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ABSTRACT

The steady, laminar flow of an incompressible fluid over.a semi-infinite
flat plate with a localized vibration on the surface of the plate is analyzed.
Formulation of the problem is made with reference to a set of coordinate
frames fixed on the surface of the plate. The complete momentum, continuity,
and energy equations are then simplified by the boundary layer assumptions.
The simplified equations are then linearized by the perturbation procedures
and the first three approximations are considered. The zeroth-order approxima-
tion is the well-known Blasius' solution. The first- and second-order approx-
imations are solved by the integral method. Integration of the solutions with
respect to time gives a steady component of both skin friction and heat trans-
fer. This steady change depends on (€'5w'#)/Re in the case of skin friction
and (e'%w‘e)/Re in the case of heat transfer as well as the distance from the
leading edge of the flat plate. The phase of skin friction is approximately
in phase with the input disturbance, while that of heat transfer lags approx-
imately n/2 radians. Integration of the steady change over the distance along
the surface of the plate gives a net increase in skin friction and decrease
in heat transfer.



CHAPTER I

INTRODUCTION

In the last two decades the unsteady boundary layer literature on
the periodic and starting-ending type transients has grown rapidly. The
existing literature may be divided into two classes, the problems deal-
ing with the acoustic streaming and the problems having vibration. Ac-
tually, when an obJect vibrates, a sound wave is emitted. Therefore,
these two areas are very closely related.

The phenomenon of acoustic streaming was first observed b;y'An.drade2
when he made a photographic study of isothermal streaming in a standing
wave tube using tobacco smoke for visual identification. The existence
of these steady streaming (secondary) flows was mathematically established
by Schlichting2u using a successive approximation technique. He predicted
the existence of two regions of streaming in each quadrant around the cyl-
inder; a thin layer next to the cylinder, called the d-c boundary layer,
with streaming directed toward the surface along the propagation axis,
and an outer streaming with direction away from the surface along this
axis. The outer region forms a vortex when the fluid 1s bounded, but
in unlimited space the outer core moves to infinity.

Wést28

in his experiments on streaming patterns around small cylin-
ders vibrating in air and in water, observed a very interesting phenom-
enon. Beginning with a feeble motion, streaming is increased graduvally

with increasing frequency and increasing amplitude to a certain point

1



where suddenly a new type of circulation is started. Beyond this point,
if the frequency is held constant and the amplitude 1s increased, the
vortex system shrinks to a region near the cylinder surrounded by a vig-
orous circulation of the opposite sense. This phenomena has also been

26

observed by Raney, 93'5;7,22 and Skavlem and Tjotta; however, 1t has
not been able to be predicted theoretically. Other experimental and an-
alytical work on streaming in its general aspects include those of Wes-
tervelt,29’3o Nyborg,zo and Holtsmark, et giolo

The study of the effect of small oscillations in the main stream on
the boundary layer is initiated by Lighthillel8 He considered the prob-
lem of two-dimensional flow about a fixed cylindrical body when fluctu-
ations in the external flow are produced by harmonic fluctuations in
magnitude, but not in the direction of the oncoming stream. von Karman-
Polhausen's technique was used to solve the resulting equations. He
also discussed the temperature fluctuations using successive approxi-
mations. Rott and Rosenzweig23 extended Lighthill's analysis in several
ways. A practical method for obtaining the response to the laminar
boundary layer to an impulsive change in velocity is presented. Hill
and Stenning9 consider the case of the boundary layer flow over a cylin-
der which undergoes a rotational oscillation. The amplitudes and fre-
quencies of oscillation in all three papers are assumed to be small and
the results are presented in terms of universal functions.

Lemlich17 investigated the effect of transverse vibrations upon the

heat transfer rates from horizontal heated wires to air. Anatanarayanan



and Ramachandrant experimentally studied the effect of vibration on heat
transfer from wires to air in forced parallel flow. An increase in heat
transfer rates of 130% are observed.

Kubanskilu,’15 has studied experimentally the influence of station-
ary sound fields on free convection from an electrically heated hori-
zontal cylinder in air. The direction of sound wave in his experiments
was longitudinal, i.e., parallel to the axis. For a test cylinder of
2.4 cm in diameter and 3%2.5 cm long subjected to an intensity of radi-
ated vibrations in the center of the beam from 0.03 to 0.16 W/cm2 and a
frequency range of 8 to 30 kc, the free convective heat transfer coef-
ficient is increased by approximately 75%, He also obtained heat trans-
fer data for the case of a horizontal cylinder in a Standing sound field
with a superimposed horizontal cross flow;l6 The sound wave 1s perpen-
dicular to the direction of forced flow and also to the axis of the cyl-
inder. Fand and K’aye6’7 performed photographic studies of the boundary
layer flow near a horizontal cylinder in the presence of sound fields
whose direction of propagation was horizontal and perpendicular to the
axis of the cylinder. A new type of streaming was identified called
"thermoacoustic streaming' which is characterized by the formation of
two vortexes above the cylinder when the sound pressure level reaches a
certain critical value.

Schoenhals and Clark25

considered the response of velocity and
temperature of a laminar incompressible fluid to a semi-infinite flat

plate oscillating harmonically in a horizontal direction. The method of



successive approximation and perturbation technique were employed:to
obtain analytical results. Experimental data on free convection over

a finite plate were presented and the heat transfer coefficient is found
to be increased as a result of the vibration. For the semi-infinite
plate no increase could be observed experimentally. The analysis for-
this case was carried. out to the second approximation only which is har-
monic in character. Hence, it discloses no steady alternation to tem-
perature and velocity profiles nor the heat transfer rate and shear
stress. This work was continued by Blankenship and Clarku’5 who con-
sidered an isothermal finite plate vibrating horizontally in a compress-
ible fluid. Two cases are considered. In one case the buoyancy forces
predominate over the inertia forces; in the other case the situation is
reversed. They also extended the work of Schoenhals to a higher approx-
imation for the semi-infinite plate. Eshghy5 recently considered the
same problem as Schoenhals and Clark except that the direction of vi-
bration is vertical.

Hori™ ™ > published recently a series of three papers in which the
method of series expansion is used to solve various oscillation prob-
lems. Nanda and Sharmal9 solved the free convection problem with an
oscilllating wall temperature.

The problem of boundary layer flow with localized vibration ap-
parently remained untreated. It is the purpose of this research to in-
vestigate the influence of localized vibration on the laminar flow of

incompressible fluid over a semi-infinite flat plate.



CHAPTER II

THEORETICAL ANALYSIS

STATEMENT OF THE PROBLEM

The analytical model is shown in Figure 1. It consists of a semi-
infinite flat plate extending from O to « in the x-direction. A viscous
fluid flows steadily over this plate producing a laminar boundary layer.
At distance L from the leading edge a localized and periodic surface
disturbance is introduced. The effect of this localized disturbance on

the rate of heat transfer and the wall shearing stress are desired.

—=» U

I

Figure 1. Model of the flat plate.

THE FORMULATION OF THE PROBLEM

The following assumptions are made in the formulation of the prob-

lem:



a. Distance L of the localized disturbance from the leading edge
is taken to be much greater than the boundary layer thickness ®. Thus
the effect of this disturbance on the boundary layer can be investi-
gated within the restrictions of the boundary layer theory.

b. The fluid i1s incompressible so that the induced pressure waves
travel with infinite velocity.

c. The surface boundary condition is simplified by replacing the
plate and the disturbance by an analytical model consisting of a con-
tinuous curve, as shown in Figure 2. Using the probability curve, for
example, for spacewlise variations, the localized oscillations of the
plate can be represented in the form of

- m(x—L)2+ ceot
Yy =ce (1)

2
where ee'm(X'L) is the amplitude of oscillation, and m is a parameter

.~ L — ]

Figure 2. Analytical model of the disturbance.



to be selected accprding to the desired shape of the disturbance. The
amplitude of oscillation is assumed to be small compared with the bound-
ary layer thickness. The value of m is chosen such that the curvature
of the wall remains small, allowing a curvilinear orthogonal system of
coordinates to be used whose X~axis is in the direction of the wall, the
Y-axis perpendicular to it. The desired steady periodic solutions sug-
gest the use of the complex form of the surface oscillations. The se-~
lection of the probsbility curve 1s arbitrary, and can well be replaced
by another curve if desired. The solution of the problem is a function
of the selected curve. However, the effect of these classes of dis-
turbances can very probably be demonstrated by any one of these curves.

d. The effect of localized oscillation on the potential flow is
neglected. Hence, the potential flow is assumed to be the streaming
flow of velocity Uy.

e. The velocity component of the plate in the x-direction is zero.

With the above assumptions, the equations of momentum, continuity,

and energy with respect to the Cartesian coordinates may be written as

follows:
Momentum:
(DY Ly DUy Uy b (a’u >3y
P ST TU S Sy?=-3Sx tHise+ 55 @
(&V +y 2 _H,ay)_ 2P (al/ v
Y X Sy Sy 5w + 552/ (3)



Continuity:
Y oV
X 7 2y = 0 (1)
Energy:
Y nye 06 3%0 50
S HYSH/Sy = a5 5 (5)
The boundary conditions are
3 - — < \
Y- Ee—m(x—t.ﬁ-uwf‘,,g —0,, U=0, V=imee "X Hiut
Y - . 6 =6,, U=,

(6)

KINEMATIC RELATIONS

A reference frame attached to the moving surface is used. Thus, the
boundary conditions are greatly simplified at the expense of increased
complexity of the governing differential equations. This compromise is
usually more convenient for the mathematical solution. The formulation
of the problem in the moving coordinate system (X,Y) (Figure 3) which
accelerates with respect to fixed coordinate system (x,y) is as follows:
First, the relation between the coordinates of the fixed and accelerat-
ing coordinate axes will be obtained.

At time t, the boundary is assumed to be at the position 0'AX.

The arc length of 6TA, Figure 3,
X dy 2 :%
X=a'A=/[/+(g{-)] dx (7)
4]

using the particular value of <§§> from Eq. (1), can be written in the



- X

Figure 3. The fixed and accelerating coordinate system.

form:
N 4
. L, camoeiPezint 3
7 = | [1+4mfu-uree d X 8
) ! (8)
o
Expanding the integrand of Eq. (8) binominally,
g crr (X L)2
2 2 2wt & T 4
X=X,+g/2me"“/(x—ue o/X}+ g(e™) (9)
o
On the other hand, we have
(5%
L dX
X =X —Ysing =X — V= VY (10)

~ L
L1+ (S5 )7

and

/
Y =y +YcCosp =y +Y 5T
[1+ (&) ]2

where subscript "1" indicates the values of X, y, and <%X> at location A.
X
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Hence,

—m (X, =L+ wt
(;/XZ I= _Zme(xl_[_)e = € —.2/7)(/\/,~L)¢} (12)

Putting Eq. (12) into Egs. (10) and (11), expanding them binominally

and rearranging gives:
X = X+ €famu-00Y$) + 0ced) (13)
and,
y =y + Y- 62[2m2(x,—L)2>/</>2}+ 0ce¥) (14)

Also, since (x1,y1) is on the surface of the plate, we can write

—mx,-LR+ lwt
m ] L — é¢

Therefore, we get four Egs. (9), (1%), (14), and (15), which may
be used to get the relation between the two coordinate systems (x,y)
and (X,Y) by simply eliminating the parameters x; and yi. The inte-
gration of the second term of Eq. (9) is simplified by neglecting terms
of order 625 Eliminating the parameters x; and y; from the four equa-

tions, we get
X =X + €[2m(X-1)Y¢] (16)

y =Y + €¢ (17)
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where

m XL+ lwT
P = e ” ‘ (18)

Equations (16) and (17) give the relations between these two coordinate
systems. It should be remarked that the assumption of neglecting terms
of order €® and higher, or X = X1, eliminates the change of length of
the X-axis.

The velocity components of the boundary in the X- and Y-directions
may now be evaluated. ©Since the velocity of the boundary is assumed to

be in the y-direction, we readily have

C —m@-LP+lwT \
Vy = (2%) =ewe —eclwde (19)

The velocity components in the X- and Y-directions are

VWY= VW COS,S = (6£w¢)

/
[+ 72

= ciwd) [ — Lepm@-L¢r+ - - -]
= €lwP + 0(ed)
%) -

Vig = V,ySinB = (€lwé)
e = Y SInf [1+(2%)°]%

= (ec‘w¢)/~ €2m (I—L)¢}{/~§2@m(z-z)¢12+ ...... }

= 0(? (21)

Since the first two approximations are considered only,

Vhr = & cCw ¢7 (22)

Vg = O (23)
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Next, let us find the relations between the velocity components
relative to the fixed coordinate system (u,v) and that relative to the
moving coordinate system (U,V). It is clear that the absolute veloc-
ities (u,v) equal to the sum of the relative velocities (U,V) and the
velocities of the coordinate axes due to translation and rotation. To
find these, consider Figure 4 in which a local Cartesian coordinate

(x',y') is drawn at point Q with its axes tangential and normal to the

P

yl PI

ol

= X

Figure 4. Illustration of the local
Cartesian coordinate system.

- >
X-axis. Assume that i and j be unit vectors in the x'- and y'-direc-

tions. Then

+ Y jﬁ (24)

The absolute velocity of the point P' can be obtained by differentiat-



13

ing the vector equation

with respect to time t, i.e.,

Jdr dR 47

Jdt = T a7
= + X+ Y ))
<"

= ) el - -
+U +V ) o+ (X' Bx( +y'Bxj)

= +UL +1) + B4 (26)
From Figure L,
B = B R

and

47 n
gt = Vbt Yy )

Then, Eq. (26) becomes,

= U’ + Vg — Y)ﬁi

P’

V= V' +hyr +X'B



1h

Therefore, at point P of Figure 3, the absolute velocities in the

X- and Y-directions are
Voy = U +hz —YP (30)
Voy =V + Vwr (31)

v,x and v,y are given in Egs. (22) and (23). Also, the angular velocity
é may be found by differentiating B, Figure 3, with respect to time t.

Since,

-m (Y- wwT
B = L4 = 2mur-ee” VYT omFLed  (32)

we get,
(é = —omI-L)wp¢€ (33)

Finally, the X and Y components of the absolute velocity at point P may
be obtained by introducing Egs. (22), (23), and (33%) into Egs. (30) and

(31). The result is

Ver = U +2m(I—L)YL\OU¢ €, (3h)

Voo = V + €L ¢, (35)

It is now only a matter of geometry to write the absoclute velocities in

the x- and y-directions as a function of Vpy and pra Hence,

U = Vprcosg — Vprsing (36)
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V = Veg SinB + Vpy cos 8 (37)
As before, we assume
Cos p = —teo— = T ()
J 1+ +an?g Ji+ (25
and
d
tan f = (a%) =-2mI-L)EP (39)

5’”ﬁ=m—‘ﬁ’:gx§

Inserting Egs. (34), (35), (38), and (39) into Egs. (36) and (37), we

get,
y =T +2meX-L)Yiwed +2mT-L)ePV + 0 (€2
v = (T+2mI-L)Y wll-2mF-L)eP] + (V+&wd) + 0 (€°)

These, neglecting terms of order 0(62), may be reduced to
U= U+ el2mT-LPICcwY+ T) (%0)
7+ €(lw-2mI-L)T] ¢ (41)

FORMULATION OF THE PROBLEM IN THE ACCELERATING COORDINATE SYSTEM

This formulation is first written with reference to a general or-
thogonal curvilinear coordinate system (X,Y) as follows:

Continuity:

2 (Thy) 2(Vhz) __ 2
ST ~ Sy = 0 (42)




Momentum:

TV Shx 72 ohy

+ hxhy Y - hxhy X )+ Az

7ol , 7
P(_+7773f+T

Vle

o
Y
- _ | 9P /[

Tx X T Bk L5

’Q,: Q _ o;,: Qhy
* hx h hx hy X (43)

=]
oV , U oV , 7. V. , OV ahy_ T[> shy
P{ +/7x ox ¥ Ay ov +hxhyaz hxhraY)+aY

(he i)+ 55-haTar )]

— C)
= - 7'/; af ‘Sa_(/)r Ter)+ ;‘QY—(/’IX O—):r/)]
4 Ty by T Shx
where
U,V: wvelocity components relative to the moving coordinates
(X,Y).
hyx,hy: elements of the metric tensor. Now,
=X + €2m(XF-L)Y¢] (45)
y=1Y + €9 (46)
and
2 2
= (2X_ DY =2
h Gz + (5% (47)
29X\ QY 2
hi = (S5 + (85 (:8)

Putting Eqs. (45) and (46) into Eqs. (47) and (48), taking
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. . o}
square roots and considering terms of €  and €', we get,

|+ €cmy)[i-2m(X~L)°]¢ (49)

(50)

. | T’ 7 9k
o's: 7/U(77— -+ /)x/’)y QYX)
&V Y
Ty =21 ( h + FFr 5

With Eq. (50), these equations become

7' ah
% =2p (A 53+ ) (51)

Tyy =24 (57 )

h V
kl[b):ré.?/ /7y SY(hX)J

Txy®
this equation becomes

|7, T T ah
Tar =ﬂ[7;? X T oY T e aYX] (53)

With Eq. (50),

In Egs. (51)5 (52); and (55))

T'=7 + 2mI-L)Y we €

V=V +€elwe

This is derived in Appendix I.
accelerations due to movement of coordinate axes. They are

a-X’ aY:
At any point P, there exists four ac-

derived as follows:
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celerations,
FEY)
E X (-/; X I)
2 —/;X 7

Noting that

(angular acceleration)
(centrifugal acceleration)
(coriolis acceleration)

(linear acceleration)

B = g %
1 = Y]
Vo= Ti + Vj
Ry, = €Lw¢
these accelerations become
Frl = —YEL (54
el —_ = 2
Bx(Bx4) ==Y B~ (55)
265V =ML+ DT (56)
o Ry = 2,
gid =—€w¢ (57)

Therefore, accelerations due to the movement of coordin-

ate axes in the X-direction

a1=—Ylé' -2/8.7
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and in the Y-direction
Oy = —y 21267 — ewd (59)

where B is given in Eq. (33).
Introducing Egs. (51)-(53), (58), and (59), into Egs. (42), (43), and
(L), we get:

Continuity:

3L+ 3L v ecmp)(i-2mILANT+y 2L) = 0 (60)

Momentum:

/{aZT +U 3 &17 +Va), ) + €l2mX- /.)c#](gsz—Yw )

re <2m¢)[/-2m(x-u"‘1(>/§§.1 +17 2L + 7))
= —ﬁ+y(ap+ =7) +/J4-m<75é§fz7
+ p2mI-L)pe [—6m27 +m F-L)7 - 4m (I-L);%L +m)’§jl}

+ H2m(1=2m(F-L ) € [2mY (- )20 _y 2 ap r 30 +yj;2£}
—H2mY cwp € [2mF-L))[3-2m - 102 )

p/(—‘;—z +ZT§—Z—+ §£)—4M@—L)¢‘w¢éﬁ— € we

+E€2mb)[1-2m(X-L)*] ( )’ +YV QV —ZT )}

-
{1+€2mY (1-2m (I—L)J<I5}a A 3}2 ;)72)
+H2m(X —L)Pe (4mY +4mU)
_ /Azmqb[/-zm(z—uzje{ YSF - 320 yomauT
B 7 7
cw remlt-L) SE +v S ] (62)
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Similarly, the energy equation written in terms of the accelerat-

ing coordinate system is

L0 L ¢ omp)1-amI-1)H [2mT-L)Y S

.2
_ 6
“C’/axi’ -y

_ 20, 20 ay2]+e(2m¢)Y[4m(X-UJ‘er‘

azz Ty T

SIMPLIFICATION OF THE FORMULATION

3 +T 22 +7 2% +eczm Y¢)[/—2m([——L)2](§—$—

NS

———r

(63)

At this stage it is expedient to introduce dimensionless variables

by means of

Y)= L>/ ) é/:-—l-é—) T)=7L_ J
(%)
p =P w = -L 6 =-0=-6s
PUf) _g&)) 9;7""9»

The formulation of the problem then appears to be:
Continuity:

o7, oF’
S Sy +e’2m®)[1-2mX1) ](V+>/

) 7’

Sy =

0

(6k)
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Momentum:

627 &U 0)27 2 T
57 T 5T +7" Sy7) T € 2m®)(I-2m'(xZ /)J(Yé—gﬂ/zr Sy +T7’)

+ é/[zm’(xi/)qb'J (2[00’77'— yw?)

- Q%’ s ‘b’ -
X/ ( X/2 + )//2) + € 4/?7 Sb 31’ /?e

+62M(X—/)<P{ Emy’+ em Ty - 4m(X- ’)aI’+4 y’;:g} _Ri;

J ’, w/ y a .
+ €2m'1-2m F1)¥ {2m Y(Z-/)azu -y’ jzzfz’L aﬁ'/ +Y 3)/2'72} —:‘%e—

— €2m’yCw’'e’ [2m (XL D)3 - 207 (F 21 7?/; (65)
(aT, U;}Z +7 j)’,’,)+e(2m¢)(/ 2mEI(r'SS +YV§>Z -7
e xln lw ' T — ewiep’
/ e2V

= —{/1-6/(2/27’)/9»’)[7—2/7/(1 1) J} EYZ, ( azfz 3Y12)

+ er—[zm’wiucp’JMm’Y‘ﬁ; + 4mT’)
€
+ —R—(qub)[/ 2m (Z—/)zjf y' 7 az/2 -3 ag +2m’ @7’
Y / J o V
(W +2m’Y (T=1) =% azJ - Y Syoz (66)

Energy:

06 | 1’98 | o8 y 06’ , 298’
55 +USeH +7 S + € (2m’y ) (i~ 2m X)) ( $2 +7 5

/

6

2./ )
S+ €m O 1-2m X3 [2m DY S 7

S y2

/ 326’
FrRe | o2

-+

- r-1-4 ) 526’
—r3pt Syt Spe

20 )+ lom e iam' r 28 G

We are interested in the asymptotic form of the foregoing formula-
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tion corresponding to small viscosity or large Reynolds numbers. It is

a well-known fact, however, that the terms having %—-as coefficient can-
e

not be eliminated from the formulation because of the reduction of mo-

mentum equations to Eulerian equations. This difficulty may be circum-

vented by a new variable Y* defined such that
) n

y* = v’/ Re (68)

2

1 1

u' 41 90U

andh — ——x .
dy! Re OY'@-

(68), these terms may be rearranged as

Let us now consider the terms, V' Employing Eq.

y) /
1 U _ o U
/4 Y’ =7 Re SY* (69)
- 277/ 27’
T/ 2n 77\ -t 820
Re 072~ Re (Fe Syaz) = Re 3 y*2 (70)
u:
From Eq. (70), it is seen that the term - is retained as Re + « if
Y* ‘
i
n= - % » In order to retain the term V' %%T’ the following transfor-
mation is introduced
* .
V= Re" V (71)

U’
which transforms Eq. (69) to V¥ gg; . Based on this argument, the

basic equations are transformed according to the relations:

and
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The result is:

Continuity:
ST, SV o & oy -2m EA (T + Y L) = 0 (1)
X/ o2Y* ' JRe or*

Momentum:

/ / U 2 /
L +U;°g 7"‘9”)+e(2m¢)[/-2m(I—/)2J()’*<;T, + PP T

/, levl / L #_ * 2 _/__
+€m X-NFl(2cw 7 - Y'w )Jﬁ?‘é

) J 2 §72
QP / 3T av+é(4m¢,)e77 /

=T T Re o127 oy oX R

+ €2m'(X- /)¢J{ emT*+ 2m TNT T~ 4m’ (X ) 2 3k - m’r‘jg } ;’—3/

’ J / 2
< S e 3o S

_e’(m/Y*L\w’sb’)[}m (I—/)][3-2/77 ([.f./) ]\/?_e_ (75)
V¥, 7 *=DV' oyt 2] e V-+Yﬁfh97# Zpi]
‘Ré(ar’ + ST 7 2T0) + €lam@i-2m T (TSP 7

e’ . 2
— \/-E——e—(stm’czil)J(cw’sb’ 7 — JF—Q WP’

/ 2 al
= _z// + \/—%(Zm/)’*ﬂ)[/—Qm/(Ii/)z]} j}ﬁf + ,c;z 11/72* E/’e j)’z:z

e’ Jvl / m° QV _L_ 2/l
-+ }F—E—[2m ¢ /)¢J( r*az/ e 4m Zr)

/ 7,/ /2 / 927*_ 3 _‘D_ZZ:. __/__. Ypl ¢
+J_%(2m [ 1-2m(F1) J/— Bz Y*Sz2 Fe 5pr T e R &I

7* *27*
— Fée (o + /z[zm Y¥x< /)]az/ /?/e Y Sy#z (76)
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Energy:

20 728 4?28 4 £ oy (1= am 1 EE + 7S

ST’ X’ o Y* W?
2e’ S il ) , Q ’
[ Re c;_zlz j)/ig + €2m' E)1-2m (2121 2m ([_f/))/*azq R_/e_%
- | o8’ , 1 y¥28
—_ Y S X2 % + \/—_e a)/* -+ \/__ )/*21
¢ Y4
+ % 2me’Y*)(4mir-) 22 S5 (1)

Since we are looking for the asymptotic solutions of the above

equations for large values of Re, this suggests the expansion of U', V¥,
, 1
p', and @' in terms of §37§ as follows:
/ _ 7 / / _—/—_ ’
U - Uo +' /—?eZL U/ -+ Re UZ + (78)
* * / * | x L
v o=V, + X vy o+ =% V. + . (79)
Po= b f g e e (80)
Re*
9'== 9; 4—-4L3:Q14—-l—-Q;-fv—-———--——-—~' (81)
e Fe

Inserting Egs. (78) through (81) into Egs. (74) through (77), the
successive orders of approximation are obtained. The zeroth-order
equations' are:

Continuity:

U, , %
sr T oSpx = ¢ (82)
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Momentum:

&Uo/ __/_D'/ QU;/ _I_V*cQUo/ *+ €’ [2/77/(Ii»/)q>/_][2£w/7*— )/-.\‘a)/.?J
0 (4 ‘/_R_E [

s TSy oY
— _ s;; - gz)%; - F—:—e}(2m’r*c‘w)¢’)[2m'(z—'/)J[3-2m w2 (83)
— T%(stm’(zi/)dw’qu 7,— \,R%/ w’P = — :?yif: (84)
Energy:
SR R A ©

1
i t d 11 »

It is seen that terms of order ﬁ;j7§'an smaller are neglected,
since these terms are small compared with the terms retained, which are
of order 1. However, terms involving w' are retained since the order of
magnitude of them depends not only on Re but also on w' and €'. The

order of magnitude of these terms is seen to be dependent on the fol-

lowing parameters

/ ), e A4
éCO_L , GC{)—L and 6603 (86)
F?e" /L-\De‘2 Rez

Since Re 1s large and €' is small, these terms will have an order of

magnitude of 1 only if w' is large. For small w', all terms involving

w' will be smaller than ﬁ—:—1L7-2--and therefore can be dropped. This will
e

reduce the basic equations to the Blasius' equations. The oscillation

will have no effect on the flow.

It is easily shown that, for large w',

~
N

~

N

Y

D
[§

D
(¥
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and
¢ w’ g’ w’
F > > 3 (88)
Re Re?
1312
This means that only terms with exist. The basic equations can
Re
be further simplified to:
Continuity:
7 |, 7
Q.Z) + QY* = 0 (89)
Momentum:
*&U 7 *, .2
Uaz, 7 Sy \/—[2/77 I PIY*w
) 22T’
- -2t =2 (90)
e’ Pab’ o b’
w = 1
= ¢ N (91)
Energy
J / 207
Q6 138’ _ 1l 36
a7’ +T X’ +V eY* Pr o y*2 (92)

In these equations, the subscript "o" has been omitted for reason

of simplicity. In Eq. (90), the inertia term represents the inertia
force due to rotation of the normal coordinate axis. The inertia term
in Eq. (91) is the inertia force due to the change of the velocity of
vibration in the Y*-direction. Since this inertia force is a function
of X', it will influence the pressure gradient in the X'-direction.
Complexity of the formulation of the problem suggests the Karman-

Polhausen integral procedure be used most conveniently. Thus Eq. (91)
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is. integrated with respect to Y* and, based on assumption 4,

), 2
P = 2 (Y*-3) (93)
where
3" = ke (94)

Differentiating Eq. (93) with respect to X', we get

j;» _ €y s am gl - S’ d 22 (95)

Equation (95) is then substituted into Eq. (90) and the formulation be-

comes :
Continuity:
ST, o7 _
ox’ T o (96)
Momentum:
& Vi éﬂ. *QU ’
s T Syt [2m (XLD$)(S'-2Y%)
_ € w?
_aW+F¢ﬂf (57)
Energy:
Q6 &9 08 A %6’
T/ U 20X Vé)/* Y (98)

with the boundary conditicns
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The form of the formulation shows that this problem is equivalent
to the unsteady flow of an incompressible fluid over a flat plate with
a periodic body force, since all terms relating to the curvature effects

of the coordinate system (X',Y*) are shown to be negligible.

PERTURBATION OF THE DIFFERENTIAL EQUATIONS

The basic equations are:

jﬁl’ ME LA (99)
. /Zf’jg, +V""3Z + Jﬁ% m A nPIw (=27

- L v
376 *U/asﬁ V*a)/* - 4 % (201)

with the boundary conditions:

v¥ — o0 : U =V'=0 , 8 =1
/ 7 0

v =5 T =21, 6=

Let us assume that

TIYT) = 5@y + S0EYT) + LR e

JRe Re
VXY T) = %*(Z.’Y*)*m%ﬁ*(]i Yt ) - —,ge LY ) 4+ - - (102)

&X Y T) =6, Y+ £ = oY T)+ & 9 (6 o o/

By substituting Eq. (102) into Eqs. (99) through (101) and collecting
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ei

(103)

(104)

(105)

(106)

(107)

various powers of —— , we get:
Re
é/)o
(77
Y4 " oW _
oX/ oY¥
1ol ol 82T
U Sp vl Syx = Syez
U’Seo/ "'7*690/ — _/_Q2Q:
oaz/ [4 c;)/# F;‘ aY*Z
V- o B'=7%=0 , 6 =1
Y¥=3': T'=1 , 6&=o0
é/)’
(JRe
Y A
>xr oY¥ 0
o0 ol  wolly | p*U | * U, J? Aoss oy
S5 +U5ax/ *Uazf +T S T Syw+ (2m' & nIw (3-2Y%)
' d3’
= r*2 7, vl T

;! 06, *9 -
379/"“3'/3; ! 3}?/ *Va)g? TSy =

)/*‘—‘-‘0: UJ=VI.*=0/ 9/=0

)/*= J/: U;/= 0 ) 9[/_:0
€742,
S
NSy A
Y Z afi"o

o) | ol x0T ol 4ol T
o7 +% oX +V 3)’; +ZT oX/ +Z ar* - &)’;2

(zz’jg ,*35,)

(108)

(109)

(110)
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59 /&9‘2 /1;90 *c)e.z e90/ — ___./__._. ..é_z_@‘gi
an + 0 554 + T EYE +h SY* +V oY* A oY*2
_ ’&9/ *39:
= — (U 55+ 5%) (111)

y¥=0 : U/ =%*=0 , 6, =0

Y*z 5/; U;/:: 0 ) 92/ = 0

Since we are looking for the steady periodic solutions of the prob-

lem, we let:
G T = R{B @ e

\N/T_/
R{wayhe™) (112)

I

¥ P
Vi(X, v, T)
I‘N/T/
VL Lo ¥
9, (X Y T) = R(f BT Y)E }
where 6{ denotes the real part of the complex quantity in the brackets.
Ul, V¥, and 0] given in Eq. (112) are then substituted into Eqs. (106)

through (108). Since, in the resulting equations, the s;ymbol& appears

in front of each term, we can therefore drop it and get:

. = avd
jZJ + é)a = 0 (113)
ﬁ‘m’méﬂu%'jg’f +z7'§§§5’ % aﬁ"ﬁ 7S ‘927; o 4 Com' @D (3 - 27)
_ a)/z;#-w’ 5/151 ¢’ (11k)
Al 7 / 2 .
LO\),Q,C +Uo-/ SQK U/&Qo #36/“ V*&Qa = Qlc (115)

Q.Xj + ICaX/ + a Ic a)/*’ - P a)/#z
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S
N
1
N

b 3
it
o

O
~n
{
o

Equation (112) is then substituted into the right-hand side of Egs.

(109), (110), and (111), and we get:
o, |, o7 _
ol /ol | T ol el T
st 1S tT St S +Z*a)/f‘ - Sy
/ <,
- R{me™]. & (2T )
T e o tulr
+0?{T77¢€ ]-R{%e T} (117)
/
002 77 6s /60 4S8 L H*6, | 26
57 t03p tLSy th S TR Sy T B Syee
R{U. emfr} R {3_?’5 /wr}
A /s
+ R{7E“T]. & jﬁ,, e (118)

with the boundary conditions:
/ * /

vt =3

The right-sides of Egs. (117) and (118) need further simplifica-

Now, let us write
R{ULe
R{T:e

tion.

‘w’r’ / VN
T Upcosw't’ = Ty sina'T

T ¥ #on )
| = W' cosawlt’ = Wiz Sina’T
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where UiR and UiI are the real and imaginary parts of Uié Similarly,
V¥  and V¥_ are the real and imaginary parts of V¥ . Then, we have
1R 1I lc

R{Tee™ ) w{3pre™ )

— Un 3?/* cos?w’r’ + Ta ég'f SinZw’T’

/QUJ s oD . J_ 7
LUy ST7 +Ur S3) sin2a’T (119)

Using the trigonometric relation that
Sin2w'r’ = L (- cos2w'T")

cosPw’'T’ = :21__ (1 + cos2wW'T’)

Eq. (119) becomes:

R [T.e™ ) a{2de™)

(ZL; =QZER ZTI jé?f

I
2

+ __[(U‘/ aU;/V U QU}I) Cos2w/7-l

22X’ " aZ
y ~ o
(Um ig’f +T, ggﬁk)s,nszJ (120)

Next, the following identities are used:

= al , ST / gUm/ N
U;C QZ//C ‘/‘U/c é_if =2(Z7;/q -a—_Z;T Iazil)

and
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.2‘50’7" / ,

@)f i 3}?77 T = (U 3;71 4 jgﬁz)coszwlr
/

- (U/R :_gjl U;_;- j_g,’R) 5/)’)260/'7' /

Equation (120) then reduces to:

IwT SU;C ’w/T’
R {tie™ ) &{Spe |
= ol / f ,/ 2/’
= 4_'L ( Ic az/ +ZT :X’ 'f"z/'ﬁ/u;é j_zzz;s Iwr} (121)

where the superscript bar () denotes the complex conjugate. In a sim-

ilar manner, the second term on the left of Eq. (117) can be reduced to:
*_ la'r’ N/ %,
R{We“T}|. r{sTEe ]

(V?‘ &U;c *c;ZT(.) + R{V*C;U;C ‘2'\&0/7-,}

Sy* Tl Sy* (122)

The right-hand terms in the energy equation, Egq. (118), can be re-

duced in a similar manner. Therefore, we can write:

/ WT Qac ra’
p— /20w
= £ (O ag,"+ Ue ff,”)+ —R{UK jgi‘ e } (123)
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and
* o qu ' 98/ o, 10T
rR (7€ R{$Zse ]
- 1 * * S 6 * S6ic
- —4_—( IC /C +VI-C (}Y.l;(c) + W I(' a)/:(c } (1214')
Substituting Egs. (121) through (124) into Eqgs. (117) and (118) re-
sults in:
o | ol ol  xaTl / 277,
373 Ua a_zf U azf +V; aYi ""72'*3)9',;- - jYZng
, \w/ /
= U/o + R { U;/I e2l 7’} (125)
and
o ) 36; 06 |, #30s o, 1 %6
a% +U, a_zf +ISEr S5a +7;*<>Yi +% ng: N gyiz
, ;2w
= 6 * R { &) J (126)
where
/ / 1< UC/ _—_c;
Uy = — (O3 vy 2Lt 7 2k w723 (127)
/
T = (7 3L *Qg;‘z ) (128)
’_ — 36k /o 0n 36, on
O = — (U7 53 +Tc S35+ T Sy T Sea) (129)



55

7 e
O = — A-(T 285 + e SE) (150)

Inspection of Eqs. (125) and (126) reveals the steady periodic

? »* l}
solutions of Uz, Vg, and ©p, may be written in the form

B = Tl XYY + R0, Y*)ez’\‘”/T/} (131)
T = )+ {7 yner™ ) (132)
N AR L A el (133)

in order to comply with the right-hand sides of Egs. (125) and (126).
In this way, the second appfoximations are séparated into two parts,
namely, the nonoscillatory and the oscilliatory components. Substitut-
ing Egs. (131) through (133) into Egs. (116), (125), and (126), the
following sets of equations are obtained.

Nonoscillatory components:

oo oV _
STt Syr = 0 (134)
2y Ty B 7, 20,
S i R L7
7/
- — £ j};;‘ P72 g 2L T2l (135)

/ / 2,7
'S G, N Y- =Y | 976
ZZ azjo-/_g.zaa /o +V a)jfo';_@oa)/;_ p—;_a)/*g

— / 99 7 96k *aéz aem -
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with the boundary conditions

Y* — 0 : Uz/o=7;f=0} 92/0=0

Y*’:J/: Uz/o—'=0 P 92/0= 0

Oscillatory components:

| , y, / / 21/
2100[7 +T) 3_%' U;/jgf +Z*j%’+;§)g: - 3)’%2
/
_ —é/—(U}é j_g/c _/_Vl:(- aZTlc) (138)
08y o0 4ol 400, I 56
2(.009_2, +Ua a.Z"?/ +U;/ axf 7; SY* * 21—5—)% =X aY*Zzl
=
X 9/:) (139)

—_ _ Ly o O
- 2 (U;c oX +VC a)/*

with boundary conditions
] / x /
Y = o0 : Uy =V =0, G2y=0
e !/ . 4 /
Y == 5 J U.;I = 0 ) 92/ = 0

SOLUTIONS OF THE DIFFERENTIAL EQUATIONS

Zerceth-0Order Approximation

The momentum equation (104) is integrated over the velocity boundary

layer thickness d':

g 5
QUD * SU-D/ QUD
/27';, Tp“”f"'v‘—/ 7t Sy (5P, (140)
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From the continuity equation (103), we have:

)/:;U-/
——/ el dy* (141)
0

Equation (141) is substituted into Eq. (140) and it reduces to:

[ / s — éZ];/
az’ (=% )(/ ZT,.’)‘/)/%}' (QY*Y* | (142)

Similarly, the energy equation (105) is integrated over the thermsl

boundary layer thickness 6%:

9};/
/zz,’jﬁoc/r +/ V* jff, = 390y_ (143)
[4

Again, using Eq. (141) and rearranging the terms, we get:

X
SX,/ QoUc/Y - (ar*)r* . (145)

The solution of the momentum integral equation (142) is given first by
Pohlhausengl and later by Holstein and Bohlen08 The velocity profile

is found to be:

—Uo =27-27°+ " (145)
Y* .
where 1 = gT and 8' is the velocity boundary layer thickness.

The solution of the thermal boundary is given by Squireog7 The

temperature profile is:

/

6, = 1 -24+270 - % (146)
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where fp = g? and &' is the thermal boundary layer thickness. Now, let
T

us define:

;/

Squire found that for laminar flow over a flat plate at zero incidence,
— L
a =573 (148)
Therefore, the temperature profile can be written as:
/ §L 3 '}é ¢ '
G, = 1-2R°9 +2P 7" - R’ P (149)

These two approximate solutions have been checked with exact solutions
and the errors are both less than 5%» Therefore, we take Egs. (145)

and (149) as the solutions of the zeroth-order approximation.

First~-Order Approximation
The momentum equation for the first-order approximation is given
in Eg. (114) as

S i ' T, o aU *eU’
lw U;c "/"027 3X£C I,c Q.Zg +7;* < C 3Y;

+ 2m’Xind]w? (- 2%

—_ 620;2 / /C/J/
SyR TR g

It can be shown (see Appendix II) that the convective terms in

Eq. (114) is small compared with the other terms. Therefore, Eq. (114)
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becomes

L' Tl + (2m’(X-0) 5] (3= 2y%)
(250)

Y* = 0
Y =35 UTe=0

To solve Eq. (150) by means of the integral method, we assume a

velocity profile in the form:
(151)

UI/C= ql+bl7+C,72+ 6/,731"6,?4

The constants are determined by the boundary conditions

4= 0 Oe=Vii=0

,2 / / ) Uc 2 dc;/
w [2m/(-z-l)¢S/JJ = (8Y*2 +w S dx/

2 =41 : U//c=0 ) 3‘—‘70—-“'=0

The second boundary condition is the so~called compatibility condi-
tion which is obtained by satisfying the momentum equation on the sur-

face of the plate. With the boundary conditions, the constants are de-

termined to be
a = 0
G = Y&
df = —3b,-2%(x)

€, = 26, + Y(x)
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where

/
W) = o 8 (' (x)3 ~ £ jj,J (152)
The velocity profile is therefore
Ul = b7 +wp*=(3b+2¥)7° +(2b,+9) 7* (153)

The profile for Uic’ Eq. (155), is put into the integrated form

of Eq. (150),

I

Lw/ viart -~ (3F), ¢ w0 KL (15%)
which gives

cw’ (015 b+ 0.0333Y)

b 2,0 <! d37
— -2 +w b 3 G (155)

Solving for by, we get

2 4 ’0/5’ Voo’
’ g —~0.0333LWI
b = B ki (156)

T§7 + 0.15 Cw’T’

The boundary layer thickness 8' may be found be substituting Eq. (145)

into Eq. (142), which gives

5’ = 5.8423 g,/ (157)

For the present case, U, is assumed to be constant. Since, in nondimen-

sionalizing the basic equations, the reference velocity is taken as Uy,
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thus

g, = L = 1 (158)
Using Egs. (157) and (158), Eq. (156) becomes

b, = (44- 453> T G (M (X~1)X "~ 0.250]

oy T VLN T,
(o' 72 [(19:499)+ (8.6¢3:(m'(z2)1 - 0.250] ] (159)

It has been discussed in simplifying the basic equations that, if
the oscillation is to have any effect on the flow, w' must be. very large.
Also, it is shown in Appendix III that the order-of-magnitude of w' is
approximately 400, Therefore, the imaginary part in Eq. (159) is small

compared with its real part. Therefore, Eq. (159) becomes

Or = (44.453) b/ (=9 + 4.5029%- 6.004 93+ 2.502 7*) (160)
where
b/ = W T [ XLNT - 0.25] (161)

The phase angle, Q3, is therefore zero, since Eq. (160) contains real
part only.

To solve the energy equation, Eq. (115), the same procédure in ob-
taining solution for Eq. (114) is used. The temperature profile Qic is

solved by

o G Lk O : 20/ !
(w QI/C"PU}CS:ZT” tVe Sy = ‘an;." 3)%'2 (162)
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Integrating over thermal boundary layer thickness 8%

/

5% ¥ o, x
. / s 96‘ X *Q@o 692
(a)/ Q/CG/)/* +/E¢ ax/od)/ +'/Vl-c a)/# al)/t:_ ,Bé(a)/:‘ Y*2 0 (165)
(4] ] 0

or,
/

% 3¢
/-\w// ellcd)/*‘/* ;—E/T/ Qo/U;c/C/Y*=—— ;}L(jy’*
o

O
N
2
i
Q
~
[
(@)
=
~—r

0

The profiles ©4 and Uy are given by Egs. (146) and (160). Again, a

fourth-order polynominal is assumed for Qic'

’ 2 3
O = G + b5 + G+ b’ + et

subjected to the boundary conditions that

/ 26,
7o=0: Be=0 , Iz =0
Y, /
Te= 1t  G=0 ——jﬁ;: =0

The constants in Eq. (165) are determined by the above boundary condi-

tions as
a; = 0
c; = 0
dy = —3b;
€ = 2b,

The profile is therefore

O = by (7 =327+ 22%) (166)

Equations (146), (160), and (166) are then substituted into Eq.
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(164) and we get

('S](0-15) by + (260-:02WIFFIRI) = — —gb—;é—— (167)

where

- -2 - -2
F(Pr) = 0.834 3L+ 0./108R 3-0.064 7 ‘+o. 014~ ° (168)

(@) = B [l-2m @-DI UM TN T 0.25)+T mi2X-))  (169)

Solving for bz, we get

b — (260.02) F, 2 0%
3 / NIV

—Z o, tw —=2 (0.15)
R3S 3

or, using Eq. (157),

4
. 3’ -t
b_; S (296 36;:/% W R F e 2 (170)
where
1, <+
o, = tan' (& 132 BFT) (171)

Since @' must be large in order to have effect on thé flow (in the or-

der of 400) it is seen that Qo is very clbse’to %o This means that the
heat transfer lags approximately g radians behind the input disturbances

(cf., Appendix III).

Second=Order Approximation
It has been shown in Egs. (131) through (133) that the second-order

velocities and temperature consist of two terms, one steady component
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which i1s a function of X' and Y¥* only and a second term which oscillates
harmonically with a frequency of 2w'. The second term will be zero
when integrated with respect to time, and is therefore of less impor-
tance. The steady component will contribute to the skin friction and
heat transfer and are therefore solved in this paragraph.

The continuity, momentum, and energy equations of the steady com-

ponents of the second approximation are given in Eqgs. (134) through

(136) as
QUza + &-VJ: — 0
20X’ SY* - (151")

U;/ &Uzo +U— &Ua _I_V;*QZLo V*GU;/ 320:0

oX/ 20 X/ oY 2 SY* QY2
+(Te j}]}‘ + T S55 &U“‘ +7e jgif +77,3‘jg:) (135)
’3920 1T, *é@zo YA / 3292/0
b3t 85y tTo 5y T &isys T B Syes
o / / SEIZ / éelc Gglc *C;glt
- Z(U;C ST Ue X +V?3Y* Ve a),*) (136)

with the boundary conditions

Since the oscillation is to have effect on the flow only for large
o', it can be shown by following the procedures in obtaining solution

for Eq. (114) that the solutions of Ujg, VX s, and 6). can be obtained
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by the following simplified forms of Egs. (134) through (136):

SUzo 67;5 .

a_Z'/ + 3)/-)( = 0 (172)
2 Y/ N %ol aU
o = (T Sg- U S5 TSy TR SY5 (173)
PO _ | 0 7T 26 ¥ 90k ¥ 36
aY*z— 4 (U-IC azl -/—U/-C c)XC +yc 9)/* +VC 9\/;) (lYL,')

with the boundary conditions
/
Y* = 0 -t U=
Y* —_ ;/ : U/ —_— 0 Vs

As before, a fourth degree polynominal 1s assumed for Uéo Thus,
we have
/
U, = G + b7 + Ca 27+ dpp’ + €4 p* (175)
and the boundary conditions are
2 /
. ; ‘ S Uzo__
7 = 0 . Uzo 0 ) 372 = 0
/ /
7 = 1 : Uzo= 0 , Sz 0
27
The constants in Eq. (175) are then solved to be
674. = 0
C, = 0
Gl‘l" = —3b4
e4- = 264.
Therefore, Ui, can be written as
(176)

U,, = by (p=373+27%)
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Next, Eq. (173) is integrated over the boundary layer thickness &'

and, after using the integrated form of the equation of continuity

y* _,
Ef=~—/§%dr* (177)
o
it becomes
y /
L) - L4 / (T Ooely* (178)

‘Equation (176) is then substituted into Eq. (178), we then get
b, = — (53749 W) £, (X)) (179)

where

Fs (X) = T (FEL 0.25) {[/. 50~ 4m'Y (XENDAM (XL~ 0.25)

+2Xm (212 1) } (180)

Fa(X') is shown in Figures 5(a) through 5(e) for different m's.
To solve the steady component of the second~-order temperature pro-

file, Eq. (174) is integrated over the thermal boundary layer thickness,

/

(ZT,C Gy + Ure 07 )dY™* (181)

699%9

IY* A 4 a’z’

Again, a fourth-degree temperature is assumed to be in the form of

630 = ds + b5 7 + Cs 7"+ ds 7+ €5 7. (182)
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subjected to the following boundary conditions

/ 247
7; = 0 ébo’== 0 ) 'f%é%? = 0
=) 62/0 = 0

/
7{ = / ¢ 920= 0 ’ 37{;

Then the constants are solved to be

Gs = O
Cs = 0

ds = —-3bs
es = 2b;

Equation (182) then becomes

9210 = b (7e-37"+ 22%)

Equations (160), (166), and (183) are then substituted into Eq.

(183)

(181) and the equation thus obtained is used to solve for bs, we then

get
be = (439170 W F (P Fe (R)F5 (X)
where
-3 -£ ~/ -3
F(Pr)=0834Pr "+0./108 F °— 0.064 % +0.0/4
£

3

wlh

Fa(Fr==0.067F 3+0.162R = 0.129R7+ 0.035 A~

g2
4
Fetlh= 25 / —sm”’ X% 32m* - (g8t 13 X6
t(32m 17T e (B Jom*Ps 15.5 %) 7t

+ (3m”P=19.5m ) X7 + (5m?2.0625pm") T2

+0-8/25mT '+ 0.03/3)

(184)

(185)

(186)

(187)
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F5(X') is plotted in Figures 6(a) through 6(e) for different m's.

RESULTS OF THE ANALYSIS

With the solutions of the basic equations obtained in the preced-
ing sections, we can proceed to determine the time-averaged velocity
and temperature profiles, skin friction, and heat transfer.

The time-averaged velocity profile in the boundary layer is

U =10, + -£-1,, (188)

in which the oscillating terms in the first- and second-order approxi-
mations become zero upon integration with respect to time. The terms
Ul and U, are given in Egs. (145) and (176), respectively. Using

them, Eq. (188) becomes

U = (27-27%+ 7%= 2 (53740 KA@)(7-37+27%)  (189)
where
2 4
oy = (190)

In Figure 5, it is seen that Fg(X') is equal to zero at three
points. For example, at m' = 1 these points are at X' = 0.75, 1.18,
and 2.02. This means the velocity profile is the same as Blasius' ve-
locity profile. The location of these points does not depend on Ag,
being dependent on m' only. The surface of the flat plate is divided

into four regions by these three points. The effect of oscillation on
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the flow being different in each region. Figures 7(a) through 7(d) show
the velocity profiles in each of the four regions.

By definition, the local skin friction is

Te = W (57‘)Y=0

In terms of dimensionless quantities, it becomes

2
Cox = @( Y*)Y*=0 (191)
Equation (189) is put into Eq. (191) and we then get
Cox = = {0'34/9 =X (2-189) /:S(XJ)/ (192)
" JRre VI VI~

Cry is plotted in Figures 8(a) to 8(d).

The net effect of the oscillation on the surface of the plate is
obtained by integrating the second term of Eq. (192) with respect to X'
between the upstream and downstream penetration depths and dividing it

by the distance between them. The result is

,L,c,/
y Lfd‘[-fu/ 7o 24 (2:189) T dx
fu.

(193)

in which the two penetration depths are determined numerically as fol~

lows: In Figure 5 it is seen that at m' = 1 the expression
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F(X)
’ X‘/

equals to its maximum value of 0.917 at X' = 1.7. It is also seen that

this expression equals to 0.01 (approximately l% of its maximum value)
at X' = 0.07 and -0.01 at X' = 3.47. Therefore, we take Ley = 07 and
Leg = 3.47.

Numerical integration of Eq. (193) then yields the following re-

sults:

= . 2 Y
00229 —2& For m'=4 (19%)

The positive sign for Aaf means that the oscillation results in an
steady increase in skin friction. However, if the first term on the
right of Eq. (192) is integrated over the same penetration depths, the
result will be of the order of 205/f§gu In viewing of the inherent
limitation of the perturbation method, the maximum value of Ag is of
the order of 1073 (see Appendix III). Therefore, the net change is
always smaller than 1% of its value without this localized disturbance.

The time-averaged temperature profile in the thermal boundary

layer is

, , )2
8 = 6, + ;e 65, (195)
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Again, the oscillating terms in the first- and second-order approxima-
tions become zero upon integration with respect to time. The terms Qé
and @), are given in Egs. (149) and (183), respectively. Using them,

Eq. (195) becomes

/

6 = (I-2p+22°- 2%

+ (439 7Xp) F, Fe Fe (737" +22%) (196)

where

/2w/2
A= g (197)

From Figure 6, it is seen that Fs5(X') changes from positive to
negative at a certain X'. For example at m' = 1 this point is at
X' = 2.02. At this point, the temperature profile is not influenced
by the oscillation. Figures 9(a) and 9(b) show the temperature pro-
files in the boundary layer.

To find an expression for the Nusselt number, it is defined that
S(Fr

(L)

Nux = ‘J%%;' =

In terms of dimensionless quantities, 1t becomes

Nux = —Jre ( S5,y (158)
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Substituting Eq. (196) into Eq. (198), we then get

k]
Nuix = JR—e/i%{L%/i (75082 B-3IF A —FJ}—%} (199)

Nu, is plotted in Figures 10(a) through 10(d).
As before, the average effect of the oscillation of the Nusselt

number is obtained by integrating the second term in Eq. (199) between

the two penetration depths. Then we have

Lyd
F%'CY)
— 3)F F- X « (200
ANy s Lw/f/?‘e)\r(noaﬂ) 1Fa = —F=d (200)
Lty

After numerically . integrating it by the same : method as in computing

Eq. (194), we get

ANy = —(34200) [Re e B3 F, iy For m'= |
~ —(388,000)[Re A1 AE Fi F for e
— (2,205 000)JRe AT PrELF, Fe for  m'=3
= —(6,650,000)JRe X+ P,.'*L/:, Fq For  m’=4 (201)

The minus sign indicates a decrease in heat transfer.

Integration of the first term on the right of Eq. (199) between the
same penetration depth shows that it is of the order of Prl/SVRe° The
maximum value of Ap above which the perturbation method being no longer

-3
valid was given as 10 . Therefore, the maximum value of Ap is of the
>\“f -8
order of ——, which is 10 = (see Appendix III). Again, the net change

a)l

in heat transfer is seen to be less than 1% of its undisturbed value.



3

*(T=,w),X JO UOT3OUNJ ® S JIaqumu 3[assny TBOOT *(®)QT SINITJ
.._\X = _X
¢ A I 0

(e
L]
-

<

oY | XON

0°7¢




Th

*(2=,w),X FO UOT}OUNF B SB J8qUNU TISSNN [BOOT

.._\x = X

[/

*(A)0T °8Td

0T

94/ XnN

0%




I

*(¢=,W),X JO UOT}oUNJ ® SB JoquUMU 4ToSSNY T[BOO]

|:X = X
¢ A

*(2)0T °amITd

q0°=

n

o XN



76

*(#=,W),;X JO UOT3OUNJ B SB JaqUMU J[SSSN) TBOOT

|:x" _x
14

*(P)OT ®an3Ta

n
(=)
o | XN

0T



CHAPTER III

CONCLUSIONS

In the preceding chapters, the problem is solved by the perturba-
tion method. The various orders of approximations are then solved by
the integral method which is known to be accurate in the case of uni-
form flow over a flat plate. In spite of the inherent limitations of
the perturbation method, the following important conclusions are drawn
as a result of this analysis.

a. The phase of skin friction is approximately in phase with the
input disturbance, while that of heat transfer lags approximately g
radians.

b. The existence of a steady change of skin friction and heat
transfer is shoﬁn in Egs. (192) and (199) and also plotted in Figures
8 and 10. The four branches of the skin friction is expected since
the equation of the boundary shows that it consists of two pocints of
inflection and a point of zero slope at X' = 1. These points divide
the plate into four parts, each producing a different effect on the
skin friction. The governing parameters for the steady change in skin
friction and heat transfer are Ap and Ap, respectively. Increasing
the curvature of oscillation, indicated by an increase of m', tends to
shrink the effect closer to the point of disturbance.

c. Integration of the steady local skin friction and heat trans-

fer over X' shows that the net effect of the prescribed oscillation is

Tr
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an increase in total skin friction and a decrease in heat transfer from
the plate to the fluid. The magnitude of these net effects are always
less than l% of the undisturbed flow within the limitations of the per-
turbation analysis.

A numerical example is given in Appendix IIT which helps to check

the validity of the various assumptions made in the analysis.



APPENDIX T

DERIVATION OF EQUATIONS (43) AND (Lk4)

At a certain instant, the boundary will be at a poistion shown in
Figure 3. The normal velocity of the boundary is equal to eia¢ and the
tangential component of it is of the order of 0(e®). It is therefore
neglected. To derive the momentum equations, we have to consider the
inertia, pressure, body, and viscous forces separately.

-5
The rate of change of any vector quantity Q may be written as

DA _ & S S LA (v D
58 _ 28 4 (7.8 + 8 (v V) (1-1)

where, in two-dimensional form,

—_

Q = z_; &x + z\_\y QY (1-2)

>

-
If we substitute Q = pV, i.e.,
N -\
— N N
Q = LZQ-Z+ LYQY

L pl + iy PV (1-3)

then Eq. (I-1) becomes:

YL = D T (7 7 =
where
V — [I U -+ L,/V (1"5)

19
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and for incompressible fluid, we take

P = constant (1-6)

Equations (I-5) and (I-6) are substituted into Eq. (I-4) and we

get, for incompressible flow,

Ler — ,"Lz +7-v)T +T(v. 7))
+ SV
'DL"faT VT + V(v 1/)}

+ pTU(V-V) Ly + pV (V- V) Ly (1-7)

The operators in this equation

7oy = U o v oo
Vv bz 3T T Thy 3y (1-8)
and
= _ S(hy T) N7,
V.V hx/;,[ 51t oy (1-9)

Putting into Eq. (I-7) we get

=Y Y 7 aU
"‘fé )/ T hz 5% T hy oY }

=19 o v 7 oV
*/“Y{ar Y hr o T hy 3Y}

- - — -
+PU (V- V) ig + PT(V-T)Ly (1-10)

Finally, we have to find out the last two terms. From vector calculus,
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we have
P _ __Z:,_ > Hhy (k# )
SX; he X« (I-11)
and
olhe _ _le 3he _ v-h (1-12)
aXK /‘)K aIk k
Therefore,
= = - - N
olxr _ (x ohs (x 2hx _ Uy Shr _ _ Ly oh (1-13)
oX hy oX hr >X y oY hy oY >
e-[—; ly ohx
SY By SV (I-14)
Similarly,
- -
20X  hy oY (1-15)
and
é[y _ _i ahx
oY hr oX (1_16)
Therefore,
= = U LT;’ 8/71 Vv ZS)/ &/)Y
A v4 = — < X
(V-v) i he By oY T hy By o (1-17)
and
T L sh v Ir oh
R = _ U lx 2hr _ lr shy -
(V-v) Ly hr hy oY hy hy oX (1-28)
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Equations (I-17) and (I-18) are put into Eq. (I-10) and the result be-

comes,

1YY 2N N Y Y ohy 2&/7,

Dt PLI/aT * hx oX * hy oY /)X/W[Z”T 2y J}
=SV TV T o7 shy _pgis N

+pLY{ ST +hr Sy /uhr[UV U YJ} (I-19)

Therefore, the inertial force per unit volume in the X-direction is

T T 3T | 7 5T / Shx 2&/7r} _
P/a +Ir STt Sy +/7x/)r(U73Y 7Sy (1-20)

and in the Y-direction is

7 U 37V |, 7V 7V / Shy za/ur}
/D{a'r i hr X * hy oY +hzheraz v oY / (1-21)

The pressure forces per unit volume is independent of the coordin-

ate axis chosen and is therefore equal to

RVANEY

=t
hx X Y

/
and -

hy 2
respectively.

Finally, we have to derive the viscous force terms. In two-dimen-

sional form, we can write the viscous force per unit volume as,

u (e3}/7y B asy/vx)

Achr ' Tox (1-23)
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where

S - ) -

Sy = lx Tzx T Ly Tax (I-2k)
- - y;

Sy = Z} Tyx + Ly Oyy (I-25)

Substituting Eqs. (I-24) and (I-25) into Eq. (I-23) we get

e Txr h
F///‘scous Tz oy [ (X S(O‘xxh + Ly _S(a,}r v)
oL
+U}x/>r S Ty by 2 g,z
~ 3(Txhe) , 7 (T hp)
+ L_x 3)/ l)’ 69)/
S L oL
t Tyrhr 37 1 + 0y %% =] (1-26)

Using Egs. (I-11) through (I-14), we get

_ ule [ (TGEhy), N(Tuhe), 4, 3ht _ s sh
Fwscous I/’z /‘Jy 57 + >Y xYaY Yy ST
uly S(Tohy) , S(TFr hx) Shy _ o/ Shx i
Mo b Seb e TS S

Therefore, in the X~ and Y-directions:

Fyls cous , X

[ Q(Crix /7)/) + a((rx hy) O;Yc}hr "‘Z: éh.ZJ (1-28)

hx ﬁy
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and

FV/SCOUS, Y

L S (Tyrhy) (TG he) o+ 2hy ' Shs
/{Ihy[ o X SY TSy a)/] (1-29)

where, from the general Stokes' law,

7

_ SU/ V/ S/)X _
—2/4[ h] o X * /)1/’))/ Y ] (1-30)

o7’ g sh
(rY/Y =2H[# oY * hjhy YJ (1-31)
(XY = T)’X /M[ .Z ( /7)’ h’; oY ( Fix )] (1'52)

In these three equations, the absolute velocities U' and V' are

used which are given in Egs. (34) and (35) as

/

U = U + 2m((X-LDY tw¢ €
and

'V/z—'. V + (,\a)¢6

The reason for this is that any physical law must be given referring to

fixed, or absolute, coordinate system.
The acceleration terms that must be added on the left side of the

moment equation is discussed in the text.
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SOLUTION OF EQUATION (11k4)

In solving Eq. (114), a method combining the methods of successive
approximation and momentum integral is used. The major simplification
obtained is that the convective terms are small compared with the

18 yut without a detailed

other terms. The idea was given by Lighthill,
mathematical proof. It is the purpose of this appendix to prove it
mathematically.

It has been discussed before that w' is a large parameter. Ac-
cording to the theory of differentiallequations containing a large
parameter, we can retain only terms having this parameter as a factor
and the highest order term to get a first approximation. This reduces
Eq. (11%) to

Cw %+ [2m” () P4l w? (5= 2Y*)

Ic

cyzzruv s s
ar*/; + WH ar (I1-1)

where the superscript (1) means first approximation to Eq. (114). Com-
paring Egs. (114) and (II-1) shows that the terms dropped are the con-
vective terms. The question now is the accuracy of this approximation.

In order to investigate it, let us write the solution to Eq. (114) as

85
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, @
(II1-2)

The first approximation is solved from Eq. (II-1). To solve the second

(114) and subtract

approximation, we substitute Eq. (II-2) into Eq.
Eg. (II-1) from it. Then we get
(2)
) (2) % /2
/C - S Y#Z

ic [4 [4 Uo/
= ——{ZT: jg, +Te j; V::g'* Vfiw} (11-3)

(II-3) is calculated approximately by

1
replacing U! and V¥ %Dy their first approximation U‘( ) and V*< )n
le le ‘1lc lc

The right-hand side of Eq.

Therefore, we have

\ /(2) SJU'C
Lw/U;c 9)/*.2
w (,)
) éU/c (I)QZL/ c)U;/ ém
/Uﬂ >X U/c >X Vs Y ¥ +V" oY* } (IT-L)
The boundary conditions are
/@ *#e)
Y¥= 0 U ="
#* / J(2)
Y*=3': 7%= 0
In order to compare th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>