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INTRODUCTION

The quantitative description of a metallurgical microstructure
depends upon an understanding of the relationships between observations
on a plane surface and the spatial structure of the constituents. One
problem of quantitative metallography concerns the counting, size
measurements, and shape determination of dispersed phases in alloys.

For systems of dispersed particles with shapes of spheres, cylinders,
ellipses, and other solids of revolution, relations have been developed
connecting numbers of particles observed on a unit cross-section with
number present per unit \folurrles.<l’2’5’LL> This paper shows how to
develop such relations for polyhedral shaped particles dispersed in a
solid and how a digital computer is of aid in the development. Double
trigonometric integral equations are required, and for simple cases
exact analytical solutions can be determined. A digital computer pro-
gram prepared for solution of the integrals provides verification of

the analytical results and permits extension to analyses of more complex

polyhedral shapes.
NUMBER OF POLYHEDRAL PARTICIES PER UNIT VOLUME

For a system of particles of given shape, uniform size, and
randomly oriented and dispersed within an opaque solid, the relation

connecting number present per unit volume, Nv , with average number

sectioned per unit area, Ng , is

N, =N P (1)
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where PS is the probability that a single randomly oriented particle
within a unit volume will be cut by a unit section. This probability
equals the distance between top and bottom tangent planes, averaged
over-all particle orientations. This average tangent distance may be

called D. The general expression for D has been shown<hﬁ to be

D=1 an ) sin
D = E}l/pezo\jp¢=o D(g,8) ¢ ag as (2)

which involves averaging or summing over all orientations of a spheri-
cal coordinate system., It is ordinarily possible and more convenient
to sum over a smaller but still representative orientation range, as
the symmetry of the particle shape allows. For instance, averaging
orientations within one octant requires the following form of the

expression:

— 5 /2 [‘n/2 _
D = ;_\/PO Jfo D(¢,0) sin ¢ a¢ de (3)

The tangent plane distance D(f,8) for a polyhedron is the
resolved distance between top and bottom polyhedron corners for any
orientation, always taken normal to the sectioning plane. The corners
of the polyhedron can be assigned coordinates in a rectangular coordin-

"won

ate system, and if the z" direction is taken normal to the sectioning

plane, the tangent plane distance will be

D(g,8) = <X2'Xl) sin 6 sin ¢ + (ye'yl) cos © sin ¢ + (z2-zl)cos¢ (L)
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where (lelzl) and (nggzg) are the coordinates of the top and
bottom corners respectively and the directions have the sign conven-
tion of Figure 1., Thus for a cubic particle of edge length "a'", we

)

have
D(¢,8) = a[(sin © + cos ©) sin ¢ + cos ¢] (5)

Substituting Equation (5) in Equation (3) and integrating gives the

following result
D (cube) =2_a =1.5a (6)
2

Thus for a system of uniformly sized cubic particles we can determine

number per unit volume from
p)
N, =N, - =a
> (7)

A simple extension of the above analysis leads readily to

following results:

— 1
Rectangular Parallelepiped (afb#c) D = 5 (a+b+c) (8)
Rectangular Thin Plate (a#b, ci0) D = % (a+b) (9)
Long Rod (a, bXca0) D = % (a) (10)

Cubes have still higher symmetry than represented in an octant
of orientations, and, in fact, all orientations are present to a pro-
portional degree within an angular range covered by the spherical

triangle having as corners the poles 001, 101, and 111. This triangle

is 1/48th of a sphere and has limits of 6 =0 to n/4 and ¢ =0 to
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Figure 1. Cubic Coordinate Direction System.

Figure 2. Projected Heights of Cubes Which Gilve Rise to Sections
with Various Numbers of Sides.
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arccot (cos ©). Using these data in the basic Equation (2), we have

D(cube)= lfi g/%/;arCCOt(COS@)[(sin@+cosO)sin¢+cos¢]sin¢d¢d@ (11)

which, on integration, gives an identical result for D(cube), Al-
though the integration of Equation (11) is more difficult than the
previous octant case, use of the smallest representative integration
range 1s extremely valuable in reducing the redundancy in all but the
simpliest of cases.,

The sectioning probability or average tangent distance D
of several other polyhedrons possessing cubic symmetry is most readily
computed by determining the top and bottom corners, inserting their
relative coordinates in the equation as before, and integrating over
this same l/h8th spherical triangle. This has been done for the
octahedron, tetrahedron, rhombic dodecahedron, and tetrakaidecahedron,
In the case of the rhombic dodecahedron, this angular range must be
subdivided into two smaller triangles, as two different pairs of corners
become involved as top and bottom, depending on the orientation, and
two integrals are required. The integral equations for all these cases

can be put in the form

D = AfCBfED [(Fsin® + Gcose)sin ¢ + Heos@] sing ag de (12)

In each of the present cases the relative corner distances are taken in

units of "a'" , which is the edge length of a cube circumscribed about
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the particular polyhedron. The data for the required integrals are

tabulated below:

TABLE T

Data for Equation (12)

Octahedron Tetrahedron Rhombic Dodecahedron Tetrakaide-
cahedron
1 2
A 12 a/x 12 a/x 12 a/x 12 a/n 12 a/n
B /4 /4 n/k /b /b
C 0 0 0 0 0
D arccot arccot arccot arccot arccot
(coss) (cose) (sinS+coss) (cos@) (cosa)
E 0 0 0 arccot 0
(sine+cose)
F 0 0 0 1/2 0
G 0 1 0 1/2 1/2
H 1 1 1 1/2 1
An- a5'Jéarccot~Jé a5~Jérctan~fé a~f5/2 53/2‘Jé
swer b1 7T
(D) = 0.8312a = 1,2901a = 0.8660a = 1.0607a

The solutions to the integral equations arising from the data
of Table I are also listed in the table, As many be seen, exact analy-

tical solutions are obtainable, although the evaluation is sufficiently
complex that a computer would be of great aid if many equations were to

be solved,



SHAPES OF POLYHEDRON SECTIONS

The shapes of sections obtained from polyhedrons and their
expected relative frequencies are of more than academic interest to
the metallographer, because the clues to the three-dimensional struc-
ture must be obtained from the two-dimensional section, Plane sections
of cubes may have three to six sides, while sections of tetrahedrons
have three or four sides, octahedrons four to six sides, rhombic
dodecahedrons three to nine sides, and tetrakaldecahedrons three to
ten sides. An experimental determination of the relative frequencies
of sections of cubes and tetrakaidecahedrons has been made by obser-
vations on wire modelss(S)

It is possible by the procedure for obtaining sectioning
probabilities of polyhedrons to determine analytically the relative
frequencies of types of sections. Just as the tangent plane distance
between top and bottom corners gives the chance that a particle will
be sectioned, 1t 1s the regions between parallel planes passing through
corners of the polyhedron that govern the type of section obtained,
Refer, for example, to Figure 2 to see how orientation of the cube as
well as location of the cut determine the section type. The average
normal distances between corners over the appropriate orientation
ranges give the relative frequencies of sections. Equation (12) is
Just the right equation to use, requiring only to determine the proper

coefficients and integration limits and then to evaluate. Figure 2

for the cube shows what corners are involved for the various sections,
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and Equation (4) is used to get the coefficients for each pair of corners,
The map of a spherical octant in Figure % shows the orientation ranges
over which different cube sections are possible, and a series of six
integral equations can be set up similar to those of Table I that will
lead to the desired results.

Determination of the frequencies of section types is still
easier for the octahedron and tetrahedron but becomes more complicated
for the rhombic dodecahedron, which requires 18 equations, and the
tetrakaidecahedron of Figure 4, which requires 204 equations and consid-
eration of 77 separate sub-regions, as shown in Figure 5. The ¢(8)
values on the diagram which are used as integration sub-limits are most
conveniently expressed as inverse cotangent functions; for example,

referring to Figure 5, = grccot (2 cos @ - % sin ©). The proce-
2

P15
dures for setting up the integral equations are described in more detail
elsewhereo<6) Because the integral equations contain fairly complicated

inverse trigonometric functions and because of the large number involved,

a digital computer was utilized in thelr evaluation.

COMPUTER SOLUTION OF TRIGONOMETRIC INTEGRALS

The basic integral equation of the general form used to solve

all sectioning problems for polyhedrons is, as given earlier,

D .
D = Afo [(Fsin® + Gcose) sin@ + Heos@] sin ¢ d@ ae (12)
c VE

D gives the average vertical distance between two fixed points or corners,
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Figure 3. Spherical Octant Showing What Types of Sections Can Be
Obtained on Sectioning Within the Various Angular Ranges.

Figure 4. Tetrakaidecahedron.
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Over Which Integration Must be Performed for the Sections

Figure 5.
of a Cubic Tetrakaidecahedron.

45



-11-

whose coordinates relative to each other for 8=0 and ¢=O are given by the
coefficients F, G, and H, as their spatial orientation is changed over
the ranges B to C and D to E. The coefficient A is lEa/n for orienta-
tions that are restricted to the spherical triangle represented by the
001, 101, and 111 poles, where "a'" 1is the edge length of a cube
circumscribing the polyhedron. Angles B and C are given in radians, and
angles D and E are ordinarly given as inverse cotangent functions of
sind and cos6. For example, E(6) = arccot (Ey sin® + E, cose).

In order to evaluate Equation (12) for the cases described in
this paper, a program was prepared for an IBM 7090 Digital Computer.
The main program utilized two sub-routines, one being a Simpson's rule
integration sub-routine in the computer's tape library, and the other
being a sub-routine prepared to evaluate the function.

In order to evaluate this function as a single integral
instead of a double integral, it was integrated once and placed in the

form
B P2 . D £q 20
D == [, [(Fsine + Gcos®)(D-E-sinDcosD + sinEcosE) + H(sin®D - sin“E) ds {13)

This ie the function evaluated by the computer., A, B and C are given in
the input as radians; F, G and H are numbers, either rational or irrational,
positive or negative, D and E, normally being in the form E(8) = arccot
fEl sinG -+ Egcos@), required that D D E and E_ all be read into the

1’ T2’ T 2
computer,
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The previously given exact analytical results for average
tangent distance of various polyhedrons were used as a check on the
computer programming and operation., An additional check on the compu-
tation of frequencies of polyhedron sections was that the sum of the
types of sections should equal the total for the polyhedron. Thus, for
the tetrakaidecahedron, 204 separate integral equations were required
to total 1.0607a. When this actually occurred to within 0.000045, the
results were taken as correct. The program, function sub-routine, flow
diagram, and computer print-out of input data and results are available
elsewhereo<6) The relative frequencies of the various types of sections
of the 5 polyhedrons considered are given in Table IT,

The utilization of the computer has been of very great aid in
obtaining the results given in Table II, and for the frequency of
tetrakaidecahedron sections the computer was virtually essential, The
computer integration technique can be used in analyzing sectioning
possibilities for other polyhedrons, especially when the integration
limits are complicated inverse trigonometric functions, as generally
is the case, The same function sub-routine should be adequate for all
such problems, and the programming and evaluation would prove far easier

than preparation of the input data.
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TABLE II

REIATIVE FREQUENCTES OF SECTIONS (%)

Polyhedron
Sides on
Section Cube Octahed, Tetrahed, Rh, Dod, Tetrakai,
3 28.0 - 71.2 k.0 7.3
L 48,7 Ly .8 28.8 13,4 13,4
5 18.7 - - 16.2 11.8
6 L.6 55.2 - 29.9 31,2
- - - - 19.1 18.3
8 - - - 16.3 13,1
9 - - - 1.1 3.8

10 - - - - 1.1
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