THE UNIVERSITY OF MICHIGANTN

DEARBORN CAMPUS
Division of Engineering
Thermal Engineering Laboratory

Technical Report

GENERAL GROUP—THEORETIC TRANSFORMATIONS FROM NONLINEAR
TO LINEAR DIFFERENTIAL EQUATIONS

Tsung-Yen Na
Arthur G. Hansen

ORA Project 07457

under contract with:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
GEORGE C. MARSHALL SPACE FLIGHT CENTER
CONTRACT NO. NAS 8-20065
HUNTSVILLE, ALABAMA

administered through:
OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

April 1969






FOREWORD

Tsung-Yen Na is Aeseetete Professor of Mechanical Engineering, The Uni-
versity of Michigan, Dearborn Campus, Dearborn, Michigan.

Arthur G. Hansen is

Menber—georgtr.  Pres.dent, Pmdu Un'v

iii



TABLE OF CONTENTS

Page
ABSTRACT v
1. INTRODUCTION 1
2. REVIEW OF THE CONCEPT OF INFINITESIMAL CONTACT TRANSFORMATION

GROUPS AND THE GENERAL METHOD 3
2.1. The Infinitesimal Contact Transformations 3
2.1.1. Infinitesimal transformation 3

2.1.2, DNotation for the infinitesimal transformation L

2.1.3., Invariant function 5

2.1.4, Extension to n variables 5

2.1.5. Invariance of an ordinary differential equation 6

2.1.6. Definition of a contact transformation [5] 8

2,1.7. Infinitesimal contact transformation 9

2.2. The General Method 10

%, APPLICATIONS OF THE GENERAL GROUP-THEORETIC METHCD 13
3.1, First-Order Differential Equations 13
3.2. Seccnd-0Order Differential Equations 26
3.3, Higher-Order Differential Equations 32
3.4, Concluding Remarks 33
REFERENCES 35

iv



ABSTRACT

A systematic method using S. Lie's continuous contact transformation groups
is developed in this report which enables one to derive the class of transfor-
mations from nonlinear to linear differential equations. Examples are worked
out in detail as illustrations of the procedure.






1. INTRODUCTION

The present report treats an important class of transformations, namely,
the transformation from nonlinear to linear differential equations. A general
method based on Lie's concept of infinitesimal contact transformation is de-
veloped. This transformation can be derived by a simple procedure involving
mostly algebraic manipulations.

This report is one of a series exploring possible applications of continu-
ous transformation groups to solving differential equations. The first re-
port [8] in the series treats the class of transformation which reduces the
number of variables in a partial differential equation by one (i.e., the
similarity transformation). In the second report [9], the concept is applied
to transform boundary value into initial value problems. The classes of trans-
formations discussed (seeminly unrelated) have been shown to be based essen-
tially on the same concept.

There are many transformations in the literature which will transform a
certain nonlinear equation to its equivalent linear form. Table 1 gives a few
examples of such transformations. Certain transformations have the property
of raising the order of an equation [1,10], or transforming the given equation
to a new equation of the same order [1-3,12]. Transformation can also be
classified according to whether the independent variable is transformed (the
dependent variable is always transformed). Some transformations reduce one
non-linear equation to another which has known solutions, or known to be re-
ducible to linear form [7]. Special equations may be linearized by more than
one form of transformation proposed. A good example is the Riccati equation
[10-13].

In general, there is no systematic method of transforming equations to a
linear form. It is therefore of great interest if such a method can be de-
veloped in which a step-by-step procedure can be followed and the proper trans-
formation derived. Such a method i1s developed in this report.
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2. REVIEW OF THE CONCEPT OF INFINITESIMAL CONTACT
TRANSFORMATION GROUPS AND THE GENERAL METHOD

In this section, a brief review of the concept of the infinitesimal con-
tact transformation group will be presented. Only those concepts closely re-
lated to the present problem will be given here. A detalled treatment may be
found in Ref. 8. It will be shown at the end of this section how these con-
cepts can be applied to the class of transformations from nonlinear to linear
equations.

2.1. THE INFINITESIMAL CONTACT TRANSFORMATIONS

2.1.1., Infinitesimal Transformation

Let the transformation be

¢(X;Yyao) =X
(2.1)
IV(X;Y;aO) =Y
Let the infinitesimal transformation be defined as
X = ¢(X;Y)ao + 6€)
Se, O 8e)2 XFo
= o(xy,a ) + (%), +§'—2_:L(ag)o+... (2.2)
v1 = W(xy,8 + Be)
(8e)®, Fy
+ W(X:Y;ao) ( ) Y (Egg)ao + ... (2.3)

Since de¢ is infinitesimal, higher-order terms of e can be neglected in Egs.
(2.2) and (2.3). Also, using the definition of the identity transformation,
Egs. (2.2) and (2.3) become:



i

xp = x + g(x,y)0¢

(2.4)

yi =y + n(x,y)de

2.1.2. Notation for the Infinitesimal Transformation

The employment of the infinitesimal transformation
X;] =X + Ede and y; =y + nde

in conjunction with the function f(x,y) will be to transform f(x,y) into
f(%1,y1) which, upon expanding in Taylor series, becomes

Al

S of of
t(xy) *3(e 5+ 0 %)

1l

(66")2/

(¢ Fr r 2 Sf
2!

ax2+2e-n'a;a;+n ayz)

+

= £(x,7) +-§—f- Uf + U + ... (2.6)

where

Uf:g—&+n% (2.7)

n .
is called the group representation and U f means repeating the operator U for
n times.



2.1.3. Invariant Function

If f(x1,y1) = f(x,y), then f is invariant under the infinitesimal trans-
formation.

Theorem. The necessary and sufficient condition that f(x,y) be invariant
under the group represented by Uf is Uf = 03 i.e.,

of of
Ex Ty "0 (2.8)

To solve for the invariant function, we solve the related differential
equation

dx d
- :._3{ (2.9)
3 n
If the solution is
O(x,y) = constant (2.10)

then this function is the invariant function for the infinitesimal transforma-
tion represented by Uf. Since Eq. (2.9) has only one independent solution de-
pending on a simple arbitrary constant, a one-parameter group in two variables
has one and only one independent invariant.
2.1.4, Extension to n Variables

The condition for f(xi,...,X,) to be invariant under an infinitesimal

transformation is

Uf = El(Xl,...,X ) ~ +t ...

n axl
of
ceo + . ~— =0 2.11
£ (xyeen0x ) S (2.12)
n
To get the invariant functions, we solve

axy
£1

dx
L —= (2.12)
2 6



Since there exists (n - 1) independent solutions, a one-parameter group in n
variables has (n - 1) independent invariants.

2.1.5. Invariance of an Ordinary Differential Equation

Consider a kth-order ordinary differential equation

(),

F(%,7,7' 55 e eesy =0 (2.13)

The equation is invariant under the infinitesimal transformation defined by

x = x + (8¢) &(x,y,y")

y =y + (3¢) n(x,y,y")
y' o=y o+ (8e) m(xy,y") (2.1k)
gf(k) = ',Y( ) + (SE) ﬂk(xyy)y')'”?y(k))

if the following condition is satisfied:

UF =0 (2.152)
or, in expanded form,
oF oF oF F
§&+n—5§+ﬂl‘8;+ oo tomy <k) =0 (2a15b)
=g

If Eq. (2.13) is invariant under the group of transformations defined in
Eq. (2.14), then Eq. (2.13) can be expressed in terms of the (k - 1) func-
tionally independent invariants of the transformation which can be found as so-
lutions of the system of equations [8,91:

x _ 4y i (2.16)
e




For example, if a second-order differential equation

F(x,y,y',y") =0 (2.17)

is invariant under the group of transformation represented by

o )
U= g'g; + Eg + m %;T + nz'%;; (2.18)

where

E = -y
n=x

2.19
m = l + y'2 ( )
e = 3y'y"

then it can be expressed in terms of the three functionally independent solu-
tions of the system of equations

ax _a dy' ay"
—Z_X': - 2 = yn (220)
-y x 1l+y' 3y'y
The three independent solutions of Eq. (2.20) are
38 =y
y - xy'
— = 2,
x +yyr 2 ( 21)
yn2
(1 + yvﬁjﬁ = Cs

Based on the theory, Eq. (2.17) can be expressed in terms of these three in-
variants, i.e., if we designate

m o= %% +y°
- y - xy' o oo
N2 x + yy« ( . )
n2
Na _(l+y'2)3



Then, Eg. (2.17) can be transformed to

E(N1,n2,M3) = O (2.23)

The concepts described will serve as a basis for the method developed in
this report.

For a given group of transformations, the functions §,n,ﬂl,...,ﬂk are known,
Equation (2.15) gives the condition which the given differential equation, Eq.
(2.13), must satisfy if it is to be invariant under the given transformation
group. For example, in the illustraticn just presented, the invariants, Eg.
(2.22), are fixed if the group of transformations is given, as in Egs. (2.18)
and (2.19). Then the condition (2.15) will serve only as a test as to whether
a given equation, Eq. (2.17), can actually be transformed to (2.23). However,
if the transformation is not given, Eg. (2.15) alone will not be enough to
search for possible groups under which a given differential equation will be
invariant. At this point, the theories developed in Ref. 8 on the concept of
an infinitesimal contact transformation must be introduced which will ultimately
make 1t possible to express these functions in terms of the so-called "charac-
teristic function."

2.1.6. Definition of a Contact Transformatisn [5]

[5]: When Z,X1,%2, 005Xy P1y...,P, are n + 1 independent functions of the
2n + 1 independent gquantities ZyX1y+.05%Xy P1y...3Dy sSuch that the relation

dz - P.dX, = p{dz - d 2.2k
LB, = o(dz - pax,) (2.24)

(where o does not vanisk) is identically satisfied, then the transformation de-
fined by the equations

z' =2, x' =X, p'=P (2.25)
is called a contact transformation.

For a detailed discussion on the mearing of this transformation, the
reader is referred to Refs. 5, 8, and 9.



2.1.7. Infinitesimal Contact Transformation

From Eq. (2.24),

x X X
o7 o7 X i i i
e Pt Mty By NSy vy W)
1 1 r r
= p(dz - p.dx,) (2.26)

For the infinitesimal transformation

Z =z + (de)t; Xi =x, ¥ (5e)gi; P, = D, * (6e)ni (2.27)
we get
Ok,
R
x Pixm T°
ok,
o i
apr D, apr =0 (2.28)

X Py E&; ~oP,

=

If a characteristic function is defined sas

I _ o I
E - ap b g - pl apl W 2
(2.29)

Y|«

r
o= - N -
ox Pr
r
Higher-order transformation functions, UFIFPI ST etc., can also be ex-
pressed in terms of W. However, due to the complexity in their derivation,
they will not be included here (see Ref. 8). However, a special case with one
independent and one dependent variable will be given here since it will be
needed later. For this case, we consider an infinitesimal transformation



x' =x + (8¢) £(xv,p)

y' =y + (8¢) o(x,¥,p)

p' =p + (8¢) n(x,y,p) (2.30)
Q' = q + (%€) k(x,y,p,9)

r' =r + (%) o(x,y,p,q,1)

where p = dy/dx, q = &°y/dx®, and r = @°y/dx®. The transformation functions
can be expressed in terms of a characteristic function W as [8,9]:

_ W
T
W
O=p—-W
P
-1 = XW

s & d

—k:(X2+2qX—25+q gp§+q§f—)w
5 ¥ S d ¥
oo = (%3 2 L 2y 3 0 x S 2 0
Y ( + 5q ap + 29 SP? tq @3 T Bq ay + 5q afap)w
+ r(3q —g—gp-g- + 5X—§;)w (2.31)
where
o d
X:&+pgy

2.2. THE GENERAL METHCD

Consider again the differential equation

Fl(X;YJy')"')y ) =0 (2-52)

and the infinitesimal transformation defined in Eq. (2.14). In this case,

10



the transformation is not given, i.e., &,n,m,..., M are not known functions of
the variables, and the problem is to seek possible groups of transformations
under which Eq. (2.3%2) is invariant.

To this end, we again employ the condition that Eq. (2.32) will be invariant
under any group of transformations if

Uf = 0 (2.33)

or, in its expanded form

aF oF F
£ E&L + n'E;L + 55% I

=0 (2.34)
ay(k)

Now, the expression for F; is substituted into Eq. (2.3L4) and also the
transformation functions, EyMy Ty oees Ty (which are expressible as functions of
a single unknown function, namely, the characteristic function W) as given in
Eq. (2.31), are replaced by the expressions given in Eq. (2.31). The resulting
equation will be an equation for the characteristic function W. Any solution
of W from this equation will satisfy the condition that the differential equa-
tion is invariant.

Once the characteristic function is determined, the transformation functions
can be determined from Eq. (2.31) and the invariants of this group can be found
from the solution of Eq. (2.16). The (k + 1) functionally independent solutions
of Eq. (2.16) will be the new variables, i.e., if the (k + 1) solutions to
Eq. (2.16) are

ui(X;Y;Y';~--;Y = Ci = constant

(i=1,...,k +1)

then the transformation is defined by

y(k))

T]i = ui(x,y,y', ceey

(i =1,...,k + 1)

Generally, there are three approaches to finding classes of transforma-
tions that will transform a nonlinear differential equation to linear equation.
We may start from a nonlinear differential equation and search for a particular

11



transformation which will reduce the equation to a linear form. A second ap-
proach is to start from a linear differential equation and search for all pos-
sible groups of transformations, each of which can be used to transform the
linear equation to a class of nonlinear equations. The answers thus obtained
will define classes of nonlinear equations reducible to the particular linear
equation. Finally a nonlinear equation may be reduced to another whose solu-
tion is known, or which can itself be reduced to a linear form. All three
cases will be considered in this report.

12



3. APPLICATIONS OF THE GENERAL GROUP-THEORETIC METHOD

In this section the general theories given in section 2 will be applied to
nonlinear ordinary differential equations of the first-second-, and third-orders
with variable coefficients. The transformations thus obtained will be compared
with available transformations in the literature.

5.1. FIRST-ORDER DIFFERENTTAIL EQUATIONS

There are very few ordinary nonlinear differential equations which can be
reduced to linear equations by special transformations. Among the few are the
equations of Bernoulli, Jacobs, and Riccati.

The Bernoulli's equation

y' +B(x)y = R(x)y (3-1)

provides a good example for the definition of a class of transformations from
nonlinear to linear differential equations, with the order of differentiation
remaining the same. The transformation discovered by Leibnitz [4] transforming
Eq. (3-1) to a linear form is:

2(x) = vy 5 (k#0, k#1) (3-2)

Under this transformation, Eq. (3-1) becomes
Z' +B(1 -k)Z = R(1 - k) (3-3)
which is a first-order linear differential equation.

The transformation defined in Eg. (3-2) is not the only one which can re-
duce the Bernoulli's equation to a linear form. Sugai, in a recent paper [10],
introduced the transformation

1/1-k
y = {}Eﬂ%;;_El (3-4)

which transforms Eq. (3-1) to a second-order linear ordinary differential equa-
tion

g" +[B<1 - x) + (R;ﬂg' = 0 (3-5)

13



This class of transformations in which linearization is achieved by raising the
order of the equation can be applied to nonlinear differential equations of
higher-orders.

Another example of this class of transformation is assoclated with the well-
known generalized Riccati's equation

y' + B(x)y +Q(x)y® = R(x) (3-6)

By introducing the Riccati transformation [10]

wilere Z = Z(x/, £q. (5-6/ becomes

Z”+[ - (%)JZ' -QRZ = O (3-8)

Most recently, Mason [7] introduced a new transformation which can be ap-
plied to a class of nonlinear first-order ordinary differential equations which
are reducible either to the Bernoulli's equation or the Riccati's equation.
Linearization is achieved by further transforming this equation to the first-

order linear ordinary differential equation using Eq. (3-2) or Eq. (3-7).

According to Mason [T], equations of the form

y'f(y) + B(x) [ f(y)dy = R(x) {f f(y)dy}k (3-9)

under the transformation defined by

x = X , = = f(y) (3-10)

Y+ B(X)Y = R(X)Yk (3-11)
If the transformation defined in Eq. (3-2) is introduced,
7 = v8 (3-12)
Eq. (3-11) is reduced to
Z' + B(X)Z = R(X) (3-13)

Combining the two transformations, we conclude that Eq. (3-9) is transformed to

1k



the linear equation, Eq. (3-13), by

x = X, 2 = (] fyay) " (3-14)

The other class of nonlinear equations treated by Mason [T7] is

y'f(y) + B(x) (/ f(y)dy} + @(x) {J £(y)dy}® = R(x) (3-15)

Under the transformation defined by Eq. (3%-10), Eg. (3-15) becomes

Y' + B(X)Y + Q(X)¥? = R(X) (3-16)

which is seen to be the Riccati's equation. Equation (3-16) can be linearized
by using the transformation defined by Eq. (3-7), i.e.,

Zl
Y = — -1
=z (3-17)

which leads to Eg. (3-8). Combining the two transformations, Egs. (3-10) and
(3-7), we conclude that Eq. (3-15) can be transformed to the linear differential
equation, Eq. (3-8), by the following transformation

J fy)dy = — , X = x (3-18)

While the utility of this type of transformation is obvious, the main dif-
ficulty one faces is the arbitrariness in the definition of a proper transforma-
tion. In other words, for a given nonlinear differential equation, there is no
general way to derive a transformation which will linearize the equation. To
overcome this difficulty, an attempt is made in the present report to develop a
method which will serve such a purpose. We now treat, as a first example, the
Bernoulli's equation, given in Eq. (3-1),

Y' + B(X)Y = R(X)Y (3-19)
Introducing the notation p = Y', Eq. (3-19) becomes

p+BX)Y = R(X)Yk (3-20)

Next, an infinitesimal transformation is defined as

X' = X + (8¢)&(X,Y,p)
Y' = Y + (%e)o(X,Y,p) (3-21)
p' = p + (%e)n(X,Y,p)

15



where, in terms of the characteristic function W, [8],

o
é_ap
oW
© = p 85 - W (3-22)
x Py

According to the theories discussed previously, we impose the condition on
the differential equation that it be invariant under the transformation defined
by Eq. (3-21), i.e.,

3F
e = © (3-23)
where from Eg. (%-20),
F = p+ B(X)Y - R(X)Yk (3-24)

The condition (3-23%) can be written in expanded form as

gax+an+ﬂap_o (325>

Upon substitution of F from Eq. (3-24),

- W W W
v -nd) Lo e S W -G ee) <0 )

Eq. (3-26) is a first-order linear partial differential equation in W, which can
be used to determine the functional form of W. We note that any function W
which satisfies Eq. (3-26) will satisfy the condition of invariance for Eq.
(3-20) under the infinitesimal contact transformation defined by Eq. (%-21).
Once W is determined, the invariants can be found by solving the following sys-
tem of equations

oK _ 4y _ dp i}
: " o » (3-27)

In terms of the characteristic function W,

ax ay _ dp -
ETR TR TR} 5-2%)
dp L K Py

16



If the two functionally independent solutions of Eq. (3-28) are denoted by

u(X,Y,p) constant

V(XJY;P)

constant

the new independent and dependent variables can then be taken as

u(X:Y)P)
V(X)YJP)

=
1l

(3-29)

£(n)
All the examples mentioned in this section deal with the type of transforma-
tion in which the independent variable X remains the same, i.e., X = X'. Making

this assumption, we have, from Eq. (3-22),

_ oW _
£ = 3 - 0 (3-30)

or, W is independent of p. Equation (3-26) now becomes

k-1 oW oW

(B-kRY_)W+§+p5'Y‘=O (3-31)

which will be used to determine W.
Since Eq. (3-31) is linear in W, we assume a solution

W(X,Y) = o(X)y(Y) (3-32)

Upon substitution of W from Eq. (3-32) into Eq. (%-31), we get,
k-1 ¢! '
B - KRY +—¢—+p§’—=0 (3-33)

Substituting p from Eq. (3-20) into Eq. (3-3%) and rearranging the terms, Eq.
(3-33) becomes :

orl fe oyl
%:(l - k)B + ¢_f— p [Y - w:% = 0 (3-34)
from which

o' = - (1 - k)B¢
ky
Y
Thus,

17



¢

exp {- [ (1 - k)BdX} (3-35)
11{ = Yk

and the characteristic function becomes
k
W(X,Y) = Y exp {- [ (1 - k)BdX) (3-36)

Equation (%-28) now takes the form

ax dy _ dp
0  -vYkexp (-J (L-k)BAX}  (Y8(1-k)B-kpt®1} exp {-/ (1-k)Bax)
(3-37)
The first solution from Eq. (3-37) is obviously
X = constant (3-38)
and the second can be found from
_(1;{ T - k)Byip_ KpyE-1 (3-39)

However, if p is solved from Eq. (3-20) and substituted into Eq. (3-39), we
have

ay 4y
- vk vk

(3-39a)

which means Eq. (%-39) is not an independent equation. As a result, the second
solution becomes

F(Y) = constant (3-40)

since any function, F, of Y will satisfy Eq. (3-%9a). Thus, from Eq. (3-29),
we put

(3-41)

In particular, if F(Y) = Yl’k, the transformation (3-2) is obtained. If F(Y)

is written in the form of
Y = [ £(n)dy (3-42)

the transformation, (3%-10), is obtained.

18



As a result, the transformation defined in Eq. (3-2) serves as a connection
between the Bernoulli's equation and the general linear, first-order ordinary
differential equation, Eq. (3-3), whereas transformations of type (3-10) con-
nect one class of equations, Eq. (3-9) to the Bernoulli's equation. Combination
of these two transformations, (3-2) and (3-10), leads to the transformation re-
quired to linearize Eq. (3-9), as given in Eq. (3-1k).

The class of equations given in Eg. (3-9) is not the only class of equa-
tions reducible to the Bernoulli's equation. In order to show the general na-

ture of the present method, consider the case in which W is chosen arbitrarily
as:

W o= p (3-43)
The form of W will satisfy the condition of invariance of the differential equa-
tion (3-1) if Eq. (3-26) is satisfied. Upon substituting W into that equation,
we get
(B'Y - R'Y®) = 0 (3-14L)

Eq. (3-44) is satisfied if both B and R are constants.

The invariants for this transformation can be solved from Eq. (3-28) which
now is

ax _ dY _ dp
The solutions to Eq. (3-45) are
Y = constant , p = constant
From (3-29), we get
af dy

=Y, dn T (3-46)
Eq. (3-1) then becomes

ar

an " (Bn - Rf) = 0 (3-47)

which is again seen to be a linear differential equation.

Next, we consider the class of transformation in which linearization is
achieved by raising the order of differentiation, as given in Eq. (3-4). 1In
order to illustrate another approach, we start from the linear second-order or-
dinary differential equation

19



F = £"+ A(q)f' + B(n)f +C(n) =

In terms of p and g where
p = £, g = £
Eq. (3-48) becomes

g+ A(n)p + B(n)f +C(n) = O

(3-18)

(3-49)

As before, an infinitesimal contact transformation is introduced as

o=t (8e)E(n,f,p)
£f' = £+ (8¢)9(n,f,p)
p' = p *+ (8e)n(n,f,p)
qa' = q+ (5e)k(n,f,p,q)

where, in terms of the characteristic function W,

_ W
& - ap
I}
6 = p - - W
-1 = XW
L 2 3, 2 , 3
-k = (X +2 w TP e af)W

The operator X in Eq. (3-51) is defined as

Again, the invariance of Egq. (3-48) requires that

B _
Oe
or, in its expanded form,
oF oF , OF F _ 5

g 3 "% dp o]

Replacing F by the expression given in Eq. (3-48), Eg.

20
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(3-51)

(3-52a)

(3-52b)

(3-52b) gives



(A'p +B'f +C')E +BO +An+k = O
In terms of the characteristic function W, we have,
oW oW W oW
A'p +B'f +C') = +B(p— - W) - A(T— +p —
(A'p )ap (p - ) (Bn P 3¢

N T .

“\oF + 2p or TPt SE tee po1 (3-53a)

W W W
+ 2pq apaf+q2$+q5§} = 0

Solving for q from Eq. (3-49) and substituting the result into Eq. (3-53), we
finally obtain

o, W, W W W
o T o TP 2 TAG TR

oW . , il
-B(pap—w)—(Ap+Bf+C)a

(3-5L4)

Pw N W W

- (230, TP opar Tap) (R P BO )
2.
+%(Ap+Bf+C)2 = 0

Equation (3-54) is the equation which determines the functional form of the
characteristic function W.

Consider first the case in which the independent variable n is not trans-
formed, i.e.,

X =

From Egs. (3-50) and (%-51), this means

o

op =0

or, W is independent of p.
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Equation (3-54) then becomes

W 2w 2w W W
e ihorSErag e m- (R Erre) = 0 (5

Since W is independent of p, the coefficients of terms with various powers of p
in Eq. (3-55) must be zero. We then have

2
W
%f—,z- = 0 (3-56a)
W
2
%ﬁg + A %% + BW - (%%) (Bf +C) = 0 (3-56¢)

Equations (3-56a,b) show that W should be of the form

W(n,£) = Wi(n) + fWy (3-57)

where Wo is a constant. Substituting W given in Eq. (3-57) into Eq. (3-56c¢),
we get

a%w,

dW,
dﬂz (ﬂ)

dn

+ B(n)W1 = WxC(n) (3-58)

This is an ordinary linear differential equation for the solution of W;. It can
be obtained if A, B, and C are given.

Consider first the case in which
W, = 0 , cC = 0

For this case, Egq. (3-58) is obviously satisfied and the characteristic function
becomes

W o= fW,
The invariances can be solved by

dn _ _df _ _dp

0 - ng - W2p
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which gives

n = constant
. (3-59)
= = constant
f
Thus, the new variables are
X = 7
-60
p £ (3-60)
Y £ £
As an example, the well-known generalized Riccat's equation
y' + P(x)y *+ Q(x)y® = R(x) (3-61)
can be cited. It was shown by Riccati [4] that a transformation
f‘l
y = F o X o (3-62)
will reduce Eq. (3-61) to the linear form
Ql
£+ (P - ;;)f' - QRf = 0 (3-63)
Thus, by putting
A = P - %; , B = -QR , C =0

into Eq. (3%-48) and using transformation (3-60),* Eq. (3-48) is seen to be re-
ducible to the generalized Riccati's equation.

Sugai [10] considered the extended Riccati's equation

y' + B(x)y + Q)y" = R(x) (3-64)

A transformation

o /KL
y = [SgﬁzjjéJ (3-65)

*Without losing its generality, we may divide the right-hand side of Eq. (3%-60)
by Q, as in (3-62).
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was introduced and Eq. (3-6L4) was transformed to the form:

, 1/k-1
7+ [%(k -1) - %i] ' - R[Qf(f’)k'g(k - 1)k]

1l
O
—
N
]
ON
OoN
~

Linearization is achieved in either of the following cases:
a. k = 2 , R # O
b. k # 2 , k # 1 , R =0

For case a, Eq. (3-66) becomes

" Q'
- ()| -rar = 0
t [ (Q)] ¢

which is the case just treated [cf. Eq. (%-61)]. For case b, Eq. (3-66) gives

£+ [P(k S 1) - %l] £ro= 0 (3-67)

Equation (3-67) is a special case of Eq. (3-48) with B = C = 0. Equation

(3-59) is still valid. Trus, Eq. (3-67) can be expressed in terms of the fol-
lowing variables:

x = Fi(n)

"y (3-68a)
y = F2(7)
where F; and ¥, represent any function. In particular, let us choose:
*x = -68b
1im (5-68b)
y o= ()
Qfm

in order to obtain Eq. (3-65), where m and n are constants to be determined.

The quantities Q and m are included in the denominator for the purpose of reduc-
ing Eq. (3-66b) to exactly ihe same form of Eq. (3-65). With or without Q and
m, the transformed equation will always be in the form of Egq. (3-6L4). The dif-
ference lies only in the coefficients. Thus, the second transformation in
(%3-68) merely means that a power-law form of (3-59) is chosen.

Substituting transformation (3-68) into Eq. (3-6T7) then gives

k-1 +1

)rTe T =0 (3-69)

y' * Py(
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In order to reduce Eq. (3-69) to Eq. (3-6k4) (with R = 0), it is seen that
m = n = k-1
Thus, Eq. (3-68) becomes the same transformation as given in Eq. (3-65).

As another example, if F, and Fo in Eq. (3-68a) are chosen as

X = 7
(3-70)
_ R
y ’y
() * B(n)

then the generalized Riccati's equation, Eq. (3-6), can be linearized to become

f"—@l-Mf'-{Q-ér]f= 0 (3-71)

R

In order to show the general nature of the group-theoretic method, we con-
sider the case in which Wi # O in Eg. (3-58). If we now choose

in Eqs. (3-48) and (3-58), we then let

£+ % £+ (1-=3)f = 0 (3-72)

=

and the equation for W; as

1 dWl n
—s + —=———+(1--=)W, = 0 -
a2 N dn ( nz) 1 (3-73)
W, then becomes
Wi = Jn(n) (3-7h)

and the characteristic function, Eq. (3-57) becomes

1]

W Jo(n) + £

where Wo 1s taken to be 1 without loss of generality. The invariants can be
solved by

dq _ _df _ _dp
0 - Jy - F -3y - £
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which gives the transformation

_ . In(n) ~
s N,y o7 (1) (3-75)

The class of nonlinear differential equationsg reducible to Bessel equation
is thus

Jo" + AJy' - Bf + C
y' - Ayt ( B T } y*-1 =0 (3-76a)

where f is related %o y through Eq. (3-75), i.e.,

& i (3-760)
dx \i

3.2. SECOND-ORDER DIFFERENTTAL EQUATIONS

In the last example of article %.1, a linear second-order differential equa-
tion, Eq. (3-L8), was analyzed. The problem considered was the search for cer-
tain transformations under which a first-crder nonlinear ordinary differential
equations can be “ransformed to Eg. (3-48). In cther words, we are considering
linearization by raising *“ke order of equations. In the present section, however,
we will consider the class of ftransfecrma®ion in which a second-order nonlinear
ordinary differential equation is reduced to a second-order linear equation.

Suppose that the characteristioc function in Eq. (%-51) is a linear function
of p, i.e.

W(ﬂaf’p) = wl(ﬁ;f>p (5‘77)
then the condition for the invarian-e of Eq. (3-48) requires that Eq. (3-54) be

satisfied identically. For W given in the fcrm cof Eq. (3-77), Eq. (3-5k) be-
comes

%W, o> W, 5 FW,
af PP anar TP of2

oM, oWy ! : : ‘
Pap (FE e ) - (ATp # B G (5-78)
W4 oW )
(2 S P 5;i> (Ap + BE +C) = 0O
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If we further simplify the problem by considering a linear differential equation
with constant coefficients, i.e., A, B, and C in Eq. (3-48) are constants, Eg.
(3-78) then becomes

fo + T1p + £2p° + £3p° = 0 (3-79)

where
fo = -2 —g% (Bf + C) (3-80a)
fl=%2n-g—l-A§:—l-3—g—¥—l-(Bf+C) (3-80b)
fo = 2 2?52’ - 2A % (3-80c)
g I (3-804)

Since all the f's are independent of p, Eg. (5-79) is satisfied if all the co-
efficients are zero, i.e.,

fo = fl = f2 = fs = 0
The condition fy = O shows that W; is independent of n. The second condition
f1 = O then leads to the conclusion that W; is independent of f. Therefore,

W1 has to be a constant. The remaining two conditions, namely, fs = f3 = 0, are
satisfied automatically. Thus, the characteristic function becomes

W o= Wip (3-81)

The invariances can be solved from the equations

5
o,
)
o

dp -
" 5 5 (3-82)

The two independent solutions of this system of equations are:
f = constant and p = constant (3-83)

Thus, the new variables (x,y) are obtained as follows:

y = Fi(f) (3-8la)
dy _ df -
™ an (3-8kb)



If the transformation (3-8La) is written as

ars

ay = Fa(y) (3-85)
then Eqg. (%-84) becomes
af _ dn _ i
o) (5-86)
Then Eq. (3-48) is transformed to
a® d
IZ *AF(y) TT + BEa(y) [ Fa(y)dy + CPa(y) = O (3-87)

In other words, any nonlinear second-order differential equation of the type
given in Eq. (3-87) can be reduced to the linear differential equation, Eq.
(3-48), through the transformation defined by Eq. (3-86).

As an example, if Fy(y) is expressed in powers of y, then the transforma-
tion

af _ dg _ .n .
iy ™ NG (3-88)

will reduce the nonlinear equation

2
a7y n dy B 2ntl n
—£ + Ay L+ — + = -8
2 A ma—— Cy 0 (3-69)
to the linear equation
a°f df
—5 + A= +Bf+C = 0 -90
a2 an (3 90)

This is the transformation proposed most recerntly by Dasarathy and Srinivasan [2]
As an application, the differential equation involved in the problem of the free
oscillations of a surge tank [6]

%y dy
e telyl gotexy = 0

belong to this class, where a and b are constants dependent upon various fixed

physical parameters. This is the special case of Eq. (3-89) with n = 1 and B = O.
Thus, a transformation

28



af _ dn _
dy dx y

will linearize the equation to the form

acr ar
—+tA—+C = 0
dn

Next, we consider the class of transformation in which linearization is
achieved by raising the order of equation. Following the same reasoning as
that given in the preceding article, we would expect a nonlinear ordinary dif-
ferential equation of the second-order to be transformed to a third-order
linear differential equation.

Let us consider the linear third-order differential equation

£+ AF" + BE' = 0 (3-91)
where A and B are functions of 1. Using the notation
p = ', qQ = ', r = f£"
Eq. (3-91) becomes

F = r+Ag +Bp = O (3-92)

Next, an infinitesimal transformation is defined as

n' = n+ (8¢)t(n,£,p)

£f' = £+ (8€)o(n,f,p)

p' = p * (8e)n(n,f,p) (3-93)
" = g + (8€)k(n,f,p,q)

r' = r + (8€¢)p(n,f,p,q,r)

where, in terms of the characteristic function W,

_
f T Y
W
6 = W
Py T
_]‘[=XW
-9l
_k=(X2+2q_Xa—+q_282 q)w (59)
op dp2 of
_ 3 20 P éf_ 3 2
-p = (X®+ 3aX > + 39X 32 +q 307 t3aX S5t 3 afap)
52 ) 3

+ r(}q aPE + 23X g_ g)
29



The operator X is defined as

X = 3 *P3F (3-95)

Again, the invariance of the differential equation requires that

OF
e 0

or, in its expanded form

T Ty TR Ty O (3-96)

Replacing F by the differential equation, Eq. (3-91), will yield a general equa-
tion for the determination of the characteristic function W. However, since the
independent variable 7 is unchanged in this class of transformation, it means,
from Egs. (3-93%) and (3-94), that W is independent of p. The transformation
functions in Eq. (3-94) now become

£ = 0
6 = -W
- o= XW
’ - (3-97)
-k = X3W +gq 3o
W W
- p = X°W + 3qX %E tr

Substitubing F from Eg. (3-91) and the *ransformation functions from Eq. (3-97)
into Eq. (3-96), we ge*:

fo + £1p + 20 + £3p% + £4pq + £5p° = 0 (3-98)
where
3w =W W
foo= -2ZL a5 _pZ
~ ansqw n? i on
B 0~ O=W
.2 -3 Im=df A onof
P %W
2777 (3-99)
oL %W A %W :
s T m 355 TR a2
%W
s o5 E
DO
L5 - - afg
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Since the f's are independent of p and q, Eq. (3-98) is satisfied if
fo = f1 = fp = fg = f4 = f5 = 0 (3-100)

The last three conditions in Eq. (3-100), namely, f5 = f, = f5 = O indicates a
linear function of the characteristic function W in f, i.e.,

Win,£) = Wi(n) + Wz (3-101)

where Wy should be a constant based on the equation fs = 0. The condition
f1 = O is then satisfied. The last condition fy = 0 gives

dswl d2W;|_ dw,
+ A +B = 0 -10
an® an an (3-102)

The invariants can be solved from the following equations:

dn _ af _ dp _
oW W oW W (3-103)

» P Y THPu

or, for W given by Egs. (3-101) and (3-102),

dn _ af _ dp _
0 - Wy - fWa aw, (5-104)
T @y T PWe
n

The two solutions are

n = constant (3-105a)
d
Wop + ??L
_ % -
Wof + W, constant (3-105Db)
Thus, the new variables are
X = 7
-106
aw, (5-106)
Wop + —=
y = F=——1)
Wof + Wy

where F represents any function of the argument.

A special form of this transformation was given by Sugai [10] in which a
transformation
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X = —
n o> y OF
reduced the nonlinear equation
yy" - 2yt® eyt - 6 -y = 0
to the linear equation
k' K" k'S
£ — f"-(—-2-—=)f" = 0
2 " ( . =)

%.%. HIGHER-ORDER DIFFERENTIAL EQUATIONS

The examples discussed in the previous sections have been cited to show
the general nature of the present method. The method can be extended to high-
order differential equations with equal success. For example, in a recent paper
by Dasarathy and Srinivasan [3], a nonlinear third-order ordinary differential
equation

. [F;*(yf] y'y" + aF(y)y" + pFE(y)y' + CFA(y) + dF3(y) [ F(y)dy = 0 (3-107)

where F*(y) = (d/dy)[F(y)], was linearized by the transformation

aft d
9 - 8n . o4 -108
a 3 r(y) (3 )
leading to
£+ af" + bf +af +C = O (3-109)

Refering *o the aralysis leading %o the derivation of transformation
(%3-86), the transformaticr. defined in (3-108) is the special case in which

) . _ W,
8 = p=—-W = Cj-n = & tp 5

= 0 (3-110 a,b)
i.e., the characteristic function is
W = Wip (3-111)

where W; is constant. The invariantg are then determined by

a ar _ d
il (3-112)
1 A\



and the transformation is derived in exactly the same way as in the analysis
following from Eq. (3-82) to ending with Eq. (3-86). It should be mentioned
that the form of W given in Eq. (3-111) satisfies the condition

oF
o€

identically.

An application of this class of transformation was given by Dasarathy and
Srinivasan [3]. The equation arises in gyroscopic theory where the inertial
motion of a gyro rotating about its mass of center is considered. The Euler's
equations of motion, are three simultaneous nonlinear first-order equations.
They are combined to give
wo_ 'y

S oyt = 0
v Y

which belong to the class of Eg. (3-10T7).

3.4, CONCLUDING REMARKS

The method developed in this report is presented as being very general in
nature. Basically, the method establishes the connection between one equation
and all other equations under the contact group of transformation, by the pro-
cedure of choosing different forms of the characteristic function W. It is
therefore not merely restricted to finding the class of transformations for re-
ducing nonlinear differential equations to linear differential equations.

In review, the method follows the following steps: A given differential
equation is required to be invariant under an infinitesimal contact transforma-
tion group, i.e.,

oF

5e 0 (5f115)

where F is the differential equation. Equation (3-113) is used to search for

all possible forms of W. With W known, the invariants are obtained by integrat-
ing the system of equations

dn _ af _ dp
3 o 1t

where &, 6 and = are related to the characteristic function W as shown in Eq.
(3-51). If the solutions are

u(n)f1P) = C1 , V(n,f,P) = Cz
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then the new variables are

X = U.(T],f,p) s y = V(T],f,p)
or any function of u and v.

This method may be applied to a nonlinear equation with the purpose of re-
ducing it to a linear form. It may also ke applied to a linear equation where
the classes of ncnlinear equations reducible to this linear form are to be de-
termined. It may also be applied to a transformation from one nonlinear equa-
tion to ancther whose solution is known or which is known to be reducible to a
linear equation.
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