THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY!

OBJECT-BASED COMPUTER ARCHITECTURES
T. N. Mudge, G. D. Buzzard, D. J. Verhaeghe,
J. Hill and D. C. Winsor
CRL-TR-18-83

APRIL 1983

Room 1079, East Engineering Building
Ann Arbor, Michigan 48109

USA

Tel: (313) 763-8000

1This work was supported in part by the Air Force Office of Scientific Research under contract F48620-82-C-
0089 and a Kodak Fellowship. Any opinions, findings, and conclusions or recommendations expressed in this publi-
cation are those of the authors and do not necessarily reflect the views of the funding agency.

This report also appeared in the Seventh Annual Conference on Information Sciences and Systems.

Abstract--There has been a sizable increase of interest in object-based computer
systems recently. Much of this increase is attributable to DoD's massive commitment
to the Ada language project. Though Ada (DoD's proposed standard language) may
not fit everybody's definition of an object-based language, it does incorporate key
object-based concepts. In this paper we attempt to characterize these systems and
the underlying concepts of the object-based design methodology. We also present
case studies of two commercially available object-oriented computers and point to

issues which require further study.

l. INTRODUCTION

The term "object-based” has been used rather loosely in several different con-
texts. In this paper we will characterize object-based computer architectures and
discuss some of their major implications. While we will not attempt to rigidly define
the phrase "object-based" as it relates to computer systems, we will explain several
object concepts and show how they are applied to computer systems. It should be
noted that it is actually the design methodology that is object-based, and that
object-based computer systems refer either to systems which have been designed
using this methodology, or to systems which provide development cycle and/or run-
time support for object-based concepts. This is, perhaps, most easily illustrated in
terms of software systems. There it describes software environments which incor-
porate the concepts of data and program abstraction [1], and protection domains [2]
through the use of "objects.” Objects are singly addressable entities that uniqﬁely
identify their contents. In terms of the iAPX 432's Ada implementation [3, 4],
objects are generally grouped into packages th>at provide abstractions for either pro-
grams or data. Smalltalk objects [6] also provide abstractions, but in a slightly dif-
ferent manner. Implementations of both Ada and Smalltalk objects will be discussed
later. In terms of hardware, the phrase "object-based" is often used to refer to the
architectural support provided for data and program abstraction, and protection
domains. One aspect of this support can be exemplified by an architecture where
the primitive operations for memory management, process dispatching, interprocess
communication, or other operating -system type features are provided by the
h;ardware. In this type of system the implementation details of the memory pool, pro-
cess dispatching, or interprocess communication mechanisms are hidden; and a con-
cise interface in the form of instructions which operate on the objects corresponding
to the respective mechanisms is presented to the software operating system.

Another meaning which has been attached to object-based systems refers to sys-

tems where the object-based design methodology has been used to actually specify
the architecture. When carried to an extreme, this idea has some very powerful
implications. When design automation tools become sufficiently sophisticated, one
might be able to economically customize individual batches of VLS| processors
towards specific operations which appear unusually often in a given (limited) applica-
tion. This concept is closely related to the hardware/software transparency issue

which will be discussed shortly.

There are two major goals in developing object-based software. The first is to
reduce the total life-cycle software cost. This entails both increasing programmer
productivity and reducing maintenance costs. For reducing maintenance costs
though, object concepts alone may not suffice; the syntax used in the programming
environment must be such that it maps ,very closely to a concise natural language
description of the system. The second goal, is to implement software systems which
resist both accidental énd malicious corruption attempts. Protection domains are

used for this purpose.

The major goals for developing object-based hardware are to provide an effi-
cient execution environment for the software system. A very attractive addition to
this goal, however, would be to design the system in such a manner as to be able to
extend the abstraction mechanism to effect a hardware/software (HW/SW) tran-
sparency. The availability of HW/SW transparency would allow system designs to
proceed without regard for the final placement of the HW/SW boundary. The entire
system could be described by a suitable system implementation language, imple-
mented in software (as far as physically possible), and then after sufficient perfor-
mance data was acquired appropriate modules could be shifted to a hardware imple-
mentation. If the design methodology was implemented in the development environ-
ment with sufficient sophistication the migration from software to hardware would not
require any code to be rewritten, and the interface would already be specified. The

hardware interface could occur at one of three levels: bus level, similar to current

arithmetic coprocessors such as the Intel 8087; memory (1/0) level, like many exist-
ing 1/0 devices; or, conceivably, at a level internal to the CPU involving an actual

change in the CPU architecture.

There are a few commercially available computer systems which incorporate
various object-based concepts. The most notable of these systems, the Intel iAPX
432, and the IBM System/38 [6] will be described in case studies which appear later
in the text. The PP250 [7] was designed by Plessey Telecommunications Research
Laboratories for applications in telephone switching systems. As such, it had to meet
very stringent reliability standards requiring the inclusion of software error detection
and recovery facilities, which were achieved through the use of a capability [3]
mechanism. Another commercial entry is the Apollo network system [9]. It employs
an object oriented network operating system which supports a total address space

of 298

bytes. This space is comprised of an object name of 64 bits which is unique in
both space and time, and an address space of 32 bits within each object. Several
universities have also developed systems which employ object-based concepts. The
most recent projects in this group include Cm* [10], C.mmp [11] and CAP [12]. Like
most of their predecessors, these machines utilize capability addressing techniques

to implement secure protection domains. These protection domains (packages in Ada)

can then be appropriately structured to provide data and program abstractions.

Object-based machines are particularly well suited to applications which have
stringent requirements for data security and program integrity. The high degree of
abstraction provided by the architecture also facilitates the interconnection of
several processors into either tightly coupled multiprocessor systems and/or distri-
buted networks. Through the use of process/processor abstraction Intel has
achieved software transparent multiprocessing in their iAPX 432 system. In addition,
the Cm* system provides an example employing both tightly coupled multiprocessing

and distributed networking concepts in one system.

Of course, all of the benefits of an object-based system do not come without
their price. All present systems rely on some form of capability addressing. In
current implementations these addressing mechanisms greatly increase the address
generation and translation times, even when translation look-aside and caching
schemes are employed. For example, to copy a capability on Cm* requires ten

memory references [13], and on the iAPX 432 nine memory references are required.

The following section discusses some key 'object” concepts and their imple-
mentations in more detail. Section 1ll contains case studies of two commercially
available systems, the Intel iAPX 432 and the IBM System/38. Concluding remarks,

including comments on areas of further research, are made in section IV.

1. OBJECT-BASED CONCEPTS

Abstraction plays a central role in the object-based design methodology and,
hence, occurs at many levels. The most common of these levels being data, pro-
grams, and in the case of Apollo-type network systems, entire programming environ-

ments. Of these, data abstraction is the most widely used and best understood.

In terms of Ada, data abstraction provides the user with a 'private" (hidden)
type and operations on objects of that type [14]. Mary Shaw gives a more expan-
sive definition of an abstract data type [1]. An abstract data type consists of a

program unit that includes the following information:

Visible outside the type definition: the name of the type and the names and rou-
tine headers of all operations (procedures and functions) that are permitted to
use the representation of the type; some languages (e.g. Ada) also include for-
mal specifications of the values that variables of this type may assume and of

the properties of the operations.

Not visible outside the type definition: the representation of the type in terms

of built-in data types or other defined types, the bodies of the visible routines,

and hidden routines that may be called only from within the module.

The efficient use of abstract data types requires substantial support from the
programming language. Some of the more important areas of support include: naming
and scope rules, type checking (including across compilation boundaries if separate
compilations are supported), formal specification notations, and distributed proper-
ties. Enforcement of naming and scope rules is often implemented through the use of
protection domains, which will be discussed later. Type checking between actual and
formal parameters is more complex for abstract data types because new types may
be defined during the compilation process. Notations for formal specifications of the
abstract data types must be provided so that the users of the types are provided
with all necessary information. Finally, support must be provided by the abstract
data types for any type-specific interpretations required by the various constructs

of the programming language, such as storage allocation and synchronization.

- The construct for implementing abstract data types in Ada is the package. The
Ada package [15] effectively places a wall around a group of declarations and only
permits access to those declarations which were intended to be visible. Ada pack-
ages actually come in two parts, the specification and the body. The package
specification formally specifies the abstract data type and its interface to the out-
side world. The body of the package contains the hidden implementation details. The
relationship between Ada packages and objects (in the context of the iAPX 432) will

be discussed in the iAPX 432 case study.

Data abstraction in Smalltalk also fits the definition given above. However, the
implementation is very different. Data abstraction is very integrally related to the
concept of Smalltalk objects [5, 18], so a brief introduction to objects will precede

the references to data abstraction.

In Smalltalk all information is represented in the form of objects. An object is

defined as a package containing information and descriptions of all the manipulations

that may be performed on the information. The manipulation of information is con-
trolled by the passing of messages between objects. A Smalitalk message is defined
as a selection of one particular manipulation of an object. The object containing the
information to be manipulated is called the receiver of the message. When an object
receives a message, it examines a symbolic name contained in the message called a
selector. The selector names the desired manipulation, but it does not specify how it
is to be performed. The description of how the manipulation is to be performed is
contained in the object itself. In Smalltalk, the programmer sends a message to
invoke a manipulation instead of calling a procedure. However, the sending of a
Smalltalk message differs from a procedure call in that the message only names the
manipulation while a procedure contains the detailed steps to be performed in the
manipulation. Another important difference is that in a conventional procedure-
oriented system the same manipulation is performed each time a named procedure is
called, while sending Smalltalk messages with the same selectors (same names) to
different objects may result in different manipulations, since it is the receiver which

determines exactly what manipulation is to be performed.

In addition to a selector, a message may contain the names of other objects
that take part in the manipulation. These names are called the message arguments.
For example, if the object is named "student,” the programmer might send a message
with the selector "abuse.” The message could also contain an argument which speci-

fies how the student is to be abused.

The description of a single type of manipulation of the information in an object is
called a method. A method is similar to a procedure in that it describes a sequence of
actions to be performed, but unlike a procedure it cannot be separated from the
object. Methods may only be performed as the result of receiving a message. Thus a
method cannot call another method directly; it must send a message to the object

containing the method.

Smalltalk objects use the concept of data abstraction. From 'outside" an
object the oniy thing that can be done is to send it a message. The details of its
information and its methods are hidden. An object's set of messages that it can
receive are called its protocol. The external view of an object is strictly limited to
its protocol. lnternall);, an object consists of its methods and a set of variables that
refer to other objects. These variables are called the object's private variables.
The methods and the private variables are analogous to the procedures and the data
in a procedure-oriented system. However, the distinction between procedures and

data is localized strictly to the inside of the object.

Programs and subprograms provide another common level of abstraction. Pro-
gram abstraction provides operations on structures of objects where the representa-
tion of the structure as well as access to the object itself are hidden from the user.
This provides a stronger form of hiding than data abstraction since access to the

object as well as its structured representation is hidden.

Program abstraction in Ada is realized through generic package instantiation.
The generic package is really a template for packages which will accept abstractions
(usually data, but in the case of Intel's extended Ada it could be another package)
as actual parameters. This represents a slightly higher level of abstraction than data
abstraction, because the structure of the object(s) being manipulated is completely
hidden within the package body. The hidden object structure is accessed through
the internal non-local variables of the operations declared in the package specifica-
tion. Manipulation of the object structure occurs as a controlled side effect, which is
strictly contained within the package body, of the requested operation. In this
manner, generic program abstraction supports an environment in which the specified
(public) operations either directly or indirectly transform a hidden internal state which

depends only on past operations applied to the initial state of the system.

10

While it is apparent that Smalltalk objects have already met the definition of
program abstraction, we have not shown how the relationship between objects of
similar characteristics can be exploited. This is essential if the concept of program
abstraction is to have any significant practical value. When program abstraction is
efficiently implemented it leads to the elimination of redundant programming effort
(e.g. a sort routine need be written only once, regardless of the different types of
objects to be sorted) and a reduction of maintenance costs (e.g. improvements to our
sort routine are made in only one piece of code). Operations on objects of different
types, but with similar characteristics, are realized through the use of classes and
instances. A class is a description of a type of object, while an instance is an object
of a particular class. Every object is an instance of a class, and it is possible to
have multiple instances of a particular class. The methods of an object are found in
its class, so all instances of a particular class have the same protocol. The class
may also specify some of the private variables for objects in the class. These are
called class variables and they are shared by all instances of the class. A class of
objects may also inrc|ude private variables which are specified individually for each
instance. These are called instance variables. All instances of a class have the
same number of instance variables, but their values may differ between instances. A
Smalltalk program is, then, organized as a set of class templates which define all user
defined object clésses. The class templates include the class names, instance vari-
able names,"and methods. A method is described by its message pattern, which
specifies the selector used to invoke it, its temporary variable names, which specify

dynamic local variables, and a sequence of expressions.

We have seen that the concepts of data and program abstraction in Smalltalk
are essentially one in the same. It has been proposed that these concepts be
merged together in Ada as well [14]. In fact, Intel has already taken a big step in
this direction with their extensions to the Ada language [16]. The merging of pro-

gram and data abstraction concepts would result in a unified abstraction mechanism

11

that would eliminate two relatively orthogonal concepts. The software designer
would then be relieved of the artificial choice between program-oriented or data-

oriented programming methodologies.

A higher, though perhaps less sophisticated, level of abstraction is provided in
the Apollo computer system [9]. Apollo provides an object-oriented network operat-
ing system to coordinate the user's access to network wide facilities. Objects are
used to represent programs, data files, or even entire programming environments. The
network global object spaces are selectively mapped into a process virtual address
space on a given node of the system. The objects are network wide; whereas, the
processes are all on a particular node running on behalf of a particular user. The
address space mapping represents the only primitive in which processes can relate
to objects. For the most part the operating system and all higher level views of the

system relate to objects rather than processes.

Protection domains, and the inherent security that they provide, are another key
object concept. The basis for secure and error-tolerant execution environments lies
in the principle of system closure [2]. This principle basically states that the effects
of all operations on a closed system shall remain strictly within that system. One
common construct used for providing system closure is the pretection domain [17].
Briefly stated, a protection domain is an environment or context that defines the set
of access rights that are currently available to a specific user for objects of the
system. Capability based addressing schemes are the most efficient known mechan-

ism for implementing protection domains.

Protection domain schemes generally provide facilities for error confinement,
error detection and categorization, reconfiguration, and restarting. Error confinement
(and security) strategies generally involve both process isolation and resource con-
trol. The basic premise of process isolation is that processes are given only the

capabilities necessary to complete their required tasks. This implies that interactions

12

with any external objects (e.g. sending messages to other processes) must be
strictly formalized and controlled. Resource control refers to the binding of physical
resource units to computational objects. Examples of this include the binding of
processes to processors, or the assignment of memory to currently executing con-
texts. The idea here is to ensure that when the resource units are released, or
preempted, that all information contained within the unit is returned to a null state.
This prevents any information from "leaking' out of a protection domain by being inno-
cently left in an area that will eventually become accessible to other users. Error
confinement also aids the program debugging process, since bugs should be located
in the same module which contains the resulting error. Program maintenance also
benefits since the protection domain defines the maximal set of modules which could
be affected by a modification to the system. Error detection and categorization
involves dynamic checking for object type inconsistencies and access constraint
violations in executing procedures. The categorization of detected errors can then
be used to aid in restoring the system to a known consistent state. Reconfiguration
facilitiés attempt to restore the system to an operable state by removing from ser-
vice the failed component, be it hardware or software. If the reconfiguration attempt

is successful, the system is then restarted.

The most efficient known mechanism for implementing protection domains is the
capability mechanism. While much can be done at compile time to enforce the con-
cepts of protection domains, there are many cases where a dynamic enforcement
mechanism is essential. The real-time sharing of data between programs provides an
obvious example. But compile-time protection enforcement also lacks the ability to
support the detection of, and recovery from, failures in the run-time system. A brief

description of the capability mechanism follows in the next paragraph.

A capability can be thought of as a name of an object. An object cannot be
accessed (and, in fact, its existence cannot even be determined) unless its name is

possessed. The capability also contains the access rights to the object (e.g. read,

13

write, or capability copy rights). The only subsequent modification allowed is the res-
triction of these rights. Capabilities are created along with their respective objects.
The initial control of the capability, hence the object, belongs solely to the creating

context. Specific implementation details are given in the case studies.

Ill. CASE STUDIES

A. Intel iAPX 432

The Intel IAPX 432 is an object-based microcomputer system, developed in an
effort to curb the rising costs of software. Measured as a percentage of total sys-
tem costs, the cost of software has been rising dramatically for the past several
years. Intel attributes much of this increase to four common requirements that are

characteristic of modern software systems [19]:

(1) Demand for systems embodying many large programs with complex interactions.
(2) Demand for increased system security.

(3) Demand for efficient concurrent programming support.

(4) Demand for truly tranéparent multiprocessing, where changing the number of

processors in the system does not require any software modifications.

The object-based design methodologies embodied in, and supported by, the iAPX 432
provide solutions for these problems. Furthermore, it is hoped that the underlying
architectural support for object-based programming methodologies will help to provide

the environment necessary to aid in controlling the rise of software costs.

All information in the iIAPX 432 system is represented by typed objects. An
object is defined by the following four characteristics [20]. First, an object is a data
structure containing organized information. Objects also define the set of operations
which may be performed on themselves. In fact, these are the only operations that

are allowed. The third characteristic of iAPX 432 objects is that they are referenced

14

as a single entity, regardless of the length of the object. Finally, every object has a

unique label that contains the information about its type.

Objects are implemented as a collection of one or more segments. Segments are
of variable length, and come in one of three hardware recognized forms, access only,
data only, or a combination of both. Segment types are identified by header informa-
tion which is stored in the segment itself, but is virtually (in the address sense)
invisible to the software. In the case of combination segments, the location of the
boundary between the access and data parts is also stored with the type. Access
segments (or parts of segments) can contain only access descriptors or null entries.
Accéss descriptors are the '"capabilities" in the iAPX 432 system. Data segments
contain all of the other information in the system, including things such as instruc-

tions or process status information.

The ability of the hardware to identify access segments is one of the key
mechanisms used by the iAPX 432 to enforce protection domain security. Any
attempts to modify access segments can be closely monitored. The security
mechanisms inherent in the iAPX 432 architecture are not limited to the above, how-
ever. As an example, we will consider the protection against executing data. The
currently executing process references instructions via two indices, one of which is
an instruction pointer that provides an offset into the current instruction object. The
other is an index which selects a capability that determines the current instruction
object from the domain object (described later). Since the physical_base address of
the currently executing instruction object is cached on chip and since length bounds
checks are automatically performed by the hardware on all memory references,
instruction fetching type consistency is guaranteed by checking the objegt type of
the instruction object referenced by the indexed capability. This needs to be done
only when the current instruction object index is modified, that is, only when an inter-

segment branch is executed.

16

There are a number of hardware (microcode, actually) recognized objects in the
iAPX 432 which are primarily used to support the object-based concepts discussed
in section Il. This includes objects which represent instructions, protection domains,
activation records, processes, and even physical processors. Two of the more
interesting ones are the context and domain objects; these represent activation
records and protection domains, respectively. The domain objects and context
objects are used to realize the concept of type managers, the system's primary
mechanism for implementing data and program abstraction concepts. Type managers
are modules that provide information hiding (or data encapsulation) by containing a
data structure and all the necessary procedures to manipulate that data structure.
By allowing only a strictly controlled set of procedures to be invoked from outside of
the protection domain (i.e. the domain object), the implementation of the data struc-
ture and the procedures which directly manipulate it are effectively "hidden' from
the outside world. The domain object represents a type manager's static structure
via an object complex (a tree-like structure objects, in this case, with the domain
object as its root). This object complex incorporates instruction objects and data
objects, referenced via the domain object access segment, which contains all object
references in the domain, both public and private. The private references are com-
pletely inaccessible to objects outside the domain, and thus, realize data abstrac-
tion. Since the domain object contains the data object and all the instruction objects
that operate on it, we can see that standard Ada packages map directly onto domain
objects. Additionally, since all generic Ada packages are instantiated at compile time,

each instantiation is represented by its own unique domain ob ject.

The context object contains the dynamic run-time information which describes
the execution environment of an invoked procedure; thus every activated procedure
in the system has a context object associated with it. When a procedure is called, a
context object is automatically created; conversely, when a procedure returns, the

context object is automatically destroyed. Intel provides an extension of Ada in the

16

form of package types. Through the use of the hardware-supported domain and con-
text objects, package types can be passed as parameters to other packages [16].
This allows dynamically defined entities, such as dynamic generic package instantia-
tions, to be easily handled in the IAPX 432. For example, a user may wish to write a
procedure that manipulates objects of an unknown arbitrary structure by performing
very general operations on them, e.g., a garbage collection algorithm. Standard Ada
requires all types to remain static, and to be known at compile time. The iAPX 432,
through Intel's extended Ada, supports dynamic applications using arbitrary types
directly. Another possibility is for an operating system to define its 1/O devices as
packages types. Then, as devices are added or removed, the system could dynami-

cally reconfigure itself without operator intervention.

To enforce system security, Intel employed capability addressing in the iAPX
432. All of the object references for a given protection domain exist in the domain
object's access segment, or indirectly, in access segment objects which are refer-
enced from the domain. In order to implement the domain object as a single object
and still allow for public and private regions, |ntel uses an object refinement mechan-
ism. This allows a contiguous section of an object to be treated as a whole object in
terms of capability rights. Thus when a domain object is referenced by an "outside”
procedure, the calling procedure will be using a capability for the public refinement
area of the domain access segment. By prohibiting capabilities for the private area
to be given out, that area will remain inaccessible from outside the domain. In the

public area, capabilities reside for the instruction objects that are public information.

One of the design decisions that is interesting to compare among object-based
systems is the implementation of the addressing scheme. Addressing in the iAPX 432
is accomplished through a series of indexed table Iodk-ups, similar to segment tables
in a segmented memory architecture. Address translation is a two level mapping. A
system-wide table known as the object table directory exists at a known, physical

address. This table represents the first level of the mapping process and contains

17

the base addresses of all the object tables in the system (maximum of 40986).
Object tables represent the second ievel of the mapping process and contain object
descriptors for all the objects associated with that object table. Roughly speaking,
there is one-to-one correspondence between processes and object tables. The
object descriptors found within the object tables contain a 24-bit physical base

address, length, type, and other information for their respective objects.

A data reference in the iIAPX 432 instruction stream consists of a 16-bit access
selector and a 16-bit displacement [21, 22] (see figure 1). The access selector is
run through a content-addressable memory (CAM) and if a match occurs, the base
address of the object is obtained. The 16-bit displacement is then applied and the
data element retrieved.‘ If there is no match, then a rather lengthy address transla-
tion takes place. The access selector is broken up into a 14-bit displacement and a
2-bit select field. The two bits select one of four entered access segments (EAS's),
which are in on-chip registers. These EAS's hold access descriptors (AD's, capabili-
ties) for access segments. The 14-bit displacement provides an index into the
selected segment to obtain the AD for the requested data object. Once the physical
base address for the data object is translated, the 16-bit offset from the instruction
stream is added to it to select the actual byte(s) referenced. The above description
implicitly included the translation of two AD's, one for the access segment, the other
for the actual data object. Each one of these translations consists of: using the first
12-bit field in the AD to index into the object table directory to select a object
descriptor for an object table; then using the other 12-bit field in the AD to index
into the specified object table and select a object descriptor for the desired object,
either the access segment or the data object. The above addressing scheme pro-
vides a total virtual address space of 2%° bytes, this comprises the 2'2 object
tables which can each contain 2'2 object descriptors for objects that are up to 28
bytes in length. However, at any one instant of time a process's logical address

space is limited to 232 bytes. This is because there are only four (22) EAS registers

18

which hold AD's for access segments that each contain 214 AD's for the actually

addressable objects which are up to 216 bytes in length.

One can see from the diagram that six off-chip memory references are needed
to retrieve a piece of data if its address is not available in the cache. Once the AD
for the access segment is retrieved from the appropriate on-chip EAS register, three
memory references are needed to obtain the AD for the data object. Two more refer-
ences are then required to get the base address of the data object and finally, one
more gets the actual piece of data. Once an object is referenced, its base address
and length are stored in the cache. Once the object is cached, the number of
memory references needed for data retrieval is reduced to two. While security is
strongly desired in today's complex software systems, it is seen that the addressing
of information in such a secure system can lead to complex and lengthy address

translation mechanisms.

B. IBM System/38

The IBM System/38 was designed for general purpose data processing, sup-
porting both batch and time-sharing environments. System/38 is aimed toward busi-
ness applications rather than numerically intensive scientific applications. Conse-
quently, the system needs to provide functions such as task management, inter-task
communication, and high-level data-base manipulations. The System/38 provides
this support at the hardware/architecture level. This high-level machine interface is
implemented through the use of objects. High-level machine instructions are provided
that manipulate objects rather than simple data types such as byte strings. This
allows the execution of complicated functions such as inter-task communication to

be performed with just one instruction.

There are two major types of objects in the System/38, system and program
objects. System objects are used to perform machine functions such as message-

queuing, process Initiations, and /O operations. Program objects are used for

19

operations such as operand accessing, branching, and exception handling. System
and program objects, respectively, will be considered in more detail in the following

two paragraphs.

All system objects support data abstraction to some extent. This is done by
implementing every system object with.a functional portion and an associated data
space--an exception to this is a space object which contains an associated space
only. The functional portion of the object contains information concerning the opera-
tions allowed on the object and the microcode needed to perform those operations.

This is analogous to the type manager concept supported in the Intel iAPX 432.

Pointer data objects contain pointers which are used to access both system and
program objects. Avspecific type of pointer, the system pointer, is used to access a
system object. It can be in one of two modes: resolved or unresolved. In the
unresolved state the system pointer contains the name of an object. When an
unresolved system pointer is referenced, a search is made in a context object to
associate a location with the object name. This location is then placed in the pointer,
changing its state to resolved. Each process has a name resolution list, which speci-
fies which context object(s) to search when resolving system pointers. This is use-
ful for easily changing the environment for different instantiations of the same pro-
cess. Additionally, data pointers, which are used to access data in objects, can also
be unresolved [23]. Using unresolved data pointers allows programs to operate on
}data whose attributes are dynamic. This implies that executing code can operate on
dynamically changing data types, as on the iAPX 432. Thus, the use of unresolved

pointers in the System/38 allows for a form of program abstraction.

The System/38 uses a form of capability addressing to enforce system security
requirements. Pointers and user profiles (UP) together form the capability for an
object. All processes execute under control of a specific UP. This user profile con-

tains the authorization list for all permanent objects owned by the given user.

20

Pointers basically provide the addressability for an object, while the UP decides if a
module has the authority to perform the desired operation. To increase efficiency,
the rights information contained in the UP is allowed to be passed into the system
pointer. If this is done, the UP can no longer retract authorization for specific
modules. Thus, the ability to place an object authorization in an system pointer is

itself an authorization which may or may not be granted by the UP.

The IBM System/38 employs a segmented page type memory architecture.
Pages are 512 bytes long and segments are from 128 to 32K pages. The virtual-
to-physical address mapping is a two-level mapping scheme, similar to the past
memory architectures from IBM. The hash table is the first level of mapping and pro-
vides an index into the page directory (see figure 2). The page directory is the

second level of mapping and yields the most significant bits of the physical address.

An operand reference in the System/38 is a lengthy process, as in the iAPX
432. In the instru‘ction stream, an operand field specifies an entry into both the
object definition table and the object mapping table. The object directory table entry
yields a 4-byte object_ descriptor and, optionally, an extension of this descriptar,
The object mapping table provides a 6-byte virtual address for the required system
pointer. The virtual address is then run through the virtual address translation
mechanism. The 39 most significant bits are run through a hash generator which out-
puts an index into the page directory. The page directory contains a linked list of
virtual page addresses for all entries having identical hash codes. The page direc-
tory gives a page address which, when concatenated with the nine least significant
bits of the virtual address, yields a physical address. This address provides the sys-
tem pointer which contains the virtual address for the data object. After passing this
address through the virtual-to-physical address translation mechanism, the physical
address of the operand is obtained. As in the IAPX 432, the use of a capability
addressing scheme to ensure tight system security leads to lengthy address transla-

tions.

21

1V. CONCLUSION

In this paper we have characterized object-based computer architectures. This
was done by illustrating key concepts with examples drawn from hardware and
software systems. The concept of an object was illustrated rather than defined to
avoid associating yet another definition with this term. A case was made for object-
based systems reducing system development costs and providing a secure execution
environment. These benefits require the use of an elaborate addressing mechanism
which significantly increases address generation time. Quantifying this trade-off is
the first step in evaluating object-based computer architectures. Development of
the techniques necessary for this quantification, and the evaluation of any changes

in the architecture that may result, present important research issues.

V. REFERENCES

[1] Shaw, Mary, '"The Impact of Abstraction Concerns on Modular Programming
Languages," Proceedings of the [EEE, Vol. 68, No. 9, September 1980, pp.
1119-30. "

[2] Denning, Peter J.. "Fault Tolerant Operating Systems," Computing Surveys, Vol. 8,
No. 4, December 1976, pp. 359-89.

[38] iAPX 432 General Data Processor Architecture Reference Manual, Revision 2,
171860-002, Intel Corporation, Santa Clara, California, 956051, 1882.

[4] Reference Manual for the Ada Programming Language, 171869-002, Intel Cor-
poration, 3065 Bowers Avenue, Santa Clara, California 95051, 1981.

[6] Robson, David, '"Object-Oriented Software Systems,” Byte, August 1981, pp.
74-86.

[6] /BmM System/38 Functional Concepts Manual, GA21-9330-1, IBM Corporation,
1982.

[7] England, D. M., "Capability Concept Mechanism and Structure in System 250,"
International workshop on protection in operating systems, IRIA, Rocquencourt,
August 1974, pp. 63-82.

[8] Fabry, R., "Capability-based Addressing," CACM, Vol. 17, No. 7, July 1974, pp.
403-12.

[9] Apollo Domain Architecture Manual, Apollo Computer Inc., 19 Alpha Road, Chelms-
ford, Massachusetts 01824.

[10]Swan, R. J., Fuller, S. H, and Siewiorek, D. P.,, "Cm*: A Modular Multi-
Microprocessor,”" AFIPS Conference Proceedings, Vol. 46, 1977 National Com-
puter Conference, pp. 637-43.

22

L11]Wulf, W. A. and Bell, C. G., "C.mmp - A Multi-Mini-Processor," AFIPS Conference
Proceedings, Vol. 41, part ll, FJCC 1972, pp. 765-77.

[12]Needham, R. H. and Walker, R. D. H., "The CAP computer and its protection sys-
tem,”" ACM 6th Symposium on Operating System Principles,
1977.

[13]Jones, Anita K. and Gehringer, Edward F. (eds.), "The CM* Multiprocessor Pro-
ject: a research review," Department of Computer Science, Carnegie-Mellon
University Report CMU-CS-80-131, July 1880.

[14]Wegner, Peter, "On the Unification of Data and Program Abstraction in Ada,"” ACM
Conference Record of the 10th Annual ACM Symposium on Principles of Pro-
gramming Languages, January 1983, pp. 256-64.

[15]Barnes, J. G. P., Programming in Ada, Addison-Wesley Publishers, London,1982.

[16]Reference Manual for the Intel 432 Extensions to Ada, 172283-001, Intel Cor-
poration, 3065 Bowers Avenue, Santa Clara, California, 95051, 1981.

[17]Linden, Theodore A., "Operating System Structures to Support Security and Reli-
able Software,” Computing Surveys, Vol. 8, No. 4, December 1976, pp. 409-45.

[18]The Xerox Learning Research Group, "The Smalltalk 80 System,” Byte, August
1981, pp. 36-48.

[19]/ntroduction to the iAPX 432 Architecture,
171821-001, Intel Corporation, 3065 Bowers Avenue, Santa Clara, California,
95051, 1981.

[20]iAPX 432 Object Primer, 171858-001, Rev. B, Intel Corporatlon 3065 Bowers
Avenue, Santa Clara, California, 95051, 1980.

[21]Hemenway, Jack and Grappel, Robert, "Understand the Newest Processor to
Avoid Future Shock," Electronic Design News, April 29, 1981, pp. 129-36.

[22]Budde, David L., Colley, Steven R., Domenik, Stephen L., Goodman, Allan L.,
Howard, James D., and Imel, Michael T., "The Execution Unit for the VLS| 432
General Data Processor,"” /EEE Journal of Solid-State Circuits, Vol. SC-16, No. 5,
October 1981, pp. 514-21.

[23]lliffe, J. K., Advanced Computer Design, Prentice-Hall International, London,
1982, pp. 363-78.

[24]!BM System/38 Technical Developments, G680-0237-1, IBM Corporation, 1980.

308(qo

ejeq

9l

L
st it o
€0z 22
av
sva
9
T
| 1 T
st Zio
ssaxppy |
Teotbog

(114

HYO

jenauyay puesado

wsjueysapy buissaippy Zer Xdvi 191V]
t aanbyy4

oDT
oDV
QES
OoMT

[|

oDV

oDT

OES

oMT

Instruction Stream

Instruction

/

2 bytes 2 bytes

2 bytes

Operation
Code

Opticnal
Operator
Extender
Field

Operand
Field 1

Operand
Field N

4 bytes

A
>

v

Object

Description

~
~,~—

variable

))
10

optional index

Extended
Object

Description

J)
LK 4

6 bytes

Object
Location

Figure 2

))
v i

Virtual Address
of System Pointer

Page Address

9 bits

Object definition table
JT directory vector
ODT entry string

Object mapping table

IBM System/38 Addressing Mechanism
Operand Retrieval

Hash
Generator

Hash Index
Table

Page Directory

A 4

Physical
- Page Address

A

Frame
Identifier

Byte
Qffset

\

/

Physical Address

of System

Pointer.

