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ABSTRACT

A systematic method using S. Lie's continuous contact transformation
groups 1ls developed in this report which enables one to search for all pos-
sible groups of transformations under which a given differential equation can
be transformed from a boundary value to an initial value problem. Examples
are worked out in detail as illustrations of the procedure.






1. INTRODUCTION

The present report treats one of the most important applications of the
concept of continuous transformation groups: the numerical solution of boundary
value problems as related to the class of transformations from boundary value
to initial value problems. A completely new and general method will be developed
based on S. Lie's continuous and contact transformation group. In reference
6 the same concept was applied to develop a method of searching for all possible
groups of transformations in a similarity analysis of partial differential
equations.

A boundary value problem is characterized by the property that its boundary
conditions are given at more than one point. 1In the absence of closed form
solutions, numerical solutions must therefore be obtained by a trail-and-error
procedure in which an tnspecified boundary condition is assumed arbitrarily.

The accuracy of the assumption is then checked by the fulfilling of the boundary
condition at the other point.* It is therefore clear that the class of trans-
formations from a boundary value to an initial value problem is of greatest
importance in that it eliminates the trial-and-error procedure and simplifies
considerably the process of numerical integration of the equation.

The first research on this type of transformations was given by Topfer in
19127 for the numerical solution of the Blasius steady, two-dimensional boundary
layer equations with uniform mainstream velocity. After a similarity transforma-
tion is made of the governing partial differential equations, a third-order non-
linear ordinary differential equation is obtained with the boundary conditions
specified at two points, namely, two at zero and one at infinity. The equation
is then transormed by T&pfer's method and the problem becomes an intial value
problem. There seems to be little work on this subject until 1962 when Klamkin2
published an important paper which considerably extended the range of applica-
bility of the method, including applications to simutaneous ordinary differential
equations. Both Topfer and Klamkin's research consider the case in which boundary
conditions are given at zero and infinity. No general theory, however, was given.
Mostly recently, the method was reconsidered from the point of view of the théory
of transformation groups in References 3 and 4. As a result, a general method
was, indeed, developed for given groups of transformations. The method treated
by Topfer and Klamkin was found to be the special case of a linear group of
transformations.. Introduction of a "spiral group" of transformations made it
possible to extend the method to a wide class of ordinary differential equations.
According to this method the boundary conditions can be specified at both finite
and infinite points. Extension of the method to problems in which two boundary
conditions need to be transformed was also made by using a multi-parameter group
of transformations. As long as the group of transformations is initially given,

*One would hope to eliminate this procedure by transforming all conditions to
apply at one point. This is the method outlined here.



the method i1s straightforward. However, the arbitrariness in the selection of
a practical group of transformations considerably limits the scope of applica-
tion of the method. There is, therefore, a need to develop a metand of search-
ing for all possible groups of transformations for a given ordinary differential
equation without resorting to an initial selwction.

In the present report, a systematic meti.cd using S. Lie's contiruous con-
tact transofrmation gsrcoups will be developed wiich enables one to search for
all possible groups of transformations under w:ilch the present method can be
applied. The metirod used follows closely the :ze¢r-ral group-theoretic method
given in Chapter & of Reference 6. A summary of the method given in References
2 and % will be given in the next section to summarize the present ctate of the
research and the gen=ral concept of the method. “he general method wili be
developed next, followed by two exampies to stiow tre steps which have to be
taxen to get specific grovps of transformaticii spplicable to a given problem.




2. SIMPLE GROUP—-THEORETIC METHOD

2.0 FOREWORD

This article gives a critical review and summary of the method of transfor-
mation developed in References 3 and 4 with certain modifications. In section
2.1, the general concept of the method 1s illustrated by two examples, namely,
the Blasing' problem from boundary-layer theory and the heat conduction equation
with power-law heat generationa5 The boundary conditions in the first example
are given over an infinite interval. In the second example the method is ap-
plisd %o a case where the boundary conditions are given over a finite interval.
A discussion 1s presented on the type of equations for which a spiral group is
needed. In section 2.2, externsion of the method %o problems in which two boundary
conditiong need to be transformed is discussed in detail. Extension to more
general types of equations is given in Section 2.3. Finally, Section 2.4 con-
clues the discussion of the method with an evaluation of its merits and limita-
tions.

.1 ONE-PARAMETER METHOD

N

2.1.1 Linear Group of Transformations

Consider the Blasius' equation mentioned earlier where we want to solve
the equation

3 2
df 1 _df
—_—— = f —_— = O 2 l

4 ~ Af ()
dn ‘ dn

n o= AT, £ = a%F (2.2)

is applied to this equation, where A is the parameter of transformation and o
and Oy are two constants to be determined. Under this transformation, Eq. (2.1)
becomes



as-30n a5F  20m-205 1 — d°F
A —= + A =7 - 0 2.
an° 2 ant (2.3)

It is seen that the transformed equation, Eq. (2.3), will be independent of the
parameter A if the powers of A in both terms are equal, i.e., if

Oo - 304 = 20p - 204 (2.4)
Equation (2.3) then becomes

e 1 _ao .

e 2 1 dﬁz = 0 >

From Eq. (2.4), we have

s = -0 (2.6)

This gives one relation between on and os. The other equation required for the
determination of oy and s is given by putting

d®£(0)
dn2

= A (2.7)

from which

-20n A%F(0
02 dﬁé ) o, (2.8)

Therefore, the transformed boundary condition will be independent of A if

ag - 20{1 = 1 (2.9)
which leaves
a%t(0)
—— = 1 2.10
e (2.10)



The two unknown constants, o1 and ap, can then be obtained from Eqs. (2.6)
and (2.9) as

o = =Qp = -% (2.11)

Finally, the parameter of transformation, A, can be obtained by using the
original boundary condition at infinity which gives

Qo=0l1 d.f(oo)
A — —_ /
I 1 (2.12)

Thererore, we get

(2.13)

=
]

N~

This example shows clearly the general conceptb of this technique. In
general, two unknown constants (e.g., o1 and oo in this example) are to be
determined if one dependent variable is involved. Two equations for their
determination are therefore necessary. One of these equations is obtained by
requiring “hat the transformed ordinary differential equation be independent
cf the parameter of transformation, A; the other condition is formed by set-
ting the original required boundary condition at the initial poirt equal to
the parameter A. Finally, the parameter of transformation, A, is determined
from the boundary condition at the cther point. The sclution of the problem
then consists of two steps. In the solution of the Blasius equation, for
example, Eq. (2.5) is first solved with the boundary conditions

— 2—
o) - dg%o) - o, da 1(0)

——E:ﬁ—z—- = 1 (2,1&)

and the value of d?(w)/dﬁ is then obtained from the solution which in turn
gives A by Eq. (2.13). With oy, oo and A known, solution to Eq. (2.1) can be
computed using Eq. (2.2). It is seen that the problem is reduced to an initial
value problem.

With Blasius' equation treated in this way, extension to a new class of
problems involving finite intervals becomes more obvious. We now consider the
equation

acT n
w2 teT =0 (2.15)



subject to the boundary conditions

This equation can be interpreted physically as hea®t conduction with power-law
heat generation5

A one-parameter linear group of transformation

Gz

x = AT, T = AT (2.16)

is made and the two equations needed for the determination of oy and oo are
obtained by requiring that: (1) the transformed equation to be independent of
A; (2) by setting

= A (2.17)
From these two equations, oy and oo are found to be

y Q2 = 1 (2.18)

l-n
@ = G

The boundary condition, (2.17), becomes

= 1 (2.19)

The parameter A is then found by transforming the boundary condition at
x = L, which gives

at AT X = L (2.20a)

=l
it
@]

or,

A = {= = (2.20Db)



To recapitulate, the procedure is therefore as follows: Firstly, the
transformed equation is solved with the boundary conditions f(O) = 0 and
the condition given in (2.19). Then, the value of X where T = 0 can be
determined from the solution. The parameter of transformation, A, is finally
computed from Eq. (2.20b). Again, the problem is reduced to an initial value
problem,

Consider next the rather general second-order differential equation

N .o ml ' ni T S

dy 1 1
Z Aa @ y> ) - O )
L h\ge) &) v (2.21)

subject to the two cases of boundary conditions

Case T
-d
\ 4"y ()
= = k
y(0) 0, BTG
Case IT

i
L
o
<
=
|
(@}

y(0)

Consider the linear group of transformations

x = Bﬁl'}?} y = BBE'y (2.22)

Under this group of transformation, Eq. (2.21) becomes

g Bmi(BE’EBl) + ni(52‘51) T TiBo * BiPa

i=1
A2\ A7\ ry sy
x A \=5 =) ¥ 1x1 =0 (2.23)

Equation (2.23) will be independent of the parameter of transformation,
B, if the powers of B in each term are equal, i.e.,

m; (Bo-2B1) * n1(Bo-P1) + r1 Bz + s1 B1

= m;(Be-2B1) *+ ni(sz-gl) 75 Bo *+ SiP1 (2.2L)
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In general, (2.24) gives (N-1) equations with only two

The method is applicable only if the (N-1) equations
To illustrate the problem that

where 1 = 2,...,N.

unknowns, B; and Bs.
actually reduce to one independent equation.

may arise, the Falkner-Skan equation may be cited.

a°r 1 4%r ) ar.2
e e T L-(z) | = 0 (2.25)

Under the linear group of “ransforma“icn defined by Eq. (2.22), Eq. (2.25)

becomes
Bo-3p1 4°F 2Bo-2B, 1 ¢°F 2Bo-2py ,dF,\ 2
B i + B Tzt Bl - B (’dﬁ) ] = 0 (2.26)

which is independent of the parameter of transformation if

Bo - 3B Po - 281 = O = 2Bp - 2B (2.27)

Two independent equations are obitained from (2.27). As a result, we get

B1 = B> = O which means the methcd is inapplicable.

Assuming for now that such a situation does not exist, Eq. (2.23) becomes

N 33\ AT\ _pe sy
RO %? (d—>—<> Frxt =0 (2.28)

With one relation between B, and Bs cbbained from Eq. (2.24), the other

relation required for the solution of B; and By can be obtained by putting
0 equal to the parameter of transformation, B, i.e.,

the slope at x =

d
rl0) - (2.29)

dx
After transformetion, we have:

gParfr 47(0) | o
dx

which is independent of B if

Bo - 1 = 1 (2.30)



The transformed boundary conditions are therefore,

y(0) = o, = - 1 (2.31)

Equations (2.24) and (2.30) give solutions to B, and Bs.

Finally, the value of B can be found by applying the boundary condition
at the second point. Thus:

Case I:
Bo-dB1 4 y(w)
B
axd k
or,
o
axd J
Case IT:
dd—
E{_% -0 a P% - 1
or,
L l/Bl
B = — (2.33)

d
x(where a;% = 0)

Thus, Eq. (2.28) is solved with the boundary conditions given in Eq.
(2.31) and the value of X where ddﬁ/di = 0 can be found from the solution of
the transformed equation. This result is then substituted into Eq. (2.33)
and the value of B computed. It should be noted that there are cases where
additional problems may arise. Asan example, if the value of B in Fq. (2.15)
is negative and also n = 1, then

41
-
7

with the boundary conditions



The solution is

=1
i
> =
02}
!—fe
o]
oy
>
bt

which is never zero. This places snchher limitation on the method.

- L in case II need no% be homogeneous. For

Ii

The boundary conditions at x
example, one may have

44
Thus,
d—
-dp; d , _
PP &8 o o P - g (2.3L)

axd

Since k, L, By and Bs are kncwn constants, “he value of B can be found by
searching for values of X and 4 y/dX in the solution of Eq. (2.28) which give
the same value of B in both equations of Eq. (£.3L4). One way of doing this is
by eliminating B in Eq. (2.34) which leads *c

p

(2.35)

L, a- 22
B4

= k(z)

>
O

Next, (ddyydid) vs. X 1s plotted as a curve. Ancther curve from the solution
to Eq. (2.28) can be plotted with the same coordinates. The intersection of
these two curves will give the required value of X and dd?/did which in turn
can be used to compute B from Eq. (2.3k4),

One final remark about the method i1s necessary. Suppcose the boundary

condition at the initial point is dy(0)/dx = O, Ir this case, we merely
have to put

Thus,



and if the result is to be independent of B, Bs must be equal to 1. Under no
circumstances, however, should the boundary condition at the initial point be
nonhomogeneous. If it is, one more equation relating B; and B, will result.
The method then cannot be applied.

2.1.2 Spiral Group of Transformations

We now consider a class of nonlinear ordinary differential equations in
which a spiral group of transformation rather than a linear group is needed for
the method to apply. We consider here the class of equations

N 2 mi n.
6l an\ 1 p; :

with the boundary conditions

Case I:
Case II:

where Ci, mj, ni, pi and g3 are constants and N is the number of terms in Eq.

(2.36).

Let us define the one-parameter spiral group of transformations
x = e X, ¥y = Ftoh (2.37)

where A is the parameter of transformation and ¢y and <o are constants to be
determined.,

Under this group of transformation, Eq. (2.36) becomes

N

- - + +
Zl Cle( Zmial nial pia2 qlal)A
l:

220 mi A\n, _ .
x @ @ 1PV 51 - o (2.38)
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The equation is seen to be independent of the parameter of transformation,
A, if the powers of e in each term are equal, i.e.,

(-ﬁni - g + qi)OCl + Py Qo

= (-2my - ng * Qo * D1 Qe (2.39)
where i = 2,...,N. The transformed equation becomes
; AT TA T AT
i§1 Cy E){_‘g) \\a_“' etV x* 1 = 0 (2.40)

Equation (2.39) represents (N-1) equations. In general, the method can
be applied only if one independent eguabion resulss from these (N-1) equations.
For example, if Eq. (2.3%6) “akes the form

|$1n
o

<
+

»ino

&l

+e¥ = 0 (2.41)

!

Equation (2.39) then gives cne independent equation for oy and ay as
=201 = Qo (2.”-2)
Physically, Eq. (2.41) may be interpreted as the equation for heat con-

duction in spheres with exponential heat generation5.

To determine the second relation for the solution of ¢ and s, we put
y(0) = A (2.43)
Upon transformation, this condition becomes:
F(0) +azh = A
which is seen to be independen®t of A if

s = 1 (2.11-&)



The transformed boundary conditions become

F(0) = 0 and = 0 (2.45)

For the example given in Eq. (2.41), oy and ao can be found from Egs.
(2.42) and (2.44):

2
1l
i
ol
Q
Q
\V)
1]
H

inally, to get the parameter of transformation, A, the boundary condition
at the second point is used. The two cases are considered separately.

Case I. The boundary condition at x = 1 becomes

F+A = O at e X = 1 (2.46)
Eliminating A, we get
ety x = 1 (2.47)
Case II. The boundary condition at x = o becomes
X = o Vvt oA = ky
or
A= Ik - F(e)] (2.18)
0f=)

Therefore, the method proceeds as follows: First, Eq. (2.40) is solved
with the boundary conditions (2.45). In case I, the solution curve to Eq.
(2.40) can be plotted on ¥ vs. X coordinates. Equation (2.47) is plotted on
the same coordinates. The intersection of these two curves gives the values
of ¥ and X which give the same value of A from Eq. (2.46). The value of A is
then determined. In case II, the value of A can be computed from Eq. (2.48).

13



The solution to the original equation, Eq. (2.36) can be obtained from Eq. (2.37)
since now oy, 0o, and A are known constants.

2.2 TWO PARAMETER METHOD

2.2.1 Transformation of Two Boundary Conditions

The method developed in the preceding section can be extended to higher-
order differential equations as loxng as only one boundary condition is required
to be transformed. In this section and the next section, the method will be
extended to higher-order differential equations ir which more than one boundary
condition need to be fransformed. For such cases, mulbiparameter groups of
transformations are required.

Consider now the third crder differential equahlon

N TR TR N BN | N

a a 3 S: s
‘Zi Ay <%;%> (é-%) §i> ytx*t =0 (2.49)
1= /

subject to the boundary conditions

Case I.
d; do
d y(=) d "y ()
Y(O) = 0 = ky, ad = ko
’ dxdl dx2
Case ITI.
.dl . d2
\ d “y(L) 4 2y (L) ;
y(0) = 0, S=H= = 0, —f - ke
’ ax2 ax“e

We now define a two-parameter group of transformation

B 71— Ba

x = B ez, y = B2¢'25 (2.50)

Under this group of “ransformation, Eq. (2.49) becomes

N \ )
2} Ay e m; (B=3pB1 ) +n1 (Bo~261 )+fi(52“51}*5152+t151

(72~ 57l/+ﬁ - u/11+v“(72 71)+Sl72+i



The method can be applied if, for all i's,

my (B2-3P1) i (B2-2B1 ) +r; (Bo-p1 ) +S3BottsP1 = Ci (2.52a)

mi (y2~3y1)%04 (y2-271) 413 (Y2-71) +8yy2tts7 = Co (2.52p)

where C; and C, are two arbitrary constants.

Equation (2.51) then becomes

Y A (/—Sd:%@mi () (Y s gt - g (2.53)
s -5 —= X = .
s= i \ax X2 =) 7 >

For example, the equation
a3y J 1 dy a5y 7\ 2
% | = = L 4 (s =
e 2 dx  ax2 <X2> 0 (2.5L)
belongs to this class.
The boundary condition at the initial point, y(0) = 0, can be transformed
to
y(0) = o0 (2.55)
To get the other boundary conditions at the initial point, let us put
dy(0) a%y(0)
= B d = .
ax an dx2 C (2 56)
Upon transformation, (2.56) becomes
=i Y o= dy (O
pPa-Pi 72=71 YE ) _ B (2.57a)
dx
and
Bom2B1 y2-27147F(0)
B e —= = C (2.57p)

dx

15



which are seen to be independent of B and C if, from (2.57a),

B = P = 1, 72 =71 = O

and, from (2.57b),

Ba = 2B = 0, 72 v Eyn = 1

(2.57a) and (2.57b) are then transformed to

dy (0) . 3%y(0) | ,
= = 1, —Z%E—L = 1 (2,58)
and the values of Bi, Bsy 71 and yo are
Br = 1, B2 = 2, y1 = =1, yo = -1

To get the parameters of *ransformaticn, B and C, the boundary conditions
at the second point are used.

Case I

(2.59a)

B~ "2 ¢ L. ko (2.59)

Case II

BCTT = —— (2.60a)

= (2.60b)




Therefore, B and C can be solved from Egs. (2.59) or (2.60).

The method can easily be extended to equations of the type:

L b (dx> (dx> @:D -0 (2.61)

The only difference here is that one assumes a transformation group defined by

31 B+y,C
x = e g,y = T+ BB +9aC (2.62)

Other steps remain the same.

2.2.2 Simutanecus Differential Equations

Application of the method to simutaneous differential equations again in-

volves mutli-parameter groups. Consider now the fcllowing system of two simu-
tanecus equations:

. /4 .

-2\ Y\

A <;;\ 1 i\ i t. ~

Ay (&§> dx. x3 = 0 (2.63a)

dy pJ ], S ¥ q.

\ > 2% x4 = 0 (2.63v)
'\“\dX

subject to the boundary conditions

Case I.

d%y () a9z ()
y(O) = 0, Z(O) = 0, dXd = ki, an‘ = ko
Case II.
_ _ . d&@) ade(1)
.V(O) = 0, Z(O) = 0, dXd' = 0, d_Xd‘ = ko
Let us now define a two-parameter transformation group
X = b1 X, y = KBgy , &z = XBBMSZ (2.64)

17



Again, the differential equations, (2.63), are independent of the parameters
of transformation, A and u, if the powers of A and p in each term are respectively
the same. This leads to the following systvem of equationg for the solution of

Bis P2y Bsz and o:

(Bz-2B1)m; + (Bz=Br)ng + Bz by + r5(Ba-2B1) *+ S;(Ba-Bi) * 5 Ba * q3B1

= (Bg=2B1)m1 + (Bo-Bi)ny + Bo p1 + r1(Ps-2B:) + Si(Ps=B1) * t1 Bs * a1 Ba
(2.65)

Ty + 8. +th.= 1y, 8+ (2.66)

(B2~2p1)M *+ (B2-B1)Ty * B2 Ty + T5(Bs-28:) + 8,(Ba-pz) *+ T35 Bs * Q5 Bu

= (Be-2BL )W *+ (Bz=P1)T1 * B2 D1 * 1 (Ba-2B1) * S1(Bo-Bi) + t1Bs t W A
(2.67)

T + —g + T = -I_“l + §1 + ;3-_]_ (2.68)
where 1 = 2,..,., Nand j = 2,...,M

Substitution of Egs. (2.66) and (2.68) in%o Egs. (2.65) and (2.67),
regepchively, gives
(mi ni+Pi)52 - (2mi+ni+2ri+simqi)5l

= (my+ni+py)Bs = (2my+my+2ri+81-q1)p:1 (2.69)

m.+m.+D. - (2m.+0 . 427 .45 .-T. )Ry
(i, #0,+5,)p - (2m,0,+2T ;+5,-35)P

= (Wy#7, D1 )Ba - (2F +M+ 2F, + S) - Q1)p1

(2.70)
The method is applicable if Egs. (2.69) and (2.70) each represent only
one independent equation and that both give the same ratio of 62/Bl° If these

conditions are satisfied, the ratic of 52/51 is known.

Next, the required boundary contions are defined tc be equal to A and p
respectively, 1.e.,

18



Upon transformation,
P2 Py = ana W@ APEPizi0) =y
which then give

B2 =B = 1, & =1 and Bz - B = O (2.71)
The ratic of By/By cbtained from Egs. (2.69) and (2.70), together with
Eq. (2.71), gives soluticns of By, Bs, Bz and &,

To get the parameters of transformation, the same method discussed in
previocus paragraphs can be applied. It will not be repeated here.

The method can be easlly generallized to include cases with exponentials
of vy or z or both in Egs. (2.63).
2.3 MORE GENERAL TYPES OF EQUATIONS

The methcd developed above can be extended to more general types of

equation. Two caseg are considered here. Consider now the general secccnd
crder differential equations:

M ) ‘
AP\t /AyNSs . .
GC L Dby ——39 J Q—)%)J vy i x4 = 0 (2.72)
j=1 9 \ax

where G represents an arbitrary function of the argument indicated.

Case I, The method can be applied if, under the linear transformation group

Q1 — Oo _
x = ATX, y = A°F,

only one relation between o and oo is obtained from the condition that Eq.
(2.72) is invariant under this group of transformation.

As an example, the equation

19
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et

3
¥y

y

2 + ] g + —
S sin (y % 1 =0

will give one relation between ¢ and s, namely,
200 -~y = 0

Case II. If y is absent in all terms in Eq. (2.72), the spiral group of trans-
formation can always be applied for any arbitrary function in Eq. (2.72)., As
an example, consider

a2 v
?dfgr- + £ (ﬁ} 1 = 0 (2.73)

where f; is any arbitrary function of dy/dx, Under the spiral group of trans-
formation

e _ —
X = e X, y=y+CX2&
Eq. (2.73) becomes
=20 & dZ? -na dy
—5 + f —-—) +t1 =
e =2 1 (e ]_) 0

which is independent of a if oy = O for any arbitrary function f;. The remaining
steps remain the same.

2.4 CONCLUDING REMARKS

In this sectiocn, the application cof a linear or spiral group of transforma-
tion to the class of transformation from a boundary value to an initial value
problem is treated. The method consists of three basic steps. First, a trans-
formation group is defined and the given differential equation 1s required to
be invariant, i.e., independent of the parameter of transformation, under this
group of transformation. In step 2, the required boundary condition is set to
be equal to the parameter of transformation. Finally, the parameter of trans-
formation is found by using the boundary condition at the second point. Know-
ing this general concept, the method treated in this article can be applied to
higher-order equations or other types of equations. It 1s simple to apply and
only algebraic solutions are required to get the transformation. The main dis-
advantage of this method lies, however, on the arbitrariness in the selction



of a proper group for a given differential equation. In the next two sectioms,

a very general method will be developed which makes it possible to search for

all possible groups of transformation under which the given differential equaticn
can be reduced to an initial value problem.
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3. GENERAL GROUP-THEORETIC METHOD

3.0 GENERAL CONSIDERATION
In order to introduce the general group-theoretic method, the method
developed in section 2 will be summarized by considering a second-order ordinary

differential equation as fcllows:

Consider the ordinary differential equation

@%y dy
F<dx2) a: \E )9 = 0 (3’1)

with the boundary conditions
y(0) = 0, y(4) = a.

The differential equation is transformed by introducing a one-parameter group
of transformation, viz.,

X = f(i; A, o, 052)

y = g(—ﬁ’:s A, o1, 052) (5'2)

where p and ap are constant;s to be determined before the transformed equation
is solved, and A is the parameter of transfcrmation to be determined after it
is solved.

To determine oy and ¢o, two conditicns are imposed:

i. the given differential equation is to be invariant; i.e., it should be
independent of the parameter of transformation, A; and

ii. ‘the boundary condition dF(0)/dX is to be independent of A for some choice

of dy(0)/dx as a function of A,

If o1 and oo can be found salisfying the above conditions, the method can pro-
ceed

The transformed differential eguation can now be solved as an initial
value problem with thé. initial conditions F(0) = 0 and d¥(0)/dX = b, where
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b is the value resulting from condition ii. If the solution of the initial
value problem is denoted by ¥ = b(X), the value of A needed for the completion
of the solution of the original equation is sought by solving the following
system of equations:

vy = nX), 1 = £(X A o, a2) , a = g(¥, A o1, az) (3.3)

The last two equations come from the boundary condition at x = £. The method
fails if no values of A can be found from Eq. (3.3).

The key steps in the above scheme are the selection of a specific group
of transformations and the requirement that the given differential equation be
invariant under this group of transformations. For a given differential equation,
the equation may not be invariant under a specific preassigned group of trans-
formations. This does not rule out that it will always so if other groups are
intrecduced. It is therefore clear that a method of searching for possible
groups under which the given differential equation be invariant is of great
importance. . To achieve this goal, the two steps mentioned above are reversed.
One starts by requiring that the given differential equation be invariant under
ar "infinitesimal transformation". The resulting equation is then used to
search for the possible groups of transformation which satisfy this requirement.
This necessitates a brief review of those concepts given in Reference 6 which
are related tc this method.

3.1 THE INFINITESIMAL CONTACT TRANSFORMATION*

3.1.1 Infinitesimal Transformation

Let the identical transformation be

ﬁ(X;Y)ao) = X
W(X)y)ao) =y (3.4)
then the transformation
X7 ¢(X)yyao+8‘€>

il

e (3 de? /2
el 5 (2, + 55 (B, - o9

*For detail, the reader isreferred to Reference 6.
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y = W(X:Y;ao+6t)

Vx,y,80) + <a o | 2! aa%>ao T (.6)

assuming ©&e 1s infinitesimal, neglecting higher crder terms of de¢ and using
the relation for the identical transformation, we put

]

i

X1 x * E(x,y) de

Vi y * n(xy) 8 (3.7)

3.1.2 Notation for the Infinitesimal Transformation

The employment of the infinitesimal transformation

X3 = x +§&8& and y; = y+7 de (3.8)

in conjunction with the function f(x,y) will be to transform f(x,y) into
f(x1,y1) which upon expanding in Taylor series, becomes

f(xl;Y1) = f(x+§8€; vyt ﬂ5€)
Se af of
= f o — —_— —_
(%,7) T (€ >y
8e® 2 O°f 3f 5 O°F
+  — —s + 2t —— + —s
o (T SE et T 5E )
S
>l  pn Ff  n n-1 ¢t
e ml Gl B I S T pen RS
n‘o i ax ay
mmmmmmmmmmm n én_f)
Ayn
= fx,y) + 18_6 Uf + -Zi— UBE + —mmmommee (3.9)

where



o
dy (3.10)

is called the group representation and P f means repeating the operator U for
n times.

%3.1.3. Invariant Function

If £f(x1,y1) = £(X,y), then f is invariant under the infintesimal trans-
formation.

Theorem. The necesary and sufficient condition that f(x,y) be invariant under
the group represented by Uf is Uf = Q03 i.e.,

x . o
Ex Py - O (3.11)

To solve for the invariant function, we solve the related differential
equation

dx dy
T T (3.12)
If the solution is
Q(x,y) = constant (3.13)

this function is the invariant function for the infintesimal transformation
represented by Uf. Since Eq. (3.12) has only one independent solution depend-
ing on a simple arbitrary constant, a one-parameter group in two variables has
one and only one independent invariant.

3,1.4., Extension to n variable

The condition for f(xl,...,xn) to be invariant under an infinitesimal
transformation is

of
uf = §1(Xl,...,xn) &;"‘ --------

mmm= + En(X1,.0.,%p) = 0 (3.14)
n

To get invariant functions, we solve
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3 T (3.15)

Since there exist (n-1l) independent solutions, a one-parameter group in n
variables has (n-1) indpendent invariants.

3,1.5 Invariance of an Ordinary Differential Equation

Consider a kth-order ordinary differential equation

F(X: Y, v's ¥, °“°)y(k)) = 0 (5'16)

This equation is invariant under the infitesimal transformation defined by

X = x +58&(x, 5, v")

y = y+8en(x v, y')

y' = y' +0%e m (X) Y Y')

~lk )

y( ) - y(k‘) + B¢ T[k (X, Y, ¥V o ooﬁ;y(k)) (5’17)

UF = O (3.18a)
or, in expanded form,
OF OF OF OF
& o o . = (
3 = + 1 S + 7 o + + ay(k) 0 (3,18b)

For a given group of transformation, the functions &, n, 71,..., T are
known. Equation (3.18) gives the condition which the given differential
equation, Eq. (3.16), must satisfy if it can be transformed to an initial value
problem. However, if the group of transformation is not given, Eg. (3.18) alone
will not be enough to search for possible groups. At this point, the theories
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developed in Reference 6 on the concept of an infinitesimal contact trans-
formation must be introduced which will ultimately makes it possible to express
these functions in terms of the so-called '"characteristic function".

3,1.6 Definition of a Contact Transformation*

When Z, N1, Xo) 05X, Pl,,,a,Pn are 2n+l independent functions of the

2n+l independent quantities zj;, Xi,.e+; Xy, P1je.., D, such that the relation

dZ - Py dX; = p(dz - pydxy) (%.19)

(where p does not vanish) is identically satisfied, then the transformation
defined by the equations

z' = Z,x' = X, p' = P (3.20)

is called a contact transformation.

3,1.7. Infinitesimal Contact Transformation

From Eq. (3.19),

%% dz + %%; dxg %&_ dpi
- Pl(g-}-z(-:‘:d +%dxr +%dpr)
= pldz - py dx;) (5.21)
For the infinitesimal transformation
Z = z +Bek; Xy = x; +8e by, Py = pj *Oem (3.22)

we get

*S. Lie, Math. Ann., t. viii, p. 220
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3 Py, T ¢
2l G L R
Py Pi 85;

el 3y

>, " PiE, e T P (5.23)

If a characteristic function, W, is defined as W = psé; - £, then

- SRS T
T e LT RS T
- 1 H
T X,  Tr (3.24)

Higher order tg&psformation functions, Ti3s ik etc., can also be ex-
pressed in terms of W. However, due to the complexity in their derivation,
they will not be included here. For detall the reader is refered to Reference
6. However, a special case with one independent and cne dependent variable
will be given here since it will be needed in the next section. For this case,
we consider an infinitesimal transformation

x' = x + (%¢) &(x, y, D)

y' = y * (8¢) 0(x, y, p)

p' = pt (8¢) n(x, v, p)

Q' = a+* (8¢) k(x, ¥, p, Q)

r' = r+ (8¢) olx, v, Q@ T) (3.25)

where p = dy/dx, q = d®y/dx® and r = d%/dx>. The transformation functions can
be expressed in terms of a characteristic function W as™:

g - ap
@ = 7P %g - W
- = XW
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> d, =
-k = (X2 + 2¢X 3 +q 855 a SE) W
>F >3 > =
- 3 2 9 2, O 30 _ °_ 2
5% , + 0=
*r(3a 5zt 'gg - O (3.26)

where the operator X = d/dx + p 9/dy.

3.2 THE GENERAL METHOD

With the background discussed in Sections 3.0 and 3.1 in mind, the second-
order ordinary differential equaticn is again used to illustrate the steps for
the transformation from a boundary value to an initial value problem and the
search of possible groups to achieve the transformation.

Consider again Eq. (3.1), the method proceeds as follows:

ii.

iidi.

An infitesimal transformation is defined, as in Eq. (%.25) except
the transformation for r 1s not needed here. The given differential
equation, Eq. (3.1), is required to be invariant under this group

of transformation, i.e., it must satisfy Eq. (3.18).

The transformation functions can be expressed as a function of the
characteristic function, W, as given in Eq. (3.26) 'Eq (3 18)

now becomes an equation with an unknown function W. The functional
form of W can be predicted.

After W is known, the transformation functions become known functions
and the finite form of the transformation can be derived by Eq. (3.9).

Twe examples will be given in the next section.
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4, APPLICATION OF THE GENERAL GROUP—THEORETIC METHOD

In this section, the general theories given in section 3 will be applied
to two examples, namely, the Falkner-Skan problem and the heat conduction
equation with non-linear heat generation. These examples serve only as illustra-
tions of the method.

4,1 APPLICATION TO FALKNER-SKAN SOLUTIONS
Consider the well-known Falkner-Skan differential equation from boundary
layer theoryl:

"+ PP+ (1 - £'8) = 0 (4.1)

The boundary conditions are

We now use the notations
p = f', q = ", r = f" (4.2)
then Eq. (4.1) and its boundary conditions become
r+fq+p(l-p°) =0 (4.3)

with boundary conditions

6

Next, an infinitesimal transformation is defined as

n+ (8¢) E(Tl,sfyp)

3
]

H)
i

£ + (8¢) 6(n,f,p)
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p' = pt (85) T[(T]: f, p)
Q' = q+ (3€) k(n, £, p, q)
r' = r t (8€) Q(T]; f, p, q, I‘) ()‘“)‘l')

where, in termg of the characteristic function, W,

o
g_ ap
_F
e = 7 3 - W
-t = X W
) > )
-k = (X2+2qX§§+q2$ q'é-f-)/v
) > d° ) 5 % .-
_ (43 2 9 2, 9 39, 9 2
-0 = (X¥+30X 3 TIU XSGR E TNyt 3 5fap)w
v &L O
tr(dq m X S (4.5)
The operator X in Eq. (4.5) is defined as
d o)
X = B_T]+p—a? (4.6)

According to the theory discussion in the previous article, the condition
imposed on the differential equation is that it is independent of the parameter
of transformation, e, under the transformation defined by Eq. (k4.k4), i.e.,

3F

~ - 0 L.7)

where F represents the differential equation, (L4.3). Equation (4.'f) can be
written in its expanded form as
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OF , L OF  OF OF OF

E Sﬁ 2 X 3 + k 55 +p N - 0 (L.8)
Replacing F by the left side of (M.B) gives:
Q0 - 2ppt + £k +p = O (L.9)

The functions ©, n, k, and p, given by Egs. (L4.5), are substituted into Eq.
(4.9) and we get

Ag t Ay g+ Ay q®+A3q% = 0 (4.10)

where the variable r in the function p, Eq. (L.5), was eliminated by using
the differential equation, (4.3), and the A's are given by

_ T
Ag = 2BpXW - £X7W - X%W + (1 - p®) (3 3 Sf)w (k.11a)
W = W ;W Rl >
Ay = p 3 " W - 3XZ %5 - X p X > + 3p(1-p%) 302 (4.11v)
S -
Bo = 20y - X 5@ -3 dfJp (k.11c)
%
Ay = 553 (Lk.114)

Since the characteristic function, W, is independent of g, Eg. (4.10) is
satisfied if the coefficients are all equal to zero identically. Thus

Ap = A = Ap = Az = O (ho12]
The equation Az = 0 gives
3% \

555 = 0 (h.lﬁ,

which means W is quadratic with p, i.e.,
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W(n,£,9) = Wn,£)p2 + Wy (n,£)p + Wa(n, £) (h.1k)

This form of W can now be substituted intc the equation A, = 0, Eq. (=.12),
and the result is

M-

oMy éEg) -12p afL = 0 (4.15)

o 0ot

(LW, - 6

Since both W, and Wo are independent of p, Eq. (4.15) leads to

pO: g%l = 0 (4.16)
1 = oMy, Iy _
D L W, - 6 3 3 = 0 (4o17)

Eq. (L.16) shows that W, is independent of f, i.e., Wy = Wi(n). Thus, Wo
can be round from Eq. (L4.17) as

J—

Wa(n, £) = 3 (2f%W - 6 Wi'f + C1(n)) (4.18)

N

"

The characteristic functiom, W, now takes the form
7 T (n)p® + HoeZ () - G (m)E  Cu()Tp ¢ Falr£) (k
Win, £50) = Wiln)p™ + 32050 (n) - W' ()f + Ca(n)Ip + Wa(n, £)  (4.19)

This new form of W is now substituted into the conditicn A; = 0 which
than gives

By + By p + Bap® = O (4.20)
where

— _ 2w _ f —

By = -Wg - I S A L %—%? + % £+ 3 C1' - 6801
L (L4.21a)

: = , =W ,

B, = (6 -88)W' +6W," - 3 5553 4.21b)
B, = -3W; (1 + 2B) (4.2lc)

53



Since both W; and Ws are independent of p, Eq. (4.21) gives

Bp = B = By = 0 (Lk.22a)
or,
Wy - BFFWL "+ GWL'F - Cy" - 3 % + %— %+ %cl' - 680, = O
(4.22p)
(6-8F)W, " + 60" - 3 %f;a = 0 (L.22¢)
W (1 +28) = 0 (4.224)
Thus, from Eq. (4.22d),
W o= O (L.23)
From Eq. (4.22¢),
—g}g—zﬁ = 0 (h.2k)
which gives
Wa(n,£) = Wai(n) + Was(n)? (4.25)
BEq. (4.22b), then becomes
“War - Waof - C1" - 3Wge' + %Cl' = C (4.26)
which gives
Wap - C1" - W' = O (h.27a)
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-ng + C_%" = 0 ()-szrrb)

since ng, ng and C are functions of 1 alone.
Egs. (4.27a) and (L.27b) give
Way = =-2C," (4.28a)

Waz

1

3 Cl' (M.EBb)
Thus, the characteristic functicn, W, becomes

i

W, £p) = 3 Ca(n)p + 5 Ci'f- 201" (k.29)

Finally, the characteristic function, W, is substituted into the last

condition in Eq. (4.12), namely AO = 0, which leads to the following equation:
Do + Dif + Dop + Daf? + Dy, £ p = O (4.30)
where
Iy
Dy = 2c, (V) + 3 C1'B
>
D, = g Cl(lv)
I
.D2 - _,)_LBC_L "y g Clnt
1
DS = - _3 Cl "t
2 "
Dy = (58 -1)C (4.31)

Since C; is a function of 1 only, Eq. (L4.30) gives

Do = Dy = Dy = Dg = Dy = O (k.32)
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If B # 0, then Eq. (L.31) shows that C; must be a constant which then leads to
the result that

= 1
W(n, £,p) = 3 Cip (k.33)

"

For the case in which B =0, C;" is zero, i.e.,

Ci(n) = Ciin + Ciz (L.3k)

The characteristic functilon becomes

— \ 1 \ 1
W(n,£,p) = 3(Cian + Cig)p + % C1af (4.35)

As a last step, the finite form of the infinitesimal transformation must
be sought. This can be done by using the equation

Bin,ta) = plne) v 22 182

where

Consider first the case in which B # O with the characteristic function
given in Eq. (4.33). For this case, using Eq. (4.5), the operator U is

L

u = 5 Cl_a;

By taking ¢ to be n and f respectively, we get:
1
Mz = n+3Cy de

£, = f (4.37)
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Although this group exists under which Eq. (4.1) is invariant, we will not be
able to trarfsform the boundary conditions. Thus, the problem cannot be trans-
formed to an initial value problem, unless B = O,

For the special case in which B = O, the characteristic function is given
by Eq. (L4.35) which gives *he operator U as

1 3 1
U = 3(Cuan + Ciz) - - 3 Cuf (4.38)

Again, by putting into Eq. (L4.36) ¢ = 1 and ¢ = £, respectively, we get

oe 1 012 6€2 1 o Clz
= + == . + + — (=C + =£=) 4 oo
N1 n 113 11(ﬂ Cll) 51 (j 11) ( 011)
or,
012 C12 e 1 662 1 2
+ —==) = + =22V + — = 4 mmmmmeo
(ﬂl 011) (n Cll)[ 113 ~11 51 (5 11) ]
1
C ——Cl;|_6€
= (D) e (4.39)
11
and
o} 1 O¢ 1
f = £+ ”% (- 3 Ci1)f + — (- 3 C11)F + memmm-
66 11 562 Cll )
= f[] - — 2L 4 b ommm———
-2 () ]
LCa1 g
= re 3 °F (4.%0)
Oe¢ ‘ .
If we put A = e , Egs. (4.39) and (L.40) give
1
Cip C =C
(T]l + L ) = (T] + ——12) A3 11 (J-F.J—Pla)
Cia C1i1
Caa
f, = £ A 3 (L4.41b)

This is seen to be the linear group of transformation. For the present case
in which the initial condition is given at zero, Cio = O.



To finish the analysis, we can follow exactly the same steps as given
between Egs. (2.7) and (2.1L4).

4,2 APPLICATION TO THE HEAT CONDUCTION EQUATION WITH NONLINEAR HEAT GENERATION

We now consider the heat conduction equation with nonlinear heat generation
as follows:

2

d_X2

Q.
=

¥ l—‘;—l s = o (4.42)

The boundary conditions are

The value of k can be -1, O or 1 which correpsonds to plate, cylinder or sphere
cases, respectively.

If the following notations are defined:

p=§§, ng;-g (4.43)
Equation (L4.L2) then becomes

a+ S p (1) = 0 (4. 1)
with the boundary conditions

p(0) = 0 , T(1) = T,

It is the purpose of this example to find the function f(T) which enables
the problem to be transformed to an initial value problem.

Again, an infitesimal transformation is defined as

x + (66) g(X;T)P)

H
1l

T + (%¢) 6(x,T,p)
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p + (8¢) n(x,T,p)

Lol
It

Q' = g + (%¢) A(x,T,p,q) (4. 15)

where, in terms of the characteristic function, W,

_ W
g - ap
_F -
e = 7 5 - W
-t = XW
d > d .\
_,;5 = (X2 + 29X -8—5 + q2 855 +q E)W ()-l-.)—l-6)

The operator X in Eq. (4.L46) is defined as:
X = <= +p~; (L.L7)

Next, the condition that the differential equation under investigation be
independent of the parameter of transformation (i.e., invariant under the trans-
formation) is introduced. Under the infinitesimal transformation defined in

Eq. (L.b45),

oF

X 0 (L.48)

where F represents the left side of the differential equation defined by
Eq. (L.4L). Or, in expanded form,

OF oF oF OF
55;(—+@5—T—+nap+¢———o (4. 49)

Substituting the differential equation, Eq. (L.4L4), into condition (k.L9),
we get

(q+f)e + xf'0 + (k+l)n + x§ = O (L.50)

The functions €, O, =, and é are now substituted into Eq. (L4.50) and we get
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M = W W

((f+xf'p) 3 " X - (k+1) (a P aT)
d%W W a W
- x(E 2 Y o)
M X W eI W
Falep Sy PPy X T B %{F} R

The variable g can now be eliminated by using Eq. (L.Lkh) which gives

W W . W T - OW
{=xf'W - (k+1) P - 2xf - xf i f ——apg}
RS - (N o RR: i . W Sl
+p{(xf' - == 3 xSt 2(k+1) e 2xf S 2f (k+1) 555}
i P (6+1)2 57|
2 on ,
+p {ax 2 2(k+1) ST " apj 0 (4.52)

For point transforma’ion* under consideration, the characteristic function,
W, is linear in p, i.e.,

W(x,T,p) = W (x,T) +p Wa(x,T) (4.5%)

Substituting W from Eq. (L.53) into Egq. (4.52), we ge®

ay t a1 Pt app” tazp’ = 0 (ke 5h)
where
i} e W, M . My W,
8y = mxfwlw(kﬂ)-&;—mxaxz +2xfax +xf-§§-—
B Ly o %W 2 My %W kL
ar = (kL) 95 - x T v D T - 2 e - T e
_ %W 5 W, . .y My
82 T " ST 2t
- SR
83 = =X BTg (h’55)

*A point transformation is one whose transformation functicns and ©
2 )
in Eq. (L.L5) is independert of p.
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Since the a's are functions of x and T only, it follows that

ag = 81 = az = ag = O (L.56)
The condition as = O gives
Wy
¥z = O (4.57)

which implies that Wy is linear in T, i.e.,

Wolx,T) = Wop(x) + Wop(x)T (4.58)

Substituting this form of W, into the condition as = 0, we get

= ! BZY/_Jl =
-2XW22 - X a?— + 2(k+1)W22 = 0 ()'"' 59)

Integration of Eq. (L4.59) with respect to T yields

— —_ k+1—

Wy = (-Wpp + “i"wzz)Tz + Wi T + Wio (4.60)

With Wy and W. given by Eqs. (4.60) and (4.58), the condition a; = O
leads to the following equation:

—! =n = k+1l-
5XfW22 + {(k"'l)ng ~ X Wop - 2xXWy1 = Twzl}

+ 3T{xW5s - (k+l)Wé2 + ik%ll Woz} = O (k.61)

Equation (L4.61) shows that f must be a linear function of T which is impossible
under the assumption made at the outset that f is a nonlinear function. The
only possibility remaining is

ng = 0 (Ll-- 62)

With this, Eq. (4.61) is reduced to:
L1



(Lot - x T - 5 Way - 20 = O (1.63)
Finally, the condition ag = O gives
t u'Wi;TbS'W 2 P Wjig i %fz (4.64)
where
bo = 2Wh + Wi (4.65)
by = *(5§£ Wiy o+ W) (L.66)
by = “(—}1} Wﬁe + sz) (”-67)

Equation (4.63) and (4.6L4) cen now be used to determine the functional
forms of £(T) for which Eq. (L4.42) can be reduced “o an initial value problem.
We now consider the following case:

Case 1 Wi #0, bg # O

Using an integrating fachor
ix - =bp/W:
efp< = (WyiT + Wio) o/ ll, (L.68)

{he solution to Eg. (L4.64) can be written as

- - bo/T ot . -bo/Wiy
£ o= (W T+, o) o7 i “J-ﬁ;' (Wy; THW, ) dT
Wi oy — =(bg/Wy, +1)
_ Boe l~4v2 W 1 T+W- /) Wil ar + ¢
f( 2 Wll)(-.i 2) 1 ()-#.69)

For the case in which bg/Wy . does not equal Lo unity, Eq. (4.69) gives

bo by (Wi otboT — W-
- ___(.:__;_‘_Qil + 0y (Wqy T, o) PO/ M2 (4.70)
5o bolWii-bg)

4
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Recalling that the heat generation function, f, is defined as a function
of T only, the Coefficients must be independent of x, i.e., constants. Thus,
we put

bo by W;o -
—= = C , = Cq , W = C
b 2 bo(Wey - bg) 3 11 4 >
- b0
Wiz = Cs, W"l = Cg (h.71)

The conditions Wyi = C, and Wis = Cs indicate that b; = bs = 0, based on
Egs. (L4.66) and (L.67). This in turn means Co = C5 = 0. The last condition
gives by = Cg C4. From Eq. (4.65), we geh

Ce Ca = 2Wh + Cyu

Thus,

War = géig%;;l x + C7 (k.72)

Substituting Wo; from Eq. (L4.72) into the condition given by Eq. (L4.63),
we get C7 = 0. As a summary, the following functions are obtained:

bg = CsCs b1 = b2 = O, Wy = C4
— — Cy(Cq-1) = ,
Wis = Cs, Wor = "é”gg“_'x y Woo = O (4.73)
Thus, the heat generation function f(T), takes the form
Cs
£(T) = C1(C4T + Cs) (L.7h)
and the characteristic function becomes
= C4(Cg-1)
w(xfT:p) = (C4T + CS) tp [_h—E__—_ X] (u~75>

The transformation functions, £ and O, in Eq. (L4.L45) become
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W Cu(Cg=1)

E = » - 2 % (L.76)
W
e = p 85 - W = - (C4T + Cg) (4.77)

The infinitesimal transformation, Eg. (L4.45), can thus be represented by
(see Reference 6)

.. CalCe~1) of df
Uuf = oy (C4T + Cs) = (L.78)

Ag a final step, the finite form of the ilnfinitesimal transformation,
(4.L5), is sought, This can be done by using “he equation (cf. Reference 6,

Do Lh-L6):

) . 2
O¢ Uf + (8¢)=
1: 2!

f(x1,y1) = flx,y) + i (4.79)

By putting f = x, Eq. (4.79) becomes

- \2
o 8¢ CalCerl) | (36)

1. 2 2! [ 2

1

X1

1 C4(Cg-1)8¢ L1 C,2(Ca~1)3(8e)® + =-mn- ]
1! 2 2! 2

x[1 +

or,

C4(Ce-1)/2 (14.80)

where A = exp(®e). By pubting f = T, Eq. (4.79) gives

de (8e)® -
T = T+o7 [-(C4T+C5) ] + 77— [-(C4T+C5) ](-Cy) + -----
\ 2
7 4 0€l-Cs] (7 + S5+ [aeguc4)] (7 + 55y 4 .
_L: C4 P 04

or,

Ll



2 2

o+ S o (paCyy o Be)C) | (Be)P(cy)®

Cyq Cy 1. 2.
or,

C C

T, + == = (T +=2) exp{-C0e} = (T + C—S) p Ce (L.81)
Ca Cq Cq

Thus, the finite ftransformation is given by
Cya(Cs-1)/2 C Cgy,-C
x; = x A +(Ce-1)/ , + 2= = (T +=2)a 7% (4.82)
2 . 04 C4

This 1s seen to be linear group of transformation discussed in Section 2.1
for the case of a power law heat generation.

Consider next the case in which the ratio bO/Wll = 1. The solution to
f in Eq. (L4.69) than becomes

— - b — W —
£ o= (Wi T+W, o) ﬁ%{ In(Wy1 T+, 5) + (bz-bl-ﬁif) + € (W1 THW15) (L4.83)

Again, since the heat generation function, f, 1s only a function of the
temperature T, the coefficients must all be constants, i.e.,

W13 = Cs, by = Csg, Wio = Cs4, by = Cs, (L.8L)

The conditions Wi; = Cs and Wio = C4 indicate that b; = bs = 0, based
on Eqs. (4.66) and (L4.67), which in turn means Cg = Cg = 0. Eq. (L.65) now
gives

so, we can write Wo; = Cg. Substitutinglﬁgl = Cg Iinto the last condition,
Eq. (4.63), we conclude that Cg = O. The heat generation function is thus:

£ o= Cq(CoT+Cy,) (L.85)

and the characteristic function become

45



Wr = C2T + C4 (hn86)

By following the same steps as before, the finite transformation is found
to be

5 = - (4.87)

This case is a special case of "power-law heat generation"” discussed above for
a power of unity. I% is %o be ncted that the same form of W can be obtained
by putting Cg equal to 1 in Eq. (L.82).

Case 2 bo = 0

For this case, integration of Eq. (4.69) gives

b b = —
f = = _l T - .'_."2_' zn(WllT + w;2) + Cl (LI"88)
Wi Wii

Again, the coefficients in (L4.88) should be constants, i.e.,

by = Co, by = Caz, W3 = Cq, W = Cs

The conditions Wy; = C4 and Wy, = Cs again lead to Co = Cg = 0 (or
by = bo = 0). Equation (L.65) gives

oWy +C4 = O
and thus
— C
Wor = = 3% * Cg

The condition, (L4.63), then gives Cg = 0. The heat generation function and
the characteristic function are therefcore as follows:

f = Cl (h.89)
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W = C,T + Cg + p[-%‘—*x] (4.90)

This is seen to be a special case of case 1, and can be obtained by putting
Ceg = 1 into Egs. (L.74) and (L4.75).

Case 3 Wiy = O

The differential equation for f becomes
f' - Cof = Cg (k.91)

in conformity with the requirement that f be independent of x. The constants,
Co and Cg, are

o’
(@]

= Cp and ==— = (g4 (4.92)

=]
|
(V]
=
V]

From Egs. (L4.65) and (L.67), Eq. (4.92) can be written as
Collio = 2Wzp (4.93)
and
CaWin = - L Wio - Wiz (L.9k)
Also, from condition (L4.63), ancther relation is obtained as:
(1)h - WHh - SE Ty = 0 (1.95)
Eq. (L4.95) now gives
k+1

WEl = C4X. + CSX ()4'96)

Substitution of ng into Eq. (L4.93) yields, after integration, the solution
of Wit
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— 2(k+1)C 2C
Wis = -iazrl—i xK + 6;5 (4.97)

Finally, Wy» from Eq. (4.97) is substituted into Eq. (L4.94) and we get

2

Cs C4(k+l}Xk + 2k(k+l)C4XK_ +C3Cs = 0 (4.98)

To satisfy this condition, six possibilities exist, namely,

l. k=0
la: C5 = O
1b: Cu(k+l) + Cs = 0
2. k = -1
2a; C3 = O
2b: Cs = O
3, k #0, k # =1
3a: Cg = 0, Cyu = O
3b: Cs = 0, C4 = O

Using the same technique as before, the final form of the heat generation
function f, the characteristic function, W, and the finite transformation are
found to be as follows:

1. k=0
la: CS:'O
CoT
f = Cge® (4.99)
— Cc,*C
W o= 2 g 2 + p(C4+Cs)x (4.100)
2
C4*Cs)de
X, = xe( 47Cs)2e and Ty = T = éi(C4+C5)8€ (L.101)
2
b, C4 +Cs = O
C CoT
f:m—:-i*C@eg
Ca
W = 0, which means only the iden%ical transformation will
be applicable transformation.
20 k‘::‘l
Pa: Cs = O
Ir. A
f = Cg &2 (4,102)
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C
W o= 2 55 + p(Cy + Csx) (4.103)
2
. C Cay Csd C
(xp +=%) = (x+=%) e andm, = T -85 (4.104)
C5 CS C2
C CT
2b: £ =-=2+Cge’® (4.105)
Co
W = Cyup (k.106)
X3 =X +Cs0e, Ty = T | (4.107)
3.k #0, k# -1
C3 = O, C4 = 0
CoT
f=0Cge’® (4.108)
Cs
W = 2=+ p(Csx) (L.109)
Co
Csde¢ C
x; = xe o ¢ , . o= T -2 =2 5¢ (4.110)
Ca
3, C5 =0, Cu = 0

Again, the result is the identical transformation, as in case lb.

Details from this point on and the limitations to the method are the same
as in Section 2. They will not be repeated here.

4,3 CONCLUDING REMARKS

The method developed in this section is seen to be very general and, like
the simple group-theoretic method, only algebraic equations need to be solved.
The general method is, however, considerably longer than the simple group-
theoretic method. For a given ordinary differential equation, therefore, it
is prefered to try the simple group-theoretic method first. If this method
fails, the general method is then applied and the possible group of trans-
formations searched. For certain problems, e.g., the example given in Section
Lh.2, only the general method can provide the answer. In case both methods
fail, we can conclude that the problem cannot be transformed to an initial
value problem.
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