WO s, and D represents differentiation with respect
to the non-dimensional y. For a Navier-5Stokes liquid all the Pn
are zero except PO, and equation (12) would then reduce to the
Orr-8ommerfeld equation,

Walters (1962) has suggested that for some viscoelastic liquida,

called "slightly viscoelastic," it is reasonalbe to expect the ¥(r) to

7



vanish rapidly as T increases. This is the justification he gave for
using the approximate forms for equations (8) and (9), This is equiva-
lent to replacing the upper limit in the expressions for the ?’n by a
finite limit (say T) which may even be quite small, Assuming

\ LA\\I- C“(( T-i everywhere in the flow field and neglecting all

Bn for n 2 2, equation (12) reduces to

JlU-MD-«) -DUl v
=1 - (R, (U- )RV (D)
+ iR R v DU

R 2 FWL\/BQ

and

R, « Bn (WY /B,

which is the equation given by Walters.

Two remarks are appropriate. Equation (12) was derived with-
out specifying the form of W(y) and hence is not restricted to the
primary flow here considered. Also, if equation (3) (the const‘itut-ive
equation for material B') had been used in place of equation (2) (the
constitutive equation for material A'), the resulting equation for v
would have been exactly equation (12) - a perhaps surprising result,
considering the primary flows involving the two constitutive equations

give quite different normal stress results,

18



The stability equation for the C' material is developed in much
the same way. For the perturbation velocities, the solution to equation

(4) is found to be, to the order of the linearization,

RH‘& Ry, = cos |4 (t- HDW]-’«E:H Sw\‘ (t-i')D'\,JL
]232 = - 2%3 = - .Sm[?.(f'f )D\Nr]
* EHeos (4 (t-#)DW],

where

(L-F) DWW
H s ‘Z.cA Wa‘ (‘A (AR - C))
jox4 (t-t) D'W
ey g ZiA (W-C) -

From eqQuation (5), the disturbance stresses are
Bry = .rp-m = UDW{-2iAL+(A
LAw 3 XJ L )*D W33
x wﬂmm(w o) ]%Dvﬁ L3
* (A(W- C\)LJ*D (¥ m([}
- J ) (13)
oaF ALL + (A=) WLy
L.Aw AH{(Ls =T8T W+ (A
- BN, - L oW oWl

19



where

L7 = CrNii 1 A -0 T)
+ (TOW) AT, (19

Because of the complexity of these stress terms we do not write out
the stability equation here, but consider the appropriate approximation
in the next section.
III. Asymptotic Solutions

An approximate solution to the stability equation (12) for the
primary flow U =1 - yz is next obtained. The determination of the
characteristics equation Tor 2 Navier-Stokes liquid is first briefly
discussed in Part A, the procedure used being that presented by
Craebel (1966) with only slight modifications. The counterpart
characteristics equation for viscoelastic liquids A' and B' is next
presented in Part B, and the procedure used to actually solve this
characteristic equation and to determine the points on the neutral
stability curve is presented in Part C., Viscoelastic liquid C' is dis-
cussed in Part D,

A, The Determination of the Characteristic Equation for a Navier-

Stokes Liquid

It is anticipated that both ¢ and 1/aR will be small for the
case of interest, which suggests a solution in terms of matched
asymptotic expansions. The flow region is first divided into an inner
and an outer region. The inner region is a strip that includes the

rigid bottom boundary at y = -1 and the '‘critical point" at y = Yoo

20



where U(yc) = c. The outer region extends from the inner region

to the centerline between the plates at y = 0 which, as a result of the
symmetry of the geometry and equations, serves as the other houndary.
It is assumed that the two regions overlap.

The procedure is to obtain a scolution valid in the inner region
and a solution valid in the outer region and then to merge the two
solutions. The inner solution is made to satisfy the boundary conditions
at y = =1 and the outer solution the conditions at y = 0, The merging
then produces a characteristic equation which gives o as a function of
R and ¢, the plot of a versus R for c. = 0 being the neutral stability
curve,

In the inner region v is obtained by introducing the change in

variable (coordinate stretching)

1= gl = 2

and by putting

(o) ) (1l A
where p is a function of aR, expected to be small, but unknown at
this point.

Substitution of the above into equation (11) with all of the Rn
for n & 1 set equal to zero suggests that the proper choice for p is

Moo= (ozR)':l/3 ., and equation {(12) becomes

4 o t0) d? (0)
2L DU S {2(;2(‘”
d V(. 7‘ 2 d’LZ(M z’ d/:g(l\
" “( d'LL 0\-:2((1\ ,Zq.
‘C?DUCTT1+“‘:O‘

21



K(&) and

and

Hence,

where

'p” the solut f
d+2( o) _ d 2((0)
————O(V(‘*' ¢ DU¢ d‘z‘ O
gt 3(__25_“ L

S
M (qug o(v(l'\ [LQ DUL) ]

(o)

Ky * g OQV(K O(V( itvk DU\/’]



2)

H(l) and H( are Hankel functions of order one-third., Since h

2
increases exponentially with large positive P( at a much faster rate
. 0 .
than does the outer solution, Xfl ) cannot be merged with the outer

solution and is therefore discarded, For 8.“) we have
(1)
— i
Ly = - n[oue.

Graebel (1966) gives the solutions for .(21) and X?') as
(2)

2( ) c 2 (¢ DUJJ/3 }&VGZJ&;{S ‘
‘ exp%-i[(éDUAyJizs +% Ss]f

1948)
e PR P~ 2% 9 10‘ Ls
K =20\ %G00y I lou)
54 (o) (1)
N QDUCK:S l+ Y 2<?.)
where

Y 0.67830 (DU - 0,39099
+¢(0.39160 (DU - 0.67296 ).

(v} -2 |
. ]_D%: 9’“("'3 *(DWLY,

For large Z 3

where

-7 1T

a3



In the outer region v is obtained by introducing the expansion

U’(/u, ta\ = éo(/w) ’Um(a\-\-é um(a

Substituting this into equation (12) gives

(U-Nom-L)v - v DU-0,

and v(o) = v(n) for all n such that O(en(p.)) > O(p.3)., The Tollmien

solutions (1936) are

1}

Uiyl 2R s L AL

=0 )

and

U, (y) = Rle)l = F e <7 8.7
where 1 |

Ap<1, A=-(DUl A4

A (n+1\(n+*HAn+z +o DU, Ay = & A,

nes (n43Xn+4) DU )

and

R,=-£DU., B3,:0, Bz‘i“f}'MLDU ife.

24



In the inner region Graebel used

ulg)= KU1 Coqr G GG,

where the Ci are arbitrary constants, For the inner and outer solu-
tions to merge for large positive VL the proper choice is 1/p for €
Inu lor e and | for e In the outer region v is given by

1’ 2’

U(‘a\ :_#CLE‘L +QM/‘\ (ZCJ-Z)

DUc
- To Pt AR O(pLy)

where A is a constant that cannot be determined until higher order
terms are considered. z;go) decreases exponentially with large
positive and, hence, no terms are needed to merge with it.

The boundary conditions are
l/
U:DU = O at aw-i

and

R ]

- 3
Dv=:=D v
if v is an even functicn of y, or

v = D'w

O ot y=0
d

11}

O at 3=o

if v is an odd function of y, The Orr=-Sommerfeld equation
allows separation into even and odd parts when U is an even function

of y; since v in the outer region satisfies a second order equation
o)

25



which is even in y, satisfaction of only one boundary condition at
y = 0 is sufficient. Using symmetrical disturbances since they are

less stable than asymmetrical disturbances, the boundary conditions

give | 20
7':' Q‘Dﬂ(%o\ - :B—[i DR (2,) =0,
Ci’( +Qz + C, 2(?)(71) : O)

(o)
Cyv ¢ T =0

to the lowest nonstrivial order in u, where n, = - (1 + y e = zllu

and 2, 0= =Y. For the existence of a non«trivial solution,

4 iDU@ DFI %\ _ 2((01 (V(i

2 L 20F, () dx‘f“ (15

A

which is the characteristic equation obtained by Graebel. The plot of

(o

a vs R for Ci = 0 obtained from this, however, does not contain the
characteristic loop of a neutral stability curve, but gives only the lower
branch of the curve, This shortcoming is explained by considering the
magnitudes of the X“) terms in the inner expansion, which in turn
requires some knowledge of 'ql With Lin's (1945) results

(nl a~ 2.5, p A2 1/20) as a guide it appears that 3(‘ does not
adequately describe the solution near v = =1, for Im(p'x ) A& 0.3

as compared with the Im'x( = 0, The real parts of p%ﬁzii and



;Qt are however small compared to K( and x respectwelyg
(0)
3 L
is altered significantly, this additioral term

and Hlx;} is small compared to ? Thus by including the ’&( terms

the imaginary part of 2

apparently being responsible for generating the loop in the stability

curve, It seems then that a better choice for the solution in the inner

’U‘(a&) = (, (7”—&;’; V(’)
-\'C (1 /,«2((1 )—\-C 'X (16)

For merging equation (16) with the outer solution, again the

region is

proper choice is 1/p for L Inp fore , and } for ¢., as before.

1 2

Then v(y) in the outsr region is given by
( \ - Cﬂ"& +’0~\ (Zczlﬁi)_zcﬁF‘_‘ro()
v 4 /‘ DU. / DU U
Substituting the appropriate boundary conditions leads to

C (Vb_ \ (1*/A 2(“ \*Q'Z(‘O)(Tl

(o)(

Ci(l“z_‘%%\ 7./“‘ OU( Cs ? Q

-}"‘- Cl DFj(EQ\ — %%: DFL (20\ 3 O

’

&7



B = R™*}1- «R, 2 DU - [444R, T
+ 2R, (DU 2% + ++ ],

P. Q—:LEQL__,_,(R 2 DU, [2L«E Ju.
vt Ry (DU 2+ ],

B - R*R,-2iaR,2DU-[(RTU

+3a Ry (DUC_)Z]&E?‘*‘“'}D

and

P, - {R - 3aRe 2 DU, - %LRDU
*"‘(a‘d R (DU [ 2° +~~f9

where DnU{c = DU evaluatad at Y=Y These are valid in the
neighborhogd of the critical point for any distribution function that
vanishes as T becomes large, specifically for N(v) negligible when
v 7 T, where liA(W=C)T\ < 1.

A change to a stretched variahle and inner and outer expansions
are introduced &% in part A, When all these are substituted into
equation (12), the stability equation in the inner region is now modified

to
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and thus to the characteristics equation

(1;
U158 w2300 )
- Z, [1 - %ﬂ-}DF‘ 2, +’ZDUD 1 \dd’i"i‘ o

—~

The plot of @ versus R resulting from this does have 2 loop and the
equation is essentially that used by Lin, although he elected to express
the outer soiution as an expansion in powers of a2 . With present
computers the expansion in terms of the coordinate rather than arz
seema to be much simpler and more accurate,

B:. The Determination of the Characteristic Equation for a Viscoelastic

Liquid of Type A' cr B!

For a viscoelastic liquid which does not depart too drastically
from a Navier-Stokes liquid the solution of equation (11) can be carried
out in a manner analogcus to the soluticn presented in part A, Specifi-
cally, it is anticipated that in equation (12) both !c ‘ and ‘P /o \ will
be emall. Hence, the flow region can be divided into an inrner and an
outer region a8 previcusly done,

In the inner region the Pn can be expressed as series in z by
expanding the denominators and then integrating term by term, The

results are
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(1 - Lé"(DUex""K—

where ¢ s paR

(0)
k( DU, -—-&-‘0 (18)

R The outer equation is unchanged, Since the term
containing Rl multiplies the fourth derivative, g’l and '2(2 remain as

in part A, Taking ¢ te be small but still of larger order than ., 2(,3

is approximated hy

<o\(.(\«:¢ ) +e<é((}) (19)

where

d*9, &%,
‘g‘;{&" - uz DU """'Z"" i



and

d*cﬁi dzqsl Of/*\/)
—— - w DU, 5+ = ¢y DU, —=
dr(‘} UZD C J#< 47

(0}

3 in Part A, and

3¢ dih
qg:"lf('( &d‘( - 4 d,, )

Thus for the solution in the inner region, ?(1 and 2(2 as given in Part A

Then ¢0 is the same as 2(

are used, and ¢ + €9 is used for 3

Because of the additional linearization introdvced by equation
(19), the present results are limited to small ¢ and serve mainly to
indicate a trend. For larger values of ¢ ‘he perturbation scheme used
to solve equation {18) may not be adequate, In this case, one would
have to resart to an exact solution of equation (18) as preserted in the
Appendix.

Since the outer solution remains unchanged and 2(3 is not
directly involved in the merging, the characteristic equétion retains
the same form as equation (17), the only difference being ?( is now
given by equation (19). |

C. Solution of *he Characteristics Equation

For calculation pruposes, it is convenlient to introduce the change

3P

¢ (DU )?

in variable

where

31



Then the left hand side of equation (17) becomes
(o)

(71)
»g o\2<\§°‘ (72) |
dn, (20)

%io\Sg;olS \nx(zS)‘\-)\l id:a% i3q) 4_‘/‘ }
ﬁsj %j&ﬁ hatig) + )\‘f 31 hylc 1)—3(“:;5&%

where

=k ep

. (a« W DL (TN dT o
5 (ph) ”(& N(T) dT )7

The functions h1 and ha are discusased, and tables of hl and hz and

their derivatives are given in Annals (1945), Putting x = 1 S

" 3
2.0 ¢ (*1Y " BZ\m(1 S

@-’— L“l («."S) = Zi (ZOO)Z’”;‘[ e

it follows that

ﬁ, 1\ AZM+1. ‘SZ
3 i ( zoo)2m+1
+ (_ W\*i- @zm ] tmwif
(200} jg )



and

Qrm 1’11(1 )..m 3(1\ S‘BZM

(200)°™
* L?-i m+1 Sq‘ Bam+1
~ (c0O)rm*2
+ (-1 AL XSG\M
where (200)

A, = ZY?'/("("‘/-’J ) ALz ZOOAM_]./BW\(?)VM‘]))

3,

M

253 (%) B, 22008, , [3m(3m1)

are also tabulated.

For the integration indicated on the left hand side of equation (20)
the above series were integrated term by term for S %< 5, For
’S » 5, the integration was continued numerically using Simpson!'s
rule and the asymptotic expansion of hl until there were na noticeable
changes in the value of the integral in the seventh significant figure.

Thess asymptotic expansions are

) {%g%&
R,Q l”l S) S /AP Cos(ﬁ.)/
3
+ ,.7_4 ))
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and

Y ¥,
9‘»» A(S)"'"SC \rs ‘Sm(-z'j/z

(131 )
24 |
whers S = (zﬁ)v’/‘on— and —Z-E:éariségc

The resulty of the integration are

3
(_dS Ruh,(s) = 0.5043061
- 1\\“"“‘1 ‘Sa Bh»\«i
* i (bm+5)(z 00

2.(- 1) A gva+l SL
'3'{ (fmw}(zom Tl

( l\wwl Bzm w42
(Gwm=+2) (200 Y*™ K s 7

Ca30 ds Ruhy(i3) = - 0.29099

+0.504361 3
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(4

$ % hyls) = 0.273588
fg (- ﬂ B us

(ow+2) (200)*™

* :?a__[ -0 134332:'1;
3 (om 5T (20015

2 (=11 Agn i it

T (6m+i) (200)*™ K S,

and
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For given values of N\ and ¢ the solution of equation (20) was
obtained by plotting the real part against the imaginary part for each
side. The intersections of these two families of curves gave o and s .

R was computed from

3
R"" 'D:ifc (_ 1+S%-¢ ).

The results are shown in Figure 1. The graph for \ = 0,

which correeponds to a Navier-Stokea liquid, is aeen to be in close
agreement with Lin's resuits, and the preceeding statements regard-
ing the anticipated sise of the various parameters are seemingly con-
sistent with the final results, The results are qualitatively in agree-
ment with those of Chan Man Fong and Walters, shown also in Figure |,
{The \ in their paper is defined as five times the value of the present
ene.) The quantitative disagreement of the two results is not under-
stood; it is noted, however, that Chan Man Fong and Walters results
for \ = 0, departing considerably fram the results of Lim, do agree
with the results of Stuart (1954). On this basis, it is believed that the
present results are th® more accurate ones,

D. The Stability of a Viscoslastic Liguid of Type C'

Introducing stretched ceordinates again as in part B, pear the

eritical point the stresses become

— L - ZDWQ. (2 VO{'Z’U

P%?}— Pez c/‘\}\“" J‘LQW

+ O(¥)

ﬁ«ae =L [j;,., - Z(DWTJL%—%%
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1 S 2 2
_Wﬂ e (DU D WL I,

- 8(DW OWL Jae +ADWL (272
= T * (OW(J2, -4 02))]
+Z LADWQJ:Q%:{ g ~+ O(U)

where the subscript appended to the Jf:l ‘s ifldicates that they are

evaluated at Y the J:1 's and Krrln 's have been assumed to be all of

the same order of magnitude, The parameter ’ﬁ is defined by

~3‘< z‘” , where =z AMDI‘ ¢ 0 -l::: L‘ WD’.\’J,
e (a ) 4 e We (9P/o3) #—&W

Making the distances and velocities dimensionless as before, and

Ry = (RIpH Iy - 4 T3, (MDY

J

defining

Qﬁ(ﬁ/(s t"z“. Jic+ » :‘c*—ngC(%'é\gg)zL

substitution of theee stresses inte equation (11) along with use of the

equation for the primary flow results in

%t% L?DUCE%-FFE—%LV(&DAQ »2);
7— D’ A Oﬁ"u'
N ( F U + c,oQDUch)m



Proceeding further 2s in case.B, with éi = 0(/M Rj_ )é B(/“ ’e )

(1 -2, DU _.%é_wzce ’DU”-F%-

we have
--uzDU O‘S:QZ = O (22)

a# the governing equdtion in the inner region, It is seen then thet if
¢, and ¢, are both small compared to unity, but larger that |,

agaln X.(o) and %( ) remain unchanged, but a first approximation to
}(0)

S m(1-%i6,n D) ¢, +¢, ¢

where: ¢0, ¢1 are as given in part B,

Away from the critical region, the inviscid equation will again
hold, but the primary velocity profile is of course different from the
pazabo{lc one, (For the model typified by equation (i) with M = N = 1}

and Lt g L for instance, DW satisfies a cubic equation where the

’
caeﬂ.iclentstgr; linear funectione of y.) Comparing a fluid of type A'
{or B!) with type C', if N and Qp/dz are the same for both cases, the
.ﬂgid 'og typg o wﬂl have a steeper velocity prefile tharn the parabolic
one, T,o carry out the details of the solution, it is necessary to specify
N. Whgn this e known, W can readily be found by mumerical methods,

and egﬁa.tla:x (17) then used to determine the neuiral s1abirity curve,
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APPENDIX

An exact solution of equation (18) is possible and has, in fact,
been given by Chan Man Fong and Walters (1965). A modified and more
complete version of their results is presented here to show its use in
the present method.

Equation (18) is of the form

Writing

2 = 2 (M- ~1) X G X

and

@ -%/2 wf(z)ﬁ

/

the equation for f is the confluent hypergeometric form
220 -F8 =0

ooe“p g1

Ua,) =2l € vt (vt do, (o)

(—TF<F<7T‘) —%z?*agi‘%))

with solutions

Ly



and

Viz () = QZTC(Q) ( e”" v (veifdu

- oQ,0+
As z approaches ico, U(z) approaches z - and V{(z) approaches
z Seg . This suggested that U must be the solution corresponding

to 2(3 and V to X4 . Towverify that this is indeed the case, replace
v in equation (23) by 1/2(-1 + s \]—Kl) . Then in the limit as \ approaches

zero with arg z = -y and P = 2v/3,
D) (0 S UG
c:oe,Fs
— -2 expl-ins-53][t
e M(s k)= Ids,

or, upon expressing the integral In terms of Hankel functions,

-2/

NET() (1) @ U(z)




This is the desired result apart from a multiplicative constant. Thus
0
the general form of 'xg ) for arbitrary \ is given by integrating
M
) o0 € b

ﬂ(-;- - (,  expl-2(vaml (v

-$-1 o
+1) v dy

and using this 2((30) in the characteristics equation {17).
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