STATUS OF
VECTORIZED MONTE
CARLO FOR PARTICLE
TRANSPORT ANALYSIS

William R. Martin

UNIVERSITY OF MICHIGAN
ANN ARBOR, MICHIGAN 48109-2104

Forrest B. Brown

KNOLLS ATOMIC POWER LABORATORY
SCHENECTADY, NEW YORK 12301-1072

Review Article

Summary

The conventional particle transport Monte
Carlo algorithm is ill suited for modern
vector supercomputers because the
random nature of the particle transport
process in the history based algorithm in-
hibits construction of vectors. An alterna-
tive, event-based algorithm is suitable for
vectorization and has been used recently
to achieve impressive gains in perfor-
mance on vector supercomputers. This re-
view describes the event-based algorithm
and several variations of it. Implementa-
tions of this algorithm for applications in
particle transport are described, and their
relative merits are discussed. The imple-
mentation of Monte Carlo methods on
multiple vector parallel processors is con-
sidered, as is the potential of massively
parallel processors for Monte Carlo par-
ticle transport simulations.

The Intemational Journal of Su-
percomputer Applications, Volume
1, Number 2, pp. 11-32.

Introduction

The Monte Carlo method is one of the principal com-
putational techniques used for analyzing particle trans-
port problems. The advantage of the Monte Carlo
method is its generality—it can be used to simulate al-
most any particle transport problem, regardless of ge-
ometry or physical complexity, as long as the geometry
can be described mathematically and the physical pro-
cess can be represented by equations or probability
distributions.

Historically, the principal drawback to the use of
Monte Carlo methods has been its excessive demand on
computational resources. Monte Carlo methods may re-
quire enormous amounts of central processor unit
(CPU) time to allow the simulation of the necessary
number of particle histories (perhaps millions) to achieve
reasonable statistics, a consequence of the fact that the
variance in the answer improves only as 1/\/N, where N
1s the number of histories.

Monte Carlo analysis places a premium on compu-
tational speed and memory, and the substantial increases
in computer performance over the past decade would
seem ideally suited to meet this demand. However, for
some applications, including Monte Carlo, this increase
in performance has been difficult to exploit because of
the difficulty in developing algorithms that map effi-
ciently onto vector architectures, which are employed in
the largest and fastest computers at the current time—
vector supercomputers. This review summarizes the
status of efforts to develop and implement Monte Carlo
algorithms for vector supercomputers. Additional details
of vectorized Monte Carlo algorithms and those aspects
of vector architectures that affect Monte Carlo algorithm
development may be found in Brown and Martin
(1985).

The overall gains in computational performance
over the past several decades and the contribution of
vector architectures to these gains are discussed. A sum-
mary of the conventional Monte Carlo algorithm and
why it is not suitable for vector processing is presented,
and an alternative, event-based algorithm, which is ame-
nable to vector processing, is described. We also describe
variations of this algorithm and specific implementations
for several Monte Carlo applications. The issue of mult-
tasking Monte Carlo on vector-parallel processors is dis-
cussed, and we conclude with a few remarks regarding

Monte Carlo analysis places a premium
on computational speed and memory,
and the substantial increases in com-
puter performance over the past decade
would seem ideally suited to meet this
demand.

PPLICATIONS. . .

future directions for Monte Carlo methods on advanced
computers.

Computer Performance

The unprecedented increase in computer performance
over the past several decades is illustrated in Figure I,
which is a plot of performance measured in millions of
floating point operations per second (MFLOPS) for a
single CPU.

Figure 1 indicates that the impressive improvement
in computer performance has been due not only to ad-
vances In hardware, but also to innovations in architec-
ture—how the computer is designed and organized to
carry out its computational tasks. This is seen by noting
that after the CDC 7600, two speeds are plotted for each
computer, scalar and vector. The scalar speed corre-
sponds to the speed of the conventional (scalar) CPU,
whereas the vector speed is indicative of the principal
innovation for large-scale computation, vector (pipe-
lined) architectures. The data in Figure 1 represent ac-
tual timing results rather than advertised peak rates,
which are generally not reliable indicators for scientific
computation. However, even these data should be taken
carefully, especially the vector speeds, because they have
been obtained from relatively simple kernels, which may
not be representative of actual applications.

A vector, or pipelined, architecture is characterized
by arithmetic units which are designed like an automo-
bile assembly line; they are segmented into smaller tasks,
each of which may take relatively little time to complete.
Although the overall time for the total task (e.g., a mul-
tiplication} may be longer than for a conventional
(scalar) arithmetic unit, the segmented arithmetic unit
can accept vectors of operands, which stream through
the unit in a lockstep fashion. Once the first result exits
the arithmetic unit (in an amount of time denoted the
startup time), the subsequent results are generated once
every clock cycle (at the streaming rate).

Because one vector instruction executes the entire
vector operation (which might correspond to 64 mult-
plications on the CRAY-1 or 65,535 multiplications on
the CDC CYBER-205), it is necessary for the algorithm
to construct vectors of operands and perform identical
operations on every component of the vector, although
of course the operands can be different. This task of
developing or adapting an algorithm for a vector CPU is
known as wvectorization, and is essential for realizing the

potential performance of the vector CPU. Thus, for
Monte Carlo codes to take advantage of the gains in
computer performance of the past decade, and hence
follow the upper curve in Figure 1, they must be
vectorized.

Conventional Monte Carlo

THE HISTORY-BASED ALGORITHM

The conventional Monte Carlo algorithm is inherently
scalar and cannot be vectorized. The culprit is its his-
tory-based structure. In a typical Monte Carlo code such
as MCNP (Los Alamos, 1981) or MORSE (Straker, Scott,
and Byrn, 1970), a particle will be emitted via a source
routine, transported through the medium of interest
(tracked), and processed through whatever collisions or
interactions may occur (collision analysis). As the history
unfolds, results of the simulation are accumulated
(tallies), and the simulation continues until the particle is
terminated, such as by absorption in the medium, by
escape from the problem geometry, or, in a time-depen-
dent simulation, by the end of the time step. The code
will then loop over the requisite number of histories to
achieve acceptable statistics (or unacceptable cost).
(These remarks actually describe what is known as an-
alog Monte Carlo, but our discussion regarding vectori-
zation is also applicable to nonanalog Monte Carlo.)
Figure 2 is a schematic of several particle histories in an
idealized Monte Carlo simulation.

MULTIPLE HISTORIES AND VECTORS

Because the particle simulation is a random walk, or
Markov, process, each step of a history is determined by
statistical means (e.g., distance to the next collision, kind
of collision, angle of scatter). Therefore, treating many
histories simultaneously fails miserably, because the
vector is destroyed after the first step in the simulation
—some particles in the vector will reach a boundary,
some may suffer a capture collision, others a scattering
collision, some may reach the end of the current time
step, etc. Thus, the vector of particles is no longer a
vector from the standpoint of the vector CPU, because
different operations will be performed on each compo-
nent of the vector. This 1s apparent from an examina-
tion of Figure 2. The six particles can initially be pro-
cessed as a vector because they are all being emitted by
the source, but after this first step the vector becomes a

Cyber 205 ~__|
Cray-1 g—-yo—a

2
10

Aray XMP —l/
CcDC 76%’ a a—a

10°
/{CDC 6600
1

MFLOPS

TBM 7090

162 / = | Vector

/ —& | Scalar
3
10 o Univac 1
10 - - -
1950 1960 1970 1980 1990
Year

Fig. 1 Computer
performance versus time
Sources:

® Univac 1 and IBM 7090-{Hockney
and Jesshope, 1981}

© CDC 6600, 7600 and vector data for
CRAY X-MP and CDC
Cyber-205-Dongarra, 1986)

@ Scalar data for CRAY X-MP and CDC
Cyber-205-(Bucher and Simmons,
1985)

collection of disparate particles tracing their own paths
through phase space.

Recompiling an old Monte Carlo source code on a
Particle History Number —» vector supercomputer such as the CRAY X-MP will not

4 5 6 result in efficient utilization of the vector architecture,

(s) @ () @ because of the inherently scalar nature of the history-

@5 é é —;veml based algorithm. The potential loss in performance that

B L results can approach a factor of 10 to 20. Recently a

@}) ‘ Event 2 number of researchers have attained significant gains in

1 performance by totally restructuring the Monte Carlo al-

é Event 3 gorithm to be compatible with a vector architecture. Al-

(B) -+ though there are substantial differences in the individual

A-absorption é) é Event 4 approaches, all of these vectorized algorithms have a

& - boutdary crossing — common characteristic—they all are event-based algo-

S sourte rithms versus the history-based algorithm of a conven-
T - end of time step tional (scalar) Monte Carlo code.

— - free-flight

Vectorized Monte Carlo
Fig. 2 The history-based
algorithm

BACKGROUND

The first mention in the literature of the event-bhased
approach was in 1973 (Troubetzkoy, Steinberg, and
Kalos, 1973). This work was targeted for the Illiac-IV
parallel processor with 64 processors, all controlled by
one CPU. As with a vector architecture, the approach of
assigning each history to a processor of the Illiac-IV
would not work. Thus, an alternative approach was de-
veloped, which was based on breaking up the overall
simulation of many histories into collections of events,
such as tracking, collision analysis, boundary crossing,
and tallying, which are similar and can be processed in a
vectorized manner.

DEFINITION OF EVENT

We define an event as that portion of a history which is
initiated with the appearance of an emerging particle in
phase space at (r,v) and terminating at (r',v’), which is
the beginning of the next event. Figure 3 illustrates the
concept of an event. For example, an event might be
initiated at (r,v) by sampling from a source distribution,
emerging from a scattering collision, entering from
census (time-dependent simulation), crossing a boun-
dary, or emission from a nuclear reaction (e.g., fission).
Once the event is initiated, it proceeds by following
the particle to the end of the event, which can be termi-
nated by collision (any kind), boundary crossing (in-

PLICATIONS

cluding escape), census (end of time step), or killing
(nonanalog Monte Carlo).

The important observation is that all events are sim-
ilar—a vector of particles (the particle bank) can be pro-
cessed for one event in a vector manner. The next sec-
tion describes the basic manner in which the particle
vector is processed for one event.

THE BASIC EVENT-BASED ALGORITHM

Assume that we have a reservoir (or bank) of particles at
event iteration n, where each particle j is described by a
number of attributes x}, where

X} = [, .. » Xik],

where K is the number of attributes. For example,
(x}‘l,x]g,x};) might be the position r = (x,5,2), and % J?',x}g)
might be the direction cosines Q = (,v,w), and x, the
particle time at event iteration # for particle j. Let us
now define the particle bank vector I'* as the set of all
particle vectors at event iteration r:

I = [xx3x%, xz],

where L, is the number of particles in the particle vector
at the beginning of event iteration n. In general, the
bank vector I' is ordered randomly and its order will
change from one event iteration to the next—no at-
temnpt i made to keep track of individual particles in I’
from one event to the next. Given I', the goal is to ad-
vance it to the next event iteration n + 1, as summa-
rized in Figure 4.

The following observations can be made regarding
the event-based algorithm illustrated in Figure 4:

1. The arrays § and R are the usual cross-section and
geometry arrays. In order to perform the vector
calculations for the distances to collisions and
boundaries, cross-section data and geometry data
tabulated by particle index must be gathered from S
and R into the arrays X and p:

E = [21,22,23, 2]_"]
P = [pr1P2pPs oo ennt. el

where 2, represents the cross sections and p; the
geometry data for the zone that contains particle ;.
2. Figure 4 is only intended to be illustrative of the
event-based algorithm, which may differ significanty
from one implementation to the next, as will be
seen in the next section.
3. The compression step to eliminate terminated

End-of-cvent at {r',v") by
+ Collision (¥' #v)
el
. € S| ¥ =)
= Particlke Bm-:gm
z (absorption, escape, ..)

Fig. 3 Event initiation
and progression

For event n = 0,1,2,.........
< Ferch ' (I'0 is the initial particle vector)
« Process the free-flight portion of the event

R
« Gather the cross section data and geomerry data tabulated by particle,
FREE «E &« §
FLiGHT «p « R

ANALYSIS + Using Z, sample a vector d;; of distances to collision

+ Using p, determine the vector of minimum distances to a boundary, dy,
+ Determine the minimum distances to end of event, dpy;, = minfd;.dy|

l « Update the particle coondinates, r+l =¢84 QMo @00

» Process collisions
« Gather particle attributes from bank, ¢TI0 and E ¢TI0

T
COLLISION -« Evaluate collision physics equations, determine new direction cosines 0" « £
ANALYSIS and energies E' < E

« Scarter new particle amributes back into bank,
Q' »>T* , E> I'M

« Process boundary crossings
» Gather particle zone indices Z from bank , Z & I'R

T

BOUNDARY - Determine new zone indices for particles, Z' « Z
ANALYSIS

1
» Scatter new zone indices back into particle bank, Z' — GP

*Compress the particle bank I to eliminate the particles which have been
terminated, forming the updated particle vector T+1 (with Ly+1 particles),

Tn — rn+l
«If Ly, =0, continue.

Fig. 4 The event-based
Monte Carlo algorithm

Task F - process free flights
Task C - process collisions
K Task B - process boundary crossings
Task K - process terminations (due to absorption,
escape, or end of time step)

™l = O
!

Fig. 5 Connectivity of
computational tasks in an
event

ICATIONS

particles effectively scrambles the order of the
particles in the bank vector I' and leads to one
consequence of the event-based algorithm—it is
difficult to piece together individual particle histories
from the event-based simulation.

4. There is a premium on efficient data-handling
operations, resulting from the need to gather,
scatter, compress, etc., the particle vector and other
data arrays during every event iteration.

5. Most of the steps are vector operations, except for
the data handling operations, which are generally
custom-coded routines (sometimes in hardware), and
the tally operations, which cannot be vectorized. The
collision analysis, boundary-crossing analysis (perhaps
with Russian roulette and splitting), and other
operations to determine the outcome of the event
can also be performed in a vector fashion, but
subvectors would need to be defined (e.g., gathered
from the main particle vector) for each distinct
outcome and then processed.

THE STACK-DRIVEN VARIATION

In the basic event-driven algorithm, the particle vector is
processed in a manner similar to the conventional his-
tory-based algorithm. One cycles through the free-flight
analysis, then the collision analysis routine, then the
boundary analysis routine, etc., on an event-by-event
basis. At any time during the simulation, all particles will
be in the same event iteration. A variation on this basic
approach, called the stack-driven algorithm, arises when
events are further subdivided into smaller computational
tasks, which are then processed independently. The
simplified event-based algorithm in Figure 4, for ex-
ample, may be logically subdivided into the four sepa-
rate computational tasks of free-flight analysis, collision
analysis, boundary analysis, and particle termination
analysis. Rather than cycling through these four tasks in
a fixed order, the calculation may proceed by selecting
the task involving the greatest number of particles and
then performing the analysis for that task. According to
the outcome of this analysis, the affected particles are
then queued for the next appropriate task.

The stack-driven variation involves greater com-
plexity than the basic event-based algorithm in two
areas: control of the calculational sequence and manage-
ment of the particle attribute data. Considering first the
control aspects, the stack-driven approach further

scrambles the order in which particle histories are pro-
cessed, because a computational task is selected ac-
cording to the number of particles queued for each task.
The order of task execution becomes randon, and the
execution of a particular task may involve particles from
different event iterations. Upon completion of a task,
the affected particles must be queued for their next re-
spective tasks. Each individual task must therefore be
aware of its connectivity to the other tasks, and must
disperse the particles accordingly. Figure 5 illustrates the
connectivity between the four tasks used in the simpli-
tied example.

Considering next the management of particle at-
tribute data, the stack-driven approach leads to a prolif-
eration of particle banks, because a separate bank or
stack is needed for each computational task. Particles
awaiting a particular task are stacked up until that task is
processed. Upon completion of the task, the particle at-
tributes must be dispersed into the appropriate stacks
for their next tasks. Figure 6 illustrates the stack-driven
variation derived from the basic event-based algorithm
of Figure 4.

Each of the four computational tasks includes its
own stack for holding particle attributes and its own
control logic for dispersing particles upon completion to
their next tasks. The algorithm proceeds by selecting the
task with the largest stack, executing that task, and then
dispersing the particle attributes to other stacks. This
procedure is followed until all stacks are empty, signi-
fying the end of the calculation. The principal differ-
ence between the event-based algorithm and the stack-
driven variation is the order in which computational
tasks are executed. The fixed sequence of tasks in the
event-based algorithm leads to simpler control logic and
management of particle attribute data, at the cost of
shorter vector lengths for each individual task. The
stack-driven variation selects tasks in a sequence that
maximizes the vector lengths, but involves additional
logic for managing the particle attribute data. The
vector computations performed in each task are the
same in the two approaches, however, and each ap-
proach has been used successfully in a number of prac-
tical applications described below.

OTHER VARIATIONS

Although all of the vectorized Monte Carlo algorithms
are based on the event-based approach, either the basic

« Fetch initial particle vector, I'p «— Iy
» While tasks are pending, select and execute task

with longest vector [I'g, I, T'g, 'k 1:

Task F - Process free flight portion of event

*FetchI'g
» Free flight analysis (see Figure 4)

» Disperse 'y according to next task :
* I'p (collisions) = I'c
« I'r (boundary crossings) > T'g
+ I'g (terminations) — I'g

Task C - Process collisions

sFetchI'c
« Collision analysis (see Figure 4)

» Disperse I'c according to nexttask , T'c — I'g

Task B - Process boundary crossings

sFetch I'g
» Boundary analysis (see Figure 4)

- Disperse I'g according to next task, I'g — I'g

Fig. 6 The stack-driven
algorithm for event
analysis

algorithm or the stack-driven variation, there are signifi-
cant differences in specific implementations. The prin-
cipal variations among these approaches depend on the
manner in which the particle vectors are organized and
treated. One characteristic is whether or not particles
from more than one geometric zone are treated at the
same time. If the particle bank I' consists only of par-
ticles located within a single geometric zone, we denote
this as a one-zone algorithm. An all-zone algorithm
would then employ a particle bank consisting of particles
from any zone in the problem geometry.

Another characteristic is the manner in which the
particle banks are managed in stack-driven algorithms.
In a “tagged-particle” scheme, there is only one particle
bank but an additional particle attribute (i.e., the “tag”) is
used to keep track of the next task to be performed on
each particle. The particle tags are examined to deter-
mine the next task to be processed. In an “explicit stack”
scheme, a separate particle stack is explicitly reserved for
each computational task. Upon completion of a task,
particle data must be dispersed to the appropriate stacks
for further analysis. In an “implicit stack” scheme, all
particle data reside in one large bank and pointers to the
particles are queued up for each task. A task uses its
pointer list to gather particle data from the bank, per-
forms the task analysis, scatters updated data back to the
particle bank, and then disperses the particle pomter list
to queues for other tasks.

Specific Vectorization Efforts

PERFORMANCE ASSESSMENT

The following sections describe several different imple-
mentations of the event-based algorithm for Monte
Carlo analysis. It would be interesting to ascertain the
relative performance of these different approaches, but
this is not an easy task. In general, vectorization
speedups are reported for each of these efforts, but
these can be misleading and are difficult to assess be-
cause they are sensitive to the efficiency (or inefficiency)
of the original scalar code. Nevertheless, these speedups
are real from the standpoint of a user of the original
scalar code and are useful measures of performance. It
would be desirable, however, to have an absolute mea-
sure of computational efficiency, which might allow a
comparison of the different approaches. One candidate

for this metric is the average CPU time required to pro-
cess a particle for one event, or “track.” This measure,
defined as the psec/track (Bobrowicz et al., 1984), ap-
pears to be an excellent indicator of the absolute perfor-
mance of a Monte Carlo code, whether scalar or vector,
because it is remarkably insensitive to the physics or ge-
ometry. For example, for photon transport work de-
scribed below, it was in the range of 6—15 psec/track for
the vector code, even with 10-fold changes in the ab-
sorption cross sections and the geometric mesh. Typi-
cally, scalar Monte Carlo codes may process particles at
the rate of 100—300 usec/track.

PRELIMINARY STUDIES

The initial effort to develop a vectorized Monte Carlo
algorithm (Brown and Martin, 1985; Calahan and
Martin, 1980; Brown, Calahan, and Martun, 198];
Brown, Martin, and Calahan, 1981) was based on a pro-
totype vectorized code developed by T. L. Jordan of Los
Alamos National Laboratory (LANL). This was a simple
(<300 lines) FORTRAN code that only analyzed
gamma transport in a carbon cylinder, but it served well
as a starting point for basic algorithmic studies. Both
one-zone and all-zone algorithms (event-driven) were in-
vestigated, and the following speedups were obtained:

Speedups for simple gamma transport
application

Version Computer Speedup
Scalar Amdahl 470V/8 1
Scalar CDC 7600 i
Scalar CRAY-1 2
Vector CRAY-1 7

Although these speedups were considered satsfactory,
the simplicity of the codes did not allow one to draw
conclusions with respect to production-level Monte Carlo
codes. However, this effort stimulated the development
of a more realistic vectorized Monte Carlo demonstra-
tion code, which is discussed in the next section.

MULTIGROUP NEUTRON TRANSPORT
(ONE-ZONE)

Subsequent effort was devoted to the development of a
vectorized Monte Carlo demonstration code that incor-
porated most of the significant physics options in stan-
dard production-level Monte Carlo codes such as MCNP
and MORSE but did not have many of the user conve-

R G S b ST N B R VT T R, ¥

A one-zone algorithm necessitates an
outer loop over zones, and it was de-
termined empirically that the optimum
algorithm was to process the zone with
the most particles for only one event
amd then fo proceed to the next zone
with the most particles and process it

L R

niences typical of a true production code (Brown, 1981;
Brown, Martin, and Calahan, 1981; Brown and Martin,
1985). This code, named MCVMG, was a multigroup
code, as was a companion scalar code (MCS) that was
developed to allow a thorough assessment of the effi-
dency of the vector code.

The vectorized code MCVMG was developed for
the CDC CYBER-205 supercomputer and utilized a
one-zone event-driven algorithm. Separate stacks were
constructed for each zone, and particles leaving one
zone were added to the particle stack for the neigh-
boring zone. A one-zone algorithm necessitates an outer
loop over zones, and it was determined empirically that
the optimum algorithm was to process the zone with the
most particles for only one event and then proceed to
the next zone with the most particles and process it.

The initial results (Brown, Martin, and Calahan,
1981) were obtained by emulating the CYBER-205 in-
structions on a conventional computer and then using
published timing data to calculate the speedups:

Emulated speedups for one-zone

algorithm

Version Computer Speedup
Scalar Amdahl 470V/8 1
Vector CDC CYBER-205 40

Overall, the results indicated a speedup in the range
25-40 with MCVMG relative to the optimized scalar
code MCS for several realistic problems. Subsequent im-
plementation of thé vector code on the CDC CYBER-
205 verified these results to within 10% (Martun, 1983).

The advantage of the one-zone algorithm is the ease
of tracking particles in a general geometry. Because all
particles in the bank vector I' have the same zone index,
there is no need to gather zonal quantities, such as the
cross-section array 2 and the geometry array p de-
scribed above. There are several distinct disadvantages,
however. The vector length is determined by the
number of particles in the zone, and if there are many
zones, the vector length may be prohibitively small.
Another disadvantage is the need to have storage
arrays (buffers) to contain the particles that cross a boun-
dary from one zone to an adjacent zone. Because one
does not know a priori how many particles will cross a
boundary in any event iteration, these storage arrays
may be quite long. In addition, if the problem is rela-
tively transparent, there will be many boundary

crossings, hence a substantial computational effort just to
move particles between zones.

CONTINUOUS-ENERGY NEUTRON TRANSPORT

Excellent results have been reported for a vectorized,
continuous-energy Monte Carlo code for two-dimen-
sional reactor lattice analysis on the CDC CYBER-205
(Brown, 1983; Brown and Mendelson, 1984). The ap-
proach utlizes an all-zone stack-driven algorithm with
three particle stacks, two for the tracking and collision
analysis, and the third (the “total” bank) to act as a par-
ticle reservoir. Because of the size of the cross-section
data base, particles were grouped into “supergroups,”
and the current bank contained only particles from a
particular supergroup. Only data for that particular su-
pergroup are stored in memory, and particles which
have scattered into a different supergroup are trans-
ferred out of the current bank into the total particle
bank. Particle data are transferred into the appropriate
bank as needed. The following speedups (versus the
scalar code on the CDC 7600) were observed for a range
of problems from “small” to “large” (Brown and Martin,
1985):

Speedups for 2-D continuous energy
neutron transport

Application Speedup
Fuel cell (srnall) 75—85
Fuel assembly (medium) 20-60
Fuel assembly with

depletion (large) 20-40

The absolute timings for the vector code are approxi-
mately 6—10 psec/track for the above problems (Brown,
1986).

The advantage of this approach is that all zones are
treated simultaneously, which will tend to keep vector
lengths high and minimize data movement. However,
zonal information must be gathered before each event
iteration as in the generic algorithm discussed pre-
viously. A disadvantage of the multiple stacks is that
particle data must be moved from one stack to another.

PHOTON TRANSPORT (STACK-DRIVEN)

A vectorized Monte Carlo code for the analysis of
photon transport in a two-dimensional Lagrangian mesh
has been developed (Bobrowicz et al.,, 1984). The ap-
proach is all-zone and stack-driven, with nine working

The vector length is determined by the
number of particles in the zone, and if

there are many zones, the vector length
may be prohibitively small.

stacks corresponding to the distinct computational tasks
in the Monte Carlo simulation. For example, separate
particle stacks are constructed to determine the distance
to boundary and to perform the collision analysis,
Thomson scattering, and other tasks. Particles are in-
serted into the appropriate stack from other stacks. A
stack is executed when its length reaches 64, which is the
length of the Cray vector registers. Results were re-
ported for the original scalar code and the vectorized
code for the CRAY-1, and are tabulated below {(denoted
as A), along with more recent results (Fisher, 1986) for
the CRAY X-MP/4 (B). The latter results are for a modi-
fied version of the original code which employed 12
working stacks.

Speedups for stack-driven photon
transport algorithm

Version Computer psec/track Speedup
Scalar (A) CRAY-1 100 1
Vector (A) CRAY-1 24 4
Scalar (B) CRAY X-MP/4 83 1
Vecitor (B) CRAY X-MP4 15 6

The advantage of this approach is its optimization of the
Cray architecture, because all stacks (until the end of the
simulation) will have 64 particles when they are exe-
cuted. A disadvantage of this approach is the need to
transfer particle data between stacks.

NEUTRON TRANSPORT (STACK-DRIVEN)

Timing results for a vectorized Monte Carlo algorithm
for neutron transport in a two-dimensional Lagrangian
mesh have been reported (Chauvet, 1984; Chauvet,
1985). The algorithm is similar to the approach of Bo-
browicz et al. (1984), except there are fewer stacks and
data movement between stacks is minimized where pos-
sible by transferring particle indexes, rather than particle
data, between the stacks. The reported speedups relative
to the scalar code on the CRAY-1 were

Speedups for stack-driven neutron
transport algorithm

Version Computer Speedup
Vector CRAY-1 . 7
Vector CYBER-205 7
Vector CRAY X-MP/4 13

The vectorized versions for the CRAY-1 and CRAY
X-MP/4 employed assembly coding for determining dis-

tance to boundary, which is generally the most compu-
tationally intensive portion of a Monte Carlo code. The
CYBER-205 version used the “q8” calls for the data-han-
dling operations (gather/scatter/compress, etc.) while the
CRAY X-MP/4 version took advantage of the hardware
gather/scatter capabilities of that computer. Chauvet also
reports results with multitasking on the CRAY X-MP/4,
which is discussed in the next section.

PHOTON TRANSPORT (EVENT-DRIVEN)

In a second application concerning photon transport, an
alternative vectorized Monte Carlo algorithm has been
developed to analyze photon transport in a two-di-
mensional Lagrangian mesh (Martin and Calahan,
1982; Martin, Rathkopf, and Nowak, 1985; Martin,
Nowak, and Rathkopf, 1986). This code, named
VPHOT, employs an all-zone, event-driven algorithm
with two principal stacks of particles—a main stack and
a buffer stack—and several substacks that are created
upon demand. The overall structure of the algorithm is
very similar to that described in Figure 4, except for the
buffer stack, which holds source particles and particles
created during the simulation, such as particles created
by splitting or secondary particles emitted by a nuclear
reaction. 'The buffer stack is used to replenish the main
particle stack after each event iteration, which helps to
keep the vector lengths high.

The substacks are utilized for those operations in
which the entire bank of particles would not participate.
For example, if Thomson scattering is relatvely rare, it
would be wasteful to process the entre particle vector I’
through the Thomson analysis and then sort out after-
ward which results (i.e., the new direction cosines) to ac-
cept. Rather, the necessary attributes for the affected
particles (which for Thomson scattering are only the
three direction cosines) are gathered from I' into a tem-
porary vector and processed vectorially. The new direc-
tion cosines are then scattered back into I'. This ap-
proach of gathering up only those partide data needed
to perform the necessary operation has the advantage of
minimizing data movement between stacks; it is also
used extensively in another algorithm (Brown, 1986)
discussed below. However, it does place a premium on a
fast gather/scatter capability. It should be noted that a
definite order is followed as the event iteration is pro-
cessed; for example, a Thomson substack is constructed
every event iteration and processed, even if it contains

VPHOT employs an all-zone, event-
driven algorithm with two principal
stacks of particles—a main stack and
a buffer stack—and several substacks
are created upon demand. The buffer
stack is used to replenish the main
particle stack after each event iteration,
which helps to keep the vector lengths
high.

only one particle. This should be compared with the
stack-driven approach, where processing of the Thom-
son stack would be delayed until it was full.

A scalar version of VPHOT, named SPHOT, has
been developed to allow a meaningful comparison of
the vector algorithm. The VPHOT and SPHOT results
have been compared with a reference Monte Carlo code
at Lawrence Livermore National Laboratory (LLNL) for
a typical ICF test problem. The principal results are
summarized below:

Speedups for event-driven photon
transport algorithm

Code Computer psec/track Speedup
SPHOT CRAY-1 45 1
VPHOT CRAY-I 12 4
VPHOT CRAY X-MPH4 7 6
VPHOT Fujitsu VP-200 5 9
VPHOT Convex C-1 120 173

The speedups are relative to the optimum scalar algo-
rithm (SPHOT) on the CRAY-1. (The Fijitsu VP-200 is
marketed as the Amdahl 1200 in the U.5.) For compar-
ison, the reference LLNL code yielded a speed of 80
psec/track for the same test problem, hence a speedup
of 12 for VPHOT versus the LLNL code.

Additional details regarding the specific algorithm
and the detailed timing results may be found in Martin,
Nowak, and Rathkopf (1986). One of the interesting
conclusions 1s that one need not worry about the “end-
game’—that portion of the Monte Carlo simulation
where there are only a few particles (the “stragglers”)
and hence short vector lengths. Concern about this has
led to suggestions to maintain separate scalar and vector
copies, where one might switch to the scalar version
when the vector length is short enough. However, it is
shown that the “endgame” has a negligible effect on the
overall performance because the bulk of the simulation
is performed with relatively long vectors.

KENO-1V

An attempt to vectorize the production-level Monte
Carlo code KENO-IV was made with disappointing re-
sults (Asai, Higuchi, and Katakura, 1986). These re-
searchers employed an all-zone, stack-driven algorithm
with stacks for the various tasks, which are processed in
order of length. The resulting vectorized code was
tested on two relatively simple problems and yielded

speedups of 1.4 with respect to the original (scalar) ver-
sion of KENO-IV. They attribute these relatively poor
results (compared with results obtained by others) to de-
ficiencies in the compiler, slow indirect addressing
(gather/scatter), and the large number of sorting
operations.

Given the excellent results obtained by others (in-
cluding recent results by Brown with a production-level
code discussed below), there may be some algorithmic
changes that could be incorporated into the vectorized
version of KENO-IV to obtain improved results.

CONTINUOUS-ENERGY MIONTE CARLO

Except for the KENO-IV work, none of the above ap-
proaches treated the case of a general-geometry Monte
Carlo code with a general-physics package. That is, the
seminal work by Brown, Martin, and Calahan with
MCVMG (Brown, 1981; Brown, Martn, and Calahan,
1981; Brown and Martin, 1985) was constrained to mulu-
group Monte Carlo with a modest number of geometric
zones. The subsequent work by Brown (Brown, 1983;
Brown and Mendelson, 1984) was constrained to two-di-
mensional geometries. In addition, the works of Bobro-
wicz et al. (1984), Chauvet (1984; 1985), and Martin et
al. (Martin and Calahan, 1982; Martin, Rathkopf, and
Nowak, 1985; Martin, Nowak, and Rathkopf, 1986)
were constrained to particle transport in a two-
dimensional Lagrangian mesh. Therefore, untl 1986,
general-geometry, continuous-energy Monte Carlo had
resisted vectorization attempts. This challenge appears to
have been addressed in the recent work by Brown
(1986). This effort has resulted in a three-dimensional,
general-geometry, continuous-energy Monte Carlo pro-
duction code called RACER3D that has essentially no re-
strictions on problem geometry or problem physics (for
reactor analysis), and hence is capable of analyzing con-
figurations typically treated by production codes such as
MCNP, MORSE, or KENO-IV.

Brown’s method utilizes an all-zone, stack-driven
approach, with one large stack to hold particle data be-
tween events. Rather than shuffling particle data among
the stacks, Brown constructs queues of pointers for each
task; a pointer refers to the appropriate particle in the
main stack. A task is processed if it contains the most
particle pointers, by gathering up the affected particle
attributes (perhaps only a fraction of the total), per-
forming the indicated operations (vectorized), and then

» Collision
Analysis

h 4

Sector
Tracking

« Russian

Roulette

Grid >
Entry

4 4

Neighbor
Search

Boundary
»| Crossing

Grid
Tracking

-

-

Fig. 7 Computational
tasks and connectivity
for RACER3D

scattering the affected attributes back into the main
stack. Thus, the particle pointers rather than the particle
attributes are “shuffled.” The method of shuffling
pointers rather than particle data was employed to a
lesser extent by Martin et al. and Chauvet, as noted
previously.

While the basic stack-driven approach used in this
application is similar to that given in Figure 6, the com-
plexity of the geometric treatment has resulted in seven
large computational tasks that are interconnected in a
complicated manner, as shown in Figure 7. The “sector-
tracking” task handles the particle free-flight analysis in
general three-dimensional geometry, while the “grid-
tracking” tasks analyze free-flights in more detailed (but
more regular and restricted) geometric regions, which
may be embedded in the general geometry. The
“neighbor search” task deals with the difficult problem
of determining which neighboring regions will be en-
tered after crossing a region boundary.

Each of the tasks shown in Figure 7 comprises a
very large section of coding, with several levels of control
logic, data management, and vector computation. Per-
formance depends critically on the availability of fast
hardware gather/scatter and compress/expand capabili-
ties. The sector-tracking tasks, for example, involve
nested iterations over the numbers and the types of sur-
faces that bound the geometric regions. At the highest
level there is an iteration over the number of surfaces
associated with the regions containing particles. This
iteration requires temporary stacks of particle and sur-
face pointers. On each iteration, the temporary particle
and surface pointer lists are compressed and distances
are calculated. The distance calculations, however, in-
volve additional iterations over the types of surfaces
(e.g., planes, spheres, cylinders, general quadratics). Ad-
ditional temporary stacks are used to hold the selected
particle and surface pointers for each iteration. Actual
particle attributes and surface parameters are finally
gathered from the main stack into temporary stacks and
a vectorized distance calculation is performed. Minimum
distances are retained and scattered back to the main -
particle stack, and all temporary stacks are discarded.
Upon completion of all iterations in the sector-tracking
task, particle pointers are dispersed to queues for either
the collision analysis or the boundary analysis tasks. The
other tasks shown in Figure 7 are similar in complexity

to the sector tracking, with several nested levels of con-
trol and computation.

Speedups in excess of 10 have been reported
(Brown, 1986) for a full-core three-dimensional pressur-
ized water reactor (PWR) model consisting of a pressure
vessel containing 137 fuel assemblies, with each assembly
containing a 14 X 14 array of fuel pins, poison pins,
control rods, waterholes, etc. The absolute performance
for this code is in the range of 9—15 psec/track on the
CDC CYBER-205 for a typical mix of applications.
These are the most impressive results reported to date
and indicate that vectorized Monte Carlo has finally ma-
tured—the vectorized code developed by Brown is now
a production-level Monte Carlo code at Knolls Atomic
Power Laboratory (KAPL) and is used on a daily basis.

Multitasking

The next step is to take advantage of the multipro-
cessing capability of the current generation of vector su-
percomputers such as the CRAY-X/MP series or the
IBM 3090 series of computers. These computers are
characterized by architectures that employ a few (<6)
high-performance vector processors with a large, shared
memory, which is accessible to all processors on an equal
basis. Because the particle histories are all independent,
there is no conceptual barrier to multitasking the vector-
ized Monte Carlo algorithm. The real issue is the trade-
off between vector length and task granulanty, which
may limit the efficiency of the overall simulation. That
is, assigning more than one vector processor to work on
a single Monte Carlo simulation will result in fewer par-
ticles for each processor and a possible decrease in the
vector length, hence a degradation in the vector perfor-
mance of each processor. This is probably not of con-
cern for the current generation of multiple vector pro-
cessors with up to six processors; but the trend seems to
be toward increasing the number of processors (i.e., to
perhaps 16 or 32), so it may become an important issue
later. Before we discuss the results of some of these ef-
forts, let us define some basic concepts of parallelization
efficiency (Hockney and Jesshope, 1981). Defining ¢, as
the elapsed time spent to perform the calculation on one
CPU and ty as the elapsed time spent to perform the
calculation with N CPUs, we define the parallelization

speedup,

T R

Because the particle histeries are all
independent, there is no conceptual
barrier to multitasking the vectorized
Monte Carlp algorithm. The real issue
is the trade-off between vector length
and task granularity, which may limit
the efficiency of the overall simulation.

s S Ty N e T i S

Speedup (N CPUs) = Sy = ;—’,
N

where both the single CPU and the multiple CPU calcu-
lations are performed on a dedicated computer. Now let
us define the sequential fraction f; as the fraction of the
calculation that can be performed by only one CPU and
the parallel fraction f, = 1 — f; as that fraction that can
be performed by all N CPUs. The speedup can then be
obtained,

1
T Lt SN

which is simply Amdahl's law (Amdahl, 1967). This is
the maximum theoretical speedup for N processors, and
it 1s easy to see that the sequental fractuon is the critical
parameter. For example, if f; = .1, the maximum
speedup is 10, no matter how many processors are uti-
lized. The efficiency of a parallel algorithm may then be
defined as the ratio of the observed speedup to the
theoretical speedup,

Sn

. SNactual
Efficiency (N CPUs) = ey = ———

o SNAmdahl

Chauvet (1984; 1985) has reported on a multitasked
version of a stack-driven algorithm, similar to that of
Bobrowicz et al. (1984), that replicates the overall siru-
lation in each processor. For one case on the CRAY
X-MP72, Chauvet predicted a maximum speedup of
1.961 and observed a speedup of 1.957, for an efficiency
of 99.8%. In addition, parallel-vector algorithms have
been developed (Wan and Martin, 1986) for the CRAY
X-MP and the IBM 3090 computers. No actual timing
results have been reported yet, although predicted
speedups are reported, which indicate a degradation in
performance as the number of CPUs increases, because
of the decrease in the vector length. However, it appears
that there should not be major difficulties in adapting
existing vectorized Monte Carlo codes to the modestly
parallel (<6 CPUs), shared memory multiprocessors
typified by these computers.

There may be challenges with the new class of mas-
sively parallel vector processors such as the Intel iPSC-
VX or the Floating Point Systems T-series computers.
These are hypercube-connected multiprocessors of
scalar and vector computers with a distributed memory,
so that each CPU has its own memory and there is no

shared memory. If the memory assigned to each pro-
cessor is not sufficient to contain the entire code and
data base for the overall Monte Carlo simulation, then
the problem may need to be partitioned and the indi-
vidual nodes need to communicate (Martin et al., 1986),
which will complicate the algorithm and introduce addi-
tional overhead for the communications. In addition,
the large number of vector processors exacerbates the
issue discussed above regarding vector length versus task
granularity. Thus, substantial algorithm development
may be needed to take advantage of this particular
architecture.

One possible approach involves an extension of the
stack-driven algorithm, with separate computational
tasks placed on separate processors. Particular attention,
however, must be given to the issues of load balancing
between tasks and interprocessor communication require-
ments.

Concluding Remarks

The following remarks summarize the status of vector-
ized Monte Carlo:

Monte Carlo has been successfully vectorized. Although
the conventional Monte Carlo algorithm is inherently
scalar because of its history-based structure, the event-
based algorithm has been shown to be very effectve at
exploiting vector architectures. Until 1986, only “re-
stricted” Monte Carlo codes (restricted by geometry,
physics, or relative simplicity) had been successfully vec-
torized. Brown’s recent work indicates that general-ge-
ometry, general-purpose Monte Carlo is also vectorizable
with excellent speedups.

The vectorization of a Monte Carlo code is a significant
undertaking. One conclusion arising from the successful
vectorization efforts is that global algorithmic changes
are necessary—comprehensive changes to the data
structures and possibly a complete rewrite of the code.
This degree of effort may not be possible, or affordable,
but is probably essential to achieve significant speedups.
Thus, the disappointing results with the KENO-IV vec-
torization may be due to the fact that it was encumbered
by the structure of the original KENO-IV code.

The next challenge s multitasking. The question is,
How efficient will it be when implemented on multple
vector processors? For the current generation of mod-
estly parallel vector processors, such as the CRAY
X-MP/48 and the IBM 3090/600, this may not be a

problem. However, as the number of processors grows,
the level of efficiency may become unacceptable. More-
over, the new dass of distributed memory vector pro-
cessors will pose its own challenges for algorithm de-
signers. Additional research is needed to address these

issues.

ACKNOWLEDGMENT

This work was partially
supported by grants from
IBM (Kingston) and
Lawrence Livermore Na-
tional Laboratory.

BIOGRAPHY

William R. Martin was born
in Flint, Michigan, on June
2, 1945. He received a
B.S.E. degree in engi-
neering physics from the
University of Michigan in
1967 and an M.S. degree
in physics from the Uni-
versity of Wisconsin in
1968. Following a tour of
duty with the U.S. Navy
(Naval Reactors Division),
he returned to the Uni-
versity of Michigan in 1973
and received his Ph.D. de-
gree in nuclear engi-
neering in 1976. He then
joined Combustion Engi-
neering, Inc., and was re-
sponsible for developing
advanced methods for nu-
clear reactor analysis. He
returned to the University
of Michigan in 1977 and
is currently an Associate
Professor of Nuclear Engi-
neering and has recently
been named Director of
the Laboratory for Scien-
tific Computation in the
College of Engineering.
His research interests in-
clude computational
methods development in
several areas, including
particle transport, reactor
analysis, and thermal/hy-
draulics as well as the de-

velopment of algorithms
for scientific computation
on advanced computer
architectures.

Forrest B. Brown received
his Ph.D. degree in nuclear
engineering from the Uni-
versity of Michigan in
1981, with a dissertation
titled “Vectorized Monte
Carlo.”

In 1981 he joined the
Knolls Atomic Power Lab-
oratory in Schenectady,
New York, as a physicist.
He continued his work on
vectorized Monte Carlo
methods, developing new
calculational techniques
and applying them to the
solution of large-scale re-
actor physics problems. In
1983, he received the
Outstanding Technical
Contribution award from
the Power Systems division
of the General Electric
Company for this work.
He is currently the Lead
Physicist for the Nuclear
Design Methods group at
KAPL. His principal activ-
ities include the develop-
ment of Monte Carlo
methods, advanced com-
putational techniques for
large-scale reacior physics
problems, and the effective
utilization of vector/parallel
computers in nuclear
engineering.

REFERENCES

Amdahl, G. 1967. Validity
of the single processor ap-
proach to achieving large

scale computing capabili-
ties. Proc. Spring Jomt Conf.
AFIPS 30:483-485.

Asai, K., Higuchi, K., and
Katakura, J. 1986. Vector-
ization of the KENO-IV
code. Nugl. Sci. Eng.
92:298-302.

Bobrowicz, F. W., Lynch,
J- E,, Fisher, K. J., and
Tabor, J. E. 1984. Vector-
ized Monte Carlo photon
transport. Parallel Compnut.
1:295-305.

Brown, F. B. 1981. Vec-
torized Monte Carlo. Ph.D.
thesis. Ann Arbor: Uni-
versity of Michigan, De-
partment of Nuclear
Engineering.

Brown, F. B. 1983. Vec-
torized Monte Carlo
methods for reactor lattice
analysis. In Proc. topical
meeting on advances in re-
actor computations. La-
Grange Park, Illinois:
American Nuclear Society,
pp- 108—123.

Brown, F. B. 1986. Vec-
torization of 3-D general-
geometry Monte Carlo.

Trans. Amer. Nucl. Soc.
53:283-284.

Brown, F. B., and Martin,
W.R. 1985. Monte Carlo
methods for radiation
transport analysis on vector
computers. Progr. Nuclear
Energy 14:269-299.

Brown, F. B., and Men-
delson, M, R. 1984. Vec-
torized Monte Carlo appli-
cations in reactor physics
analysis. Trans. Amer. Nuel.
Soc. 46:727—-728.

Brown, F. B., Calahan,

D. A, and Martin, W. R.
1981. Investigation of vec-
torized Monte Carlo algo-
rithms. Ann Arbor; Uni-
versity of Michigan, De-
partment of Nuclear
Engineering.

Brown, F. B., Martin,
W.R,, and Calahan, D. A.
1981. Investigation of vec-
torized Monte Carlo algo-

rithms. Trans. Amer. Nucl.
Soc. 39:755-756.

Bucher, 1. Y., and
Simmons, M. L. 1985. Per-
formance assessment of
supercomputers. LA-UR-
85-1505. Los Alamos: Los
Alamos National Labora-
tory, Computing and
Communication Division.

Calahan, D. A, and
Martin, W. R. 1980. Final
report for preliminary
studies on vectorized
Monte Carlo for Los
Alamos National Labora-
tory. Ann Arbor: Univer-
sity of Michigan, Depart-
ment of Nuclear
Engineering.

Chauvet, Y. 1984. Muld-
tasking a vectorized Monte
Carlo algorithm on the
Cray-X/MP2. Cray Channels
6(3).

Chauvet, Y. 1985. Vectori-
zation and multitasking
with a Monte Carlo code
for neutron transport
problems. In Proc. LANL-
CEA meeting on recent appli-
cations of the Monte Carlo
method. CEA-CONF 7902,

Dongarra, |. J. 1986. Per-
formance of various com-
puters using standard
linear equations software in
a Fortran environment.
Tech. Memo. 23. Argonne,
Illinois: Argonne Nauonal
Laboratory.

Fisher, K. J. 1986. Vector-
ized Monte Carlo radiation
transport. LA-UR-86-
3737. Los Alamos: Los
Alamos National Labora-
tory, Computing and
Communication Division.

Hockney, R. W, and Jess-
hope, C. R. 1981. Parallel
compruters. Bristol, Great
Britain: Adam Hilger Ltd.

Los Alamos Monte Carlo
Group. 1981. MCNP—A
general Monte Carlo code
for neutron and photon
transport. LA-7396-M (re-
vised). Los Alamos: Los

SRS A T R W S T P R i B W TR S

Alamos National Labora-
tory, Group X-6.

Martin, W. R. 1983. Vec-
torized Monte Carlo on the
Cyber-205. Ann Arbor:
University of Michigan,
Department of Nuclear
Engineering.

Martin, W. R., and Ca-
lahan, D. A. 1982. Vector-
ized Monte Carlo for non-
linear radiation transport.
Trans. Amer. Nucl. Soc.
43:399-400.

Marun, W. R., Nowak,
P.F., and Rathkopf, J. A.
1986. Monte Carlo photon
transport on a vector su-
percomputer. IBM J. Res.
Develop. 30:193-202.

Martin, W. R., Poland, D.,
Wan, T. C., Mudge, T. N,
and Abdel-Rahman, T. S.

1987. Monte Carlo photon
transport on the NCUBE.
In Proc. second conf. on hy-

percube multiprocessors. New
York: SIAM, in press.

Martin W. R., Rathkopf,
J- A., and Nowak, P. F.

1985. Vectorized Monte
Carlo photon transport on
the Cray-XMP. Trans.
Amer. Nucl. Soc.
50:278-279.

Straker, E. W., Scott,

W. H., and Byrn, N. R.
1970. The MORSE general
purpose Monte Carlo
multigroup neutron and
gamma ray transport code
with combinatorial geom-
etry. USAEC Report
ORNIL-4585. Oak Ridge,
Tennessee: Oak Ridge
National Laboratory.

Troubetzkoy, E., Steinberg,
H., and Kalos, M. 1973.
Monte Carlo radiation
penetration calculations on
a parailel computer. Trans.
Amer. Nucl. Soc. 17:260.

Wan, T. C., and Martin,
W.R. 1986. Parallel algo-
rithms for photon trans-
port Monte Carlo. Trans.
Amer. Nucl. Soc.
53:285-286.

