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DEFORMATION OF ELLIPSOIDAL SHELLS OF REVOLUTION

SUMMARY

A single complex differential equation is deduced, and its solu-
tion by means of asymptotic integration is obtained, for thin elastic shells
of revolution of both uniform and nonuniform thickness. Specifically, the
stress distribution is determined for ellipsoidal shells of revolution under
edge loadings. It is found that the stresses in such shells are essentially
the same whether the thickness is uniform or varies 1in a certain specified
manner,

1. Introduction

The formulation of the theory of small deflection of shells of
revolution and its application, since H. Reissner's work! on spherical
shells of uniform thickness, has been the subject of numerous investigations.
A more recent formulation of finite deformation theory of shells of revolu-
tion, which also contains the theory of small deflection (linear theory) and
where an account of the historical development of the subject may be found,
was given by E. Reissner?,

The present paper considers the smaller deformation of thin elastic
ellipsoidal shells of revolution, with both uniform and nonuniform thickness,
under axisymmetric loading. The solutions obtained are by means of the
method of asymptotic integration ofca compleX differéntial eguatibn involving
a large parameter, An interesting feature of the results, which may be of
practical interest, is that the stress distribution in an ellipsoidal shell
of uniform thickness is found to be essentially the same as that of a shell
of nonuniform thickness (see Fig. 4) under the same loading.

While attention is devoted mainly to ellipsoidal shells of rev-
olution, both the complex differential equation mentioned and its solution
are entirely general and are applicable to all shells of revolution of
uniform thickness, as well as to a large class of shells of nonuniform
thickness.
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2. The Basic Equations of Shells of Revolution

In this section, we discuss briefly the basic equations of small
deformation of elastic shells of revolution, with reference to a more recent
formulation of the theory given by Eric Reissner?, Our discussion is gen-
eral and pertains to shells of variable, as well as uniform, thickness.

Using cylindrical coordinates r, ©, z, the parametric equation of
the middle surface of the shell (Fig. 1) may be represented by
r = r(t), z = z(t). (2.1)
Denoting by ¢ the slope of the tangent to the meridian of the shell, then

r' = a cos @, z' = o sin @, (2.2)

where

@ = [(z')® + (2)27F (2.3)

“and prime denotes differentiation with respect to €.

We note for future reference that the principal radii of curvature
r, and ry are, respectively, the :radius of curvature of the curve generat-
ing the middle surface and the length of the normal intercepted between
this curve (generating curve) and the axis of rotation. It follows from the
geometry of the middle surface that

r = rpsin @. (2.k4)

The stress resultants N, Ng, and Q, and the stress couples ME
and Mg acting on an element of the shell are shown in Fig. 1., Also, as in
Ref. 2, it is convenient to introduce:"horizontal" and "vertical" stress
resultants H and V, given by

a Né = r'H+ 2'V, aQ = =z'H+ 'V, (2.5)




Fig. 1
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We now record the basic equations of the small deflection theory
of elastic shells of revolution with axisymmetric loading.

rV = -frapvdg

alNyg = (rH)' + rao Py
r Ng = (rH) cos § + (rV) sin ¢
rQ = -rHsin@ + rVcos @ L (2.6)
M = D [p' + vl p]
€ p T
M = D [ p+vp]
° Qa r
u = %ﬁ [Ny - v W]
. z' '
v o= f[?(l\r§ - v N -rtplag,

where B is the negative change in ¢ due to deformation; u and:w are the
components of displacement in the radial and axial directions; py and py
denote the components of load intensity in the r and z directions; h is the
thickness of the shell, and

3
1, p . =0 , (2.7)
Eh 12 (1-v®)

E and v being Young's modulus and Poisson's ratio, respectively.
The components of stress, due to stress couples (bending) and

due to stress resultants N, and Ng (membrane), as well as the shearing
stress T, are defined in the usual manner by

ey = (g )pay e b = \9gp/max =
\ (2.8)
- Ne - _ Neo _ 39
O%m = 7 Sm = 3 v T T &
)

where subscripts b and m refer to bending and membrane stresses respectively.

L
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With B and rH as basic variables, proper elimination between equa-
tions (2.6), differential equations of equilibrium and compatibility, leads
to the following two second-order differential equations:

pr 4 LD/@)' go _prty2 _y (&'Df) gy 2 (rm) = X (xv) (2:9)
(rD/a) d (rD/x) (rd/a) (rdD/x)

E) 4 (B myr - [(Eh)z 4 v /0O ) o _2_p

(r/ca) r (r/ca) (r/ca)
_ zip! ( { CCt)' . 7! p
= [ ~ + v ?r/Ca) ] (xV) + v = (rv) (2.10)
[(r Ca)! r'

3. Normal Form of the Differential Equations

Substitution of the quantities C and D from (2.7) into (2.9) and
(2.10) and rearrangement of terms result in :

L, (B) + V[Ml'—+ h'f—']B +

o a2m  (Po
/) 3% F oo () ¥
. (3.1)
- (@) (9) mV
= (rzho) ( h) = oot ¢
. (r'fo) h' r' em (B
Ly (v) v[(r/a) * 3V o- %—ﬁ;(ﬂr@)ﬁ
" . (3.2)
+ 2B 4 ovbtr L o0 (x)]y = z. B,
h T T h (v/a) Eh2

where Z denotes the right-hand side of (2.10), h, is the value of h at some
reference section (say & = go), and
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R O e R L [(;'/gg" F3BIC ) - EDRC )
v = %Eg ., om o= [12(1-v®)1Y2 . ©-2)
In (3.1) and (3.2), let
n -z (e) (3.4)

where p is constant and it is to be noted that f(t) is independent of the
thickness h(¢). Then multiplication throughout (3.1) and (3.2) by
{h[ho f(g)]'l} results in

L(B) + vA8 + 2u8 = F (3.5)
L(¥) - (v-8) ¥ - 2p28 = G, (3.6)
where
’T
L) = RN ()
- (2t /e B '
A [h £(e)] {.(r/d) * 3T ‘} }
5 = Q[Eg—f(ﬁ)]-l {%1 + 2v%i§; + %‘;g)'}
Foo= 2u2 ™Y cot ¢
Eh®
h -l
G = E%E [jg £(e)]  z

Introducing the complex function

U = B+ iky ; i (3.8)
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where k is an arbitrary function of £ to be determined, the differential
equations (3.5) and (3.6) may be combined to read

L '
BpZ " DuE) -
L (U) = 2p2(ik--2ﬁ%){5+[ik(“ V*;)”\y}
(e - 52 (5.9)
hO -1 r 1" \V' )' h l\
EACRIO R R R (ig) 3%k

kK =  -1—— (vA - %) + {1 - [E%g (vA - g)]?-} o (3.10)

with the restriction (the implication of this restriction will be discussed
later) that

k' = k" = 0, (3.11)
(3.9) transforms into
L(U) = 2u2 (ik-Y2)Uu + (F+ 1ike) . (3.12)
2u2

By putting the last complex differential equation in the form

VA
o n, £(¢)
1, (U) - 1248 hOh(k +31208) pyu - _O“E—' (F + 1kG)

and observing that the coefficient of U', resulting from the application of
the operator L, defined by (3.3) is

= rlrfa) 3h!
R = [(r/a) + h]
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and that

exp [1/2f RaE) = 132 (r/o)¥/?

then, with the aid of the transformation

o= (2R E)Ry (3.13)

h, o

we obtain

W' (242 2 T2 (6) + A(e)I W - [ﬁl 541/2 £(¢) (F + 1ka), (3.14)

(0]

which is the normal form of (3.11) and where

h
T2 = (x + i YA Y (Z2) f(e)
2u% b (3.15)
= -1/2 (/)" S AL @) L @)z
AS (r/a) (r/a) g

- ﬁzlgll.kl - " h'y2
3/2(r/a)h 32 & - 3% ()7

J

We now return to (3.12) and observe that condition (3.11) is ful-
filled only if k is a constant, and this may be achieved by proper choice
of A and &. In particular, we note the following two cases:

(a). For shells of variable thickness, and with reference to differential
equation (3.12), the condition (3%.11) is satisfied, provided (vA - Q) is
constant. Thus, by (3.7) 2

{m ol e v%%%§ h} . kee),  (3.16)
r r/Q
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where K is any constant. A particular choice of thickness h(t) may De
obtained from (3.16) by setting K = 0. This corresponds to the vanishing
value of (vA - %), or by (3.10) to k = 1.

(b). For shells of uniform thickness, & vanishes identically and we have

A o= £7HE) [iﬂlﬁlll] , 8 = O (3.17)
(r/a)

Clearly, A is a function of & and its form is determined by the geometry
of the middle surface. However, for numerous shell configurations A, and
by (3.10) k, are either exactly or very nearly constant.

Tt should be mentioned that whenever the radius of curvature of
the generating curve r; is a constant (rp may be a function of &), then
with proper choice of ¢ (¢ = @) and by (2.2), (3.4), and (3.17), A and
thus k are in fact constant. The cases of conical shell and toroidal shell
treated recently by ClarkS are included in thiscclass,

4, Solution of Differential Equation by Asymptotic Integration

Let us first consider the homogeneous differential equation
associated with (3.14), namely

W+ [2 1% F3(e) + A(E)IW = o (4.1)

According to Langer?, the solution of (4.l) admits asymptotic
representation with respect to u2 (as a large parameter) as dictated by
the coefficient of W; i.e., both ¥2 and /\ are suitably regular and
bounded over a finite interval of the £&-axis. Also, there exists a related
differential equation (Langer's related differential equation) of the form

Y o+ [21%2 F2(g) + o(e)]Y = O (h.2)
whose solution

Y - [I'lfﬂgdg]y‘? AT 1 (n) + BJ (n) (4.3)

n+2 n+2
€o

9
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Thus, (4.3) is an

approximate solution of (L.1).

In (4.3), A and B are arbitrary constants, n is the order to which
¥ 2 vanishes at £,, and ® and n are defined by

A C M R
(o1)® fg > (h.b)
n = 21 B Yag,
o
where
: A
8 - i'lf xae
Eo b (L.5)
12k =
X = % [f Tat]
£

For the sake of clarity and completeness, it is expedient to
describe briefly the so-called Stokes' phenomenon4’5 which often arises in
the solution of the differential equations of the type (L4.2).

With n = 0, ¥ 2 is bounded from zero everywhere in the interval
of convergence (t-axis) and (4.3) becomes

. . [{_1f£dg]l/2 {AJ,VQ (M) + By o (ﬁ)}, (4.6)
which, by means of well-known relations, may be written as
t e T g entam ¢ B exp(im}, (5.7)
where Ajand B, are constants and
k] (4.8)

= (e13)V/? uf Fae .

10
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Clearly, (4.7) is an asymptotic solution of (L.1l), and with the
necessary provision that ¥ 2 vanishes nowhere in the interval of convergence,
the constants A, and By will be single-valued. 1If, on the other hand, T2
vanishes at some point go within the interval, then (L.7) tends to infinity
at £, and is multi-valued in the neighborhood of €5 This multi-valued
character of the solution (or of the constants Ao and Bo) in the interval
excluding €5 is Stokes' phenomenon.

By reversing the procedure that led from (4.3) to (L4.6) and to
(4.7), we may represent solution (4.7) in terms of Bessel functions and
then generalize to obtain (4.3) with single-valued coefficients A and B,
when ¥ 2 vanishes to the degree n at some point €, and only go, within the
interval of convergence. Thus, solution (4.3) is free from the difficulties
associated with Stokes' phenomenon.

If in (k.1) the restriction on /\is relaxed so that it is no
longer bounded everywhere in the interval, but has a pole of, at most,
order 2 at £,, then the Stokes' phenomenon is present and quantitatively
depends on the nature of the pole. In such cases the representation of W
in terms of Bessel functions is still possible, and furthermore is valid at

£y

We now return to the inhomogeneous equation (3.14) and note that
in the presence of load intensity Py and Py, the right-hand side of (3.1h)
does not vanish. In addition to solution (4.3), it then becomes necessary
to obtain an appropriate particular integral of (3.14). Such particular
integrals are relatively easy to obtain and it will suffice to state that
they may be determined approximately by the membrane theory of shells® or

use may be made of a more recent method developed by Clark and Reissner” .

5. Ellipsoidal Shells of Uniform Thickness.

Let us consider an ellipsoidal shell of revolution whose middle
surface in rectangular cartesian coordinates is specified by

2 2 2
By, 2o, (5.1)

a and ¢ being the semi-major axes of the ellipsoid.

Choosing the independent variable & as @, it follows from the
geometry of the middle surface and (2.2) that o = r;. The radii of curva-
ture are

2
I‘l = 9 = c 3/2 3 I’2 = a ]/2 (5'2)
a [1 + p2 cos2(] [1 + p2 cos2(]

11
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and by (2.k4)

r = a_sin ¢ (5.3)
[1 + 02 cos2g]V/2

where

From (3.4) and (3.7) by (5.2), we have

22 = @ ()m, () = (1+ 02 cost) (5:5)

and

5 = 0, A o= - E; (1 + p2 cos2g)®/2 | (5.6)
a

where m is given by (3.3). Since we are concerned here with shells of
uniform thickness, in the remainder of this section hy will be replaced by h.

With a view toward approximating k to a constant, so that condition
(3.11) is fulfilled, we note that restriction of (c/a) to O(1l) is con-
sistent with vA < < 2u2, and by (3.10), [1 - (vA/2u2)2]*2 =1 or k = 1.
Thus by this approximation, equation (4.1l) is valid and the functions ¥?2
and /\ as well as transformation (3.13) read

¥2 = (1 +p2 cc>s2¢)'5/2
2 2 . > (5.72)
A = -3 [ cot gy , 3 [_0o%in®d
o+ p2 cos2()® 16 (1 + p2 cos2(
+ 302 cos2 @ ]+ 192 [sin2¢_+ p2 cos2( 1
2 (1 + p2 cos2f) 2 (1 + p2 cos2¢)®

12
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and
W = [sin @ (1 + p2 cos2¢)]l/é U . (5.7b)

Differential equation (4.1), with ¥ 2 and /\ given by (5.7a), has
regular singular points at ¢§ = nx (n = O, +1, ...). Thus by section k,
Stokes' phenomenon is present in the interval 0 < |¢| < n. However, since
geometrically ¢ is never negative, we may restrict the solution to the sub-
interval 0 < ¢ < n, and adopt the form of (4.7) as the general solution
for ellipsoidal shells of revolution (with uniform thickness) under edge
loadings. Hence

-1/2 f

{

hew (1) + Bew (i)}, (5.8)
where A and B are complex constants, and
o= (2% e (5.92)

5 2, 135 4
@ = d = - - — " v e
JF A ¢ ¢ [l_ 5 p= + 256 p% + ]

1 5 135
- = sin2g [ p2 - p% + ... ]
2 88 " 2% (5.9b)

+ % sin2@ cos2@ [—-Lizp4 Foeaol + 4

128

The function @ (¢;S)'is tabulated in Table I for various values
of c/a, in 2° increments of the angle . For c/a = 1, which is the case
of the spherical shell, @ reduces to ¢ as may be seen from (5.9b).

With + in = ¥ (1+1) @, (5.8) becomes

-1/2
W o= J 1/ {A [cos u® + i sin p 0] eH?

(5.10)
-ud
+ Bfcos p® - 1isinpo]e™ } ’

and by (5.7), (5.10), and (3.8) the quentities B, V¥, B', and V', which will

13



Values of @ (@;c/a)

TABLE I

S/

= f(l + p2 cos2() ag

for Shells of Uniform Thickness

= 0.7

mijo

0
.069908
.139698
.209260
278475
3hT237
L15436
18297
549754
.615685
.680688
.7hl58Y
807612
.869410
.950027
.989u27
LOUT5Th
104450
160036
214330
267335
.319058
.369521
118749
166768
.513620
559345
.603987
647598
.690232
.T31943
L772786
312826
.852115
.890719
.928696
.966108
.002722
2.039469
2.075538
2.111273
2.146735
2.181978
2.217055
2.252026
2.286941

MHEFRFFRRPRPPRRRFRFRFRRRRRRRRP0O0000000000000O0

= 0.8

ol Kol

0
.056965
.113860
.170619
227170
283453
339399
.394950
450049
504640
.558671
.612099
664882
.716982
. 768368
.819013
.868893
917995
.96630L
.013819
.060534
106451
.151580
195932
239522
282369
32449k
365926
406691
446818
486341
525293
563708
601624
639080
676109
1.712755
1.749052
1.785040
1.820760
1.856248
1.891545
1.926689
1.961715
1.996667
2,0%31580

HHEFRPRPHFMFPFFRPPRPFFFRFPRPROOOO0OO0OO0000O00000000O0

(]

pjo

0

il ol ol e NoNeNoRoRoNoNeNoRoNo No N oNoRo o Ro Re Ro Re Re Ro Xe

H

1k

= 0.9

.04L 965
.089899
J3RTTT
179570
224248
.268787
.313162
357345
L0131k
L5049
188524
.531728
574640
617243
.659530
. 701483
.T43097
.78436M
825279
.8658140
.906042
.945890
.985385
.02453%2
.063336
.101803
139946
L7772
.215295
252526
.2890478
1,326171
1.36261%
1.398829
1.434830
1.470635
1.506265
1.541736
1.577066
1.612278
1.647391
1.682421
1.717391
1.7523%23
1.787231

aieleNoloNeoRoloNoNoNeNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoRoNoNoRoNoRoNeo No)

(¢
= =1.10 g = 1.20
0 0
.027910 0.025211
.055834 0.050423
.083778 0.075637
111758 0.100853
.139787 0.126074
.167875 0.151305
.196034 0.176552
224278 0.201818
.25261h 0.227116
.281060 0.252455
.309625 0.277848
.3383%23 0.303311
367164 0.328861
.396160 0.354515
1425325 0.380299
L454669 0.406231
L48Lh202 0.432336
513934 0.458639
.543879 0.485168
S5Th041 0.511948
.60L431 0.539003
.635057 0.566362
665923 0.594046
.697036 0.622078
.728399 0.650483
.T60017 0.679278
.791889 0.708478
.824015 0.738097
.856395 0.7681L46
.889023 0.798628
.92189% 0.829547
. 95500k 0.860900
.988342 0.892681
.021901 0.924877
1.05566k4 0.957hTh
1.08962k 0.990451
1.123762 1.023785
1.15806k4 1.057hhT
1.192512 1.09140k
1.227086 1.125623
1.261769 1.16006k
1.296540 1.194686
1.331377 1.229445
1.366257 1.264297
1.401159 1.299196
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be needed in the solution of examples that follow immediately, are

(1 + p2 cos?¢)l/8 Ie“@ (Ag cos p & - A sin p 0)

B A
[s ud
sin @ \f e (Bo cos p @ + By sin u ©)
o (5.11a)
H i 0}
. (1 + o2 cos?¢)l/8 e (go sin p + Ay cos p @)
Nsin ¢ - e (B0 sin p® - By cos u @)
-1/2 _9/8
B! = -L B + u sin ' ¢ (1 + p2 cos2p) M
-8/8 (5.11b)
Vo= LY o+ p sin'l/2¢“(l + p2 cos2() N,
where
L = % cot @ (1 + p2 cosz¢)'l [2 (1 + pé) - p2 sin2(]
u@ -p'q)

M = [(Ap - A;) e - (Bp -By)e” ]cospud

- [(ap + Ay) eH? (Bg + By) e‘“Q] sin u @j} (
5.12)

N = {[(A0 + Ay) eh? (Bo + B1) eH®1 cos p @

v [l - &) e + (B - By) ™) sinp o}
and y,
A = Aj+1ihA, B = By+ 1B . (5.13)

To illustrate the nature of the solution just obtained, two
examples for ellipsoidal shells of revolution (closed at the apex ¢ = 0)
with uniform thickness, under edge loadings only will be considered: (1)
uniform stress couple Mg applied around the edge § = n/2, and (2) uniform
radial stress resultant Hy applied around the edgev¢ = ﬂ/2. In both these
examples, the transition conditions at the apex ¢ = 0 require that

g = 0; B, B', ¥, ¥' remain finite. (5.1k4)

Since ¢ = 0 is a regular singular point, (5.11la,b) are not valid there. How-
ever, guided by the solution of corresponding examples of spherical shells®,
and on account of physical requirements, evidently instead of (5.14) we may

15
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require that quantities B, B', V¥, ¥' be finite in the neighborhood of the
pole ¢ = 0. This is achieved by setting at the outset the constants Bj,
and B, equal to zero in (5.1la, b) and (5.12).

Example (1): The boundary conditions in this case are

(5.1%a)

i
¢
-
O
il
(@

5 Mg

N E

or equivalently
=25 B = 5M, ¥ =o0. (5.15b)

Applying the above conditions to equations (5.11), the constants
A, and A, are determined as follows:

"
A = [2m _ e © cos w0] My
Eh? (c/a)?

(5.16)

g
P
|

SER B ethgin o] N, ,
EhZ (c/a)? '

where &, = o(% ; S) .
2 a

Using (2.10), the components of stress were obtained for the case
(c/a) = 0.8 (see Table I), (a/h) = 20, and v = 0.3 (i.e., u = 3.679).

Flgure 2 shows the ratio of these stresses to that of Upkf defined by 0Ny =
éMy/h2.

Example (2): With boundary conditions

¢ = g, Q = By, Mg =0 (5.17a)
or
= 2[. = ma 1 - .
¢ 57 v e B > B 0 (5.17b)

16
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and proceeding as in the previous example, the constants A, and A, are

Ay = [EEE e-Ho2 (cos p @ + sinp &)] Hy
Eh (5.18)
-pd
A, = [%%5 e H2 (cos p @& - sinp &)] Hy .

As in example (1), the ratio of the stresses to that of og. =
3 H0/2h'are plotted in Fig. 3; again these results are for the case of c/a =
0.8, a/h = 20, and v = 0.3.

6. Ellipsoidal Shells of Nonuniform Thickness

Tt was shown in section 3, that condition (3.11) is satisfied
identically if the thickness of the shell is such as to satisfy equation
(3.16). Again, we choose the variable ¢ as @ and recall that relations
(5.1) to (5.5), whic¢h were obtained from consideration of the middle surface
only, are valid here. Thus on substitutions from (5.2) and (5.3), (3.16)
reads as follows:

Woe cot § [gg (1-v) - 3 p2 sin2f] n'
(l + p2 c082¢) a (6'1)
+ pe2 h = K (1+ p20082¢)-5/2 ’

82 (1 + p2 cos2p)

where K is any constant.

While any choice of h(@) which satisfies (6.1) falls within the
‘scope of the application of differential equation (3.14), when adapted to
ellipsoidal shells of revolution, we shall confine our attention to the
case where K = 0, or by (3.10), k = 1. With K = O, the solution of (6.1)
about the analytic point @ = n/2 in the interval of convergence 0 < @ < x
may be taken in the form

[}

e b cos? g | (6.2)
ho 2n
n=

18
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where @ = /2 is the reference section, so that hy = h(g) and

~
Vv c2
b2 = E:’?'
b, = L2k -2 (24v)]
8 & a, (6.3)
by = E;_” 02 bo) + %ge (n-2)
N\
- i; [(n-2) + v%}bn_Q ; n >,

Since, irrespective of the thickness variation, the solution of
(4.1) does not hold at § = O, the form of h(@) given by (6.2), which is
also invalid at this singular point, should not be disturbing. In fact, as
may be seen from Fig. 4, this particular choice of variation in the thick-
ness is of practical interest [In plotting this curve, 12 terms in the
solution of (6.2) were used].

Lo , 1_ ’
09
5|2
2
07>
0.5 L
o 10 30 50 70 90
¢ IN DEGREES
Fig. b

With (6.2), the transformation (3.13) is

W = [sin @ (1 + p2 cos2g)]*/2 (f_-‘)e/z U (6.4)
O
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and the functions ¥2 and /\.in (4.1) become

_ , h -5/2
¥2 = @+ %ﬁz) (ﬁg) (1 + p2 cos2g) (6.5)
= -3 ixfe)  h , 3BT 4 3 (b2
A I 2 (r/fa) n 2 e
where
\
A = -(B) (L+p2 cos2¢)3/2 c2 {l _ 3 cos®p (2bp + kb, cos3f + ...) j}
ho a® 1 - by cos2@ - b, cos%f + ...
h' | sinog [bo + 2D, cos2f + 3bg cost@ + ...] (6.6)
h [1 - by cos®f - b, cos®*P + ...]
' o= [—sin2¢ (2bs + 12b, cos2p + ...) + cos2F (2b, + Ub, cos2@ + o))
u 1 - by cos2p - b, cos*@ + ...
(rfo)r . cos ff [ 1+ 02 (cos2@ - 2 sin2@)]
(r/a) sin ¢ (1 + p2cos2@)
y

ande&O = j\xfg) is given by (5.7a).

As in section 5, again ¥ 2 is bounded from zero everywhere within
the interval of convergence and the solution of (4.l) may be written as

W= FVE { Aein 4 B Ein_} , (6.7)
where A and B are constants and

(213)2/2 | o

‘jf(l v 1 Y2 (14 g2 coszg) ™/ (%3)1/2 ag. S (6.8)

=
|

©
"

2u2

In combination, (6.7) and (6.8) constitute an "exact" asymptotic
solution of (4.l) for ellipsoidal shells of revolution, when the thickness
is specified by (6.2).

21



ENGINEERING RESEARCH INSTITUTE -+ UNIVERSITY OF MICHIGAN

If now c/a is restricted to 0(1), then (1 + 1YA)12 =1 and the
function & of (6.8) becomes op

B

o = \jp(l + p? coszsé)”s/4 (%?)1/2 ag (6.92a)
= g1 - g 02 + %%g 0% + .... + P2 - %g bz p2 + %% (b, + % b3) + ....]
-581n2¢ pZ-;;Zp‘!‘ -%4?%%1)29 -.f_é(b +2D5) e
+ L cineg cosZ¢ 128 % + ... g; bop2 + % (by + % b2) + ....]
toeeees
and
¥ - (EE)l/Z (1 + o2 cos2@)” & (6.9b)

h

Expressed in terms of trigonometric functions, W will have the

form of (5.10), except that ® and ¥ are now given by (6.9). With the
aid of (6.4), the quantities B, V, B', and V' are
n \-5/a 1/2 1/8 _W
B = () sin™" ¢ (1 + p2 cos2@) {cos ud (A exp (ud) +
hg
B, exp (-p®)] + sin pd [By exp (-p@) - A; exp (u®)]} \(6.10a.)
v o= (%%)-5/4 sin'l/2¢ (1 + p2 coszg)'’® iLcos ud (A, exp (uo) + |
B, exp (-p®)] + sin po [AO exp (u®) - B, exp (-HQ)])
B' = (l}-)q/4 sin-l/2¢ (1 + p2 cos?(é)-g/8 M- L+ % %%] B
h, (6.10b)
\p.l = " (_E_)—7/4 3 -l/2¢ 1+p2 COSZ¢— ,SN-.[L-{—-Z.I}.L]\V,
hy L h
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where L, M, and N are defined as in (5.12), with ® and F given by (6.9),
and Ao, Ay, B, and B, are related to A and B by (5.13).

In order to study the effect of the variable thickness on the
stress distribution, let us consider the case which corresponds to example
(1) of the previous section, namely: an ellipsoidal shell of revolution of
nonuniform thickness [specified by (6.2)] under the action of a uniform
stress couple M, applied around the edge ¢ = ﬁ/2.

Again, the transition corditions at the apex = O require that
By =By =0 (see section 5), and the boundary conditions

¢ = g ;Mg o= My, Q=0

result in

2m
A, = [Eh02 TE%ETQ e ™"t cos uo, 1 M,
(6.11)
2m -0 .
A = M e M1 gin ud, 1 Mo ,

where @, = ®(g ; %

Table II provides values of ®(§ ; c/a) appropriate to (6.2) for
the case c/a = 0.8, in 2° increments of the angle §.

TABLE II

c/a) = \Zq(l + p2 cos2‘¢)-5/4 Eg)l/? ag

Values of ¢ (@ ;
h(@) given by

for 6.2) and c/a = 0.8 D
ge ® I’ o @° 3 o) ge o
0 0 ol 0.704565 48 1.30237h T2 1.782562
2 0.060573 26 0.759346 50 1.346302 h 1.819017
L 0.121060 28 0.813279 52 1.389395 76 1.855127
6 0.18138k 30 0.866338 5l 1.431687 78 1.890936
8 0.241463 32 0.918493 56 1.473211 80 1.926487
10 0.301219 3 0.969729 58 1.514007 82 1.961826
12 0.360574 36 1,020035 60 1.554110 8L 1.996996
1h 0.419460 38 1.06940k4 62 1.593%561 86 2.032036
16 0477765 40 1.117836 an 1.632406 88 2.066992
18 0.535544 42 1.165335 66 1.670683 90 2.101900
20 0.592618 LY 1.211914 68 1.708k40
22 0.64897h 46 1.257587 70 1. 745776
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The stresses which were obtained for the case c/a = 0.8, a/hj = 20,
and v = 0.3 are not plotted because for all practical purposes they are the
same as those (for ellipsoidal shell of uniform thickness) shown in Fig. 2.
To substantiate this, a comparison is made in Table III between the stress
distribution of the present case with the corresponding quantities for the
shell of uniform thickness [Example (1), section 5],

, TABLE III
Vv
g° 20 40 60 70 80 90
jgg fh:ho -0,00111 -0.03975 +0.06863 +0.33327 +0.7327h  1.00000
G lh:h(¢) -0.00017 =-0.0%3937 +0.06996 +0.33329  0.72856 1.00000
3 bI’h=ho 0.00143  0.0L723  0.01527  0.10406  0.23156 0.30000
UMol.h=h(¢) 0.00178 -0.01688 +0.01558  0.1040L 0.23030  0.30000
o 5h=ho 0.00125  0.00148 -0.00692 -0.00920 -0.00535 0.00000

% |n=h(g)  0.00099  0.00159 -0.00687 -0.0092L -0.00535 0.00000

ogm_{h= . 0.00421  -0.0092% -0.09672 -0.1005% +0.06062 0.55075

Mo 1h=h(¢) 0.00409 -0.00873 -0,09573 -0.09807 +0.06263 0.55075

T_(b=h,  -0.00068 -0.00187  0.0179T  0.0379%2  0.0i550  0.00000
Mo | n=h(f) -0.0005% -0,00200  0.01785  0.0379%  0.04548  0.00000

7. Concluding Remarks

The very close agreement between the results for shells of uniform
and nonuniform thickness is, at least at first glance, somewhat surprising
and warrants the following comments.

The results for the case of nonuniform thickness (communicated in
Table ITII) should not be considered as affected by the approximation intro-
duced immediately following (6.8), since this very same approximation was
also used for the case of uniform thickness. Returning, however, to (6.5),
an examination of /\ (@) reveals that the quantity in the bracket, which is
due to the variation of thickness, is finite and small with respect to p2
everywhere within the interval of convergence. Hence, this gquantity will
have but a small-effect on the asymptotic integration of the differential
equation (4.1) with respect to u2.

2k
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Furthermore, as may be seen from Fig. L, the variation of h/h,
should not lead to much deviation of ® in (6.9) from that of (5.9b). That
this is indeed the case is apparent from proper comparison of Tables I and
II.

It is reasonable to expect that other forms of variation in the thick-
ness, as solutions of (6.1) with K £ O, should result in a more appreciable
deviation of the stress distribution from that of the case of uniform thick-
ness. For, in such cases the quantity k will no longer be unity, and this
may result in a more pronounced effect on the stresses.

In conclusion, we reiterate that although attention has been given
specifically to ellipsoidal shells of revolution, the results obtained in
sections 2 - 4 are quite general and applicable to all shells of revolution.

25




— ENGINEERING RESEARCH INSTITUTE -+ UNIVERSITY OF MICHIGAN —

REFERENCES

1. H. Reissner, "Spannungen in Kugelschalen (Kuppeln)", Festschrift
Mueller-Breslau, 181-193 (1912).

2. Eric Reissner, "On the Theory of Thin Elastic Shells", H. Reissner
Anniv. Vol., 231-247 (1949).

3. R A. Clark, "On the Theory of Thin Elastic Toroidal Shells, J. Math.
Phys. 29, 146-178 (1950). '

4, R. E. Langer, "On the Asymptotic Solution of Ordinary Differential
Equations", Trans. Am. Math. Soc. 33, 23-64 (1931).

5. R. E. Langer, "On the Asymptotic Solution of Ordinary Differential
Equations, with Reference to the Stokes' Phenomenon about a Singular

6. F. B. Hildebrand, "On Asymptotic Integration in Shell Theory", Proc.
3rd. Symp. in Appl. Math. 3, 53-66 (1950).

7. R. A. Clark and E. Reissner, "Bending of Curved Tubes", Advances in
Applied Mechanics II, Academic Press, pp. 93-122, 1950.

8. 0. Blumenthal, "Uber asymptotische Integration von Differentialglei-
chungen mit Anwendung auf die Berechnung von Spannungen in Kugelschalen",
Proc. Fifth Int. Cong. Math. 2, 319-327 (1912).







