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ABSTRACT

A systematic method using S. Lie's multiparameter infinitesimal transfor-
mation groups is developed in this report which enables the reduction of the
number of variables by more than one in a single step. Details of the method

are presented through two examples, namely, the unsteady boundary layer equa-
tions and the nonlinear diffusion equation.






1. INTRODUCTION

The investigations to be presented in this report are an outgrowth of a
continuing study of the application of Lie's continuous transformation groups
to problems of physical or engineering interest, and the present report is the
fourth in a series of reports summarizing the results of investigation. 1In
the first report, a systematic way of reducing the number of variables was
developed based on Lie's infinitesimal contact transformation groups. The sec-
ond report8 treated the class of transformations from boundary value to initial
value problems, and a method was introduced to search for possible groups. In
the third report,9 a deductive method was developed in transforming from non-
linear to linear differential equations.

In this report, we again consider the class of transformations in which
the number of variables are reduced. In the original method developed in the
first report,7 the number of variables that can be reduced in each step is one.
If more than one variable needs to be reduced, such as in the transformation
of the three-dimensional boundary layer equations to ordinary differential equa-
tions, the method has to be repeated for as many times as the number of vari-
ables to be reduced. Clearly, this is a tedius process. The question which
naturally arises is whether it i1s possible to reduce the number of variables
by more than one in a single step.

Manohar)1L was the first to propose such a method. Reduction of the number
of variables by more than one was achieved by a one-parameter group of trans-
formations and in another case by a two-parameter group of transformations.
While the two-parameter method can be explained by the theories given by Eisen-
hart,5 the one-parameter method is without foundation, since a one-parameter
group can only reduce the number of variables by one. This was pointed out by
Moran and Gagioli,5:6 who also discovered that the reason Manohar did get the
correct transformation using the incorrect one-parameter method is that the
transformations obtained happened to be the transformations derived from another
two-parameter group. Moran and Gagioli5 further illustrated by an example in
showing that the one-parameter method by Manoharh cannot, in general, reduce
the number of variables by more than one.

The purpose of this report is twofold. Firstly, a systematic method fol-
lowing the same general approach as given in the previous three reports will
be developed. Secondly, the important point raised by Moran and Gagioli5 on
Manohar's one-parameter method will be supported by the present method.



2. THE CONCEPT OF MULTIPARAMETER INFINITESIMAL CONTACT TRANSFORMATION
GROUPS AND THE GENERAL METHOD

In this section, a brief review of the concept of multiparameter infinites-
imal contact transformation groups will be presented. Only those concepts
closly related to the present analysis will be given. For a detailed treatnment,
the reader is referred to the first report in the series! and the book by
Cohen.? Application of a r-parameter group to eliminate r-variables in a par-
tial differential equation will be discussed at the end of this section.

2.1l. THE INFINITESIMAL CONTACT TRANSFORMATION

2.1.1. Infinitesimal Transformation

Consider the r-parameter group of transformations

X1 = ¢(X;yfal;~")ar)
(2.1)

yi = W(XJYJalJ"':ar)

where the a's are the parameters of transformation. If the identical transfor-
mation is

o o)
¢(x,y,al,...,ar) = X
(2.2)
o) o)
W(X;y;aly"')ar) =Y
then the infinitesimal transformation
© o]
x; = o(x,y,a; + Sal,...,ar + Bar)
(2.3)
o) 0
yi1 = W(X)Y)al +8&81,...,a + Ba )
r r
can be expanded as
r o]
¢ a
Xy = x + 2 N (x,y,2 ) da, *... (2.ka)
j_:]_ (0] 1

da,
i



o du(xy,a’)
yi = y+ L 24 da, +... (2.1p)
i=1 aao 1
i
where the expressions
0(x,y,8°) - dy(x,y,8°)
)o) a.nd )O
da, da,
i i
stand for what
a¢(x)y)al:32)"'yar) BW(XJYJal:az)'-°:ar)
and
., .,
i i
. o o} o
respectively become when a; = aj,as = as,...,a = a , and the unexpressed term

in Eq. (2.L4) are of higher degrees than the figst iﬁ day, 6a2,...,6ar. Neglect-
ing higher order terms in Eq. (2.4) and introducing the notation

e (x,y) = Xlmye) (2.52)

i 0

oa,
1

and

(o]
é&(sz)a ) (2.50)

Tli(X:Y) = aao
i
Eq. (2.4) can be written as
r
Xy = x + i§1 E, (x,y)8a, (2.6a)
r
vi o=y L on(xy)da, (2.6Db)

Since Sal,éaz,...,Sar are any infinitesimal increments of the first order,
they can be written as:

da; = e; Ba, Bday = e 8a,...,6ar = e da

Eq. (2.6) can therefore be written as



X7 = X t+ & da
(2.7a,b)
yi = y tn da
where
E = e E1 tes bo tuuat e gr (2.8a)
and
= + to..t &b
| e1 Mt ez Mo e, M, (2.6b)
2.1.2. DNotation of Infinitesimal Transformation
Introducing the notation
S df : df S
Uf = £+ = L =+, — 2.
: x| dy i1 %4 gi x Yy (2.9)
and similarly,
of of
f = - + - 2.10
we have
Uf = ey Uif + es Uosf +...+ e Urf (2.11)

The above is for two variables, x and y.

If n variables are involved,

namely, X1,...,X , the notations become
n

of
Uf = gl(xl,x2,¢‘o’xn) gl' +oao
n of
e ot e - .
3 (Xl;X2: )Xn) 3x (2 12a)
n
or
Uf = ey Uif +...+ e Urf (2.12b)
r
where



1 of

- 2 of n of
i i,

i 3 oot B T (2.12¢)

TE i axn

(i =1,2,...,r)

2.1.3. Invariant Function
If £(X1',%X0 yeee,x ') = f(xl,xz,...,xn), then f is invariant under the

infinitesimal transformation

r .
1
ro= + 2 .1
X, X, & gj 6aj (2.13)

By following the same reasoning as in the one-parameter group method, the
following theorem can be proved.

Theorem. The necessary and sufficient condition for f(xi,Xs,...,x ) to be in-
variant under the group of transformation represented by Uf is Uf = 0; i.e.,

of n n n, of
Uf = 1t egbl fo..t e th) o 44 + oot — = 0
(e1€1 283 ergr) S, (e1b1 + eptp erér) axn
(2.1k)
To get the invariant functions, it is necessary to solve
d
5 e ——— %G _ - s
1 1 1
e; €1 t ep E3 t...t e, £, e1 €1 tep Ep t...t €, ér (2.15)
or,
dxy Teee= dxn = e15a
1 1 1 n n n
+ d +...+ d + d +...+ d
€1 2 &3 r §r €1 2 €2 r ér (2.15)
where dp = ep/e1,...,d_ = e_/e;. Equation (2.15) is seen to give (n - 1) in-

variants. However, in these invariant functions, there are (r - 1) arbitrary
constants, namely, ds,ds,...,d . Elimination of the (r - 1) constants from
the (n - 1) invariants therefore leads to (n - r) functionally independent ab-
solute invariants. Thus, a r-parameter group of continuous transformations
has (n - r) functionally independent absolute invariants.



2.1.L. TInvariance of a Partial Differential Equation

To illustrate the manner in which the above theories can be applied to
reduce the number of variables by r using a r-parameter transformation group,
let us consider the case of a partial differential equation with one dependent
variable and three independent variables. To reduce this equation to an ordi-
nary differential equation, a two-parameter group is therefore needed.

Consider now a function

@ 82
F o= Flx1,x2,%X2;5 ¥, axl: aaxz:'-‘; 32’ (2'16)
ax3

the arguments of which, 13 in number, contain derivatives of y up to the sec-
ond order. Such a function is known as a differential form of the second order
in three independent variables. Designate the arguments by zl,...,zp, i.e.,

Z; = X3
Z2 = X2
_ _iiiﬁ__
ZP'l X OXg
e
. = XY (2.17)

where p = 13. Thus, Eq. (2.16) can be written in a simpler form as

F = F(zl,...,zp) (2.18)

The function F is said to admit of a given two-parameter group represented
by [ef. Eg. (2.12)]:

ZlyeeesZ ) a_z- (2.19)

if it is invariant under this group of transformation. Therefore, the function,
I admits of a group if



UF = 0 (2.20a)

or,
E°(21y000,2 ) é%% to..t gp(zl,...,zp) é%i = 0 (2.20b)
or,

ey U3F + e5 UsF = 0 (2.20c)

where
UF = ¢ éf% + 2 é%i ot gf éfl (2.204)

D
(i=1,2)
Since e; and ey are arbitrary constants, Eq. (2.20c) gives

U;F = 0O and UsF = 0 (2.21)

where U;F and UoF are given by Eg. (2.204).

Based on a theorenm given by Eisenhart?® and later proved in detail by Moran,
Gagioli, and Scholten,” a function F in p variables can be expressed in terms
of the (p - r) functionally independent invariants if it is invariant under
the r-parameter group of transformations. For the present example in which a
two-parameter group of transformations is introduced, the three independent
variables can therefore be reduced to a single independent variable.

To solve for the invariants, Eq. (2.15) is used. Thus, it is necessary
to solve:

dz, =, .= dZE = e, 8a (2.22)
el + ay g ef + a6l

Eq. (2.22) gives (p - 1) functionally independent solutions containing the
parameter d,. Elimination of dy then leads to (p - 2) invariants which are
denoted by:

MisMNaseses T]p_2

Thus, the differential equation

F(zl,zz,...,zp) = 0 (2.23%a)



can be transformed into the differential equation

Il’(nl)TIZ;"':T]P_2> = 0 (2.23b)

2.1.5. Infinitesimal Contact Transformation

For a given r-parameter group of transformations, the transformation func-
tions, g%, are known, the above procedure is adequate in seeking the similarity
transformations. However, if the group is not given, Eq. (2.1L4) alone will not
be enough to search for possible groups. At this point, the theories developed
in Reference 7 on the concept of an infinitesimal contact transformation must
be introduced so that the transformation functions &% can be expressed in terms
of r characteristic functions. The details of the derivation is given in great
detail in Reference 7. Here, only the final form is summarized as follows:

For the extended infinitesimal contact transformation

v
Z = gz, +0% emnm,(z ,x
5 5 l( S “;Pu)

v
X, +3 ¢ ak(zv,x“,pu)

e

i i i v
Pk = P + 8 ¢ nk(zv,x“,pu) (2.2k)
i i i vV oV
P. = . +Dd en. (z ,x
ik ka Jk( v H:P“:PMS)
i i i vV v v
= + B 1 X
ijl pjkl € jkz(zv’ u’pu’pus’ppst)

the transformation functions can be expressed in terms of characteristic func-
tions wi as follows:

m, = — p' - W, (2.25)

o = — (2.26)

(no sum on i)

8



2.2.

i awi v awi
L gx‘; (2.27)
v
i i i
- _.ak % S + ._aj.li v i _l\'. _i“is\‘_. 8 + __.>\_' v (2 28)
x.  dz Py v P TPha\ . T B v Puj :
J s apu bi apu
i i i i
a“jk a”jk s a“jk v a“jk a A A Qo
> o 2T T P T e Poey TP\l TSR P TTSRy
1 %s op H dp J 1 s o3
M be M
(2.29)

THE GENERAL METHOD

With the background discussed in Section 2.1.5 in mind, the partial dif-
ferential equation given in Eg. (2.16) is again used to illustrate the steps

necessary for reducing it to an ordinary differential equation.

proceeds

1.

Two

The method
as follows:

An infinitesimal is defined, as in Eq. (2.24). The differential equa-
tion, F = 0, as given in (2.23a), is required to be invariant under
this group of transformation, i.e., it must satisfy Eq. (2.20) or Eq.
(2.21).

The transformation functions in U,F and UoF, defined by Eq. (2.20d4),
can be expressed as functions of W and W, respectively, using Egs.

(2.25) through (2.29). Since W should not be equal to W, some prop-
erties may be imposed on W and/or W. For example, we may require W
independent of p;, while W be independent of ps, etc. W and W can

then be determined by Eq. (2.21).

Solve the independent invariants using Eq. (2.15).

i
(Note that €5
are known functions since W and W are known.)

The differential equation can then be expressed in terms of the p - 2
invariants.

examples will be given in the next section.



3. APPLICATIONS OF THE METHOD

In this section the general theories given in Section 2 will be applied to
two examples, namely, the unsteady, two-dimensional laminar boundary layer equa-
tions originally treated by shuhlO and the nonlinear diffusion equation dis-
cussed recently by Ames.l Although the method is presented through two specific
examples in transport processes, the general nature of the method makes it pos-
sible to be applied to equations in other fields.

5.1. APPLICATION TO UNSTEADY, TWO-DIMENSIONAL, LAMINAR BOUNDARY LAYER EQUATIONS

Consider the unsteady, two-dimensional, laminar boundary layer equations,
expressed in terms of the stream function vy,

ou ouU
_ﬂ.l.éy_a_i_.a_\t_ﬁ = _e+U __E.f..@f_\k (501)
atéy ayaxay Bx 2 Bt e 8x 3
dy dy
subject to the boundary conditions
= . é‘k = ék- =
y O: Sy 3 0
O\
y = o Syi = Ue(x,t)
Equation (3.1) can be written in a shorthand form as:
F = pagz t+ ¢ - p1g - P3g Pos + P2 Pag = O (3.2)
where
_ X - - . v
P = 3t b= = x Ps3 ay: Pis atay) ete.,
and
aUe aUe
T S e ™ (3.3)

i

The differential equation F = 0, as given in Eq. (3.2), will be invariant
under the two-parameter infinitesimal transformation

10



tho= b+ Ber on(t,x,y,v) *+ Benx an(t,x,¥,v)
x' = x * ey ap(t,x,¥,0) * Bez az(t, x,¥,¢)
v'o= oy *oer aslt,x,y,0) + Bez aglt,x,y,v)
y'o= o+ Bey L(t,x,y,0) + Bes E(t,x,7,v)
Pz = D2 * ®e1 m2(t,%,¥,U,P1,02,08) + Ben 7a(t,X,¥,P1,P2,Pa)
, (3.4)
Pz = pa * Bey ng(t,%,¥,¥,P1,P2,P3) *+ Ben ma(t,X,¥,¥,D1,P2,P3)
Pis = DPis + dep 113(t, %, ¥, ¥, P1,P2,P3sP11s « « - Paa) + Bez maa(t,%,¥,¥, .+ +,DPas)
P23 = Dog * O€1 Toa(t,X,¥,0,.ee,Pas) + Bes 723 (t, %, ¥, U5+« +, Das)
Psz = DPas * Be1 mag(t,X,¥,0,..+,Da3) + Bez naa(t, %, ¥,¥,+++,Daa)
DPass = DPsss * €1 7aaa(t,X,¥,9,P1, .-, Pass) * Bez 7533(ts X, Y5 UsP1s -+ +» Dana)
if
UF = O (3.5)
or, from Eq. (2.20c),
ey UsF + e5 UF = O (3.6)
Since e; and e, are arbitrary, Eq. (3.6) means
UiF = Oand UF = 0 (3.7a,b)
simultaneously.
In their expanded form, Egs. (3.7a,b) can be written as:
F F F F F oF oF
o %E + Qs %; + Qs %; + ¢ %; + . é%; + ﬂij 85;; + ﬂijk apijk = 0 (3.8a)
and
o g% + O %g + Qs %5 +t %% + &i é%i + Eij ngg + %ijk a;?zk = 0 (3.8b)

Putting F from Eq. (3.2) into Eq. (3.8), we get

11



ekl ot

Tags + 3 oy + X %2 7 ™13 - P3 Teg - Po3 Mg * Mz Pag * Pz Mzz = O (3.9a)
and

- o - 3 - - - - - -

g3z + 3 + x % - ™13 - P3 Teg - Po3 Tg + 5o Pag t Do Maz = O (3.9Db)

The next step is to express the transformation functions, a1, os, etc.,
in Eq. (3.9a) in terms of a characteristic function W; and the transformation
functions, &1, 62, ete., in Eg. (3.9b) be expressed in terms of a second char-
acteristic function W. This differs from the one-parameter method in that two
characteristic functions, instead of one, have to be determined. The functional
form of the W's can be determined from Egs. (3.9a) and (3.9b). Since the trans-
formation groups in Egs. (3.9a) and (3.9b) should be different (otherwise, the
two-parameter groups will be reduced to a one-parameter group), we choose, as
an example, two groups as follows:

Gi: o1 in Eq. (3.L4) is zero
Go: O in Eq. (3.k4) is zero.

For the first group, G, the transformation functions, as, as, etc., can
be expressed in terms of the characteristic functions as

(07} - apz ) Qs - aps ) C Pa apg + Pa aps wl
o e W Can
mno= - 3 Pa aW s T2 = - x b2 aW ’ 3 = - dy b3 aW
(3.10a-f)
Xt %W, %W, %W, 3?0, %W,
- Mg = 3 oy * DPs 3t oy t P v dy + P1 Pa a&; + P21 30m Oy + Pa 32 O

W4 %W, My %W, W,
' P31<apsay+l°3 s ov o) P2 \&vape Tt Yy opa

%W, %W,
Pas (at aps +t pa aw aps (B‘log)

12



= a3

- Tig3

- 7333

(2w iy iy azwlj Py ALl
—(5x8y+p86x6¢+p2 away'#ps t P2z apgay+86p2aw

=/

. %W, s %W, Wy %W, . W \l
2 s v " 2 ops o & dpp Iy dpz T2
%W W
Pas < ax 5;3 + Pa aw ai;s) (B'th)
< %W, %W, ) ( %W, s a2wl> - W,
3 3 3 33
32 dqy Oy oy oy 3 oy
82 1 p= ; 82 82
o 10
ree (ap2 o " 3o oy ERETRRSI Y 100
3 3. 3.
O W, + 2pa oWy, 2 "W, * Das ae;walw
oy° dy= Oy dy o
3 3 3; 3
P3<awl +2P3"'m‘+P§aawl>+223<g\7%}il_+Ps an>
dy 2 N2 dy y° P2 & 3o
3w 3w 2w
2Pas3 <5p ayl &Lr a 2) * P3 Pas §__2_
3 aPs 811; 5‘11
Sw Sw Sw =
DPos <3 M + Lps - - + p5 oW, + Pas 51? §W>
ayz dp2 dp2 dy Oy dp» 511; 2
%W, Sw 3w W
P33<5 11L:3a—éﬁ'"'Pg'__;_“LPaaa gq;)
ay2 apa P3 ‘Jf aps 5‘1{2 P3

(3%, %W, _ Wy e
3P233 (Bpg & * D3 302 O *t 3P13 T~ 303 by + 3P3 P13 s O

QW 5 d%W, d%wW %W,

1 ) W1 —_—1 N
3Ps Peos 30s Oy * 3P3 DPos Y 3P2 Pas 3ps Oy P2 P3 Pas Y

W W W .
30 s Sy - 3ps Bp gli‘ Bm‘yl Piz * Ps Pez - P2 Paz - ¢) (3.107)

13



Now, substituting the transformation functions from Egs. (3.10a) to
(3.10j) into Eq. (3.9a) and eliminating psss from Eq. (3.2), we get:

fo t f1 P11 * fopor t f3 Pa1 t f4 Poo * fs5 Doz * £ Pas t £7 Pias + fa Doss

+ f9 P13 Pas *+ f10 Pos Pss * f11 Doz = O (3.11)
where
3 2 P
P = _(5_W1_+5P3 %W, +5p§_53ﬂ1_+pg§m>+3¢<8_8%+gaawg>
© dy> 32 dy 3y 32 3> D3 b3 Of
, Qo oo (3% By 82w1 52w1
3 dps 3\t oy P2 3t oy Sy dy
aZwl 82w1 aZw
+ <5X ay * Ps A a\]f - P2 (5.12)
fp =0 (3.13)
%W, %W,
fa = J1b
2 T oy Py (3.14)
W, %W,
= - .1
fa S IR - (3.15)
_ OFWy %W,
f4 - ps(ape ay + ok} apz a\J/ (3.16)

) %W, 3%, L 3%W, > W,
f5“‘<5 s P wmew) P\ ey o)L
dy~ Jpe op2 Ay

dpo O

%W, %W, %Wy %W, %W, %W,

o (apsay+sapaw’“atapg*aufapgpl* & oz | P2 3y opa
My My %Wy e

+< ay + Ps a‘y> 2 <ap2 ay + 3 ap aw>p2 (3']—7)

1L



fg = L. 4 p1| + 3%y + Wy - (——— + LB
6 3t dps O dps o1/ P33k ops | Oy Ops *2 o P2 75,

3w, 3w, ) 3w, 3w, 5 %W,
- 13 Lps 2P3 (T~ t Pz —— |- p5s ——
< aps ayz ay apS a‘l’ apB ay 6\1/ aps a\lr2 aps 5@’2
%W, %W, >F %W,
- - .18
N L 519
f = 0 (3.19)
%W, %W,
fg = - + .20
8 5 <aP2 ay p3 ape a“/ (3 )
fg = 0 (3.21)
2.
fi0 = - Sggwig (3.22)
2
W
f1, = - BSS gu (3.23)

For Eg. (3.11) to be satisfied, all the f's should be zero since the char-
acteristic function is only a function of t,x,y,y,p1,ps, and ps. Therefore, we
get 11 equations:

f = f, = f5 =...= f3;, = 0 (3.24)

Three of these, namely, f;, f-, and fg, are zero identically.
For point transformations, as in Eq. (3.4), the characteristic function is

linear with respect to the p's. For the group under consideration, Gi, ay =0,
which means

i.e., W; is independent of p;. Thus, we write

15



Wy = wll(t)X;Y:W)P2 + WlE(t)X:Y;W)PS + Wls(t;X;Y)W) (3'25)

From f30 = O and f;; = 0, we get

W >
é—il = 0 and awl

oy oy

which means W;; and Wi, are independent of Y. The three conditions f5 = f,
= fg = 0 gives

W W
—__a;upa ail = 0 (3.26)

Since Wi; is independent of ps, Eq. (3.26) shows that Wy, is independent of
both A and llfo

Following the same reasoning, the condition f5 = O leads to the conclusion
that Wy, is independent of both y and y.

The condition fs = 0 gives

OWiy ,  OWyy , Ohg g

St D3 3x Sy Ps 3y

= 0

Again, due to the independence of W;; and Wis on ps, the following two equa-
tions result:

at + ay - 0 (5‘27)
My Mg _ (3.28)

ox oy
Equations (3.27) and (%.28) will be used later.

From the condition fg = O, three equations are obtained, namely,

W W oW
9 M3 M ONis )
% i~ S 0 (3.29)
Myy , Mig _
e + —iaw 0 (3.30)
2.
SWs _ (3.31)

16



Equation (3.30) is the same as Eq. (3.28). From Eq. (3.31), we get

Wiz = Wisi(t,x,y)y + Wisa(t,x,y) (3.32)

Substituting Wy5 from Eq. (3.30) into Eq. (3.29), we get

Mgy , Mip | iy Mizs
¥ ot VT 0 (5:35)

Since the W's in Eq. (3.33) are all independent of y, we get

W
Mz _
das - g (5.35)
Mis1 . Mip | OWiso
dy ¥ ot * dx © (3.35)

Equation (3.34) shows that Wis; is independent of x.
Thus, the characteristic function now becomes
Wy = Wia(t,x)pe + Wia(t,x)ps + Wigi(t,y)y + Wiga(t,x,y) (3.36)

where the W's on the right-hand side have to satisfy Egs. (3.27), (3.28), and
(3.35).

From Eq. (3.30), we conclude that
Wip = Wipp(t)x + Wiio(t) (3.37)
since Wyg; is independent of x. Equation (3.30) now becomes
Wii1(t) + Wigi(t,y) = O (3.38)
which means Wys; 1s independent of y.

From Eq. (3.27), we get

dWi12 dWi1p | Migp
+ + - .
P gt 3 0 (3.39)

which shows that Wyszs is linear in y, i.e.,

Wise = Wigoi(t,x)y + Wigpsa(t,x) (3.40)

Equation (3.39) now becomes

17



dWiq3 dWi1po
ETRR + at + Wigpy = O (3.41)

From Eq. (3.35), we get

éva%a,ualsgxﬂyﬂualﬁaa:o (3.12)

Since the W's in Eq. (3.L42) are independent of y, we get

W
Wiz _
4 0 (5.13)
Mip , Migps _ 0 (3.14)
dt X )

Equation (3.43) shows that Wigzy is independent of x. Equation (3.L4) suggests
that a function 6(t,x) can be defined such that

o9 <)
Wip = =’ Wigoe = - %{ (3.45)

Since Wigp1 is independent of x, Eq. (3.41) gives:

dWyaa  _
m 0 (3.46)
dWi1po
12 + Wigpr = O (3.47)

dt

Equation (3.46) shows that Wyi; is independent of t. Equation (3.L7) estab-
lishes the relation between Wy;5 and Wigoi.

The final form of the characteristic function is therefore:

S] daw
Wi = [Wirix + Wyio(t)]ps + %; Ps - {?111W + ‘2i%2 vy - %ﬁ% (3.48)

where Wyi1 is a constant, Wi;5 is an arbitrary function of t and 6 an arbitrary
function of t and x.

The condition fo = 0 has to be checked after the boundary conditions are
considered.

The transformation functions, on, Gp, Qs and { for G; are therefore given

18



by

o = O
Qo = Wiiix + Wipn(t)
ae (5’)‘}‘98"{1)
Qs = gX—
aw oc]
£ = Winy + _:ﬁfa vyt X

which are obtained by substituting the characteristic function Wy, Eq. (3.48),
into Egs. (3.10a-c).

For the second group, Gs,

W
op = LS (3.50)

Op>

which means the characteristic function W, is independent of ps. The other
transformations, oy, as, {, etc. can be expressed in terms of the character-
istic function W, as follows:

W W oW oLl
= 9 - Mz - el Mz
041 apl p) 07! aps ’ 4 Pa apl * Pa aps Wo
(3.51a-f)
M M M W M M
oS - cRgSs me = - PR me5E, T = -, PSS

2w %W QW %W W W
- - OW2 O ¥a 9 N2 o N2 O W2 O Wo
T13 at ay + Ps é't allf * P1 (B\V ay + Ps alhz) + P11 <5p1 ay + Ps apl 5\1f

2w %W W %W W
T oPa ( a3 > F 3 5 +-*d2> " P12 <5P1 gt * op1 gW P1>

2 2
*t DPas <\8 2, I W 1) (3.51g)
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- Taos

- Taa

- T333

+

FW W
2 2
aX ay + Ps ax Bq; +

W5
P32 <a ay + DPs3 aps aw

B 5

OWo

P
6\1; By

W, o PWo
+
w) Pw(aplay* P2 3p1 oy

W,

d
ox

gy o P
ay2 ayaqf

dp3 " P el aPs)

s

W

Py

v oy

o

W
2Paz 30s Oy * D3 s

W 2w W
+ 5;? * Pis ( J W Rl >

\5X dp1 aW aPl

(3.51h)

%W 52 W, |
_._2 S = 2
- > + 2Pl 3 <ap ay pS ap 5 /

D33 jif (3.511)

By 3 3 3 3
g_i + 2p3 a w2 + pg ML + 2P13 ( + 3 _—aa_W_L>
ay3 ay2 aw ay a\bZ ap ay2 ay D1 allf
aSW 2 3 3
2Ps3 (“—‘2—2 g%) t Pas gywaw Pa O~Wo + 2ps Sz
ops Oy ° dy dy® NZ dy
% < %W 3w ) ( W W )
2 2 2 —_2 —_— 2 2 2
P3 + 2013 * DPa 5 |t 2pas
oy op1 9 0 %) o
B\VB ‘l P1 Oy 1%} a\jf P3 ay ‘J/ aps awE
ng 3 Sw 3 3
Pss—a\rzg +p13( . +2P3$l§'ay2_aw v pg M2, 33%%)
32 3y p1 NP P
i 3 2
p33<_5_a_+23553§;25w 2____5W +p38_aa_%>
ayZ ap P3 ap a\IIZ D3
O%Wo %o
BplSS < apl ay + Ps apl aw>
W 2w W
<5 305 gy 3pPs 85_—§E + Ei?> (P13 * P3 P23 - P2 Pas - ¢)  (3.515)
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As before, the transformation functions given in Egs. (3.5la-j) are sub-
stituted into Eq. (3.9b) and psas is eliminated from Eq. (3.2). We then get

fo t f1 P11+ f2 P21 * f3 P31 + £4 Pop + s Pas + £ Pas + £7 Piasg + fg Poss

+ fg P13 Pss * T10 Pos Pas + £11 P35z = O (3.52)
where
3w %W, 3w Q3w ey 3w
fo = < &f§ + 2p3 T 552 > + p3 §§-S$§> - Ps (S&‘S?ﬁ 2ps T 2 oy + p5 7;F§ﬁ
W FW 3 Mo . 30 W Wo %W %W
O W2 _OWo 9% oWz 2 O Wo
" <apsay P2 3pa 811;) TS o o oms oy +<atay Pe 3 va)
s P ‘o P L Py 52w2 o Pz ¢ b P
B\tr dy ol ax By ax Oy dy© Iy oy
(3.53)
%W 2w
£ - 2 = 2 . )4
1 apl ay + Ps apl aw (5 5 )
2 Pa apl Sy P3 5P1 aW |
3w 3w o 3w W
= _ [z _9Wo __OWa | _OWo
s (5 o o7 P 5 om aw) P (aw P T oF) T8 o
W W QW 2w \ W, %W
_ N2 —_— N2 2 2 2
2<ap3ay+l"3 s a\u)*(apl * Gy oy P (ax ST
=W P
_ — 2 .56
2 (apl 5.Y + D3 ap w) (5 5 )
fa = O (3.57)
W P |, (H Mo
= 8
fS 2p3 (ap ay 3 ap aw ay + Ps &k (5 5 )
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i <§ W, ) %W, ._> - 2ps (} My %W, ) o %,

fe = 3ps o | P2 Yy dps O 3ps o A 2 Opa =) e

v ops (S§§E§§ + pa 5§§w§¢> ) gfﬁ;f_ D3 ?;¥§ . <632g;3 * D1 gffg§;>

e (P ) (2, ) (539
fz = -3 (a—s?%+pa a—i—wa> (3.60)
fa = 0 (3.61)
e = - % (3.62)
e = 0 (3.63)
f, = - gi_% (3.64)

For Eq. (3.52) to be satisfied, all the f's should be zero since the char-
acteristic function W, is only a function of t,x,y,vy,p1,ps, and Ps. Therefore,
we get 12 equations:

£ 0= f1 = f2 =...= f13 = 0 (3.65)

Three of these equations are satisfied identically which are f,, fg, and fi0.

For the point transformation under consideration, with oo = 0, the char-
acteristic function can be written as

W = wzl(t:X)YJ\lf)Pl + w22(t)X;yJW)P3 + Wzs(t;X;Y;ll') (5-66)

From the conditions

we conclude that Wpy is independent of y and y and that Wo, is independent of Ve
The condition fg5 = 0 gives
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Moz , Map , Mpg Maz _ (3.67)

which gives

—Bgyaﬁ - 0 (3.68)
HMog  Mpp _
> - 0 (3.69)

From Eq. (3.68), Wog is independent of y. Equation (3.69) will be needed
later.

The condition fs + O gives

_2_@22+5_W2L+ % = 0 (5°TO)

which can be separated into two equations:

W
o211 _
. 0 (3.71)
oW oW
221 222 - P
3t 2 3 0 (3.72)

Equation (3.71) shows that Wo1 1s independent of x.

Since Wp3 is independent of y, Eq. (3.69) shows that Wo, should be linear
in y. Thus, we write

Wop = Wopi(t,x)y + Waga(t,x) (3.73)

Substitution of Wyp from Eq. (3.73) into Egs. (3.69) and (3.72) leads to the
following relations:

Wooy = Hzg (3.7k4)

o

d
Mooy = ”Efi (3.75)

=]

Thus, Wpo; is independent of x. So,

Woo =

n [+

aw
w25y o+ Voo (t,x) (3.76)
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The characteristic function W, now becomes

1 dWa
Wo = Wo1(t)p1 +‘{§ dtl vyt szg(t;xi} ps + Wos(t,x,y)
From Eq. (3.7L4), Wog is linear in y,i.e.,

Wog = Woza(t,x)y + Wasza(t,x)

Equations (3.7L4) and (3.75) then give

dWor

Wog1 = at

N

which also shows that Wy3; is independent of x. Thus,

1 de
Wog = > dtl ¥+ Wasa(t,x)

The condition fg = 0 gives:

1%z, Mopp , Mpap _ 0
2 at? VT x

which can be separated into two equations as follows:

@2;_0
at®

_ HMapz , Mazp _
ot dx

Equation (3.82) shows that Wpy; is a linear function of t, i.e.,

Woi(t) = Worrt + Woip

where Wo11 and Woyo are constants. From Eq. (3.83), a function 8
introduced such that

P

Wooo = %’ Woszo

%
T

The final form of the characteristic function, W., is therefore

(t,x)

2

1 % 1 0
Wo = (Wo11t + Woip)py + <§ Wory + S;) Pz * = Woray + 3t

2L

(3.77)

(3.78)

(3.79)

(3.80)

(3.82)

(3.63)

(3.84)

can be

(3.86)



where Wpy; and Wpy, are constants and 6 is an arbitrary function of t and x.

Again, the condition fo = O has to be checked after the boundary condi-
tions are considered.

The transformation functions, &l, &2, &3, and { for Gy are therefore given

by
Q= Wop1t + Woip
&2 = 0
) (3.87a-d)

- 1 b2

s = 3 Wo11y + =

- ¥ 1

£ = 3~ 5 Ve

With the characteristic functions W; and Wy for the two groups, G; and
Gz known, the next step is to find the absolute invariants. For the combined
two-parameter group of transformations defined in Egs. (3.4) to (3.9), the
absolute invariants can be solved from the following system of equations:

dt dx dy dy
—_— = — = — = — eldel
a1 t am 0o *+ age s t+ ads ¢ + at

where a = eg/el. Substituting the transformation functions from Egs. (3.49)
and (3.87) into Eq. (3.88), we get

at _ dx
a(Wao11t + Woiso) Wii1x + Wyin(t)
_ dy
¥ 1 5B
= T a<5 W11y + 5;)
dy
= - = de; (3.89)
aw » » 1 €1d€1
(w“”’ TR E)+ ) (‘a? "2 WZ”"’)

As an example, consider the case in which 9, é, Wi1p, and Woi5 are all
aero. Eg. (3.89) then becomes:

dt dx dy dy
= = = = e;d .90
Wy 1t Wo1ix 1dey (3.90)

a a
> Wo11y Wiiiy - > Wor 1y

The three independent solutions are
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= cC1 (3.91a)

== e (3.910)

and

-V
Wizn 1
aW211 2

Ca (3.91c)
%

As a final step, the parameter a has to be eliminated from Eq. (3.91).
We then get

L= cpamg —f— - 22 (3.928,b)
2

where Eq. (3.92b) is obtained by eliminating a from Egs. (3.91a) and (3.91c).

The similarity variables are therefore

1= Lenat(n) = —— (3.938,D)
t 2 xt 2

which are the same as the variables defined by Shuh. 10

The boundary condition at the edge of the boundary layer, namely,

y o= e Loy (1)

oy
is then transformed to be
1= e @) = U (%)
which gives
U (x,t) = 3 (3.94)



The function ¢, as defined in Eq. (3.3), therefore becomes ¢ = 0. It can
be shown by simple substitution that this function of ¢ satisfies the condition
fy = 0 for both G; and Gs.

Other special cases may be considered. For example, if we considered the
case in which 6, Wii5, and Wp1o are zeroj and 6 = f5(t)(x) where fs is a con-
stant, Eq. (3.89) becomes

dt dx dy d\l{

= = = (3.95)
aWor:1t Wi11X a a
2t Tt 2 Woi1y + afp Wiiiy - > Wai1y
The three independent solutions are:
X
W = ca (3.96a)
111
¢ 8W211
1 1
2 f 2
yoo T re A = ¢ (3.96b)
211
and
- (
= ¢ .96¢)
Wiag 1 3 >
‘ aWo11 2
which, upon elimination of a, give
1 1
T2 £ T2
no= oyt +2w——2— t (3.97a)
2111
and
£(n) = — (3.970)
T2

However, since the new form of 7 cannot transform y = O to n = 0, we con-
clude that f, must be zero. Equation (3.97) then becomes the transformations
given in Eq. (3.93).

Consider now another pair of groups, namely,
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Gg: a general point transformation

Gg: a general point transformation with qf =

0.

The transformation function, o, as, s, £, 71, Ty, g, TMig, TNos, Tag, and
T333 can be expressed in terms of the characteristic function, W, as follows:

a. = %
i api
oW
- Mg _
C pj. ap- WS
1
W W
- _ 9% _ OWg
™ 3 iy
oW W
- _ 9% _ OWg
T2 Ax P2 o
W oW
- Mg _ OWg
TES ay pB aw

ng , dna _, dmg %
M T N T P T P TP\ Ty ™

Tog = X BW' b2 dp

1 = .a_ﬂﬁ + % + a_ﬂa I/i“é: + i

Ty T P, Pl TPy T oy P
. _ Ongg , Omgg n Onay . Ofag - (aa aa
333 dy oy Ps Bpi Pig Bpij pija Paai \ dy

p3> (3.98)

By following the same steps as in the cases of groups G; and Go, the char-

acteristic function W5 for group Gs is found to be:

Ws = (W11t + Wa1o)pr + [Wapix + Waso(t)lps
1 dB 1
+ (5 Wa11y + ‘;) ps t [5 W311 - Wse%} v
dWapz . OB
dt at

28
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where Wsi1, Ws1o, and Wsp; are constants, Wsos is a function of t, and B(t,x)
is an arbitrary function of t and x. 1I1 addition, an equation which comes from
fo = 0 has to be satisfied. This equation is:

L S
% ¢ Wgyy * > (Wa11t + Wapp) + = [Waz1(t)x + Wgpa(t)]
1 aw
-0 [é Wa1y - Wazl(ti] P35 T O (3.100)

Similarly, for G, where qz = O, the transformation functions can be
written as:

W4 W,
= = =
03] apl ’ Co apz ) Qs 0,
M 4 M4
t = pa Spl P2 Bpg - Wy
B oW W 4
T TRy
oW oW
oW oW
Ty TRy
X X
A o n i i
- 213 =3 =3 _ - —_—
e T T ! P17 api Pi1 7 Pig <at ' ot p1>
X X
At A on i i
- X3 238 o3 _ L _+
"B T T Ty P2 Ty, Pis T Pio (8}( D P2>

ong | Ong oy e
T3z = a +8\[;p3+6p piS—pi3—+§lj;-p3

Y i v
_ Ofag | Omgg . Onag + Ofag _ i«ii + ?fi (3.101)
Maggy = ay a\,]} Ps apl plS apiJ leS p33i 53/‘ 811, Ps .

where 1 = 1,2 in the expressions of w3, nos, 7as, and nszs. By following the
same steps as in the cases of G; and G, where W; and W, are formed, the charac-
teristic function W, for group G, can be determined, which is:
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degg
We = Wg1 p1 + [Wap1x + Wyupo(t)lps - Waoiy - at 7 + Wazoo(t)

(3.102)

where Wy1, Wyp1, are constants, and Wups and Wusos are functions of t. 1In
addition, the condition fo = 0 will lead to the following equation:

¢ ¢
Wai %{ + [Wap1x + Wypo(t)] %; T Wg2® = O (3.103)

The transformation functions for the two-parameter group are therefore:

1 OB
Gg: o1 = W11t + Wain , 0o = WgpiX + Wapn(t) , o = > W11y + =
1 dw OB
tE = - [; Wa11 - W32;] v ot _:ifa V- 3 (3.10L)
Gg: Q1 = Wa Op = Wypix + Weso(t) , as = O,
P Waop  _
£ = Waory + ¥ = Wagoo(t) (3.105)

dt

According to the theorems presented in Section 2. The absolute invariants
can be solved from the following system of equations:

at _ dx _ dy
(W11t + Wa1p) + aWy; [Wao1X + Wapa(t)] + a[Weoix + Weoa(t)] 1 OB
Wa11y *
2 ax
_ dy
B 1 aw 3B aw
- {5 Wa11 - Wazl] vt —dataz y-x te l}hzw + "—dff‘z y - W4322(t)] = ejde;
(3.106)

As an example, we consider the case in which B, Wgon, Wso1, and Wasoo are
all zero and Wgzy and Wyupo are constants. For this case, Eq. (3.106) becomes:

dt dx dy dy

Waiit + Waip + aWy, Wap1X + aWagp B (

1
-=Ws11 tWao1 ¥

1
= Wa11y >

2
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The three independent solutions to Eq. (3.107) are:

Wao1X + aWspoo

(W11t + Waip + & Wap)W % (3.108a)
- = (3.108b)
\/wsllt + w312 + a W41
and
! = Cs (3.108¢)

1
n - =

(Wa11t + Wa1o + alWyy)

where n = ngl/wsll. For the special case in which n = 1 and Ws;5 = O, elimina-
tion of a among Egs. (3.108a), (3.108b) and (3.108c) then gives

N

= Ca (5 . 1098‘)

N/W432JC b W41X

and

L = cg (3.109b)

N[W422t - W41X

The similarity wvariables are therefore:
)
no= - ,  f(n) = . (%3.110)
VWapot - Warx VWaogt - Warx

which is the second transformation obtained by Shuh,lo It demonstrates again
that this transformation should be obtained from a two-parameter group of trans-
formation instead of the one-parameter group of transformation given in Manohar's
work. This important point was shown by Moran and GagioliSfin a recent report,
which is supported here by the analysis using the method developed by the pres-
ent authors.

The boundary condition at the edge of the boundary layer is transformed
to the form:

o= e fle) = U (xt)
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which means Ue has to be a constant. It can be shown that this form of Ue
satisfies Egs. (3.100) and (3.103).

For other values of n in Eq. (3.108), it can be shown that Egs. (3.100)
and (3.10%) will not be satisfied even though transformations can be obtained.

3.2. APPLICATION TO THE NONLINEAR DIFFUSION EQUATION

As a second example, the nonlinear diffusion equation is considered. This
equation is:

d (n d [n
= (} %ﬁ) Yy (? %%) = %% (3.111)

which can be written as:

n n-1
F = y (peo +Pas) +ny (p3+p5) -p1 = O (3.112)
where
82
P1 = %% ’ P2 = %g s Poo = 2 ete.

The differential equation F = O, given in Eq. (3.112), will be invariant
under the two-parameter group of transformation

t' o=t + e (t,x,y,y) * 652&1(t,x,y,w)

x' = x +Bder0a(t,x,y,v) + 66262(t,x,y,w)

y' o=y + deraa(t,x,y,u) + Besoa(t,x,y,v)

W=y Beat(t,x,y,y) + Seal(t,x,¥,v)

P, = p; *Bean (4,%,7,4,P1,P2,P3) + Beont, (4,%,¥,¥,01,02,P3)
Pi; = Py T oem (6,%,3,9,P1, .0 4,Pa3) + Bean . (6,%,¥,0,P15 000, Paa)  (3.113)

UF = 0 (3.11L4)
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or, from Eq. (2.20c),

ey UsF + e5 USF = 0 (3.115)

Since e; and ey are arbitrary constants, Eq. (3%.115) gives

UiF = Oand UsF = O (3.116)

In their expanded form, Eq. (3.116) can be written as

oF oF . oF OF
041 at + Qo < ax 0/3 ay_ C a\‘[ l a_p + T[lj ale = 0 (5*1178«)
and
- OF - OF - OF O, - O - F _
o toe - O3 - + ¢ v + . Bpi + ﬂij apij 0 (3.117Dp)

The second step is to introduce two groups. Let us consider two groups
as follows:

Gi1: general point transformation (whose characteristic function W,
is therefore linear with respect to the p's,

Go: same as G; except the characteristic function be independent of
Da-

For group G,, substitution of F from Eq. (3.112) and the transformations
in terms of Wy from Egs. (2.25) to (2.28) into Eq. (3.117a) then gives:

f o+ f1pio * T2 P13 ¥ f3 Poz ¥ fapsz = O (3.118)
where
ro= [n‘lf_lpl - (B + pﬁﬂ (Pl %gf + P2 %L + Ps %gi - W1> + -aa—wtl-”rpl %%
- o™y, (%% + D2 _ag%> - oy (ag;l + ps %%}) - wn<%?— 2p afwgw
t P2 a;wzu + %?% + 2pp *aiﬂ—é + P35 a;wl> l:‘Jf-nPl - oy (p3 + p%)]

] (3.119)

P, By oy |
D ——=— + 2 +
{ dps oy T2 dps oy dy
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£, 0= 2 (Sgéwéi + ps Bingw} (3.120)
fp = 2 {ﬁ?—gy + P aiw&, (3.121)
(et ey )

Since the f's are independent of the f's, Eq. (3.118) is satisfied if the
following equations are true:

f = f; = f5 = fg = f, = 0 (3.124)
Now, the characteristic function W; can be written as:
Wy = wll<t)x’y,ﬂ!’):@l + wl2(t;x:y)\1f):p2 + ng(t,X,y,11r>p3 + wl4(t;x;y;\lf) (3.125)

The conditions f; = O and fy = 0, Egs. (3.120) and (3.121), show that Wy,
is independent of x, y, and y. The condition fg5 = O gives

Mip Mg N Mo Mg _ 0 (3.125)

6X ay P2 aw D3 allf

which can be separated into three equations, namely,

=tl2 0 o 0
oy
MW
iz _ -
> 0 (3.127a~c)
%2_%3 = O
X Ay

Equations (3.127a,b) show that both Wy, and Wig are independent of y. Equation
(3.127c) will be used later.

Similarly, the condition f, = 0 gives

W oW
13 , SN2 _
; + ; 0 (3.128)
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Finally, the condition fo = 0 gives

g, €171 *282D2 t g3 P2 t g4 Pz = O (3.129)

Since the functions g's are independent of p;, ps, and ps, Eq. (3.129) gives

g, =~ 81 < 8 = 83 T g4 = O (3.130)

which, in complete form, are:

W n [ 2w W
14 _ 14 14
3 v ( 2 + 552 > 0 (3.131)
dWll SWM -1 BWl Owl
- Ny Wi t+ it + > <é —g;ﬁ + _égﬁ = 0 (3.132)

oy oy e ay oy
W n-1 oW %W n Fw
12 _ 14 _ o5 14 14 _ .
S 2 - 2y 3 2 S 0 (3.134)
- ony®? ég;4 + a2 (5.135)

Equations (%.127c), (3.128), (3.131) through (%.135) are the conditions
to be satisfied by the functions Wii, Win, Wis, and Wi4 in the characteristic
function. Although the general solutions to these functions are difficult to
obtain, special cases can easily be investigated. For example, if we consider
the special case in which Wj4 is linear in y, then

Wia(t,%,5,0) = Wiga(t,x,7)v + Wiga(t,x,y) (3.136)

Equation (3.135) gives three equations, namely,

awlg]_ — awlgz - a_wl_a = 0
ay ay ot

from which we conclude that Wy4; and Wius, are independent of y and W5 is in-
dependent of t.
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Equation (3.134) gives

W n ow n-1 W
N2 _ RCLR SN ON142 _
3 2(n - 1)y x e ox 0

which can be separated into three equations (for n f 1) as follows

Mip _ Mign _ Mign _
¥ T x 0 (3-157)

Equation (3.137) shows that Wio is independent of t, and that Wy4; and Wiss
are independent of x.

Equation (3.131) is therefore satisfied automatically and Egs. (3.13%3)
and (3.132) become

- W -2 -1 (oW
- oyt <2 —8§3 * W141) +-nwn (Wigav + Wigp) - 2an ("8;3 t Wig1) = O
(3.138)
-2 -1 aw -1 - W
- nzwn (Wigay + Wigo) + nwn _a%l + nwn Wigr + 0yt (2 _8;3 t Wiga) = O
(3.139)

Summation of Egs. (3.138) and (3.139) then gives

n(l - n)wn—2w142 + nwn_l {%W141 +2 égia - gg%%} = 0 (3.1L0a)

from which,

Wige = O
oW1 dWi 1
+o =2 . — - 9 .1Lob
nWi4; t+ 2 ¥y it (3 )

Finally, conditions (3.127c) and (3.128) show that a function ¢;(x,y) can
be introduced such that

o o
e = L, W, - 2 (5-110)

and
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30, + o,
&2 dy®

= 0 (3.1L2)

The final form of the characteristic function for group G; is

0, d0, 1 g, 3%, j
Wy = Wii(t + == + = = - 2 T 14
1 11(t)pa Sy 2T % Pe T | at & dy v (3.143)
The transformation functions for group G, are therefore
= Wii(t)

30,
Q, = =
2 oy

(3.14k)
30,
Qs = —/=
S ox

o \
1 5 070y dWyg |
n ox dy dat wa

For group Gy, the characteristic function W, can be found by following
the same steps. If, in addition, W, is assumed to be linear in y, we then
get

1 dWE
Wo = Woi(t)py + Woops + 0 dtl v (3.145)

The transformation functions for group Gs are therefore:

a1 = ng(t)
az = Wz
i (3.146)
Qs = 0
. _ L dWp
¢ = - n dt ¥

The next step is to find the absolute invariants of the two-parameter
group Gip by solving the following system of equations:
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dt dx dy

Wip(t) + aWo1 (1) %%% + ailns %if
d\lj 7 _
1(dW %0, , & dip = eide (3.147)
“lnldt T xdy/ n 'gf‘ ¥

As an illustration, consider the case in which Wy;(t) = t, ¢; = xy, and
Wop is a constant. Equation (3.147) then becomes

|2

dt dx dy
- = = = . 8
t + a.W2l X + aW22 y _:_L_ eld€ (5 l)-l' )
v
Solutions to Eq. (%.148) are
X + alWpo .
t + a.wzl 1
—y -
T e, Co (3.149a-c)
____JL___I = ¢4

(t'*awel)n
To illiminate a, Eq. (%.149a) is first solved for a as follows:

g = —at =X (3.150)

W22 - ClW21

The parameter "a" from Eq. (3.150) is then substituted into Eqs. (3.149b,c)
and we get

(3.151a)

c
(Wost - Worx) N

= e (3.151b)

n
(Woot - Worx)
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The similarity transformation is therefore given by

VA
= , = .152
T Tiogt - Woax) (n) T (3.152)

. n
(Woot - Woix)

which is a form not given in the literature.
Consider now a third group Gg defined as:
Gsz: general point transformation with W5 independent of p;.

By following the same steps as before, the characteristic function is
found to be:

0 ¢ 2 %
Wy = '%%f Pt %5? bz - 7 S;‘g; v (3.153)

where 95 is any function of x and y satisfying the Laplace equation:

ax2 + ayE - 0 (5"15)"')

The transformation functions for group G are therefore:

oy = O
oo
0o = _6?73
(3.155)
o
g — gfh
n ox oy !

For a two-parameter group Ggp whose transformation functions are given by
Egs. (3.146) and (3.155), the absolute invariants can be solved from
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dt dx dy d\{r

alop (6) Qg . - a = 2 o, "8 diy eyde (3.156)
oy 22 ax nox oy n dt v

As an example, consider the case in which Wo; = t, Wos = O, and b5 = xy.
Equation (3.156) becomes:

dat dax dy
— = — = = = ol
" ” " eyde (3.157)
Solutions of Eq. (3.157) are:
X y v
1 = ¢, L% ca, oa © Cs (3.158)
£ a £ na

Elimination of "a" then gives:

which is given in the literature.-

Other groups can be defined and transformations found, by following ex-
actly the same steps as in the above examples.
%.%. CONCLUDING REMARKS

The method developed in thls section is seen to be very general and, like
other reports in the ser1es,7) »9 involves mostly algebraic manipulations. It

is systematic and does not require specification of an arbitrarily defined group
at the beginning. On the contrary, the group is systematically determined.

Lo



The method also supports the important point that reduction of r variables
can only be achieved by introducing a r-parameter group.5
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10.
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