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A mathematical model for the mechanism
of calcium fluoride formation on hydroxy-
apatite in buffered fluoride solutions is pro-
posed. It takes into account the physical
and chemical processes that occur during the
reaction. With the model it is possible to
evaluate a priori the fluoride uptake poten-
tial of fluoride solutions.

It is well established that fluoride plays an
important role in the prevention of dental
caries. Fluoridation of drinking water has
been a successful public health measure in
reducing the prevalence of tooth decay.'
Beneficial results have also ensued from
incorporation of stannous fluoride into a
dentifrice.2 Wellock and Brudevold3 and
others4,5 have reported a reduction in cari-
ous surfaces, as compared with controls,
after one or more topical applications of an
acidic fluoride and phosphate solution to
teeth. The tooth mineral hydroxyapatite de-
composes and calcium fluoride adheres to
the apatite and can serve as a source of flu-
oride for subsequent conversion of hydroxy-
apatite to fluorapatite.6

Recently there has been interest in the
application of physical chemistry principles
to hydroxyapatite, the primary mineral of
teeth. Gray7 has studied dissolution behavior
of enamel and applied kinetics to charac-
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terize the system in terms of the pH and
the buffer. A model for the mechanism of
enamel dissolution has been proposed by
Higuchi et a18 and has been successfully
tested experimentally by a powder method9
as well as by a solid disk method.'0 This
model is based on a simultaneous diffusion
and equilibrium chemical reaction in con-
trast to other models7"'1-'4 that are based on
an empirical kinetic expression of the type:
rate = (constant) (concentration). The pres-
ent study is a derivation of a model that
represents the physical and chemical pro-
cesses by which calcium fluoride is formed
from hydroxyapatite and fluoride ion.

Materials and Methods

The method used to derive the model for
the mechanism of the reaction was to de-
scribe the physical and chemical processes,
reduce these processes to mathematical equa-
tions, combine and solve the equations, and
obtain theoretical data by calculation. The
last point will be reserved for a subsequent
report in which theoretical data will be com-
pared with experimental data.

Results
STEADY STATE CONSIDERATIONS.-If a flat

surface of hydroxyapatite be exposed to a
stirred solution of fluoride, only the direc-
tion normal to the surface, defined as the
x direction, need be considered. The phys-
ical model is depicted in Figures 1 and 2.
Initially the apatite is in contact with the
treating solution (Fig 1), but after a finite
time calcium fluoride forms and the solid-
solid boundary, x = s, progresses (Fig 2).
Fluoride and acid diffuse into the reaction
site and phosphate diffuses out as the reac-
tion proceeds. Hill'5 has shown that if the
ratio of the concentration difference of the
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FIG 1.-Physical model for formation of
calcium fluoride on hydroxyapatite shows ini-
tial situation.

diffusing species to twice the amount bound
per unit volume in the new layer is suffi-
ciently small, steady state diffusion can be
assumed to exist behind the moving bound-
ary. It can be shown that the present con-

ditions satisfy this criterion. Thus, the steady
state diffusion equations for all of the dif-
fusing species in the region 0 c x c s are

d2(HB)
DHB -4hi° (1)

dx2

d2(B-)
DB ±diXO (2)

dx2

2P- (3

DHF dX2 +2 (6 ° (4)

d2(F)

DF- +(P2-4)60 (4)
dx2

0 5

X-s

FIG 2.-Physical model for formation of
calcium fluoride on hydroxyapatite as reaction
progresses.

d2(HPOf)
P04 dX2 P5

D
d2(H+)

H dx2

(9)

+(P4+ 65=O. (10)

The parentheses indicate the concentra-
tions of the enclosed species and HB and
B- are two forms of a general buffer. The
D's are effective diffusion coefficients in the
heterogeneous layer of the species indicated
by the subscripts. The effective diffusion co-
efficient is related to the diffusion coefficient
of the species in the liquid by,

(11)Deffective Dliquid

lid-r

where 6 and T are the porosity and tortu-
osity of the heterogeneous layer. The diffu-
sion coefficient in the liquid is assumed to
be that for the binary system of the single
species in the solvent. The terms ¢j through
)6 are, respectively, the rates of reaction
per unit volume of the following reactions
that take place in the region 0 x s.

HB-> H+ +B-
HF-> H+ + F-

H3PO4 H+ + H2PO-
4

H2PO_ H+ + HPO=
4 ~~~~~4

HPO=- H+ +PO=4 4

HF + F- HF-.
2

These rates are indeterminate as discussed
by Olander.16 These terms can be eliminated
by appropriate combinations of equations 1
to 10, which yield the following four equa-
tions:

Buffered
Solution Hydroxyapatite

of
Fluoride..~~~~~

Buffered
Solution CaF2 Hydroxyapatite

Of
Fluoride
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DHB d2(HB) + d2(B-)
HB dX2 B dX2

(12)

d2(H3PO4) d2(H2PO4)
DH3PO4 dX2 + DH2P4 dX2

d2(HPOf=) d2(PO4)
+ D1UP04 dX2 + DPO4 dX2

= 0 (13)
d2(H+) d2(HB)

DH dX2 + HB dX2

d2(HF) d2(HF )
± DHF dX2 + DHFO dX2

d2(HPO4 )
DHpol dx2

d2 (H2PO4 )
+ 2 D1H2P4 dX2

d2(H3PO4) 0 (14)± 3 DH3PO4 dX2

D d2(HF) + D (dF )
dx2 ~ ~ dX

+ 2DH
d2(HF2

0.

The first integration of equations 12 t
yields the following equations, respect
where the C's are constants of integra

d(HB) +Dd(B-) CDHB ±DBdx dx

d(H3PO4) d(H2P(
DH3PO4 dx + H2PO4 dx

d(HPO47) d(PO.
+ DHr04 dx + Dr4 dx

= C2
d(H±) d(HB) d(Jc]

DH - + DHB d(HB)+ Dd±dx dx d
d(HF ) d(HPO=

+ DH2
2

+ DH
dx A~04d

+2D d(H2PO4 )
+ 2 DH2PO4 dx

d(H3PO4)
+ 3 DH3PO4 dx = C3

(15)

d(HF) D d(F-)
DHF ±D AHFdx dx

+ 2 DH d=(HF)±2HF2' dX C4. (19)

Fick's first law of diffusion for the flux, J,
per cross-sectional area per unit time of a
substance of concentration c, is

dC
J=-D -

dx
(20)

Thus, physical significance can be ascribed
to the constants of integration in equations
16 to 19.

Cl= Jbuffer

C2 = Jtotal phosphate

C3= Jtotal acid

-C4= Jtotal fluoride-

(21)
(22)
(23)
(24)

Since the buffer does not take part in the
chemical reaction per se, the net flow of
buffer is zero:

Buffer = 0. (25)
Restrictions on equations 22 to 24 can be
deduced from the stoichiometry of the net
reaction:

Ca10(P04) 6(OH) 2 + 20 F- + 2 H+
01OCaF2±6PO-+2H9O.

These restrictions are

20 Total phosphate =
6 Total fluoride (26)

20 Total acid = 2 Jtotal fluoride, (27)
Combining equations 16, 21, and 25 and
eliminating the dx term by multiplying both
sides of the equation by it

DEBI d(HB) + DB d(B-) = 0. (28)
Combining equations 18, 19, 23, 24, and
27 and eliminating dx
D11d(H+) + DHBd(HB) + DHFd(HF)

± DHFld(HF-) + DHPO4d(HPO=)
+ 2 D11PO4d(H2PO-)

+ 3 DH3PO4d(H3PO4)
2 2

(18) =-Dd(F-) ±-DHFd(HF)
20 20
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(31)

4
+ DH2d(HF-). (29)

Combining equations 17, 19, 22, 24, and
26 and eliminating dx,

DPO4d(PO4 ) + DHP04d(HPO=)

+ DH2PO4d(H2PO-) + DH3PO4d(H3PO4)

6 6
=- -DFd(F-) - DHFd(HF)

20 20

12
-2 D Fd(HF ) . ( 30)

The chemical reactions that occur in the

diffusion path 0 < x < s obey the following
concentration ionization constant expres-

sions:

K -(H+)(F -)HRF -(HF)
K (H+)(B-)
HB (HB)

K (H+) (H2PO4)

(H3PO4)

(H+) (HPO=)
Kg P =

4

(H2PO-)

(H+)(PO4 )
3 P (HPO,-)

(HF2)

(HF)(F-)

An equation is now sought to describe
the relationship between the participating
entities of the chemical reaction that occurs
at x = s. If the reaction takes place rapidly
compared with the diffusion process, equi-
librium can be assumed to exist between the
components in solution and in the solid
phases,'7 ie, solubility products are valid. It
has been reported that the formation of cal-
cium fluoride from calcium and fluoride ions
occurs rapidly.'8
When hydroxyapatite is in contact with a

solution of fluoride, even at low fluoride
concentration, it simulates the solubility

properties of fluorapatite.19 Because there
are finite concentrations of fluoride at the
boundary x = s, the solid immediately on
the apatite side of the boundary may be
considered fluorapatite (Fig 3). The stoichi-
ometry of the net reaction, which has al-
ready been considered, is still valid for the
restrictions on the diffusion equations, but
the reaction that governs the equilibrium
conditions at x = s is

Calo(PO4)6F2 + 18 F-
-> 1OCaF2+ 6 PO0-.

The equilibrium constant for this reaction
is a combination of the solubility products
of fluorapatite and calcium fluoride

KFAP ,)

Keq = -

KaF2 (F-) 18
(37)

The s subscript refers to concentrations at
x = s. FAB refers to fluorapatite. The sub-

(32) script o will refer to concentrations in the
solution (presently, x 0). A combination
of equations 34, 35, and 37 yields a new

constant
(33)

(34)

K1/6 (H2PO4 )8
X = =-

K10./6 K3 pK2 P (F-)3 (H+)2
Call'2 S s

(38)

The line integrals from concentrations at
(35) x = 0 to concentrations at x = s of equa-

tions 28, 29, and 30 are combined with
equations 31 to 36 and 38 to yield two
equations in two unknowns

(36)

0 s

FIG 3.-Physical model for formation of
calcium fluoride on hydroxyapatite with flu-
orapatite as an intermediate phase.

Buffered
Solution CaF2 Hydroxyapatite

of
Fluoride

luorapatite
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(QU- MV) + -/(MV - QU)2 - 4(LV - PU) (NV - RU)
2(LV - PU)

(39)

(F-)3(H+)2V--P(F-)2 -Q(F-), - R

-0 (40)

where,
16 KHF2

L =--DHF2 (H+)s
20 KH-F

2 18 (H+)s
M =-DF- - DaF

20 20 KHF

2 18
N =-- DF(F-)O+ -DHF(HF)O

20 20

16
+-DHFF)OD(H)20 HF2 (HF2 )0-D(H+)
+ D11(H+)o

DHB(HB)O+ DB(B )
-DB DBKHB

DHB +

+ DHB(HB)O + DHPO4(HPO4 )°

+ 2 D 2O(H2PO4 ) °

+ 3 DH3PO4(H3PO4)o

12 KHF2
P= -DHF (+

20 KII )

6 6 (H+)s
Q =- D DHF

20 20 KHF

6 6
R =-DF(F-)o + DHF(HF)O

20 20

12
20 HF2(HF2)O + DH3PO4(H3PO4)O

+ D 2PO4(H2POj )o + DHPo4(HPO=)O
124PO4 4)4

+ P04 (P°4=) 0

DHP04K2p
U= (H) + 2 D Iff2PO4(H+)(

3 DH3PO4 Kp

DE3PO4(H+ )8
V + DH2PO4

K2P K3pK2P
DHP04 (H+)

+

±P04 (H+)2

INITIAL RATE EQUATION.-If the diffusion
coefficients of the three species in equation
19 are assumed to be equal, then equations
19 and 24 can be combined to give an

equation for the flux of total fluoride per
unit area,

Jtotalfluoride = - D d(TF) (41)

where TF is the sum of the hydrofluoric
acid, fluoride, and twice bifluoride.

According to the liquid film theory, when
the surface of apatite is exposed to the
solution, a thin film of liquid exists adja-
cent to the apatite across which the re-
actants and products move. If the thickness
of this film be defined as h, then the dif-
fusion path at any time is from -h to s
(Fig 4). For an initial rate, s = 0, so inte-
gration of equation 41 yields

(TF) - (TF)8
Jtotalfluoride =D h

(42)

In this case D is the diffusion coefficient in
the homogeneous liquid and it need not be
corrected for porosity and tortuosity. The
subscript i refers to initial concentration in
the solution.
TIME DEPENDENT EQUATION.-Integration

of equation 41 from the total fluoride con-

-hO s

X-_-

FIG 4.-Physical model for formation of
calcium fluoride on hydroxyapatite including
a liquid diffusion layer.

I m
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centration (TF) at x = -h to that at x - s
gives

- AD (TF)s- (TF)
Jtotalfluoride =-A -

S +-

(43)
where A is the area of apatite exposed to
the solution. The h had to be multiplied by
the quantity C/T as, recalling equation 11,
the D in equation 43 is the effective dif-
fusion coefficient for the heterogeneous
layer 0 . x I s and the -h I x I 0 region
is the homogeneous liquid layer. The
amount of fluoride lost from solution after
an exposure of time t is

v{(TF),- (TF)} (44)

where v is the volume of the fluoride solu-
tion. Also, the amount of fluoride lost is
the time integral of the flux of fluoride,
t t ~~~~(TF)8 (TF)

S Jtotalfluoride dt =-AD f dt.
0 0 he

S +-

(45)
Combining equation 44 with the right side
of 45 and taking the derivative with respect
to time

d
d(TF)

AD
(TF)8-(TF)

dt he
S +-

(46)
The term s can be related to (TF) by
equating the amount lost from solution
with the amount deposited in the calcium
fluoride layer.

AsA(1 -,
v{(TF) - (TF) I =- (

19
(47)

A is the density of fluoride in pure calcium
fluoride. The amount of fluoride in solution
in the pores of the layer is much smaller
and is omitted. Solving equation 47 for s,
substituting this into equation 46, and inte-
grating from the initial concentration to
that at time t

19v2 _

L A2A(1 - E)D i (TF) TF)i

(TF) - (TF)s
+ (TF), 1 n (TF)-(TF) -

L l9(TF)&l2 vhh ]

LA2A(1- )D TAD-

1n(TF) -(TF)S=t
(TF)i- (TF)s

(48)

Thus TF is implicitly a function of time.
For any specific TF the time can be cal-
culated. The fluoride uptake for this time
then can be calculated from equation 44.

Discussion

To calculate an initial rate or the amount
of fluoride uptake with time, it is first nec-
essary to solve the steady state, equations
39 and 40, for (H+)8 and (F-)8. Since
dx was factored out and x does not appear
in the steady state equations, (H+), and
(F-)s are independent of the length of the
diffusion path. The values of (H+), and
(F-), calculated from initial conditions of
the fluoride solution [(F-)o, (HB)O, etc]
remain essentially constant during the
course of a reaction. This is true for two
reasons. Diffusion coefficients for inorganic
ions have numerical values that are about
equal. Thus, the contribution by the dif-
fusion coefficients in the steady state equa-
tions effectively vanishes. Secondly, the
subscript o terms always appear in a group
within which they are related by stoichiom-
etry, eg, R. The numerical value of any one
of these groups, then, remains constant be-
cause as one term diminishes, another term
(or terms) increases proportionately. Be-
cause of the lengthy and repetitious calcu-
lations required to solve equations 39 and
40 simultaneously and to compute equation
48, it is necessary to use a computer.

Certain soluble species were not included
in the model. They are the complexes that
calcium forms with phosphates.20 In acidic
solutions they typically account for less
than 1% of the total dissolved calcium.
The numerical values needed to solve the

equations are obtained from various sources.
The concentrations of the solutes, the vol-
ume of solution, and the apatite area are
particular experimental conditions. The
ionization constants, solubility products,
and activity coefficients can be found in
chemistry handbooks. Diffusion coefficients

1546 NELSON AND HIGUCHI
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can also be found in handbooks, however,
these numbers represent accurately deter-
mined values in two component systems.
It would be expected that they would vary
somewhat in a multicomponent system. It
is a good practical assumption to allow all
diffusing species to have the same diffusion
coefficient. The effective diffusion layer
thickness can be obtained by calibrating the
experimental apparatus by a dissolution
process with a compound of known solu-
bility and diffusivity. The porosity and tor-
tuosity can be estimated by an experiment
involving the release of solute from one
planar surface of a solution-saturated
matrix.21
The usefulness of the proposed model is

threefold. First, it serves to illustrate the
processes that apparently occur during ap-
plication of a fluoride to the teeth.
It formalizes the relationships between the
diffusion, the ionic equilibriums, and the
chemical reaction at the moving boundary.
Second, it enables the estimation of fluo-
ride uptake with time for a given topical
fluoride preparation. Third, it offers a means
to calculate initial rates of fluoride uptake
for a given fluoride solution.

In the case of fluoride uptake with time,
absolute accuracy may be difficult to
achieve because of the assumption of equal-
ity of all of the diffusion coefficients and
the dependence of the porosity and tor-
tuosity on the state of the hydroxyapatite.
In particular, it would be expected that the
porosity and tortuosity of the calcium fluo-
ride layer formed on a compressed disk of
synthetic hydroxyapatite would be different
from those of calcium fluoride formed on
enamel. The use of initial rates to evaluate
fluoride solutions circumvents the necessity
of determining the porosity and tortuosity
of the calcium fluoride layer. The use of
one initial rate relative to another precludes
the necessity of determining the effective
diffusion layer thickness. Thus, it is possible
to use initial rates to evaluate a priori the
fluoride uptake potential of two or more
fluoride solutions without doing any experi-
mental work.

Conclusions
A physical chemical model for the mech-

anism of fluoride uptake by hydroxyapatite
was proposed. It was derived on the bases
of diffusion, ionic equilibriums, and equi-

librium chemical reaction at a moving
boundary. With the aid of a computer, it is
possible to calculate initial rates of reaction
that can be used to evaluate a priori the
fluoride uptake potential of various fluoride
solutions. The variables that can be exam-
ined are the fluoride concentration, phos-
phate concentration, pH, buffer type (pKa),
and buffer concentration. A forthcoming
study will consider the comparison of ex-
perimental studies with the model.

References
1. BLAYNEY, J.R., and HILL, I.N.: Fluorine

and Dental Caries, JADA 74:233-302,
1967.

2. PEFFLEY, G.E., and MUHLER, J.C.: The
Effect of a Commercial Stannous Fluoride
Dentifrice under Controlled Brushing Hab-
its on Dental Caries Incidence in Children:
Preliminary Report, J Dent Res 39:871-
874, 1960.

3. WELLOCK, W.D., and BRUDEVOLD, F.: A
Study of Acidulated Fluoride Solutions II,
Arch Oral Biol 8:179-182, 1963.

4. PAMEIJER, J.H.N.; BRUDEVOLD, F.; and
HUNT, E.E.: A Study of Acidulated Fluo-
ride Solutions III, Arch Oral Biol 8:183-
185, 1963.

5. WELLOCK, W.D.; MAITLAND, A.; and
BRUDEVOLD, F.: Caries Increments, Tooth
Discoloration, and State of Oral Hygiene
in Children Given Single Annual Appli-
cations of Acid Phosphate-Fluoride and
Stannous Fluoride, Arch Oral Biol 10:453-
460, 1965.

6. BRUDEVOLD, F.: Chemical Composition of
the Teeth in Relation to Caries, in SOGN-
NAES, R.F. (ed): Chemistry and Preven-
tion of Dental Caries, Springfield, Ill.:
Charles C Thomas, 1962, pp 32-88.

7. GRAY, J.A.: Kinetics of the Dissolution of
Human Dental Enamel in Acid, J Dent
Res 41:633-645, 1962.

8. HIGUCHI, W.I.; GRAY, J.A.; HEFFERREN,
J.J.; and PATEL, P.R.: Mechanisms of
Enamel Dissolution in Acid Buffers, J
Dent Res 44:330-341, 1965.

9. PATEL, P.R.: Studies on Acid Demineral-
ization Kinetics of Enamel, PhD thesis,
University of Michigan, 1965.

10. BECKER, J.W.: Studies of a Proposed
Model for Acid Demineralization of Hy-
droxy apatite, PhD thesis, University of
Michigan, 1967.

11. ZIMMERMAN, S.O.: A Mathematical The-
ory of Enamel Solubility and the Onset
of Dental Caries: I. The Kinetics of Dis-
solution of Powdered Enamel in Acid

Vol 49 No. 6



1548 NELSON AND HIGUCHI

Buffer, Bull Math Biophys 28:417-432,
1966.

12. ZIMMERMAN, S.O.: A Mathematical The-
ory of Enamel Solubility and the Onset
of Dental Caries: II. Some Solubility
Equilibrium Considerations of Hydroxy-
apatite, Bull Math Biophys 28:433-442,
1966.

13. ZIMMERMAN, S.O.: A Mathematical The-
ory of Enamel Solubility and the Onset of
Dental Caries: III. Development and Com-
puter Simulation of a Model of Caries
Formation, Bull Math Biophys 28:443-
464, 1966.

14. NAPPER, D.H., and SMYTHE, B.M.: The
Dissolution Kinetics of Hydroxyapatite in
the Presence of Kink Poisons, J Dent Res
45:1775-1783, 1966.

15. HILL, A.V.: The Diffusion of Oxygen and
Lactic Acid through Tissues, Proc Roy
Soc B 104:39-96, 1928.

16. OLANDER, D.R.: Simultaneous Mass Trans-

J Dent Res November-December 1970

fer and Equilibrium Chemical Reaction,
A I Ch E J 6:233-239, 1960.

17. CRANK, J.: The Mathematics of Diffusion,
Oxford: Clarendon Press, 1956, p 121.

18. FARR, T.C.; TARBUTTON, G.; and LEWIS,
H.T.: System CaO-P205-HF-H2O: Equi-
librium at 25 and 500, J Phys Chem 66:
318-321, 1962.

19. MIR, N.A.: The Mechanism of Action of
Solution Fluoride upon the Demineraliza-
tion Rate of Enamel, PhD thesis, Univer-
sity of Michigan, 1967.

20. CHUGHTAI, A.; MARSHALL, R.; and NAN-
COLLAS, G.H.: Complexes in Calcium
Phosphate Solutions, J Phys Chem 72:
208-211, 1968.

21. DESAI, S.J.; SINGH, P.; SIMONELLI, A.P.,
and HIGUCHI, W.I.: Investigation of Fac-
tors Influencing Release of Solid Drug
Dispersed In Inert Matrices II, J Pharm
Sci 55:1224-1229, 1966.




