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LIST OF SYMBOLS

Ji The job associated with the index i in some set of jobs.

ti The processing time of job Ji .

D3 The due date of job Ji .

ry The priority or reward associated with job Jj .

by The penalty or loss function associated with Jj where
f;(x) represents the cost of being x wunits of time
late in the completion of job J; .

J Represents an arbitrary set of jobs, {Jl oes Jn} .

S Represents a schedule or well ordering of an arbitrary set

of jobs.

L(i,k,t,T) Represents the loss associated with scheduling a job Jj
at time t and another job Jjy , T wunits of time after
the completion of Jji .

My =ty +t - Dy is the amount of time by which Jj meets
or fails to meet its due date in a schedule of the form
given above,

Ny =t F i+t +T - Dy is the amount of time by which
Jx meets or fails to meet its due date in a schedule
of the form given above,

R(t,T) The relation defined on a set of jobs, J , where
(J1,J%) € R(t,T) iff L(i,k,t,T) < L(k,1,t,T) for
arbitrary Jy , Jx € J .

J;<<(t,T)J} Indicates that (J3i,Jk) e R(t,T)

J; << Jy Tndicates that (J;,J)) € R(t,T) for all T >0 .

R The relation defined on a set of jobs, J , where
(J1,dk) € R iff J3 << Jx for arbitrary Jj , J € J .

P(S,t) The sum of the lateness penalties incurred over a set of
jobs, J , scheduled according to S where the first job
commences at time t .

J;<<(a)J,  Indicates that (J;,9k) € R(t,0) for all ¢t .

R! The relation defined bn a set of jobs, J , where

(Ji,Jk) e R' iff J, << (a) g, for J;, Jp e J .
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The relation defined on a set of jobs, J , as follows:
(1) If J; € J, then (J;,J3) €D .
(2) 1If J;,J, are time dependently associated,

then (J;,J%) and (Jy,J3) € D .

A time dependent equivalence class with index 1 associated
with the partition of a set of jobs, J , by the equivalence
relation D .

The value of t for a pair of single-time dependent Jjobs
such that

Ji << (t',T)Jx when t' <t and Jp << (t',T)J3
for ' >t ,

The set of jobs completed on or before their due dates in
some schedule S .

The set of jobs completed after their due dates in some
schedule S .

The ordered set of jobs defined by ordering the elements

of the set E (defined above) according to their order in
the schedule S .

The ordered set of Jjobs defined by ordering the elements of
the set I (defined above) according to their order in the
schedule S .

An arbitrary permutation of the set R .

The ordered set obtained by applying the permutation x
to the set R .

The ordered set obtained by ordering the jobs in the set
E (defined above) according to their due dates.

The processing time for a job on the first of two machines
in series.

The processing time for a job on the second of two machines
in series,

Linear deferral cost coefficient for a Job.
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CHAPTER 1

INTRODUCTION

1,1 Introduction to Job Shop Scheduling Problems

The problems considered here are in the general area of job

" which denote

shop scheduling. Such problems occur in "job shops,'
special types of manufacturing or service environments. While there
is no generally accepted definition of a Job shop, the following de-
finition is given to point out some of its distinctive characteristics:
A job shop consists of a collection of service centers, each
composed of a finite set of servers that perform operations or services
for a set of entities called jobs. These jobs are unique in the sense
that:
(a) They are identified with a given customer;

(b) They cannot generally be stockpiled for sale or service.

The term "job" was used in the above definition and can be
thought of as a customer order consisting of a partially ordered set of
operations or services to be performed in order to accomplish a well
defined objective specified by the customer. In addition to the op-
erations, there may be a delivery commitment (deadline) established
by the shop, the customer, or both. Some good examples of job shops
are computer or data processing centers, construction companies, re-
pair shops, companies that manufacture primarily to "special order,"
and hospitals.

The scheduling of a Jjob shop refers to the sequence of de-
cisions that determines the operations on which the servers in each

center are to be engaged as a function of time. The result of

-1-
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scheduling a job shop can be represented in the traditional form of
a Gantt Chart.

The majority of the job shop scheduling problems considered
in the literature concern methods for producing Gantt Charts that op-
timize a well defined scheduling objective. Some of these objectives
are listed below. In each case a rather general statement of the ob-
jective is given (one that a shop manager might specify) followed by

a series of possible specific mathematical representations of it.

1. Good customer relations should be maintained by seeing
that jobs are delivered reasonably on time.
Some traditional representations of this objective are:
(a) Minimize the number of late jobs.
(b) Minimize the total lateness over all jobs.
(¢) Minimize the maximum lateness.
(d) An arbitrary objective of this form is as follows:
Let Jy...Jy, Dbe jobs with deadlines Dy...Dp
end loss functions f1...f, where f3(t) is
the cost of being t units of time late in the
completion of job J; . The objective is to
minimize F(£1(C1-D1),...,fn(Cp-Dpn)), where Cj
is the completion time of job Jj 1in the schedule
being evaluated and F is monotone non-decreasing

for each of the arguments. For example, in (a) and

(b), F(£(C1-D1) ... fa(Cn-Dy)) = .%1 £; (C4-D;)

where f3; 1is a unit step function at C; = Dy

for (a) and a unit slope ramp function commencing at

Ci =Dy for (b).
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2. The workload at each service center should be reasonably
level to avoild excessive overtime and idleness,

This objective has been represented as:

(a) Minimize the total idle time for all servers.

(b) Minimize the total make-span (the time from the
start of the first operation until the completion
of the last operation).

3. In process inventory costs should be minimized,

This objective can assume many forms depending on the

"financial' structure of the organization.

(a) Minimize the mean number of jobs in the shop.

(b) Minimize the mean work completed or in progress on
all jobs in the shop.

(c) Minimize the mean total work on jobs in the shop.

(d) Minimize the mean work remaining on jobs in the shop.

4, Minimize the shop congestion and flow times for jobs.

Some common representations of this objective are:

(a) Minimize mean flow time,

(b) Minimize flow time variance,

(¢c) Minimize the probability that the flow time for any
job is greater than some given constant.

(d) Minimize maximum flow time,

(e) Minimize the mean number of jobs in the shop.

(f) Minimize the variance of the number of jobs in the
shop.

While this list of scheduling objectives is by no means exhaustive,

most real-life objectives will fall into one of these classes.,
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The problem, then, is to devise some method for constructing

Gantt Charts which optimizes the appropriate performance measure(s).

The complexity of this problem depends on the following factors:

1.

The number of facility types or service centers and
whether this number is stochastic or deterministic,

The number and type of servers in each center and whether
this number is stochastic or deterministic,

The type of possible routing patterns for jobs being
processed by the shop.

The job arrival process,

The total number of jobs to be scheduled.,

The number of operations to be scheduled and whether this
number is stochastic or deterministic.

The performance measure to be optimized.

The presence or lack of "special shop properties" (for
example, due-dates are proportional to processing times,

ete. ).

It is necessary to specify each of these factors before a rea-

sonably well defined scheduling problem can emerge.

1.2 Job Shop Scheduling Models to be Considered

In order to obtain a reasonably workable and practical model,

some simplifying assumptions are generally made concerning the factors

listed above.,

The work in this dissertation falls into a class of job

shop scheduling studies in which the following assumptions are made:
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1. The number of facility types or service centers is a
known constant.

2. The servers in each center are identical and their number
is a known constant.

3. The job arrival process consists of one batch arrival of
all jobs to be scheduled.

4. The operations for each job are fixed and known.

Tn particular a special subclass of these problems referred to as sequenc-
ing problems is considered where it is assumed that the shop has only one
facility type or service center and that each job coming into the shop
consists of one operation to be performed on that facility. In order to
obtain analytic methods for optimizing the various performance measures
in models of this type, the following assumptions are made:
1. The processing times (including set up and tear down) are
known and assumed to be sequence independent,
2, If deadlines are associated with any jobs, these are known.
3, Once a job (operation) is started on a given server, it
is processed to completion without interruption.
i, There are no machine breakdowns.
5, Only one operation can be performed by a server at one
time.
6. A server is not permitted to be idle if jobs are queued

for service.

This thesis deals primarily with single server systems although
service centers with m (not necessarily identical) servers in parallel

or 2 (non-identical) servers in series are also considered.
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There are many known results for the single server case,
Here the problem is to sequence a finite set of jobs through the server
80 as to optimize one of the previously menticned objective functions.
Most of these problems have been solved in the sense that for each job
in the queue, an index may be calculated from its due-date and process-
ing time, The performance measure is optimized by ordering the jobs
according to these indices, A good summary of the state of the art in

(1)

this area may be found in Conway, Maxwell, and Miller. Little is
known, however, about these problems if the objective function is due-

date oriented (i.e. some realization of the first general objective

previously specified). This work deals solely with these problems.

1.3 Objective Function Forms Considered

It was previously pointed out that a general objective for
sequencing jobs subject to deadlines could be represented by a function
of the following form:

Minimize F(f1(Cy-Dy), ... , £,(C -D,))

The two general types of problems considered here are:

N ™MB

1. F(£fy(Cy-Dy) ... £,(Cy-D,)) = £:(C4-D;)

i=1

2. F(f1(Cy-Dy) ... £,(Cy-D,)) = mex (£1(C1-Dy) ... £,(C-Dy))

An efficient solution method for the latter problem is pre-

sented in Chapter 5 when the £

;'s are monotone non-decreasing func-

tions. This result is an extension of a theorem obtained by Smith.(l5)
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The former problem is considered for two classes of penalty
functions; one in which the fi's are continuous, monotone non-decreas-
ing and the other in which the fs's are (single) step functions,

These are discussed separately.

1.4 The fy's are Continuous, Monotone Non-decreasing

This problem (and in some cases a more generalized form) has
been considered for certain types of penalty functions by many authors
(References 3,5,7,9,11,13,14 and 15). Held and Karp,(5) Lawler,(7)
and Root(ll) all present dynamic programming formulations of these pro-
blems for arbitrary fi's . Unfortunately, the practical applicability
of these methods is limited in that they are generally computationally
infeasible for problems for twenty jobs or more. Mc Naughton(9) and
Smith(l5) present nice solutions for problems in which the penalty
functions are linear and all due-dates are equal. However, attempts
to extend these results to models in which the facility has m servers
in parallel(ll) or in which the due-dates are different<3’ll’13> have
met with little success., Problems in which the loss functions are
quadratic have also been considered,(lu) but not solved,

The primary objective in the first part of this work was to
determine under what conditions a problem of this type can be easily
solved and to show what the solution would be, The main result is
the "reduction theorem" at the end of Chapter 2. This theorem states
that for a certain class of these problems there exists an equivalence

relation on the set of jobs to be scheduled. This relation induces a

partition of the jobs into a set of equivalence classes, say Bj1...Ep ,

on which a well ordering is defined so that there exists an optimal
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schedule (or sequence) for the jobs of the form (Eiq ,..., Eip) where
the pairs of classes (Eil’EiE)"°"(Eip—l’Eip> belong to the well order-
ing. The importance of this theorem is twofold. First, it follows

that in these cases the only real prcblem involved in finding optimal
schedules is that of scheduling jobs within these equivalence classes.

It is further shown that the "nice® results in this area(9’ll’l5) arise
when the latter problem is trivial. In this sense, they all follow
directly from the reduction theorem.

Second, it broadens the practical applicability of exact tech-
niques such as integer 8) or dynamic programming by possibly reducing
the original problem to a series of proper subproblems,

On the basis of this result, Chapters 3 and 4 consider the
characteristics of an optimal schedule for the jobs in such an equival-
ence class. In order to obtain meaningful results, only problems in
which fq = fp = .., = f = £ are considered where f 1is a polynomial.
It is shown that the reduction theorem can be applied to this class of
problems but that little can be said concerning the characteristics of
cptimal schedules unless f is of the form ax + bx2 (a,b > 0).
Further, it is shown that the most highly structured of these problems
is that in which f = ax . Several characteristics that an optimal
schedule for a problem of this type will have are determined. However,
these are not sufficient to guarantee that any schedule having them
will be optimal. This is shown by considering in detail problems in-
volving just three Jobs,

The investigation of the problems in this class ends on that
rather negative note and it is this author's opinion that further

analytic work in this area is likely to meet with only limited success.
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The discussion of the three job problem, however, should provide a

valuable source of counter-examples to propcsed algorithms in this

area,, (3}13)

1.5 The fs5's are (single) step functions.

This problem has received little attention in the literature
and the only known pertinent result is that obtalned by Smith:(15)

All jobs can be completed by their due-dates if and only if they are all
on time in the schedule obtained by ordering the jobs in order of in-
creasgsing due-dates.

Chapter 5 contains a simple algorithm for sequencing the jobs
so as to minimize the number of late jobs (the fj's are unit step
functions)° While the author was unable to find similar algorithms for
minimizing the number of late Jjobs when the service center has m servers
in parallel or for minimizing the weighted number of late jobs through
a single server (fj is a step function of height ry > 0), efficient
dynamic programming algorithms for these problems are presented in
Chapter 6., Results not included here have also been obtained concern-
ing the problem of sequencing jobs subject to some arbitrary partial
ordering. A generalization of Smith'®s result was found, showing that
there exists a well ordering of the jobs such that the jobs can all
be completed on time consistent with the partial ordering if and only
if they are all on time in the schedule defined by the well ordering.

A rather simple algorithm was developed for determining this well order-
ing. In addition, a subclass of problems was specified for which an

efficient dynamic programming algorithm can be used to find a schedule
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that minimizes the weighted number of late jobs subject to the con-
dition that the jobs completed on time be consistent with the partial
ordering. A final result defines one class of problems for which the
dynamic programming results of the previous sections can be used to
minimize the weighted number of late jobs subject to the condition
that all jobs be scheduled in a manner consistent with the partial

ordering,



CHAPTER 2

THE DEVELOPMENT OF THE REDUCTION THEOREM

2.1 Introduction

The problems considered here belong to a general class of
problems in which a finite set of jobs must be sequenced through a

single facilityv, minimizing some function of the lateness penalties

(1) (15)

incurred. Conway, Maxwell, and Miller and Smith contain. good

summaries of the known results in this area. Specifically, the special
problem of minimizing the sum of the lateness penalties(3’5’7’9’11’13’1u)
is treated when the penalties are independent (i.e. the penalty incurred
by the job does not depend on the penalties incurred by other jobs).

The case of linear penalty functions,(3’9’ll’l3> quadratic penalty func-
(5,7)

have been considered in

tions,(lu) and general penalty functions
the literature. Held and Karp(s) present a dynamic programming algorithm
for solving these problems, which, unfortunately, is generally computa-
tionally infeasible for problems of 20 jobs or more.

This chapter and the two that follow concern conditions under
Which an optimal solution to such a problem can be obtained by solving
a series of proper subproblems. The results, then, will broaden the
practical applicability of exact algorithms, such as dynamic or integer
programming.

The problem is to sequence n Jjobs, Jj ... Jp , with known
processing times, t; ... t, , and due-dates, Dy ... Dn , through a
single production facility. For each job, Ji , there is a penalty

or loss function, fj , where f3(x) is the cost of being x units

-11-
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of time late in the completion of job J; . The objective is to find
a sequence for the set of jobs which minimizes the sum of the lateness
penalty costs incurred over all jobs,

It is assumed that the processing times, which are defined
to include the set-up and tear-down times, are independent of the sequence,
In addition, the n Jobs are to be available for production throughout
the scheduling period. Once production begins, the facility operates
continuously until all jobs are completed. Finally, no lot-splitting
is allowed, so that production on a job continues from start to finish
without interruption.

This chapter deals with the special class of these problems

where the following assumptions are made concerning the penalty functions:

fi(x) >0, x>0
(2) f; is continuous™®

(3) f; is non-decreasing

The first and third assumptions imply that there is no penalty
until a Jjob is late, at which time a positive penalty is incurred which
doeg not decrease with time. The continuity assumption rules out the
possibility of jumps in the loss functions. In fact, as is illustrated
in later chapters, the scheduling methods change considerably when this

assumption is not satisfied.

*Mathematically, as will be shown in Appendix I, it is necessary that
f; Dbe absolutely continuous. However, continuous functions which

occur in real-life problems are normally absolutely continuous.
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The theorems presented here concern the characterization of
certain schedules which are optimal with respect to the specified per-
formance criterion. The main result concerns the condition under which
a special equivalence relation can be defined on the set of jobs,

J = {Ji . Jn} . This relation induces a partition of the jobs such
that an optimal schedule for the complete set is obtained by finding

an optimal schedule for the jobs in each equivalence class.

2.2 Two Job Sequencing Relations

Definition: Let IL(i,k,t,T) represent the loss associated with jobs

J; and Ji in a schedule where the processing of job Jj commences

at time t and that of job Jj commences at time t + t; + T .
Further, let M; = ti + t - Dy and Ny =t + t5 +t + T - Dy

represent. the lateness of jobs J; and Jy respectively in a sched-

ule of the form just defined.

Thus,

1l

L(i)k‘JtJT) fi(Mj_) + fk(Nk)

and L(k,1,t,T) = £, (M) + £5(N;)

The following set of results concerns the conditions under
which a geheral inequality can be obtained between L(i,k,t,T) and
L(k,i,t,T). Without loss of generality, assume that ti < tx

throughout this section.
CASE I: Di <Dy .

LEMMA 2.1 Given jobs J3 and Jxp with D3 <Dx .
If £y xfy , f3' is non-decreasing, and fit > fy' ,

then L(i,k,t,T) < L(k,i,t,T) for all T >0, - ®<t <+ o,
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Proof: L(i,k,t,T) = £;(M;) + £ (Ng)

fr(Mg) + £1(Ni)

Il

L(k,1,t,T)
If N <O, then fi(M) = £(M) =0
and L(i,k,t,T) < L(k,i,t,T) since f3(Mj) < £5(Ni) .

Hence, assume Np > O .

Since Di < Dk , Nk = ti + te +t+ T -Dg <Nj =t1 + ty + t + T - Di
and for Nk > 0 we have Ni >0 .

For fi > f) , f3(Mc) < £3(Ny) and there are now three cases to consider.

(1) If M; <O, then £3(M;) =0 and

L(i,k,t,T) = £,(M ) < £,04) + £;(N;) = L(k,1i,t,T).

(2) If M; >0 and M, <O, then £, (M) =0 and

il

L(i,k,t,T)" = £, (M) + £,()

L(k,i,t,T) = £5(N;) = £5(W) + £;(0;) - £3(N) .

Since f3(M.) > f(N,) , it is sufficient to show that

[£;(y) - £5(m) ) > £,00)

But P Mk

1]

tk + t - Dk S’O or tk + L S Dk .

Hence Mj =t5 +t - Dy <tpy+t -D3 <Dg -Dj .
Consequently, it is sufficient to show that
[£3 (M) - £5(0)] > £5(Dy - Dy) > £5(5)
This follows from the fact that N; - Ny = Dx - Dy , f4' is non-decreasing,
and Ny >0 . A formal proof is obtained by applying the theorem presented

in Appendix I.
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(3) If M; >0 and M >0 , then f (M) >0 and

i

L(i,k,t,T) = £5(M;) + £3.(W)
L(k,i,t,T) = fk(Mk) + fj(Ni)

= £ (M) + £5(M) + £5(0) - £3()

In this case, it is sufficient to show that

or

£ (M) + F1(N3) - F5(M5) > Fic(Ny)

£,(0) - £5(4) > 76 (W) - £ (1)

This follows from the fact that N; > Np ,

and

N

1”Mi=tk+TZt'i+T:Nk-Mk,

fil Z fKY

A formal proof results from applying the theorem presented in Appendix I.

Therefore, L(i,k,t,T) < L(k,1,t,T) for all T >0 , t.

Reviewing the proof of this lemma, it is interesting to point

out how each sufficient condition concerning the loss functions affects

the result.

The three stated conditions were:

(1) T3 > fx

2 f.' 1s non-decreasing
i

If the first condition is not satisfiled,

L(i,k,t,T) < L(k,1,t,T) if N <O (f.e. T+ t <D - b5 - tk)

If fi > fx but the second condition is not satisfied, then

L(i,k,t,T) < L(k,1,t,T) for t <Dj - tj .

If only the third condition is not satisfied, then

L(i,k,t,T) < L(k,i,t,T) for t <max ((D; - t5), (D - ty )
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CASE II: Dp <Dy .
The following points in time are significant in the analysis to follow:
(D - t1 - tk‘,).’ (Di -t - tk); (Dk = tk)} (Dj_ - tk) )

and (Di - ti)
Since ti < tk and Dk < Di ,

(Dk -ty - tk> < <Dk - tk)ﬁ (Di -ty - tk)
(D1 - ) > (Dk - ), (D - b3 - tx)

and (D; - t1) > (Dy - tk)

There is no general relation, however, between (Dg - ty) and

(Ds - t5 - tkx) . The two possible cases are shown below.
(1) (Dk—ti—tk) < (Dk—tk) < (Di—ti-tk) < (Di—tk) S,(Di~ti)
(2)  (Dp-ty-ty) < (Dy-ty-ty) < (Dyp-ty) < (Dy-ty) < (Dy-t5)
As before,
L(i,k,t,T) = £3(M;) + £ ()

L(k,1i,t,T) = £ (M) + £5(N;)

il

There are Tive general cases to consider,
(1) If t <D -ti-tx with T >0, then

ty + tg +t - D <O and nence (M) = £,,(M) = 0.

In this case,
L(i,k,t,T) = £(N)

N

L(k,1i,t,T) = £3(N;)
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For Lemma 2.1, it was necessary to assume that f3 > f; . In this
case, however, no comparison can be made between L(i,k,t,T) and
L(k,i,t,T) wunder this assumption in that Ny > Nj . Hence, it
will be assumed throughout this discussion that fj < fx . Con-
sequently, L(k,i,t,T) < L(i,k,t,T) for the case being considered.
(2) (D - t5 - tx) <t < (Dy -ty - ) with T >0 .

In this case if fj! is non-decreasing, then L(k,i,t,T) < L(i,k,t,T)
for all T >0,

L(i,k,t,T) = fx(Ny) since M; <O

L(k,1,t,T) = £,(M ) + £, (N, )
Clearly L(k,i,t,T) < L(i,k,t,T) when t <Dk - tx (i.e. Mc <O)

If t >Dy - t, , then rewrite the expression for L(i,k,t,T)

L(i,k,t,T) = f(N;) + £ (M) - £3()
Since fk(Ni) > fi(Ni), it is sufficient to show that
£ (N) - £(N; ) > £, ()

This follows from the fact that

£, (m) - £, (1) > £ (N -T) - £, (N -T) = £ (W -T)
(since Ny - T<O for t<Dj - t3 - %), fkx' 1is non-decreasing,
and N - T > Mg . A formal proof results by applying the theorem
of Appendix I,

(3) (D1 - £y - tx) <t <Dj -t with T >0,
As in the previous case, IL(k,i,t,T) < L(i,k,t,T) for all T >0

if fk' is non-decreasing:

li

L(i,k,t,T) = £ (Ny)

L(k,i,t,T) = £, (M) + £5() .

il
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If t <Dg - tyx , then I(k,i,t,T) < L(i,k,t,T)
If t >Dp - t , then write

L(i,k,t,T) = £(N;) + £,(N ) - £(I;)
and it is sufficient to show that

(£ (M) - (M) > 1 (M)

This follows directly from the theorem of Appendix I in that

£ (W) - £.(0) > £ (N -N;) = £,(D5 - Dy)
fi. ' is non-decreasing, and Mg < Dy - D for t <Dj - tx .

(4) Di -tk <t <Dy -ty with T >0 .
Here, the above development would hold except that

(Dy - Dx) < M < (Dy - Dk) + (B - t3)

Consequently, no general comparison can be made between (fx(I) - f3(I3))
and f1.(Mc) . In this case, then, there is no general inequality between
L(k,i,t,T) and L(i,k,t,T) .

(5) t>D; -ty with T >0 .

I(1,k,t,T) = T3 () + £i(m)

L<k;iyt;T> = fk(Mk> + fi(Nj‘)

Since M5

il

t; + 6 - Dy <t +t - Dy = My
Ni =t3 +tx+ T+t -D5 <ty +t+T+ 1t -Dy =Ny
1 < fy

it follows that f5(N;) < fi (M)

and £3(Mi) < fe(Mg) -
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Therefore, it 1s necessary to compare

£, (M) - £5(1) and £,(N) - £ ()

But Ny =M =tk +T >t +T=1DNg - Mg
and fk >ty

Further, M K Mi .

Hence, no general inequality exists between
L(i,k,t,T) and IL(k,i,t,T)
The results of this analysis are summarized below:
When Dy <D; , no comparison can be made between L(i,%,t,T)
and L(k,i,t,T) wunless fj > f5 .
(a) For £ >f; , L(k,i,t,T) < L(i,k,t,T) when
t <Dk -ty and T >0 .
(b) For fx > f; , fi' non-decreasing,
L(k,i,t,T) < L(i,k,t,T) when t <Dj - t, and T >0 .

c No general inequality exists for € >D; - € and T >0 .,
i k Z

The statement that no general inequality exists between L(i,k,t,T)
and L(k,i,t,T) for certain ranges of values of t , T should be clari-
filed:

For given f; , fy , t , T , there exist values of t; , ty ,
D; , Dk for which L(i,k,t,T) < L(k,i,t,T) and others for which
L(k,i,t,T) < L(i,k,t,T)

So far the discussion has centered on sufficient conditions
for IL(i,k,t,T) < L(k,i,t,T) or vice-versa for various values of t ,
T . One important necessary condition for such a relation to hold is

given below,
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LEMMA 2.2 Given Ji and Jy with arbitrary ti , tx , Di , Dk ,

fi , and fr ; L(i,k,t,T) < L(k,1i,t,T) for all T >0 only if

Proof: Suppose Dk < Di and, without loss of generality, T =0 .

Let t be such that t; + t +t - Dy = O , that is t =Dj - b5 - by .

Hence, tl + t - Dl = Ml -tk—_ <0

tl+tk+t -Dk:Nk:Dl—Dk>O

But te +t =D =M =D; - Dy -ty
If M <O,
L(i,k,t,T) = £ (D3 - Dy) >0
L(k,i,t,T) = O

and the proof is complete, otherwise Dy - Dy - t3 >0

or Di =D -0 = ts where & > 0 .,

Then, let t =D; -ty - tx - & and
L(i,k,t,T) = fx (D; - D - 8) >0
L(ks,1,t,T) = O

and hence, there exists t such that

I(k,i,t,T) < L(i,k,t,T) for arbitrary T >0 .

The results obtained so far are summarized in the diagram on
the next page.

These results are not particularly encouraging and should
indicate the potential complexity of these problems., However, the fact
that there are conditions for which L(i,k,t,T) < L(k,i,t,T) for all
T >0 can be used in problems with a special property to obtain the
main result in this chapter, a reduction theorem for decomposing the

original problem into a series of subproblems.
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2.3 Reduction Theorem

Definition: Given a set of jobs, J = {Jl oo Jn} and values for
T >0 and t , arelation, R(t,T) , is defined on the set J as
follows:

(35,0, )e R(t,T) iff L(i,k,t,T) < L(k,1i,t,T)

Denote the fact that (J;,J,)e R(t,T) Dby writing

Ji << (t,T) Jk .

Definition: Two jobs, J3i and Jy , are said to be time independent

iff J; << (4,T) J for all - o<t <+ o, T>0 or Jp << (t,T) J3

for all such t , T . Otherwise, the jobs are sald to be time dependent.

Definition: Two jobs, Ji and Ji , are said to be adjacent time in-

dependent iff J3 << (t,0)Jx or Jx << (t,0)J; for all t . Otherwise,

the jobs are said to be adjacent time dependent.

It should be obvious that Jjobs which are time independent are
adjacent time independent and those that are adjacent time dependent
are time dependent.

When J; and Jp are time independent with J3 << (%,T)Jk
for all - o<t <+ «, T >0, this is denoted by writing J; << Ji .
In like manner J5 << (a) Jy denotes that J3 and Jk are adjacent
time independent with Ji << (t,0) Jx . For a set of jobs, J = {Ji...Jn},
let R denote the relation defined by time independence and R' the
relation defined by adjacent time independence.,

One might expect that the flow dilagram presented in the pre-
vious section would be simplified if it were assumed that T = O

throughout the analysis. Unfortunately, no simplification arises if
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this assumption is made. However, the necessary conditions stated
in Lemma 2.2 for time independence are alsoc necessary for adjacent
time independence. This can be seen by noting that the proof of the

lemma does not depend on the value of T .

Definition: Given a schedule, S = <Jil ‘e Jin} , for a set of jobs,
J = {Jl cos Jh} , with known processing times tq ... tp , due-dates,
Dy ... Dy , and loss functions, f1 ... f; . Let P(S,t) denote

the total penalty incurred if the jobs are scheduled as in S with
the first job commencing at time +t where the due-dates are defined

relative to t =0 ,

- Di,)

n r
P(8,t) = = T3 (t+ = i

i
r=1 r m=1

LEMMA 2.3 Given a schedule, § = (J J

iy 'Jik—l’Jik” y ipe1l C .Jin)

and a schedule $' = (Jil,.,Jik 1’Jik+1’Jik°°°Jin>’ then

P(S',t) < P(S,t) iff

k-1 k-1
L(ig+l,ik,t + = t5 5, 0) < L(ip,iggy, t+ 2 b1, 0)
r=1 r r=1
_ k-1
Proof: P(S,t) = P((JilooaJik_l),t) + L(iy,ige1st + rél tir , 0)
k+1
+ P((J: LJs ), bt 2t )
Teqo n’ 7 =1l T
k-1
and P(S',t) = P(S,t) + (L(ik+1l,ik,t + : ts , 0)
r=1 r
k-1
- L(ik} ik+]_;t + 2 ti 2 O))
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k-1
Hence P(S',t) < P(S,t) 1ff L(d,1,ik,t + = bt 0)
r=1 T
k-1
< L(ik, ixsl,t + Z tir » O
r=1
Corollary: If J; << (a) Ti, o then P(S',t) < P(S,t) for all ¢t .
k+1 =

Proof: L(ip41,1k,t,0) < L(ik,ipx41,t,0) for all t .

LEMMA 2.4  Given a schedule, S = (Jy ... Jy) in which there are two
jobs, J; and Jp , and 1 <k but Jp << J; with ty <ty . The

schedule §8' , obtained by interchanging J; and Jr in the schedule

S , is such that P(8',t) < P(S,t) .

Proof:  P(S,t) = fy(t + t9 - Dy) + fo(t + £ + tp - Do) +

1 k
.+ fi(t + I tg - Di) + oo + T (6 +  Z by - Dy )+
q=1 g=1
n
v+ £ (t+ 2 ty - Dy )
g=1
= ll + L2 + + Ln
1~-1
P(8',t) =Ly + L, + + L+ f (Bt + % ty - Dy.)
Q=1
i-1
+ g (B by = bg * By41 - Dig1)
q::
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i-1 k-1,
#f (Bt + T tg+ I Fro+ ty - Dy)
q:l T':j.’i'l
ol Foeee Iy
= + 4 ovoe Ly 4+ L+ L+ L., + LY
Ly + 12 Liav b v hg M1

+L:{+Lk+l+g“+Ln
1 ¢ . ]
But Lk + Li < Ll + Lk since

L(k,i,t,T) < L(i,k,t,T) for all T >0 .

And since tk S,ti and the f;'s are non-decreasing,

L' <L, for j=1... (k-1-1
i+j = it ! ( )

Hence P(S8',t) < P(S,t) .

At this point it is necessary to assume that the scheduling
problems to be considered have the property that R' 1is a transitive
relation, While this property is quite reasonable, it is nct obvious
that all scheduling problems in the general class previously defined
have it. However, the author has nct been able to find a numerical

example where R' is not transitive.

LEMMA 2.5 Given a set of jobs J = {Jy ... Jof where Jj and Jy
are adjacent time dependent but are a&jacent time independent with
all other jobs in the set, J' =4dJ - {Ji,Jk} , then J' can ke parti-
tioned into two sets, B and A , such that

Jq € B iff Jy << (a) J3 and Jgq << (a) J
Jg € A 1ff Jy << (a) Jq and Jp << (a) Jg



-26-

Proof': Congider any job Jq € J' . Since J; and Jq are adjacent

time independent, either J; << (a) Jg or Jgq << (a) J; .

(1) 1f J; < (a) J, , then consider J, and J, . As in

q q

the case of Jj , either Jp << (a) Jg or Ju << (a) Jx .
If J << (1) Iq > then Jy e B . If Jg << (a) Jx ,

then Ji << (a) Jq << (a) Jx and J; << (a) J since

R' is transitive. But J; and Jyp are adjacent time

dependent and we have a contradiction. Hence, Jp << (a) J4

(2) If Jqg << (a) Ji , then the same type of argument as above

can be used to show that Jq << (a) Jx and hence Jq € A .

Definition: For a set of jobs, J = {Jl oo Jn} , a pair of jobs, Jj

and Jjp , are said to be adjacent time dependently associated if there

ii

exists a sequence of jobs, (Jil e Jip) s Jiq ed for g=1 ... D,

such that (Ji,Jil) s (Jil,Jig) e (Jip_l,Ji ), (Jip,Jk) are adjacent

b
time dependent pairs. Such a sequence of jobs, (Ji,Jil,ngu,Jip,Jk),

is called an adjacent time dependent string.

Define the relation, D , on the set J as follows:
(1) If Ji € J then (Ji,J5) €D .
(2) 1f Ji,Jk € J are adjacent time dependently associated,

then (Ji,Jk) and (Jk,Ji) eD.
LEMMA 2.6 D is an equivalence relation.

Proof': Since D is reflexive and symmetric by definition, it 1is only
necessary to show that D is transitive. If (J;,Jy) and (Jk,Jq)e D,
then there exist adjacent time dependent strings Jy , Jil seess Jy o dp

and Jy , Jkl 3 eeo Jks s Jq .

q -
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Thus J3 , Jil

time dependent string and (Ji,Jq) eD.

s eee Jip y Jk Jkl 3 eee Jks s Jq is an adjacent

Definition: Associated with the equivalence relation D 1s a parti-
tion of the set, J , into a set of equivalence classes. Such an equi-

valence class will be called an adjacent time dependent equivalence class.

LEMMA 2.7 Given a set of jobs, J ={Jy ... Jnf , and a proper subset,

J' = {Jpl ces me} , which is an adjaéent time dependent equivalence class.
The remaining jobs in J can be partitioned into two sets, B and A,
such that

J: e B iff J, << (a) Jp, ... J: << (a) J
1 i Py 1

Jy e A iff Jpl < (a) J5 ... me << (a) Jy -

Proof: Consider any job, Jy € d - J!
Since J' 1s an adjacent time dependent equivalence class, J3 1is

adjacent time indépendent with each job in J' . In particular, either

. ) .
J; << (a) Jpl or Jpl << (a) J; .
If Ji << (a) Jp1 , consider any other job, ka e J' . By definition

of an adjacent time dependent equivalence class there exists an adja-

cent time dependent string of the form (Jpl, Jql’ con Jgos ka)
where Jql 9 eee 3 JqS e J'
But (Jpl, Jql) cen (Jqs, ka) are adjacent time dependent pairs.

Hence, apply Lemma 2.5 to each pair in the order given to obtain:
Iy << (a) Jpl » Iy << (a) Jql v I < (a) JqS s

J; << (a) ka .
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Hence J; << (a) ka for arbitrary ka e J'

In like manner, if J, << (a) J the same argument can be
L

i
: . s '
used to show that ka << (a) J; for arbitrary ka e J' .
Consequently each job, J4 € J - J' , will be uniquely assigned

to either set B or set A .

Remarks: Since it was assumed that the relation defined by adjacent
time independence is transitive, it should be obvious that for any

pair of jobs, J;y € B and Jy e A, J; << (a) J .

ILEMMA 2.8 Given a set of jobs, J = {Jl ces Jn} , and a proper subset,
J' = {Jpl . me} , which is an adjacent time dependent equivalence
class, Any schedule, S , in which Jbl 2 wee s me are not adjacent
can be transformed into a schedule §' in which Jpl yeany Jp are

m

adjacent such that P(S',t) < P(S,t) .
Proof: Without loss of generality, assume S is of the form:

(Jl,acn) Jpl’onc, Jpz,_o.-, me’-cc Jn)
where jobs Jil,..,,Jis lie between jobs Jpl seees me .
Using Lemma 2.7, each job in the set, {Jil...Ji } is a member of either
. _ S
the set B or the set A defined by the set of jobs J' . There are
three general cases to consider.
1) If J; € B, then J; << (a) J for k=1...m.
(1) 12 3y 3, 1y << () T
In this case, define a new schedule, S, , of the form
(Jl,"" Jil 9 Jpl 9000y Jp2 9000y me geocoy Jn)
and P(S1,t) < P(S,t) by repeated application of the corollary to

Lemma 2.3, Now operate on Sl .
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(2) 1If (1) does not apply, then J; e A and consider J; .
1 s

If J. €A, then J << (a)J; for k=1...m and a new schedule,
13 pk S

S, , can be defined of the form

(Jl,aa., Ipyseees Jpg,..u, Jpr JTigoeees Jn) -

As in the previous case, P(Sq,t) < P(S,t) by repeated applications
of the corollary to Lemma 2.3. Now operate on 37 .

(3) If neither (1) or (2) apply, then Jj e A and J3_€B .

Hence, there must exist a pair of jobs, Jib and Jib ) such that
+
Ji. € A and J: € B. But Jj < (a) J for k=1...m and
b Tp+1 o+l (2) Pk
J, << (a) J: for k=1... m ., Further, J. < (a) Jj
pk ( ) lb ) _-_|_-b+l ( ) lb

Hence, Jip may be moved to the right by successive interchanges to obtain
a schedule, 8y , of the form, (J,..., Jpl,,oa, Jib+1 » Tipgseees
Jp s»ess Jp) and P(S1,t) < P(S,t) by repeated application of the

m
corollary to Lemma 2.3. Now operate on Sy .

At each stage, either one of the jobs in the set, {Jil,ouJiS} P
is eliminated from the subsequence (Jpl°°°me> , or a pair of jobs in
the set, {Jil oo Jis} , is interchanged so that the set 1s one inter-
change cloéer to being ordered in such a way that the jobs, Jik e B,

precede the jobs, Ji € A . QSince there are a finite number of jobs,

the process terminates with a schedule, Sy , of the form (Jl,ooo,

Jil,oaa, Jiq s Jpl,, . me‘, JiQ+l,ouo, Jis yooas J) in which

J?l oo me are adjacent and Jik ¢B for k=1..., ¢ and Jik € A
for k = (g+l) ... s

Now let §' =8, and P(8',t) = P(S,,t) < ... <P(S,t)

LEMMA 2.9 Given a set of jobs, J = {Jl veo Jh} , with a proper subset,
J' = {J oo Jp } , which is an adjacent time dependent equivalence

Py oy
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class, Any schedule, S , can be transformed into a schedule of the form
S'" = (B, J', A) where B and A are defined for the equivalence class,

J' , where P(S',t) < P(S,t) .

Proof: Consider a schedule, S , and assume that S is not of the
form (B, J', A) . If the jobs in the set, J' , are not adjacent in
the schedule, S , apply Lemma 2.8 to obtain a new schedule, 51, in
which they are adjacent, and S7 will be of the form (By, J', Ap)
with P(Sy,t) < P(S,t) . There are now two steps that must be performed
to obtain the schedule of the desired form,

1. If BlC: B , go to step 2. Otherwise, consider the set
of jobs ByN A . Pick the last such job, Jq , in the current schedule

and clearly J; << (a) Jq for all Jj € B and J, << (a) J, for all

q Pk

Jp e J' . Now move the job, Jq , to the right by successive inter-
k
changes until a job, J,. , is encountered where Jy € A .

Since Jq was the last job in the current schedule which was a member of
B4 () A, the new schedule, 8, , so defined most be of the form,
(Bp, J', As) where

By, = By - {Jg}

Ay = Al, U {Jq}

and P(8p,t) < P(S1,t) by repeated applications of the corollary to
Lemma 2,3, Now use S, as the current schedule and repeat this step.,
This process terminates in a finite number of steps with a schedule,

S, , where S, is of the form (B, , J' , Ay) and By C B with

r

P(Sy,t) < ... < P(8q,t) < P(8,1)
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2, Consider the set A, and if A, N B =@ , the schedule

S,. is of the form (B, J', A) and the proof is complete, If A.NB £ ¢

T

pick the first job, Jq , in the current schedule where Jg € A, N B,

Clearly Jq << (a) J; for all J; ¢ A and Jg << (a) Ipy. for all

d.

o e J' . Now move the job Jq to the left by successive interchanges

e B . Since J was the

until a job, J,. , is encountered where J q

T
first job in the current schedule which was a member of Ay () B , the

new schedule, Spy7 , so defined must be of the form (Bpy1, J', Apyl)

where

I

Aril Ar - {Jq}

H

BI‘-I']_ Br U {Jq}

and P(Sr+l’t) < P(8,,t) Dby repeated applications of the corollary to
Lemma 2.,3. Now use Sp;7 as the current schedule and repeat this step.
This process terminates in a finite number of steps with a schedule,

Sps+s , where Spys is of the form (Bpys, J'; Apss) and Apps\ B =0 .

But B, () A = ¢ and hence Sp;q is of the form (B, J', A) with

P(Spys,t) < ove S P(S,p90t) <o S P(8y,t) < P(S,t)

Definition: Given a set of jobs, J = {Jl ees Jn} , for which there are
at least two adjacent time dependent equivalence classes., For two such

classes, E:

; and Ep , we say that E;j precedes E; , denoted

By << Bg , if Jy e By << (a) Jp € Bx

Remark: The relation "precedes" as defined above is obviously transitive
and anitsymmetric. In fact, for a set of m equivalence classes for a
set of jobs, J , this relation constitutes a well ordering of the

equlvalence classes.
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LEMMA 2,10 Given a set of jobs, J = {Jl oa Jh} for which there are
at least two adjacent time dependent equivalence classes, E; and EFEg ,

where E; << Bk Then any schedule, S , can be transformed into a sched-

ule of the form
ST o= (Bi) ki, (Ai 0 Bk)) By, Ak)
where B3y and A; correspond to By and Bk and A correspond to

B with P(S',t) < P(S,t)

Proof: 8ince Ej << E. , B3 C By and A C Ay
By Lemma 2.9 the schedule, S , can be transformed into a schedule of the

form, S = (B;, By, A;) where E C A, since By << B and

17
P<Slyt> i P<S)t)
Now consider the set A; . Using Lemma 2.9 and the principle

of optimality, the schedule §; , can be transformed into a schedule of

the form, S, = (By, By, By, By, Ay

k)’ where By and A} are defined

But, B/

for Ey relative to the set of jobs A; 1

i e :BkmAi aI].d.
Aﬁ = Aklﬂ A; . Hence the schedule, Sp , can be transformed into a

schedule of the form,

S'o= (Bi:a Ei_a (Ai N Bk): Ek: (Ai N Ak))
or 8' = (By, By, (B3 N Bye)y By A)
and P(87',t) < P(8,,%) < P(Sl,t) < P(8,t)

THEOREM 2,1 (Reduction Theorem): Given a set of jobs, J = {Jy...Jn} ,
for which there are m adjacent time dependent eqguivalence classes,

E1 ... E, - Any schedule, S , can be transformed into a schedule of

the form, S' = (E E; }.,aEiS) where

ilJ
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Eil << Ei2 K ., <K Eis and P(S8',t) < P(S,t) .
Proof: Using Lemma 2,10, the schedule, S ,>can be transformed into a

schedule of the form,

Sl = (Bil’ Eil ’ (Ail ﬂ Bi2)’ EiE) Ai2)

where P(Sl,t) < P(S,t)

However, since E;. << Ei2 K .00 <L Eis ; it follows that there does not

i1
exist a job, Jq e J, such that for some job, Jy € Bi, » Jg << (a) Jp
and Jg ¢ Eil'. Hence, Bil = ¢ . Further, since the set of Eik's
constitutes a partition of the set J , there cannot exist a job,

Jq € J , where for jobs Jp e Eil and Jg € E12 y Jp < (&) Jqg < (a) Jg

and Jq ¢ Eil or E Consequently, S 1is of the form (Eil, Ei

12 * 2’

Aig) .  Now operate on Ai2 to obtain a schedule of the form,

Sy = (Eil s Ei2 s Ei3 s Eil+ s Aiu) and
P(S5,t) < P(81,t) < P(S,t), etec.

This process terminates in a finite number of steps with the schedule
Sq =9 and
P(S',t) = P(Sq,t) <. .. < P(Sl,t) < P(8,t) .

Corollary: If R' is a well ordering of the jobs, then the schedule

defined by R' is optimal.

Proof: If R' 1is a well ordering, there exists a sequence of jobs,
Jil << (a) Ji2 < (a) ... & (a) Ji  » and the schedule (Jil{..Jin)

is clearly optimal.
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The results obtained by McNaughton(9) and Smith<15) on scheduling
jobs with linear deferral costs follow directly from the corollary using

the following lemma.

LEMMA 2,11  If L(i,k,t,0) = aj(ts + t) + ap(ty + v + t) for all

JiJg, ©>0,=0, £ <O
by
then J5 << (&) J iff —_< =,
a3y~ ag
Proof':
L(i,k,t,0) = a; (t; +t) + ak(ti + by + t)

I(k,i,t,0)

1]

g (t +t) + ag(ty + by t)

L(k,1i,t,0) - L(i,k,t,0) = ajty - at; .

Hence, R' 1is a well ordering of the jobs and the result follows from
the corollary to the reduction theorem.

Incidentally, this type of problem provides an excellent example
of where two jobs that are adjacent time independent are not time inde-
pendent. Consider J; and Jp where ty/ay < ti/a, but ap > a5 .
Assuming that t is sufficiently large,

L(k;iyt;T) - L(iykatyT) = ajtkg - akti + (ai'ak> T,

which is negative for sufficiently large T .

This theorem, then, demonstrates that there will be at least
one optimal schedule of the form specified above., This reduces the pro-
blem to one of determining the optimal sequence within each adjacent
time dependent equivalence class. One property that such an optimal
sequence will have was given by Lemma 2.4, There are other properties,
however, which at least one optimal schedule will possess if additional
assumptions are made concerning the fj's . These are the subject of

the next chapter.



CHAPTER 3

SEQUENCING PROBLEMS WITH IDENTICAL LOSS FUNCTIONS

3.1 Introduction

The problem of sequencing two jobs, Ji and Jy , with known
processing times, t; and tk , due-dates, D; and Dy , and loss func-
tions, f3 and f) , was considered in the previous chapter. For
ti <tk and D3 < Dy , it was shown that £, > fk , T35 > fx' and £y
non-decreasing were sufficient conditions for Ji << Jy . When ti < by
and Dy < D; , however, fp > f; was a sufficient condition for
Jp << (t,T)Ji for limited values of t . Hence, it would appear that a
more structured problem might emerge if the assumption were made that
the loss functions for the set of jobs to be sequenced are the same,

This chapter, then, considers the general problem posed in
the previous chapter in the special case where f = ..., =1fy =1 .

The assumptions of that chapter concerning f will be retained and
the additional assumption made that f* is non-decreasing. The latter
means that at least as much penalty is incurred during the n-th unit

>st

of lateness for a job as was incurred during the (n-1 unit of

lateness,

3,2 Two Job Sequencing Rules

Under the assumption that the loss functions are identical
and that f' is non-decreasing, the results of the previous chapter
concerning the relation between L(i,k,t,T) and IL(k,i,t,T) can be
refined, There are two general cases to consider,

(1) If ti <ty and D; <Dk , then

L(i,k,t,T) < L(k,i,t,T) for all T >0,
..,35_,
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Proof: For f5 = fk =T , it follows that fi > fx and fi' > fk'
Hence, the sufficient conditions stated in the previous chapter for
Ji << Jk are satisfied,

Consequently, since t; < tx and D3 <Dy are sufficient
conditions for time independence, t3j < t, and Dy < Dj or vice-
versa are necessary conditions for time dependence.

(2) If ty <t and Dy <D;j , the
results of the previous chapter obtained when £y > f; hold since
f = f: =f ., Consequently,

L(k,1,t,T) < L(i,k,t,T) for £ <Dy -t , T>0.
Unfortunately, there is still no general relation that can be derived
for t >Dj -t , T 2> O .

Further, the situation does not change if one considers the
special case where T = O ., The question is, then, 1if ti < tk and
Dy <Dj , what are sufficient conditions for the time dependence or
adjacent time dependence of J; and Jx . To determine such conditions,
recall

L(i;kyt;T) = f(Mi) + f(Nk)

I(k,i,t,T) =

|
Hy
P
=
e
4
Hy
—~
=
=
~r

and L(k,i,t,T) < L(i,k,t,T) when t <Dy - tx . For J; and Jy

to be time dependent, it is necessary to find t and T > O such
that L(i,k,t,T) < L(k,i,t,T) . Sufficient conditions for the exist-

ence of such t , T are expressed in the lemma below.

LEMMA 3.1 Given two jobs, Ji and Jg , ywhere ty < tg s D < D3,

- ..
and fi = fk; =f ., If lim f!(i;_y) =1 as y —» oo for arbitrary

0<x< o, then J; and Jy are time dependent,
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Proof: Assume that L(k,1,t,T) < L(i,k,t,T) for t =D; - t3

and L(i,k,(Dy - t1),T)

Il

£ty + T+ (Dy - D))

L(k,1,(D; - t5),T) = £(ty - t3 + Dy - Dg) + £t + T)

Now let x; = min((ty - t; + Dj - D), (b + T))
xp = max((ty - t; + Dy - Dy), (ty + T))
X3 = te + T+ (Dy - D)

and Xy < x < X3 5 X + Xp > X3 -

Hence, L(l,kj (Dl - tl)-’ T) = f(X3)

il

L(k,1, (Dy - ti), T) = £(x1) + £(xp)

Consider t >D; - t; and let y =1t - (Dy - ty)

1

Hence, L(i,k,t,T) f(x3 +y) + £(y)

il

and L(k,i,t,T) = £(x1 +y) + f(xs + ¥)
The question now is under what conditions does there exist y > O
such that

f(x] +y) + f(xo +y) > f(x3 +y) + £(y)
It i1s shown in Appendix IT that a sufficient condition for this to
hold is that

Hmo g£1(y)
V7% rr(xty)

=1 for 0<x< o,

It should be pointed out that the above proof does not depend
on the value of T . Hence, the sufficient conditions stated for time
dependence are also sufficient for adjacent time dependence.

Hence, for loss functions having the property that

. !
1im @) 1 for 0<x < o,
Yy = © f£rx+y) :
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a necessary and sufficient condition for the time dependence (and adjacent
time dependence) of two jobs is t; <ty and Dy < Di or vice-versa.

The class of functions having the property is quite broad.
For example, all polynomials with a finite number of terms belong to

this class., Functions such as an exponential function, however, do not.

LEMMA 3.2 The reduction theorem can be applied to sequencing problems
in which all the loss functions are the same function, £, and f' is

non-decreasing with

1im ) 1 for 0 <x <
Vv oo £1(xty)

Proof': It is sufficient to show that the relation defined by adjacent
time independence is transitive. Consider J; < (a) g and Jp << (a) Jp -

Since bty <ty , Dy <D and tp <t Dy < Dp are necessary and suf-

p )
ficient conditions for these adjacent time independence relations to hold,
it follows that t; <ty , Dy <Dy and thus J; << (a) Jp .

This, then, defines one rather broad class of sequencing pro-

blems for which the reduction theorem holds.

3.3 Single-Time Dependent Jobs

Definition: Two jobs, Ji and Jy , are said to be single-time depend-

ent if there exists t* such that for arbitrary T >0 , L(i,k,t,T)

< L(k,i,t,T) for t < t* and L(k,i,t,T) < L(i,k,t,T) for t >t % or

vice-versa,
In order to investigate the question of sufficient conditions
for two jobs to be single-time dependent, consider J; and Jx where

ty < t, and Dy < Dj . If there exists t' such that L(i,k,t',T)

< L(k,i,t',T) then t' >D; - ty since L(k,i,t,T) < L(i,k,t,T)
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for t <Dy - tk . The question, then, is what are sufficient conditions
for L(i,k,t,T) < L(k,i,t,T) for all t >t' . There are two general
cases to consider.
(1) Comsider D; - t, <t' <Ds -ty .
a, For t'<t<D; -ty,
L(i,k,t,T) = £ty + te + t + T - Dj)

L(k,i,t,T) = £(ty + t - D) + £(t; + tx + £ + T - D3)

Let x7 = min((t1 + tx + t' + T - Di),(tk + t' - Dk))

Xy = max((ty + tx + t' + T - Di),(tx + t' - Dx))
x3 = ti + tk + t" + T - Dk
y =%t -t

and O <x7 < Xo < x3 .
Now L(i,k,t,T) = f(x3 + )

L(k)i}tJT) = f(Xl + y) + f<X2 +Y>

The question is what are sufficient conditions for
£(xy +y) + £(xp + vy) > f(x3 +7y) for 0<y <o, Appendix III

shows that f'/f non-increasing is such a condition.

b. Now consider t > Dj - t4 For f'/f non-increasing,

1
L(k,1,t,T) > L(i,k,t,T) for t' <t <Dy - by .
In particular, L(k,i,D;-t;,T) > L(i,k,Di-t;,T)

or L(k,i,Di-t5,T) = L(i,k,Di-t1i,T) + A
where A >0 . By assuming that A =0,

(i.e. t'" =Dy - ti) this becomes a special case of

of the second general case and is treated below,
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(2) DNow consider t' >Dj - t; . For t >1t'

L(i,k,t,T) = f(ti +t - Di) + f(ti +t, tt T - Dk)

L(k,i,t,T) = f(tk +t - Dk} + f(ti L H BT - Di)
Let X, = mjn((ti +E T - Di), (tk + 6 - Dk))

X, = nrla.x((ti +h kT - Di), (tk + 5 - Dk;)>

X3 =t £t 4+ T =Dy

Xh = ti + £t - Di

y =1t -t

Hence O < X), < Xl < X2 < x3 and X9 + Xo > X3 + X),

L(i,k,t,T) =

|
h
N
™
=

+y) + f(x3 + ¥)

L<k;iﬁt)T> = +y) + f<X2 + y)

|
H
—
>
[

and the guestion is under what conditions is
f(xy +y) + £l + y) > £(xy + v) + f(x3 + )
for all y >0 .
Tt should be obvious now that (1) b. 1s a special case
of this situation by simply considering t' =D; - t; (i.e. =x = 0)
The author has been unable to determine a "nice' set of sufficient
conditions for which
f(xl +y) + f(X2 +y) > f(xu +y) + f(x3 + y)
for all y >0 . The class of functions for which this does hold is
likely to be rather limited in that even most polynomials do not appear

to belong to this class. Appendix IV contains a proof that general
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quadratic functions with positive coefficients have this property, but
the following counter example illustrates that general cubic equations
do not.

It should be noted that since the results obtained above do
not depend on the actual value that T assumes, no simplification
arises if T =0 .,

Counter example for cubic equations

Let f(x) = 10x + x5 and assume x] =%y =1 and x, =0 . (The
example will illustrate that Xy and X, need not be equal and that
X, need not be zero. These values were selected to simplify the compu-

tation.)

£(x,) + £(x,) = 22

10x 3

Il

and f(x3) + £(x),) 3 + X3

Solving the equation lO"x3 + x33 = 22 by radicals,

and X3 ¥ 1,703,

Hence, let x3 = 1,7 and clearly

0 <x, <x <x < X3 where Xy + Xp > X3 + %)
with £(xqy) + f(xp) > f(x3) + £(xy)
Now consider y =1 and
f(x) +y) + f(x +y) =56 < f(x3 +y) + f(xy +y) = 57.68

The following lemma is based on these results,
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IEMMA 3.3 If two jJobs, Ji and Jk s 5

due-dates, Dy <D; and loss functions fi = fk = f of the form

ax + bx> (a,b >0) , then J; and Jyx are single-time dependent.

Proof': Consider f*' = a +2Zox and for O < x' < o

1im  £Y(x'ty) _ 1im 2 +2(x'+y)
F=2 f£(y) y= a +2by
a 2ox!
oim Y PO o4 042 .
- MHm - -
v %+% 0 +2b

Hence, Ji and Jy are time dependent by Lemma 2.1.

a
£ atPbx  x+2b
f ax+bx2 a+bx

is clearly non-increasing and f i1is of the form, ax + bx2 .

have processing times, t. < t

k

the conditions of both case 1 and 2 are satisfied and Ji and Jk are

single-time dependent.

3,4 Further Characterization Results

Definition: Let Jy and Jj be single-time dependent jobs where

t. <t

N K and D

Kk <D; . For fixed T >0, let 7'k}i(T) denote the

value of t for which
L(k,1i,t,T) < L(i,k,t,T) for t < 7‘k)i(T)

and L(i,k,t,T) < L(k,i,t,T) for t > 7‘k2i(T)

LEMMA 3.4 74 ;(T) is a non-decreasing function of T .
2

Proof: Consider Tp < Ty and let y = Tp - Ty . From the definition

of ’Tk,i(T) , 1t is sufficient to show that if

J

Therefore,
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L(k,i,t,Tl) < L(i?k,thl), then
L(k,1,t,T,) < L(i,k,t,T,)

and hence 7—k,i(T1) < 7~k,i(T2>

L(k,i,t,Tp) = £(t, + t - Dg) + £ty + t + t + Tp - D)
= L(k,i,t,Tq) + £(t; + t + t + To - D; )
—f(ti+tk+t+Tl—Di)
and.

L(i,k,t,Tp) = L(i,k,t,T¢) + £(t5 + Tty + t + Tp - Dy)

'f(ti+tk+t+T1'Dk)
Let xizti+tk+t+Tl-Di
y:Tg"Tl
Xl+y
and L(k,i,t,Tp) = L{k,i,t,T9) + [ f£1(x)dx
X3
Xt
L(i,k,t,Tp) = L(i,k,t,T¢) + [ & Vo (x)ax
X
k

But x. < x since D, <D, and f' 1is non-decreasing,
i k k i

X+ X, +
hence [1 v fi(x)dx < [k Y f1(x)dx
X.

i x

Consequently, for L(k,i,t,Tl) < L(i,k,t,T9), L(k,i,t,T5) < L(i,k,t,T2)a

Corollary: If f' = c (a constant), then 7 ;(T) =7, 4 (a constant)
")

)

for al1 T > 0.

Proof: Let Ty i = 7‘k’i’(0) and consider the proof to the above
2

lemma, If f' = c, then
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But L(k,i, 7 kJi,o) = L(i,ijk;i,O)
Hence L(k,i, Tk,i,T) = L(i,k, Tk?i,T)
for all T >0 Dby the proof to the above lemma.
Since f 1s continuous,

L(i,k, Tk,i + €,0) < L(k,i,Tkyi + €,0)
for all e > 0O by definition of 7"k P

J

Consequently, L(i,k, Tg,i* e,T) < L(k,1i, Tr,i* e,T) for all T >0
by the proof to Lemma 3.k,
Hence, by definition, 7‘k)i(T) = Ty,; forall T>0.

The results obtained in this chapter can now be used to
determine an additional characteristic that some optimal schedules

will have.

LEMMA 3.5 Given a schedule, 8 = (Jl sae Jn), where J7 1s scheduled

at time ¢ having Jjobs J. and J

1 Kk i <k , which are single-time

o’

dependent with 7"igk(T)

If Ti,k< Lootg) St Tty
q:1+l J:l

then the schedule, 8' , defined by interchanging J; and Jg has

P(S',t,) < P(S,t,)

Proof': For 7‘i k(T) to exist, it is necessary that ti < ti and
J
Dy <Dg . .
i-1 k-1
. - — t
Let Xy Z tq y %o ; q
q:l q:l+l

P(S,t5) = P((Jq «vo J5_1)5 to) + P((J547 -0 Tp1)s Eo

+ox F ti) + P((Jk+l'” Jn), Xp by b x, tk)
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+ L(i,k,ty + X1 xg)
=P+ Pyt P+ Ly
P(8',t5) =Py + P((J547 -+ Jk-1)5 o + X, + tk) + P3
+ L(k,i,t5 + X, 5 x2)
= Py + Pg' + Pé + Lk,i
But Po' £ P, since 1ty <ty
And Ine,1 < Dy x since 7‘i,k(x2) <ty +oxq

Hence, P(8',ty) < P(S,t,)

Corollary: Given a set of jobs, J = {Jl ces Jh} with adjacent time

dependent equivalence classes El << E2 <K L. <L Ep . If J5

J € By are single-time dependent with 7‘i,k(T) and

Tix (B t) < Z t
a> quEm P> JpeEi
q #1i,k i=1...m-1

then there is an optimal schedule in which Jjy ©precedes Jj .
Proof': Consider any schedule S in which J; precedes Jy .
Since 7i,k(T) is non-decreasing the above lemma can be applied to ob-
tain S' and P(S',0) < P(S,0)

It is also reasonable to consider the consequences of

Ti’k(o) > tg o+ Ity
9> Jgekn P 2 JneEq
q £i,k i = Y., .m-1

in the scheduling problem defined in the above corollary. Intuitively,
one would expect a '"dual'" to the above corollary to hold, namely for
J; to precede Jjy 1in some optimal schedule. However, there is no

such general result, While counter examples are difficult to construct,

one is given below for quadratic loss functions.
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Counter example for Quadratic Loss Functions

Let f(x) = x2 and consider the problem of sequencing three jobs,
Ji o, Ji410 Jk starting at t =0 .

For ti4l = 1/2 ty

I
N
ot
il

w

and D, =11/2 D =2 Dy =2.2

73 x(0) can be found as follows:
J

L(i,k,t,0) = (t + 3/2)° + (%

+
w

L(k,i,t,0) = t© + (t + 7/2)2

Equating and solving for ¢t , 7'i’k(0) =1/2
Hence,7’iyk(0) > ti41 - (It will be seen that the strict inequality
can hold).

L(i,k,0,0) = 9/4 + 9 = 45/ < L(k,1,0,0) = 49/k
Hence, P((J5, s Ji41) 0) < P((Jy, Jis J341)50)
In like manner,
L(k,i+1,0,0) = O + .09 < L(i+1,k,0,0) =0 + .25

P((Jy> J541 » 91),0) < P((Ji41 5 Ty » J5)50)
L(i+1,i,2,0) = .09 + 16 < L(i,i+1,2,0) = 49/k + (3.3)°

P( (T J5410 J;),0) < P((Jys I35 Ji41),0)
L(i,i+1,0,0) = 9/4 + 1.69 = 3.94 < L(i+l,1,0,0) =4

P((JiJ Jj_+]_: JK),O) < P((Ji+]_: Ji; Jk))o>

Hence there are only three possible optimal schedules:

P((Jx, Ji41s J5),0) =0 + .09 + 16 = 16,09

I

P((Ji, J541, JK),0) =9/ + 1.69 + 49/h = 3.9h + 12.25

16,19

1l
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2
P((J5, Jx, Ji+1),0) =9/ + 9 + (3.3)° = 22,14
and the schedule (Jx , Js,9 » J;) is optimal.
The general result does hold, however, for linear loss functions

as will be demonstrated in the next chapter.



CHAFTER L

SEQJENCING FROBLEMS WITH LINEAR LOSS FUNCTIONS

k.1 TIntroduction

The previous chapter dealt with problems having identical loss
functions. For these problems an additional characteristic of an optimal
schedule was obtained by deriving a restriction on the ordering of single-
time dependent jobs. For problems where the loss function is of the form,

£(x) = ax + bx®

s x >0 , all time dependent jobs are single-time depend-
ent, It was shown, however, that the "dual" of the derived restriction
did not hold for all problems in this class. In particular, a counter
example was given for f(x) = x2 . This chapter considers problems hav-
ing loss functions of the form, f(x) = ax , x >0 , and shows that the
"dual™ restriction holds for problems of this type. While these problems

are the most structured of those considered so far, it will be shown that,

even in this case, no easy solution technique is likely to arise,

4,2 Two Job Sequencing Rules

Without loss of generality, it will be assumed that f(x) = x ,
x>0, (i.e. a =1) . Based on the results of the previous chapter,
the following observations can be made,

(1) For two jobs, J; and J , t; < tx and D; <Dy,

are necessary and sufficient conditions for Jy << Jy
or J; << (a) J . This follows from the fact that
f'(x) = 1 and consequently £'(x)/f'(x+y) = 1 .

(2) As a consequence of the above, the reduction theorem holds

for problems of this type.

18-
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(3) All time dependent jobs are single-time dependent since

f 1s of the form ax + bx2 , x>0,

(4) For any pair of time dependent jobs, T W (T) = 74 4 (0)
2

2

for all T >0 wsince f'(x) =1.

Remark: Since the necessary and sufficient conditions for time indepen-
dence and adjacent time independence are the same and since 7 ; 1(T)

7’i?k(0) for all T >0 , it follows that these concepts are equiva-
lent., The terms time independence or dependence actually used in the
chapter are completely interchangeable with those of adjacent time in-
dependence or dependence,

In addition to (4) an even stronger statement can be made concerning

7‘i)k(o)

Notation: Let 7 . denote T 0)

Jk i,k(

LEMMA 4,1 Consider two time dependent jobs, J; and Jk , where 7—k,i

exists. Then,’Tk i = Dy -tk for Di defined relative to t =0 .
J

Proof: ®&ince 7T, ; -exists, it is necessary that t; <ty and Dy <Dy .
J

Now consider t =D; - tx , T =0 and

L(k,1,D;-t,0) = £(ty+t-Dx) + £(ti+tg+t-Di)

L(i,k,D5-ty,0) = £(t5+t-D;) + £(t;+ty+t-Dy)

= £(ty-tx) + Dy - Dp + b3

I

Hence, L(k,i,D;-t},0) L(i,k,D;5-t),0)

It
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Consider e >0 such that D5 - tp + € <D; - ti

L(k,1,Di-ty+e,0) =D5 - D + € + t5 + €

it

L(k,1i,D;-t,0) + 2¢

L(i,k,D, -t +e,0) = L(i,k,D;-t,,0) + €

Hence, L(i,k,Ds-ty+e,0) < L(k,1,Di-tp+e,0)

for every such € and consequently, 7 k,i = Di - tx Dby definition.

Remark: Since ’Tkvi(T) is a constant, it follows that the relation
R(t,T), is independent of the value of T (i.e. R(t,0) = R(%,T) for
all T >0) . For the remainder of this chapter, let R(t) denote

R(t,0) and J; << (t) Jp denote J; << (t,0) Jy o
TEMMA 4.2 The relation R(t) is transitive,

Proof: It is necessary to show that if Jj << (t) J and Jp << (t) Jq >

then J; << (%) Jq . The proof of this involves considering all possible

combinations of reasons for J; << (t) Jp and Jp << (t) J It is

q -
presented in detall in Appendix V.

Having these results, a final characteristic of an optimal

schedule can be obtalned.

,3 Further Characterization Results

LEMMA L4,3 Given a schedule, S = (Jl'“°Jn)’ where J7 is scheduled
at time t, , having the following properties:
n-2

(1) Jp << (tg) Jo << (bgrty) Jgovodpy << (Bo+ '21 ty) Iy
1=
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(2) J, and J, are time dependent where

1
Tn;l>t2+t3+°ns +tn_l+to o

A new schedule, 8' , can then be defined in which J, precedes Jl

and  P(8',t,) < P(S,t,)
Proof: By induction on the number of jobs separating Jl and Jn .

Initial: Conmsider the schedule 8 = (Jq,Jp,J3)
where J1 << (t,) Jp << (to+tq) Jy3 and T4 g >t + by
Since T3 1 >ty + t, , it follows that:

(1) J3 << (t,) Iy

(2) t, < t3 » D3 <Dy, and T3,1 = Dy-tg > tott,
or D > tp + t3 + to .
For J5 << (%) Jp and Jp << (t,) Jp , it follows that J3 << (%) Jp
by the transitivity of R(t)

But Jp << (t t+tq) J3 and hence J, and J; are time dependent with

ty < 7‘3’2 <ttty

Hence

(3) t, < t3 s D3 <Dy, , and t,< 7T

or to + t3 §7D2 < to + tl + t3 .

5,2 S ot by

In this case, it will be shown that

or g = (JS,JZ,JI)

Jl))to) S_ P( (Jl)JgJJ3)JtO)

P( (Jl,JQ,J3),tO) = f£(tq+t,-D7) + f(tq+to+t,-Dp)

+ f(t,+t +t _+t -D
( 1 2 3 o 3)
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P( (J3,J2,Jl),to) = f(t3+to—D ) + £(t +t 4+t -D

3 2 0 2>

+ f(tl+t2+t3+to-Dl)

3

Since Dy >t 4 by + by > byt by + b .

P( (J7,90,93),t5) = £(by+botty-Dp) + £(t1+tp+tg+ts-D3)
Since Dp < t  + tq + t3 and Dy >ty + tp + t3 , it follows that if
t1 < t2 then
D2<to+tl+t3£to+t2+t3SDl
or D2 < Dl .
Further, if t, <ty , then Dy <Dy since Jy << (t.) Jp
(i.e. tp <ty , and Dy, < Dy implies Jp << Jl) . These two cases
are considered separately.
(a) For t, <ty and Dy <Dy,
to+tl+t3>D2>Dl>t2+t3+tO
and since t; < t3
£t +b+t =D

5 2) = f(t2+t3+to—D2) =0 .

I

Hence, P( (Jl,Jg,JB), ty) = £(t ttott+t -D

3 3)
tl + t2 + t3 + to -D

i

3
since D3 < D2 < to + tl + t3

and P( (JB,JQ,JI),tO) £(t3+to-D3) + f(tl+t2+t3+to—Dl)

I

f(t3+tO—D + 5y + to + by + b5 - Dy

3)
Clearly  P( (J3,J2,Jl),to) < P( (Jl,Jg,J3),to)

if f(t3 + to-D3) = O since D3 < Dy .

Therefore, assume f(tg + t, -D3) = b3 + %o - D3 >0 .

P( (J3,J2,Jl),to) = t3+tO—D3+tl+t2+t3+to—Dl

or = t3+tO—Dl+ P( (Jl;Jg;J3);to>
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But Dy >t 4 o + tp

3

and hence

B (33,35,0,),80) < B( (31,35,05),%,)

(b) For t7 <tp and D, <D,

Dy < Dy < toby+ty < b okttt

3 3=
P( (Jl,Jg,J3),to) = £(t+totty-Do) + ty+tottatt Dy

3201

P( (J3,J2,Jl),to) = f(t3+to—D3) + to+t2+t3—D2

+ f(tl+t2+t3+to—D1)

P( (Jl)J2)J3))to) = P( (JB;JQ) l);to)

= [f(tl+t2+tO—D2) +ty - Dyl - [£(t +tO-D3) - D,

3 3
+ f(tl+t2+t3+to-Dl)]

or =ty + (DQ—D3) + £ttt -Ds) - F(bo+t-D

3 3)
- f(tl+t2+t3+to—Dl)

In the worst case, assume f(t +t,+t -D ) = O and that the
terms preceded by negative signs are positive.
Then

P( (Jl)Jg)J ):t ) - P( (J Jnsd );to)

3 o) 3772°°1

>ty + (D2—D3) + D3—t3—tO+Dl—tl—t2—t3-tO

(Dl—tz-t3—to) + (D2—t3—to) >0

I

since D > tgtto+ty and Dy > totts .

Hence, P( (J3,J2,Jl),to) < P( (Jl,JQ,J3),tO) .
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Induction: Consider the schedule, S = (quoan) where

n-2

J1 << (%) Jp << (to+ty) Jgeee o1 << (tg + & t1) Iy
i=1

and Tn,l >+ to oo ¥ty .

Following the reasoning used in the proof for the initial case,

ty < ty, Dy <Dy, and Dy - &, >t  + by + ... + by
or Dy >t + to + .00 + Ty 1 + ty
and hence, Dy >ty + t) + ...+t 1 .

Tt will now be shown that for any job J; e {Jp...J, 1} either

J or J, may be interchanged with Ji resulting in a schedule Sl

1
where P(S1,t5) < P(S,t,) or Dy > Dy . In the former case, J; and

J, can be interchanged to obtain the schedule S' where P(S',t,)

< P(81,t5) by the induction hypothesis and hence P(S',ty) < P(S,t,).
If the latter case holds for all J5 ¢ {J2--~Jn-1} ; then each of these
jobs is early in the schedules, § = (Ji...Jn) and S' = (Jpdo...Jp_1J7)
and n-1

P( (J1...dp)5t,) = L(l,n,to, i%e ts)

P( (JnJg.,. Ipn-191)st0) = L(n,1,%,, .22 tg)
1=

and P(5',t,) < P(S,t,) since 7—n,l >t .
Now for Js € {Jg.,aJn_l} , consider the following possibilities:
(1) -If J; << Jq , then Jy and J; can be interchanged to
form Sy and the proof is complete.

(2) 1If 7’1)i exists and 7-l,i <t then J; and Jj

o’

can be interchanged to form S .

(3) 1If T3 exists, then Ti1=D1-%



_55_
n i-1
But Dy - ty >tp + Z b >ty + Itk
k=2 k=2
ki

and the induction hypothesis can be employed to interchange

Jl and Ji resulting in the schedule Sl .

The only remaining possibilities are:
(4) If Jy << J; , then Dy <Dy

(5) If 74,5 exists, then Dy <Dj and t; <ty .

Hence, either J; and J; are interchanged, or Dj > D .

Corollary: Given a set of Jobs, J = {Jl...Jn} with time dependent

equivalence classes Ej << By << ... << Ep . I Jy , Jp € By are

time dependent with 7, ; and
J

Tei> 5 tp * % tg

P2JIpeEs SRR
i=1l..,.m-1 gfi,k

then there is an optimal schedule in which Jk precedes J; .

Proof: Consider any schedule, 8 , in which J; precedes J and

Kk’
by the above lemma a schedule, S' , can be defined in which Jyx pre-
cedes J; and P(S') < B(S) .

In summary, the following statements can now be made concern-
ing an optimal schedule for a set of jobs, J = {Jl,nan} where
f. = fi, = is of the form f(x):ax,xzo{

(1 If J is decomposed into time dependent equivalence

classes, Ey...E, , where Ej << Ey, << ... < Ep, there

is an optimal schedule of the form (Ey ... E)
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(2) Consider an arbitrary time dependent equivalence class

E; . If, in a schedule of the form given above, the

jobs in the set E; are to be scheduled in the time
interval,

(t, , t + = t

o o q )

then there is an optimal schedule, (J, ...J; ), for these jobs having

1 b
the following properties.

k-1

a) Ji << (t.+ = t; ) Js
( ) 1k © r=1 Ly 1k+l

(b) 1If Jik << J3 5

q’ then Jik .precedes J;

q
(c) 1If Jik and Jiq are time dependent with

then Jik precedes Jj

q
Further, Jik precedes Jiq if
min(q,k)-1
T. . Sty o+ z ty
T’ Mk r=1 r

(a) 1f Jik and J;  are time dependent with

q
p
..o >t o+ 0t
Tigig="0 " 0 Mg
r#k,q

then Jiq precedes Jik . Further, Jiq precedes Jip

max(k, q)
if T. - >t + bN ts
r=1 r

r%k,q

Tigig S Yo
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Unfortunately, as is shown in the next section, the conditions
specified above do not always determine an optimal schedule., An optimal
schedule can always be found by brute force (i.e. generate and evaluate
all schedules satisfying the conditions specified), but this approach
is not recommended. The best techniques should arise from the use of
these restrictions in conjunction with dynamic programming methods such

as those given by Held and Karp.(5>

4.4 Schedules for Three Jobs

In order to demonstrate that there are non-optimal schedules
satisfying the conditions of the previous section, consider the problem
of sequencing three jobs, J; , Jp , and J3 , starting at t = 0 ,
Without loss of generality, assume that t < t5 < t3 , and there are
six general cases to consider which depend on the relative values of

the due-dates.

The schedule, (J1,Jp,J3), which satisfies the conditions of
the previous section, is always optimal. All other schedules violate
these conditions.

(2) Dq < D3 <Dy

Jp << Jop and Jp << J3 , but Jp and JB are time dependent,
Hence, either (Jy,Jp,J3) or (J1,J3,J2) is optimal depending on the
relative values of 1L(2,3,t,,0) and IL(3,2,ty,0) . The optimal schedule
5o selected satisfies the conditions specified while all other schedules

will violate at least one of them.



(3) Dp <Dy < D3

Jop < J3 and Jy < J3 , but Jpo and Jq are time dependent.
This case is similar to (2) and a unique optimal schedule, consistent
with the stated conditions, is determined by the ordering of J7 and
Jp at t =0.

(4) Dp < D3 <Dy

J2 << J3 , but Jy1,Jdo and Jl,J3 are time dependent pairs
with 7'221 = Dl - tp >Dq - t3 = 7’3,1 . There are three schedules

consistent with Jp << J3 :

Sy = (Jl,Jg,JB), 8o = (Jp,J3,97), and 83 = (JE,Jl,J3)

(a) 1If 7—3,1 <0, then Jy precedes J3 and either §

or S3 is optimal. This is determined by the ordering of J-
and Jp at t =0 which produces the only schedule con-
sistent with the conditions of the previous section.

(b) 1If 7“3J1 > 0, then 7‘2}1 >0 and Jp << (0) Jy . This
is similar to the above case except that S, or 83 1ls selected
as the optimal schedule on the basis of the ordering of Jj and
J3 at t =ty .

(5) D3 <Dy <Dy

Jq << Jp, but Jl,J3 and J3,Jp are time dependent pairs

with 7—3,1 =Dy - t3 < 7"3,2 =Dy - t3 . There are three schedules

consistent with J7 << Jp :

81 = (J1,92,93), Sp = (J1,93,92), and S5 = (J3,J7,J2)
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(a) 1If 7'3,1 <0, then Jy precedes J3 and either §;
or Sp 1is optimal depending on the ordering of Jp and J3 at
=1t .
(b) 1If 7‘3}2 >ty , then Jy precedes J, and either S,
or SB is optimal depending on the ordering of J; and Jz at
t =0.

(c) If 7‘3)1 >0 and.'73)2 <ty , then J3 << (0)J1 and
Jp << (tl)J3 which means that only §; and S3 need be consider-

ed. Further, Sl and S3 both satisfy all the conditions speci-

fied in the previous section.

P(51,0) = £(t1-Dy) + £(ty+t5-Dy) + f(tl+t2+t3-D3)

I

O + £(ty+tp-Dp) +ty+tp+tg-Dy

It

and P(S3,0) f(t3-D3) + f(t1+t3—Dl)=+ f(tl+t2+t3—D2)

It

f(t3—D3) + tl+t3—Dl + tl+t2+t3—D2

since 0 < Dy - t3 < D2 < tl

|
o+
w

and D3 < Dp .

It

P(8,,0) - P(s3,o) f(ty+tp-Do) - f(t3—D3)

and there are four possible sets of values for this difference:
(1) (Do-ty-t3) <0 + (Dl—DB) >0

if f(tl+t2—D2) = f(t3-D3) =0

(2) (Dg—tl—t3) <0+ (Dy-t3) >0

if £(tq+tp-Dp) = 0, £(t3-D3) # 0
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(3) (Dl-DB) >0 + (tg—t3) <0

if £(ty+t5-Dp) £ 0, f(tS—DB) =0

(L) (Dy-t3) >0+ (t2—t3) <0

if £(by+tp-Dp) £ 0, £(t3-D3) # 0

In each case, the value of the difference can be positive or negative
depending on the relative values of the variables involved. Computa-
tionally, then, there is no simple rule for selecting Sy or 83 as
the optimal schedule. A second example of this type of situation is
shown in the last case.

(6) D3 <Dy <Dy

All pairs of jobs are time dependent pairs with

‘73,2 = Do - t3 < 7‘3,1 =Dy - t3 < 7‘2,1 =Dy -ty .

Consider the schedule, (Jl,Jg,Jg) L If I << (o)J3 s
then 73,2 < 73,1 <0 and Jp << (tl)J3 . Hence, (Jl,J3,J2) cannot
be optimal. This leaves five possible optimal schedules.

(leJg;Jg)S So = (Jg;Jl;Jg)S 53 (JQ;J3;J1>

51

1

Su (J37J1’J2) and S5 = (JB,JE}Jl)a

(a) If T3,1 < O, then 7 <0 and J; and Jp precede
)

3,2

J3 . Hence, either S7 or Sy is optimal depending on the order-
ing of Jl and Jp at t =0

(b) If T Dj - t3 >t, , then7p 1 =Dy - tp > t3 and

3,1 2’
Jo and J3 precede Jj. Hence, either S3 or 85 is optimal

0.

I

depending on the ordering of Jp and J3 at t

(c) Thus, assume O < T3 1 =Dy-t3 <Di-tp Teo,1 and

"”3’2 = Dg"t3 < 7r3)]_ = Dl"tS < t2 .
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1. If 7T <0, then J, precedes J, and it is only
3,2 2 3

necessary to consider 8 , Sp , and 83 . But for 7'2’1 >0,
Jo << (0)J; and for 73,1 < to , J1 << (tp)J3 . Hence, $p
is optimal.

2. If 7"3)2 >ty then J3 precedes Jp and it is only
necessary to consider §) and 85 . But for'Tg’l <t3,
Iy << <t3)J2 and S is optimal.

3. Hence, assume ‘73}2 = Dg—t3 >0 and 273’2 <t
Since J3 << (0)Jo , Jo << (0)J1 , and Jq << (t3)J2 , the

only schedules that need be considered are

So = (Jg,Jl,J3) and §) = (J3,J1,J2)

both of which satisfy the conditions of the previous section.

P(SE,O) = f(tg—Dg) + f(t2+tl-Dl) + f(tl+t2+t3—D3)

0 + f(t2+tl—Dl) + tl+t2+t3—D3

il

P(8),0) = f( ) + f(t3+tl—Dl) + f(tl+t2+t3—D2)

t3_D3

i

£( ) + £(t +tl-Dl) + to+t,+t,-D

t3-D3 3 18t t3-Do

P(8),0) - P(85,0) = f(t3—D3) + f(t3+tl—Dl)

- f(totty-Dy) + (D3—D2)
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and there are six possible sets of values for the difference:

(1)

(2)

(3)

(&)

(5)

(DS—DE) <0 if f(t3-D3) = f(t3+tl-Dl) = £(ty+t1-Dy) = O

and P(Su,o) is optimal.

(t3-D3) + (D3—D2) = t3-Dp >0 if f(t3—D3) £ 0

£(to+ty-Dy) = £(to+ty-Dy) = 0 and P(8,,0) is optimal.

3

(ty+t5-Dy) > 0 + (D3-D2) < 0 if f(totty-Dy) £ O

f(tB—D3) = f(t3+tl-Dl) =0,

(ty#+t5-Dy) >0 + (tB—De) <0 if f(t3+tl-Dl) =0

£(t3-D3) f(totty-Dy) £ 0

(tB-tg) >0 + (D3-Dp) < O if £(t3-D3) =0

f(t3+tl—Dl), f(t2+tl—Dl) £0

(t3—t2) >0 + (t3-Dp) < O if f£(t3-D3) ,

£(t3+t7-Dy), f(tp+ty-D1) £ 0

In the last four cases, the value of the difference can be either positive

or negative depending on the relative values of the variables involved.

The problem of sequencing just three Jjobs, then, provides several

examples where a non-optimal schedule can satisfy the conditions of the

previous section., Further, there appears to be no straight-forward way

of selecting the optimal schedule oﬁher than by evaluating each schedule

satisfying those conditions.



CHAPTER 5

AN n JOB, ONE MACHINE SEQUENCING ALGORITHM FOR
MINIMIZING THE NUMBER OF LATE JOBS

5.1 Introduction

The problems considered in this paper belong to a general
class of problems in which a finite set of jobs must be sequenced
through a single facility, minimizing some function of the lateness
penalties incurred. Reference 5 contains one algorithm for solving
these problems, a dynamic programming technique formulated by Held
and Karp. While this method is applicable to the problem defined
here, it is generally computationally infeasible for problems of 20
Jjobs or more, The algorithm developed here, however, consists of
only two sorting operations performed on the total set of Jjobs, and
a maximum of n(n+1)/2 additions and comparisons., Consequently,
this method will be computationally feasible for very large problems
and can be performed manually on many smaller problems.

The problem is to sequence n jobs, Jy ... J, ,with known pro-
cessing times, ty ... tp , and due dates D7 ... Dp , through a single
production facility in such a way as to minimize the number of late
jobs. The processing times, which are defined to include set-up and
tear-down times, are independent of the sequence. It is assumed that
the n jobs are available for production throughout the scheduling
period and that the production facility operates continuously until
all jobs are completed. ©No lot-splitting is allowed, so that produc-

tion on a job continues from start to finish without interruption.
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It is assumed that each job can be completed by its due-date
defined relative to t =0 , if the processing of that Jjob were to be-
gin immediately (i.e., Vi , ty <D;) . If this were not the case, the
problem size would be reduced by eliminating those jobs that cannot be

completed on time regardless of the sequence.

5.2 The Algorithm

The algorithm consists of a decision rule for dividing the
set of jobs into two subsets. This division produces an optimal sched-
ule if the jobs in the first set are sequenced according to their due-

dates, and are followed by the jobs in the second set in any order,

Step 1: Order the set of Jjobs according to the shortest pro-
cessing time rule and call the resulting ordering ((Jil . Jin) where

til < ... < tin) the current sequence.

Step 2: Using the current sequence, find the first late job,
Jiq , and go to Step 3. If no such job is found, the algorithm terminates
with an optimal schedule obtained by ordering the jobs in the current
sequence according to their due-dates followed by the set of jobs that

have been rejected in any order.

Step 3: Reorder the jobs, Jil voo d3 according to the due-

1q’

date rule producing a sequence of the form:

Jy i . Jin where Dﬂl < ... < ng .

ves J J.
1 iq’

g+l )
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There are two cases to consider:
(1) If all the jobs in the subsequence Tgy oee qu are
early, define the total sequence as the current sequence
and go to Step 2.
(2) Otherwise reject the job Jy end remove it from the

sequence Jﬂl Y o Jin . Now go to Step 2

Js .
q 1lg+l

with the resulting sequence as the current sequence.

Example

The process is illustrated in the following numerical example:

Job Jp Jo J3 Jy J5 Jg Jd7  Jg
Processing Time 10 6 3 1 i 8 7 6
Due-Date 35 20 11 8 6 25 28 9

Step 1: Ordering the jobs according to the shortest processing

time rule results in the following current sequence:

Job I, J3 J5 Iy, Jg J? Jg I
Processing Time 1 I 6 6 7 8 10
Due-Date 8 11 6 20 9 28 25 35
Completion Time 1 L 8 - - e - -

Step 2: The result of computing the first 3 completion times
indicates that J5 is the first late job. Therefore, Step 3 is per-

formed.,

Step 3: The result of re-ordering the first three jobs ac-

cording to the due-date rule is shown below.
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b A

Jo J5 JA J3 J2 J8 J7 J6 Jl
Processing Time i 3 6 6 7 8 10
Due-Date 6 & 11 20 9 28 25 35
Completion Time h 5 8 14 20 - - -

As indicated above, the first three jobs are now early. Hence,

Step 2 is re-performed using the above sequence

Step 2: The first late job 1s now J8 as in shown in the table above,

Consequently, Step 3 is performed,

Step 3: Ordering the first 5 jobs according to the due-date rule gives the

sequence below:

Job J5 J, Jg J3 I J7 Jg I
Processing Time I 1 6 6 7 8 10
Due-Date 6 8 9 11 20 28 25 35
Completion Time L 5 11 1+ 20 - .- -

Since Jg and J3 are both late, Jg 1is rejected and the new current

sequence is shown below:

Rejected
Current Sequence Jobs
Job J5 Jh J3 J2 J7 J6 Jl J8
Processing Time L 1 3 6 7 8 10 6
Due-Date 6 § 11 20 28 25 135 9
Completion Time L 5 & 1y 21 29 - -
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Step 2: The first late job is now Jg .

Step 3: Re-ordering the first six Jjobs according to due-dates gives

the following sequence:

Rejected
Current Sequence Jobs
Jobs J5 J), J3 Jdo  Jg J7 Jy  Jg
Processing Time i 1 3 6 8 7 10 6
Due-Date 6 8 11 20 25 28 35 9

Completion Time L 5 8 1 22 29 -- -

Since J7 is late, Jg 1s rejected, resulting in the following new

current sequence.

Rejected
Current Sequence Jobs
Jobs J5 N J3 Jo J7 Jdy Jdg  Ig
Processing Time L 1 3 6 7 10 6 8
Due-Date 6 8 11 20 28 35 9 25

Completion Time i 5 8 14 21 31 - --

Step 2: All jobs in the current sequence are now early and the al-
gorithm terminates with the above sequence (J5,JA,J3,J2,J7,Jl,Jg,J6)
as an optimal schedule.

On the final step of the algorithm it is not necessary to
re-order the current sequence according to the due-date rule. Doling
so, however, will still produce an optimal schedule. The proof for

the optimality of this algorithm follows.
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5.3 Theoretical Development

Definition: A schedule, S , is defined as a specific ordering,
(Jil o Jin) , of the set of jobs to be processed.
For each schedule, S, two sets, E and L , are defined as
follows:
Ji € E iff C; < Di

Ji e L iff Cy > Dy
where C; 1s the completion time of job J5 in the schedule 8§ .

Definition: For a given schedule, S, let A denote the ordered set
defined by ordering the elements of the set E according to their order
in the schedule S .,
Similarly, let R denote the ordered set defined by ordering
the elements of the set I according to their order in the schedule S .
Finally, let x denote an arbitrary permutation of the set

R and P denote the resulting ordered set.

LEMMA 5.1 Given an optimal schedule, S , for a set of jobs,
J = {Jl ce Jn} , with known processing times, t7 ... tp , and due-

dates, D7 ... D, , the schedule,

S* (A,R), is optimal as is any schedule of the form,

I

Q¥¥

1l

(A,P).

Proof:  Suppose S = (Jiy ... Ji,) 1is not of the form (A,R) . Then
there must exist a pair of adjacent jobs, Jik and Jik+l , in S
such that

Cigsr S Pk
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and
Cik > Dik
Hence, define a new optimal schedule, S7 , by interchanging
Jik and Jipe1 énd S1 will have Ay = A and Ry =R . If §S7

is of the form (A,R), we are done. Otherwise, operate on §; to ob-
tain S, , etc. This process terminates in a finite number of steps
with an optimal schedule Sq where Ag =A , Rg =R, and Sq =

(A,R) = g*.

LEMMA 5.2 (Smith) Given an optimal schedule, S , of the form, (A,R) ,
a new optimal schedule, 5p = (AD,R) , may be defined by re-ordering the

set A according to the due-date rule.

Proof': Suppose A = <Jil oo Jip) is not ordered according to the
due-date rule. Then there must exist a pair of adjacent Jobs, Jix

and Jik+l , in A such that

D < D

ik+1 ik

But by tij < Dik+l < Dik

Consequently, the Jjobs Jik

and iy Wy be interchanged to obtain
a new optimal schedule 5 = (Al,R) . If Aj; = Ap , we are done,
Otherwise, operate on Sl to obtain 5o, etc., This process terminates

in a finite number of steps wihh a schedule Sq where Ag = Ap and

hence Sq = SD .
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Corollary (Smith): Given a set of Jobs, J = {Jl “os Jn} , with known
processing times, t7 ... tp , and due-dates, Dy ... D, , there exists

a schedule, S , having no late Jjobs if and only if there are no late
jobs in the schedule, Sy , defined by ordering the set of jobs according

to their due-dates.

Proof':

"If" Obvious

"Only Eiﬁ If there exists a schedule, S , having no late
jobs, then L = ¢ (the empty set) and consequently S = A . Now
apply lemma 5.2 to obtain Sp = Ap = Sg which is still optimal.

These lemmas show that there is associated with any optimal
schedule, 8 , an optimal schedule Sp = (Ap,P) . Consequently, the
original problem can be restated as one of producing a schedule of this

form where the cardinality of the associated set, Ep , is maximal,

LEMMA 5.3 Suppose there exists an optimal schedule, S , for a set
of jobs, J , wheré I is not empty. Let J¥ denote any subset of
L . Then for any optimal schedule, S' = (A',R') , for the set of
jobs J' = J-J% , an optimal schedule, S" = (A",P") , for the complete

set of jobs, J , can be defined by letting A" = A' and L' = J*ul'

Proof': Without loss of generality, assume that S 1is of the form
(A,R) and consider any optimal schedule, S' = (A',R') , for the set
of jobs J'

If the cardinality of the set E' , denoted /E'/ , equals

the cardinality of the set E , denoted /E/ , we are done, Therefore

assume /E'/ # JE/ .
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(a) 1f /E'/ < /E/ , we can define a new optimal schedule,

S1 = (Al’Pl)’ for the set of jobs, J' , by letting A = A and
L, =L -J%. But /E/=/8/>/E'/ . Hence, 8' is not an optimal
schedule for the set of Jjobs J' --a contradiction. Therefore,

/B =[5

(v) 1f /E'/ > /E/ , we can define a new optimal schedule,

Sy = (Ap,Pp) , for the set of jobs, J , by letting A, = A' and

L, L'UJ" . But /Eo/ = /E'/ > /E/ and hence S is not an optimal

schedule for the set of Jjobs, J --a contradiction. Consequently,
/B = [E/ .

The problem is now one of developing an algorithm which will
find a job, J; € J, such that J; € L for some optimal schedule when
not all of the jobs in the original set can be completed on time (i.e.,
the schedule Sq has at least one late job). An optimal schedule for
the original set of jobs can then be obtained by repeatedly applying the
algorithm and eliminating the jobs found. The process will terminate
at some point where the set of jobs, J¥% = (Jil cee Jiq) has been

elimanated, but the algorithm fails to find a job in the set J - J¥ ,

An optimal schedule for the original set of jobs, J , is now defined

by letting:
E=J - J*
L = J¥

and hence S = (AD, P)

where Ap 1s the ordered set obtained by ordering the set E accord-
ing to the due-date rule., One can show that this schedule is optimal

by repeatedly applying lemma 5.3. (i.e., Clearly, 5q = Ap 1s an
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optimal schedule for the set of jobs J - J*¥ . Then, using lemma 5.3,
8g-1 = (Ap, Jiq) is an optimal schedule for the set of jobs {J—J*}

U {Jiq} , ete),

Selection Algorithm:

Given a set of Jjobs, J = {Jl oo Jn} , with known processing
times, t; ... t, , and due-dates, Dj ... Dn , the following algorithm
will find a job J; € J and J3; € L for some optimal schedule if such
a job exists. Define the initial current sequence as (J1 ... Jn )

assuming that t; <t; < ... <ty .

Start: Find the first late Jjob, J in the current sequence where

q J
g >1. (If no such job exists, the current sequence has no late jobs
and the algorithm terminates.). Re-order the previous g¢-1 jobs ac-

cording to the due-date rule to obtain a sequence of the form:

(Jll P Jiq—l s Jq o e s Jn)
where
tg < ... <ty
Dil < . < qu~l
and tg > ti, for Jg=1...qg-1

\

Insert Jq into the sequence (J Jiq—l) according to the due-

11 o s a
date rule, obtaining the sequence:

AY

(Jil Jik » Jg s Jil<:+l Jiq_l > Jg41l +o« Jn)

where

Dij S wvr SDiy <Dy <Dipyy Svve SDj
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There are three cases to consider:

(1) If all jobs in the sub-sequence (Jil coe Jiy 5 Jg s
Jik+l ce Jiq_l) are early, resume the analysis at start using the
sequence just defined as the new current sequence.

(2) If Jg is late in the above sequence, then Jq e L for

some optimal schedule for the jobs in the current sequence,

Proof': Consider an optimal schedule of the form, Sp = (AD,P) for
the set of jobs in the current sequence. If Jq € P, we are done.

Hence, assume Jg € Ap and that BSp 1is of the form:

Sp = (le ver Tg e g P)

and
D'gl S s o _<_D£r <D'ZI'+]_S' oo -<-th
where
Jlr = Jq
In the current sequence tg < ... <tp and tij < tg for
J=1... g-1 . Thus, the summation of the processing times for the
Jjobs in the set {Jil con Jik} is minimal over the class of all sub-

sets of k Jobs from the current sequence having due-dates less than

or equal to Dq . Hence, since Jq is late in the sequence

(Jil ces Jik s Jq) , 1t will be late in all due-date ordered sequences
in which it is the k + 1lst Jjob. But Jfr = Jgq 1s early in the sched-

ule Sy eand therefore r must be strictly less than k + 1 . TFurther

{J£r+l Jﬂt} 0 {Ji‘l Jik} :¢
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Since Dij < Dq for j=1...k and Dq < Dﬁm for m=r+4+1 ... t .
Thus, there are (k - (r-1)) > 1 jobs in the set of jobs {Jil cos Jik}
that are members of I, for the schedule Sp . A new optimél schedule,
Sg , can now be defined. Order the set of jobs, {Jil ‘oo Jik} , accord-
ing to the shortest processing time rule and selec£ the first r Jobs
from this set. Replace the initial sequence, (le oo Jpp) 5 in the
schedule Sp Dby this set of jobs ordered according to the due-date rule
and call this schedule S

*
D The job Jy,. =dg 1is now a member of L*

*
for the optimal schedule & .

(3) 1If Jg 1is not late in the above sequence but at least one
of the jobs in the sequence (Jik+1 “os Jiq—l) is late, then Jq € L

for some optimal schedule for the set of jobs in the current sequence.

Proof: As in the proof for 2), assume we have an optimal schedule, Sp ,

of the form:
Sp = (Jpq wov Jppp eev Jpg 5 P)
and
Dzl < ... < Dﬂr <Dir+1 < -o. < Dyy
where
er = Jg

(a) If r <k + 1, the same optimal schedule, Sg , can be de-
fined as in (2) where Jg e I

(b) If r >k + 1, the argument developed in the proof for (2)
can be used to show that the completion time of er = Jq in the schedule

Sp is greater than or equal to its completion time in the sequence

(Jil coo i s Jq) Therefore, since at least one of the Jobs in the set

{Jik+l coe Jiq-l} was late in the original sequence, at least one of

these jobs, say Jj, , must belong to the set L for the schedule Jp .
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But

T, < tq

m

Hence, Jg can be removed from Ap and replaced by Ji, to form a new
optimal schedule Sj where Jq e L' .

This process continues and each succeeding job is either
accepted into the initial due-date ordered sub-sequence or is rejected,
The algorithm terminates with a due-date ordered seqguence of early Jobs,
(Jay --- Jat) , and a set of jobs, Jay,1 ... Jap that have been reject-

ed., An optimal schedule to the original problem will be
Sp = (Jal oo Jap s P)
where P is defined for the set of jobs, {Jat+l ‘o Jan}

5.4 Minimizing the Maximum Deferral Cost™

Retaining the assumptions made in the introduction, a new
problem can be formulated, Associated with each job is a continuous,
bounded, monotonically non-decreasing function, P; , called a deferral
cost where P;(t) represents the cost of completing the job at time ¢t.
Sequencing problems with these cost structures have been considered by
McNaughton(9> and Lawlerﬁ7) Their results, however, concern the problem
of minimizing the sum of the deferral costs. The objective here is to

find a schedule for which the maximum deferral cost incurred is minimal.

*This extension was suggested by Professor E. L. Lawler, Department of
Electrical Engineering, The University of Michigan.
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Definition: For each P; , define a function Pﬁ as follows:
(1) Pﬁ (y) = Pil(y) if Pil(y) (the inverse) exists

(2) Otherwise

(a) Pi(y) =max Jt|py(t) =y} if Tt > Pi(t) =y
(o) Fi(y) =0 if ¥t Pi(t) >y
(c) Pi(y) =+ o if Y, Pi(t) <y

The corollary to lemma 5.2 can now be used to find an optimal schedule,
For arbitrary y >0 , let Dy = P?(y) and let 8Sp(y) Dbe the schedule
obtained by ordering the jobs according to the "due-dates" so defined,
In that the Pj's are bounded, there always exists y > O such that
Sp(y) has no "late" jobs.* Since the P;'s are monotonically non-
decreasing, the P?'s are monotonically non-decreasing and hence there
exists y* > 0 such that:

(1) sp(y*) has no "late" jobs.

2 For all y < y* , Sply) has at least one late job.
D

This value can be found to whatever accuracy is desired by a binary
search technique. The schedule SD(y*) has minimal maximum deferral

cost,

*Actually the bounded condition is stronger than necessary. It is
sufficient if there exists y >0 such that Sp(y) has no "late"
Jjobs.



CHAPTER 6

DYNAMIC PROGRAMMING ALGORITHMS FOR THE SEQUENCING
OF JOBS SUBJECT TO DEADILINES*

6.1 Introduction

The previous chapter considered the problem of finding a
sequence for a finite set of jobs that minimized the number of late
Jjobs. It was shown that there is an optimal schedule in which the
early jobs precede the late jobs and the former are ordered according
to their due-dates. For this problem and others similar to it, a
certain "consistency principle" holds. This principle can be stated
as follows:

Given a set of jobs which are to be processed subject

to deadlines, there exists a well ordering of the com-

plete set of jobs, such that for any subset of these

Jjobs, an optimal sequence exists in which the ordering

of the jobs completed on time is consistent with the

well ordering.

Problems of this type can always be solved using the Held
and Karp(5> algorithm, but this chapter demonstrates how this consis-
tency principle can be exploited to obtain more efficient solution
methods., Three types of problems considered are (1) one machine and
Jjobs with individual deadlines and priorities (previous chapter);
(2) +two machines in series and jobs with priorities and a common dead-

line (Johnson(6)); and (3) a single machine and jobs with priorities,

*The dynamic programming formulations of the problems in this chapter
were suggested by Professor E. L. Lawler, Department of Electrical
Engineering, University of Michigan,
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a common deadline, and individual linear deferral costs (Mc Naughton(g)
and Smith(15)). These problems are dealt with in sections 2, 3, and 4

respectively. A final section discusses multi-machine generalizations.

6.2 One Machine, Multiple Deadlines and Priorities

Consider a set of jobs, J = {Jl oo Jn} , where +t: and

1

D

; represent the processing time and due-date for job i. In addi-

tion, let r; > O denote a reward that is earned if job Ji 1is
completed on time. The problem is to find a sequence for these jobs
which maximizes the sum of the earned rewards.

The previous chapter dealt with the special case of this
problem where 1 = Tp = vos =T, and the first two lemmas developed
there also apply here, Hence, there is an optimal schedule in which
the early Jjobs precede the late jobs and the former are ordered accord-
ing to their due-dates. The problem, then, is that of selecting the
Jjobs which are to be completed on time., A dynamic programming formula-

tion of this problem is given below where it is assumed, without loss

of generality, that Dy < Do < ... <D, .

Definition: TLet fi(t) = the maximum attainable total reward for a
selection of jobs from the set of jobs {Jl vos Ji} , subject to the
constraint that no job is completed later than time t .
A recursion relation for f;(t) can be formulated as follows:
(1) Consider t < Dj . If there exists an optimal schedule
in which J; 1s completed on time, then Jj can be
the last job and f3(t) = fi_l(t—ti) +ry . If no

such schedule exists, then £;(t) = £3_7(%)



(2) For t>Dy >... >Dy, £;(t)= £5(Dy) and can be com-

puted in the manner indicated above,

Hence, for i = 1,...,n:

£i(t) = £5(D;y) for t > Dy

I

max {f3_1(t), 75 + f5_1(t-t;)} for 0 <t < Dy

Il

£i(t)

subject to the boundary conditions

fi(O) =0
fo(t) =0
£3(t) = - o for t <O

The maximum attainable total reward for the complete set of jobs is
given by f,(Dy) .

Assuming that all of the processing times and deadlines are
integers, the length of the computation grows no more rapidly than
n(D,) , i.e., proportional to the product of the number of jobs and

the longest deadline.

6.3 Two Machines in Series, Common Deadline

The problem just discussed can be viewed as that of a single
machine, individual starting times, and a common deadline. We now deal
with the problem of two machines in series, a common starting time, and
a common deadline where each job must be processed by both machines, in
sequence,

Consider a set of jobs, J = {Jl cos Jn} where for each
job Js3 , aj denotes its processing time on the first of two ma-

chines, and b; 1ts processing time on the second. Let r; denote
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a reward which is earned if job Ji 1s completed on the second machine
by a deadline T (common to all jobs). The problem is to find a sequence
for the set of Jjobs which maximizes the sum of the earned rewards,
It follows from the results of the previous chapter and those

(6)

of Johnson that there exists such a maximal sequence in which
(1) the jobs completed on time precede the tardy jobs; (2) the jobs are

processed in the same order by both machines; and (3) the on-time jobs

are ordered according to the following relation:

Job Jp precedes Jg only if min {ap,bq} < min {aq,bp}

Once again, the problem consists of making a selection of the
jobs which are to be completed on time. Given such a selection, the
ordering of these jobs is determined by Johnson's relation;(6> the order-
ing of the remaining jobs which follow is arbitrary.

Without loss of generality, assume that

min {aj,bj+1} < min {aj+1,bj} , for j=1.,. n-1.
Let fi(t1,tp) = the maximum attainable reward for a
selection of jobs from among J7 ... J;i , subject to
the constraint that the completion time of no job is
later than time +t7 on the first machine or t, on

the second.

Following the type of argument used in the previous section, a recur-
sion relation for fi(tl,tg) where t; , to < T can be formulated
as follows,

For 1 =0, 1, 2, ..., n:

£3(ty,ty) = max {fi_l(tl,tg), r; + f;_7(min {tl—ai,

tp-as-bi} , to-bif)}
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Subject to the boundary conditions:

fo(t1,tp) =0
£;(0,0) =0

fi(tl:tg) = - § (t1 <0 or t, <0)

The maximum attainable total reward for the complete set of jobs is,
of course, given by fn(T,T) . Assuming all processing times are
integers, the length of the computation grows no more rapidly than

n(Tg)

6.4 Single Machine, Common Deadline, Linear Deferral Costs

As a final example of the principle of consistency, consider
the problem of a single machine, a common deadline, and linear deferral
costs.

Consider a set of jobs J = {Jl “oe Jn} , where for each Jjob

J =

15 8y denotes its processing time and 1ri a reward which 1s earned

if the job is completed by a deadline T (common to all jobs). In ad-
dition, let p; denote a linear deferral cost coefficient. Thus, if
the job J; is completed at a time t < T , the net profit earned for
that job (reward minus deferral cost) is r5 - p; t .

As a possible example of such a problem, consider the position
of a contractor who is free to accept or reject jobs. For each job
J; which is accepted and completed prior to the deadline, a reward
r; 1is earned. However, the deferral of the job causes a cost to be
incurred which is determined by the coefficient Py - What selection
of Jobs maximizes profit?

Given any selection of jobs, such that the sum of their pro-

cessing times is no greater than T , the jobs should be ordered
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according to the ratios Pi/ai , the job with the largest ratio being
processed first. This result has been found by McNaughton(9> and
smith. (19)

Without loss of generality, assume (pi/ai < Pi+1/ai+l> . Let
fi(tlftz) = the maximum attainable net profit for a selection of jobs
from among Jj,Jo...Jd; , subject to the constraint that the starting
time of the first job is tl and the last job 1s to be completed
before t, .

An appropriate set of recursion equations is as follows for

t1,to >0 and to < T .

£;(tq,ts) = max {fi_l(tl,tg), r; - p;(ty+es)
+ fi_l(tl‘l'ai, tg)}
subject to the intial conditions

£;(0,0) =

O

folty,tp) =0

£5(,%0)

- ® for tl > t2 .

The maximum attainable total profit for the complete set of jobs is
given by £ (0,T) . Assuming all processing times are integers, the
length of the computation grows as n(T) .

There is an interesting variation of this problem in which
the deadline is not controlling. E.g., T 1is as large as the sum of
all the processing times. In this case, the selection of jobs is con-
trolled solely by the question of whether or not the jobs can be com-

pleted before their deferral costs exceed their rewards.
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6.5 Machines in Parallel

Each of the problem formulations and solution methods given
above can be extended in a very natural way to the situation in which
there are many machines, or sets of machines, in parallel, and any
given job can be processed by any given machine. In each such exten-
sion, the jobs that are assigned to any given machine are processed
in an order which is consistent with the ordering obtained by solving
the associated single machine problem,

Consider the extension of the problem of multiple deadlines
(section 6.2 above). ILet there be given a set of jobs, J = {Jl,,.Jn}
For each job J; let ai,k denote its processing time on the kth
of m machines and ri,k a reward which is earned if processing of the
job is performed on machine k and completed prior to the deadline
for the job, D; .

As before, we assume, without loss of generality, that
Dj <Dj41 , for i =1,2, ... n . (Note that it is feasible to have
different deadlines on different machines. However, it must be the

case that Di,k <D

<Djyp,x forall k .)

Let f3(tq...t,) = the maximum attainable reward for a
selection of jobs from among Jy,Jdo...Jy , subject to the
constraint that the completion time of no job is later

than tk for machine k .

Now we have, for 1 =0, 1, ... , n :

£i(ty..otm) = T3(b1,t0. 0.tk 1, Distyq1ee )y 1f tg > D3

It

Il

max {fi_l(tl;tg)..c,tm)) mix {rl,k + fj__l(tl’ t2)aau) tk'_

-y g eees bpl) o
otherwise
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subject to the boundary conditions

foltysto vvn ty) =0
fj_(O)O;-”;O) =0

f5(t1,tp vor tp) = - ® if any tp <O

The length of the computation implied by these recursion
equations grows as m x n x ™ ., Some saving, of course, can be
realized through exploitation of symmetry in the case in which all
machines are identical, 1i.e. aj p = aj,q and rsp =T3,q for
all J, p, q .

The formulation of recursion equations for the extensions
of the problem described in sections 6.3 and 6.4 is quite similar,

em and

and results in computations which grow as mxn x T
mxnx T, respectively. One should compare the extension of the
deferral cost case with the solution method given by RothKopf(12>
for the multi-machine deferral cost problem without deadlines. 1In
that case, a computation growth of m x n x Tm_l is possible,

We note that in the generalizations of the problems of
sections 6.3 and 6.4, it is possible to have some variation in the
characteristics of the individual machines, provided the existence
of a single linear ordering is not interfered with. In the case of

sets of two machines in series, it must be possible to find a linear

ordering such that, for all k ,

min(aj,k :bj+l,k) < min(aj+l,k ’bj,k>

and in the case of linear deferral costs,

Pj,k < Pitlk
&,k T %j+l,k

The rewards, rj kx » need be related in no particular way.
2
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APPENDIX I

BASIC MATHEMATICAL THEORY FOR CHAPTER 2

In the first chapter 1t was assumed that the penalty functions
were continuous and non-decreasing. In order to obtain some of the
results presented, however, it is necessary to assume that the functions
are absolutely continuous. The assumption of absolute continuity rules
out certain unusual functions for which the fundamental theorem of

calculus does not hold. This is shown by the fbllowing theorem.

THEOREM: A necessary and sufficient condition that a continuous non-

decreasing function, f , be absolutely continuous is that

é? £1(x) ax = £(b) - £(a)

An excellent discussion of absolute continuity can be found in
Natanson(lo) who also provides an example of a function that is continu-

ous, non-decreasing but not absolutely continuous.

THEOREM: Given two absolutely continuous, non-decreasing functions,
f and g , where f>g , £f' >g' , and f' is non-decreasing. For
arbitrary 0 < x; <x5 , 0< %3 < x, vhere x) >x, and (%) - x3)

> (%o - x1) , flx) - f(X3) > g(x5) - 8(xq)

Proof': Using the fundamental theorem of calculus,
X
[ e (x)ax = £(x) - £(x,)
X 3
3
X :
I72 gr(x)ax = g(x) - &(xy)
X
1
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Let x, = max(xg,x3) and x,_ = mln(xg,x

k 3))

then £(x,) - 2(x) - [g(x,) - &(x)] 2

X X

% er(x)ax - [ F gr(x)ax
X, X

i 1

Now use the following theorem from real analysis:

THEOREM: If £ 1is an integrable function, <« and P are real numbers,

and E 1is a measurable set such that, for x in E, a<f(x)<B,

~then @ - p(E) < [ fdp < ﬁp(E)*.

B
X
Hence [ 4 frx)dx > f'(xi) (x - x5) since f' is non-decreasing.
X
i
Further,
X *k
PR ar < 5 () ax £ 200 (- %)
X x
1 1

since f' >g' and f' is non-decreasing.

But f'(xi) > f'(x, ) since x; >x. and (Xh - Xi) > (x - %)

i)
since (x), - x3) > (%5 - x7)

X X
Hence, [ 4 £'(x) dx - [k g'(x) dx >
X X

i 1

£r(x;) (XM - xi) - Tr(xy) (g - Xl) >0

or f(Xu) - f(XB) > g(xg) - g(xl)

*
u(E) denotes, of course, the measure of the set E in the underlying
measure space,
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BASIC MATHEMATICAL THEORY FOR CHAPTER 3

THEOREM: Consider an absolutely continuous, non-decreasing function,

f,and 0<x< o, If

£ (y)

as y —»», then for all 0 <xy < X5 < X3 where Xy X5 > Xs and

f(xl) + f(xo) < f(x3) there exists y > 0 such that:

f(xl +y) + f(x2 +y) > f(x3 +v) + f(y)

Proof: Consider y > X3 and using the fundamental theorem of calculus

X +y +y

f(xl+y) + f(x2+y) = g 1 f'(x)dx + éxg fr(x)dx

- Froer(x)ax + [ oer(x)ax + 1Y sr(x)ax
o] Xl y
v X3 e(x)ax + %Y pr(x)dx
e} X
3
2(x,4y) + 2(y) - 3 erx)ax + Y o£r(x)dx
0] [®)
= %3 p(x)ax + 2 er(x)ax + 3
o) X3 Koty

¥ fxl f1(x)dx + fy f'(x)dx
o] Xl

Hence if there exists y such that

X +y Xo+
Y eiax > 37 £o(x)ax
y X2+y

the theorem is proved.
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For f' non-decreasing,

Y oe(x)ax » x £ (y)
¥y

fx3+y f1(x)dx < (x3 - X5) f'(x3 + v)
Xoty

But il (x3+y)
lim  (———

) > 1 as y—ow®
£1(y)

Hence, for every e > O , there exists M > 0 such that

f'(y+x3)
| 3" _ 1] <e for y>M
£'(y)
X1
Now let e = ( - 1) >0 since x7 + xp > %3
Xo=X
3742
or Xy > x3 - X5
and select y so that
1 y+xs) X1
| o< -1
£'(y) X5-Xp
or
f'(y“|‘X3) Xl
£'(y) X3-Xp
Hence,
X+ X1ty
F37 e (x)ax < £ (ywng) (xgmxp) < 21 (p)my < [ £ (x)ax
x2+y ¥

and f(xl+y) + f(X2+y) > f(X3+Y) + £(y)
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ADDITIONAL MATHEMATICAL THEORY FOR CHAPTER 3

THEOREM: For an absolutely continuous, non-decreasing function f ,
f(x) >0 for x>0, if f'/f is non-increasing then for every set
of points 0 < xj < xp < x3 where £(xq) + f(xp) > f(x3) R

f(x1+y) + f(xo4y) > f(x3+y) for all y >0 .

Proof: Since f'/f is non-increasing,

fxl+y f;éx% dx > fx2+y £1U%) 4y > fx3+y £'(x) dx
x 2
x

x, X, f(x) - f(x)
or Log £(x) | 17> 10g £(x) [ 2" > 10g £(x) |3~
Xl X2 X3
or log f(x1+y) - log f(x1) > log f(xoty) - log f(x5) >
log f(x3+y) - log f(x3)
. £(x,4y) . £(x,+y) . £(x+y)
o} 0 —— O
Y © T 2 THxy = F (xy)
e £(xp+y) £(x,+y) £(x5+y)
£(xq) £(x5) f(x3)
f f £(x,) f£(x
pence, ary) > (x5) £(xgty) N (x5) £(x54y)
£(xy) T (g H(xp)
or f(xpty) [£(x1) + £(xp)] > £(x5) £(x3+y)
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£(xq) .
or f(xpty) === + f(xpty) > f(x3+y)
£(x,)
2
f( Xl
But £(x4y) > £(xty)
f(X2

Therefore f(x1+y) + f(x2+y) > f(x3+y)



APPENDIX IV

PROOF OF SINGLE TIME DEPENDENCE FOR
IDENTICAL QUADRATIC LOSS FUNCTIONS

THEOREM: Given a function, £ , of the form ax + bx“(a,b > 0) and
four points O < x)y < Xq <xo < X3 such that x + x5, > X3 + %)

and f(x;) + £(x,) > f(x ) + f(X4> , then for all y >0,

3
Farty) + lagty) > £0ehy) + T0n) -

Proof:

2 2
} + 2 +
a(xl+y) + b(xl Yty )

f(xl+y) + f(x2+y)

2 2
+ +y) + b + 2 +
a(x2 ) (X2 Xy +y )

f(xq) + f(xp) + 2ay + 2by(xl+X2) + 2by2

Il

and in like manner,

f(x3+y) + f(xh+y) = f(xs) + f(XM) + 2ay + 2by(x3+xu) + 2by2

But f(xl) + f(xg) > f<X3) + f(xh)
and Eby(xl + x2) > Eby(X3 + Xu}
Hence f(xq+y) + fxpty) > f(X3+Y) + £(x+y) .

-92-



APPENDIX V

PROOF THAT R(t) IS TRANSITIVE

Consider jobs J, and Jg . There are three possible reasons

r

for J,. << (%) Jg -

A, If t,<tg and Dy <Dg, Jy < Jg .

B. If ty <ty and D,.<Dg and t <7 =Dg - ¢t
then Jp << (t) Jg .

c. If tr < tg and DS <D, and t >“Ts,r =D, -1

then J, << (t) Jg .

Now consider J; << (t) J, and gy << (t) g There are three general

q -
cases to consider, each having three subcases.

A. Consider J; << (t) J;. for reason A above, and hence
1 k > 2

1. If J << (t) J; by A, then

q

by <ty <t

DiSDK<D

and Ji << (t) Jq for reason A .

2, If J < (t)J, by B, then

q

t, <ty , D <D and

q q’
t < Dq -tk .
Hence Di < Dk < Dq .

If t; <t then J; << (t) Jq for reason A .

q )

Therefore, assume tq <t .
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But t <D, - ty <Dy - t; and consequently J; << (t)Jy

q q 1

for reason B .

If J << (t) Jqg by C, tx <ty Dg < D, and
t>Dk"tq-
Hence ti < tk < tq .
If Dy <Dq , then Ji << (t) Jq for reason A .
Therefore, assume Dq <D; <Dy .

But t > Dy - tq > Dy - tq and

hence J; << (t)Jq for reason C .

J; << (t)Jy for reason B and hence

t < Dg - by .
If J << (t) Jq by A, then
D; <Dy <D, end
tie < tg
If b3 <ty o, then Jj << (t) Jq for reason A .

Hence, assume tq <ty
But t <Dy - t; <Dg - t; and Jj << (t) Jq

for reason B .

If Jx << (t) Jg by B, then
tq < ty, D < Dg and

t <Dg - by -
Hence tq < tk < tl and Dl < Dk < Dq N
But t <Dy -ty <Dy - tj and J; << (t) Iq

for reason B .



Let

If Jg

Hence,
If Dy
Hence,
But t
reason

Iy <<

Ir J

If Dy
Hence,
But t
reason

If gy

Hence,

If
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<K (t) Jq by €, then

tg <ty Dg <D, end

£ > D -ty

Dg -ty <t<Dg-ty and ti <tq
<Dq , then Jj << (t) Jq by reason A .

assume Dq <D .

>Dyg - tg>Dy -ty and J; << (t) I for
C .

(t) J for reason C and hence,

t <ty

D, <D;j , and

t >D; - tk

<< (t) Jqg by A, then

t, <ty < tq and

Dg < Dgq -

<Dgq , then Jj << (t) Jq for reason A .
assume Dq <Di .

>Dj -ty >D; - b, and Jj << (8)J, for
c.

<< (t) Jqg by B, then

ty <ty

Dy < Dg » and

t < Dg - by -

Dj - b, <t <Dy

< tq , then J, << (t) Jq for reason A .
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Therefore, assume tq <ty .

-t <Dy -ty and Jy << (t) g, for

But t <D q i q

q

reason B .

If g << (t) J, by C , then

q
ty < tqs

Dq < Dk P and

t>Dk—tq’
Hence t; <ty < tq and Dg < Dx < Di .

But t >D; -t >D; - t, and J; << (t) Jyq for

q

reason C .
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