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LIST OF SYMBOLS

¢ velocity of sound, ft per sec

p pressure, 1lb per sq ft

t time, sec

u absolut.e velocity of the fluid, ft per sec

v  velocity of the fluid relative to the velocity of the
shock, ft per sec

x  position in the fluid (x, refers to the position of the

shock) ft
A increment.
) ratio of specific heats
. . 2 $=1
defined b Lod
M efined by u° = =5
5 defined by 3 = —

1+ u

excess pressure ratio, gl_pﬂ

S

/c density, slug per cu ft
Subseripts

o applied to p, Ps v,'u; and ¢ to indicate low density
side of shock”

1l applied to p, /o, v, u, and ¢ to indicate high density
side of shock , ’
applied to £ to indicate initial value

i applied to p, py Vv, U, and ¢ to indicate initial constant
values in a simple wave '

A initial conditions on low density side of shock

B initial conditions on high.density side of shock
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SUMMARY

A procedure for investigating the strengthening of a shock which
collides head-on with a rarefaction wave is suggested and is carried
through for the case in which the entropy jump across the shock is small
enough to be negligible., '

INTRODUCTION

The problem which is considered in the present paper is the
strengthening and acceleration of a shock which moves in such a way that
it collides with a rarefaction which approaches the shock from the low
pressure side. Such a collision may be thought to take place in a semi-
infinite tube as shown in Figure 1. The x-axis is taken to be the axis.
of the tube. A piston is initially moving with a constant velocity less
than that of sound toward the left and the gas in the tube moves with the
same velocity. = (The restriction on the initial velocity of the piston
is not essential; it is merely convenient for the purpose of describing
the phenomenon). 'hen the piston reaches the position x = 0 at time
t = 0, it is assumed that the piston accelerates"in some manner toward
the left and thus produces a simple rarefaction wave which moves toward
the right. At a large positive value of x a shock wave whose low pressure
side faces the origin is assumed to exist. The shock wave will move
‘toward the origin with uniform speed and constant strength until it meets
the oncoming rarefaction wave at a distance L from the origin. The shock
will then accelerate and be strengthened as it meets the gas of decreasing
density. Furthermore, the entropy jump across the shock, which is constant
as long as the shock moves through the gas which has not yet been-disturbed
by the rarefaction, will increase, Thus an entropy wave which moves with
the fluid will be formed on the high pressure side of the shock so that
the flow on the high pressure side of the shock is no longer isentropic.

In Reference 1, Courant and Friedrichs consider the interaction
discussed above and conclude that the final result of such an interaction
will be a shock wave moving towards the left and a rarefaction wave moving
toward the right separated by a zone of gas of varying entropy. The cal-
culations in the present paper have been made with these results kept in
mind and will describe the actual process of interaction between the shock
and rarefaction waves in more detail,

It might be pointed out that the collision between the shock wave and
rarefaction wave as discussed in the present paper is an idealization of
processes which occur in intermittent jet engines and supersonic wind
tunnels which operate by permitting air from the outside atmosphere to pass
through the tunnel into a low pressure reservoir.

PROCEDURE
~ Before discussing the interaction between the rarefaction and shock,

the properties of the rarefaction and shock waves willle reviewed briefly.,
The terminology of Reference 2 will be used throughout.
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A simple wave in non-steady, one-dimensionzl, flow refers to a special
isentropic flow in which the fluid velocity, pressure, density, and speed
of sound assume constant values along each straight line of a one=-para-
meter family of straight lines in the x~t plane. These values in general
differ from line to line in this family. For general, non-steady, one-
dimensional, flows, two families of curves in the x~-t plane play particu-
larly 1mportant roles. These curves are called the characteristic curves

and are defined by the differential equations %% w u & C, where u is the

velocity of the fluid and ¢ is the local velocity of sound. When the flow
is a simple wave, one family of these characteristics is the family of
streight lines discussed above. A fundamental theorem on simple waves
says that flows adjacent to flows of steady state are simple waves., Hence
the rarefaction wave described above, produced by acceleration of the
piston, is a simple wave, since the fluid is initially in a steady state.
In the present case the family of characteristics which are straight lines
is that one which has the plus sign.

In a simple wave the pressure p, the density p, and the velocity of
sound c are related to the velocity of the fluid by the following formulas:

23
r T 5T
y=1 u-uj; ¢
p-plfl-l- 5 1{ (1)
pefe T
p=pr T o @
RITY N = LY
cg\-i;)o'cill‘- 2 o1 (3)

where subscript i refers to the initial constant state of the gas before
the rarefaction has affected the flow and ¥ is the -ratio of specific heats.

The properties of shock waves will now be discussed. let the sub-
scripts o and 1 refer respectively to the low and hlgh pressure side of
the shock. ~There are three shock conditions which arise from the conditions
of conservation of mass, momentum, and energy across the shock., These
relations can be written '

- . s .
PO = RP ey = “

Lot Po = P101Vy +p (5)
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Uln
il <
0] = 0 /_2_1%__2_1_ (6)
’ © M°P1 ¥ Po

In the above equations
Vo = Uy = X (7)

Uy - X (8)

Vi

where x; indicates the position of the shock and the dot indicates
differentiation with respect to time so that xj is the velocity of the
shock. The constam’c,/u2 equals %‘.}: .

+

It will be convenient to measure the shock strength in terms of the

PP
excess pressure ratio f = ; 2 . In terms of F 5 the shock conditions
)
may be written
N ey o 1
Vo = coV1+Vf (V= 5) (9)
1 +/M
)
F= (- u) (10)
o

and from (9) and (10)

. V(ug-u,) e L (u: ug) b2

v - (11)
) 2 | L
Rl )2
3':1 = u°+7)--g—-—u u12u )—\[V 8 (El' uo) + ci (112)
-C
ul-uo = S ; (12)

oy

: ST
| 1+ 1+7
c] = co-:_‘; L{%{;})&ﬁ (13)

The process of interaction will now be considered. The quantities on
the low and high pressure side of the shock before the interaction will be
denoted by the subscripts A and B respectively. Thus before the interaction
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of the shock wave and rarefaction wave P = Ppy Wy = up, Py = Pp,
€1 = Cps Po = PAs Up = Uyy O =Pys Co = Cpo Using this notation,
Equations 1, 2, and 3 may be rewritten as follows:

) 27

-1 up-up| &1
PoﬂpA[1+L§‘cA] (1a)

T q

_ p-1 Up=upi &
pospu 1vIRER (22)
$-1 Y~%a

°o=cA‘[l+ 2 ¢, } (3a)

Since, in the wave, u,< uy (v.o and u,; are negative in our coordinates),
it is seen that p,<py, Po<Pus Co<Che Furthermore, the head of the
wave travels with velocity Uy + Cpe

Furthermore if ; denotes the excess pressure ratio of the shock
before interaction, then

-cy fq
R ¥ =y (12a)

The rarefaction wave is completely determined by the velocity with
which the piston is withdrawn from the tube. It will therefore be assumed
that Uy hence also Pos Pos Co are known functions of x and t.

It is the problem of the present paper to find x, )'cl, Uy, /El’ as a
function of time as the shock wave moves along its path., If u; is known
as a function of u, then the differential equation (11a) can be solved to
give x;(t) and x3(t). Then also £(t) can be found from (10). Therefore
in addition to Equation 11 another relation between v,, Uy Uy, is
needed so that v,, uy, can be solved in terms of u, alone. Having found
u, as a function of u, the procedures outlined above can be used to find
t}.%e desired quantities.

As explained previously, the fluid on the high pressure side of the
shock wave is not isentropic. Consider the shock at a given time. The
region on the high pressure side can be divided into small regions in which
the pressure, density, velocity, and entropy are considered constant,

In particular consider the small region immediately adjacent to the shock.
The fluid particles which have just passed through the shock will move
toward the left with a velocity greater (i.e., more negative in the
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coordinate system chosen) than the fluid which occupies the small region
being considered. Hence the particles which have just passed through the
shock may be considered the front of a rarefaction wave which will pass
through the small region. Inasmuch as the fluid is isentropic in the
region considered, Equation 1 describes the relation between pressure and
velocity.

In Equation 1 we shall write
p=pl’ u:ul, c=cl
uj =u; +A4u, C§=C +4cC) (14)
Pi =Pl ¥ &P

passing to the limit, the following differential equation is obtained

1 1R
dul Cl (15)

By means of Equations 12, 13, and la, Equation 15 canbe converted into a
differential equation with f and uj as variables. By integrating this
differential equation, a new relation which gives f as a function of 4,

is obtained. By substituting for § in Equation 12, uj - up is found as a
function of u, alone, and the procedure outlined above may be used to find

x(t), ¥;(t), £ (t) and finally up(t).

A particularly simple and interesting case is the one in which the
shock is weak. As shown in Reference 2, the entropy jump across a suf-
ficiently weak shock is proportional to §-“. Thus if the shock is so
weak that all powers of £ higher than the second can. be neglected,the
fluid on the high pressure side of the shock can be considered isentropic.

When the value of ¢ corresponding to isentropic flow is substituted

in (15), we obtain
T 29
e

°5

Py 1+ .

This result was to be expected from the manner of derivation of Equation
15, It is also to be expected from the fact that we have a non-uniform
isentropic state adjacent to the constant state given by pg, ups OBs
therefore the wave on the high pressure side of the shock must be a simple
wave and the simple wave relations must hold.
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From Equation 1b

°‘l\.>
4

i 1
up” Bi
Cp 1

o5
’..n

1+
Fz=1+Q+fy)
l+--]=

DN
[

(16)

OS
|_l

-up

f

and Equation 13 may be replaced by its isentropic counterpart

o Ly
';-=(1+f)

And
8-1
7

o= (1} 1) (172)

For the special case of weak shocks, the general procedure outlined
above will be modified as follows: From the nature of the problem it is
expected that uy can be expanded in powers of {j.

w E1s uo) = £5(80) + £18(u) + £2 £x(u) + o o o (18)

The functions f fl, e o o €tc, will be sought, Using Equation 18, 17a
and 12a in Equatlon 16, /ﬁ is obtained as a power series 1HJ£1 which involves

the f;'s as coefficients. This series is not valid beyond the second -

power of £,, because of the assumption of isentropic flow. The expression
for £ so obtained is substituted in Equation 9 to obtain v, in an expansion
in £, which again will not be valid beyond the second power of £1. By
substltutlng uj as given by Equation 18 into Equation 11, an alternative
expansion of v, in powers ofdﬁ' is obtained. Comparison of the coef-
ficients of powers of jfl of both expansions yields the functions f,,

fl and fzo

 Having found these functions, uj is known as a function of ugj and

X1 xi, £ 5 Uy, u, can be found as functions of time as the shock moves

along 1ts path as explained previously.
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RESULTS

A, Infinitesimal Shocks

_ For initially infinitesimal shocks f1 = 0. It is easily verified
that £, = u, and that £ = O, Therefore an infinitesimal shock remains an
infinitesimal shock when passing through a rarefaction wave.

Furthermore X, = ug - C,» Which is the equation of a backward
characteristic of the simple wave. Hence infinitesimal shocks move along
the characteristics of the simple wave, This result was to have been
expected from the role played by characteristics as propagators of small
disturbances,

Bs Weak Shocks

Weak shocks are defined as those shocks for which the powers of £
higher than the first can be neglected.

(o]
It is found that f) = - -, Furthermore,to this approximation,

i u, (19)

which shows that for weak shocks the increase in the velocity of the fluid
behind the shock is equal to the increase in velocity which oeccurs ahead
of the shock. To put the result in different words, the velocity of the
fluid behind the shock differs from the velocity ahead of the shock only
by a’'constant.

The differential equation for the position of the Shock,is
. 9% o ,
X =+ (ug =) - ¢ (20)

The path followed by a weak shock is therefore no longer a
characteristic of the'rarefaction wave. Moreover, since up'- uy is
negative, the shock wave will travel faster then the velocity of an
infinitesimal disturbance (i.e., a sound wave) through the rarefaction
region.

The strength of the shock, as measured by its excess pressire ratio,

increases as it passes through the rarefaction region. The expression for
£ is ’ '
7

o (21)
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c
From Equation 3a it is clear that ;9’ decreases so that £ increases, An
A ,
initially weak shock may therefore become strong when interacting with
the rarefaction.

In order to present a specific example of the method of finding the
velocity of the shock and of the fluid before and behind the shock, a
special rarefaction wave will be considered, namely the rarefaction wave
which results when the piston undergoes infinite acceleration in changing

its initial velocity u, to some final constant velocity. Such a rarefaction

wave is called a centered rarefaction wave. The velocity u, is given by

u, - u, = (1 -/v*z) (%-— cy - uA) (22)

For simplicity c, will be taken equal to unity, u, will be taken equal to
zero and the distance from the origin to L at which the shock and rare-
faction interact will also be taken as unity. Likewise the time interval
required by the head of the rarefaction wave to move from the origin to
the position x = L will be taken as unity. These simplifications corre-
spond merely to a choice of units and a frame of reference from which the
phenomenon is viewed.

. Then for t.> 1

xe | Mt gz "‘—"‘Amu‘z)znuBJ (23)
L %2(1-&) z,,u?*(l- 2)
3, = 407998002 o 4142, o)
201 2(1-
by (1-42) (2 )
\ e | 4(1=2)- L ARy |
o(y) = (19 ——--——‘ Begd . T B 1J (25)
h/« (l—/ by (l-;,*f )
U1(t) =Yo(t) = UB (26)

and the various quantities which are desired are completely solved for,

Ce Moderately Strong Shocks

A moderately strong shock is one in which all powers of £ higher than
the second can be neglected. For such shocks it is found that
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f, =

°A (27)

Therefore
U - ug=u, - uA as for weak shocks. This result is somewhat

surprising, inasmuch as one mlght expect the relation between u; and u, to
be non-linear for moderately strong shocks. It therefore appears from this
point of view that instead of using the excess pressure ratio as a criterion
of shock strength it would be more satisfactory to use the non-dimensional
o Nl
o
as those such that all powers of

. Thus weak disturbances might better be defined
U1=vy
_ )

However, we shall continue to use our original definition,

velocity difference

beyond the first may be neglected.

For moderately strong shocks, the excess pressure ratio is given by
=¢. CA 3‘4-1 .
fep1d 1s bk -v) (26)

c
Since -5-4->1,,the strength of the moderately strong shock increases at a

o , c
faster rate than that of a weak shock in terms of -é-f. “Also the equation

of motion of the shock is

_ 5‘2]/2(113 - uA)2

e (29)

J.‘1="‘o"'-223‘(‘133"”‘A)."co

which shows that the moderately strong shock tfavels faster through the
rarefaction region than the weak shock.

As before, when Yo is given as a function of x and t, Equation 29
may be integrated to give the position and velocity of the shock as a
function of the time and then X1s xl, o) U1s /5 may be found as functions

of the time or position of the shock.
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