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1. INTRODUCTION

The quasi-static treatment of problems in the linear theory of visco-
elasticity has received increasing attention in recent years. The method of
solution employed in such problems rests on the use of Laplace transform (to
eliminate dependence on time), and the correspondence principle - between the
field equations and boundary conditions in the linear theories of homogeneous
and isotropic elasticity and viscoelasticity - which has been established for
incompressible media by Alfrey [1], and in general form by Lee [2]1. Evident-
1y, the solution of viscoelastic problems in which the inertia effects are
taken into account have been so far limited to the one-dimensional wave prop-
agation in viscoelastic rods, such as those discussed in [4,5,6,7].

Closely related to the scope of the present investigation is the recent
work on vibrations of thin shallow elastic shells by E. Reissner [8], who, by
utilizing the linear differential equations due to Marguerre [9], has shown
that for transverse vibrations of shallow shells the longitudinal inertia
terms (with negligible error) may be omitted; and hence the formulation of the
elastokinetic problems of shallow shells, as in the case of elastistatics, may
be reduced to the determination of axial displacement and an Airy stress func-
tion. Subsequently, E. Reissner [10] dealt with transverse vibrations of axi-
symmetric shallow elastic spherical shells, and in particular obtained the
solution for an unlimited shell due to an oscillating point load (varying har-
monically in time) at the apex.

The present paper is concerned with the response of shallow viscoelastic
spherical shells to arbitrary time-dependent axisymmetric loads; the medium
is assumed homogeneous and isotropic. Although emphasis is placed on un-
limited shallow spherical shells, shallow spherical shell segments are also
considered and discussed in Sec. 7. The solutions, employing the differential
equations governing the transverse motion of thin shallow elastic shells, are
obtained with the joint use of the Laplace and the Hankel transforms which, by
interchanging the order of the inversions, avoids an otherwise intricate task
of contour integration in the complex Laplace transform-plane. Explicit re-
sults in integral form are deduced for viscoelastic shells under instantaneous
pulse loading (including those uniformly distributed about and concentrated at
the apex), and are particularized to the cases of Maxwell and Kelvin solids.
The solutions for a shallow elastic shell and for the case of a flat plate are

1. The extension of Lee's analogy to problems involving time-dependent tem-
perature fields has been very recently given by Sternberg [3], where an expo-
sition of the subject may be found. For other references, see [2,3,4,5,6,7].



also given as by-products of the general solution and comparison is made with
known results [10]. It may be further noted that the transform technique em-
ployed here appears to be useful also in connection with other axisymmetric
problems of stress wave propagation in viscoelastic solids.

2. PRELIMINARY BACKGROUND

With reference to rectangular Cartesian coordinates xi, the stress-strain
law for an isotropic and homogeneous viscoelastic medium may be written as?

Fw@ s, =F® e

CACESS (2.1)
%(G)OZL-'B() i
where o.. and €;; are the components of the stress and the strain tensor, 8 s

i :
and i3 éesignate the deviatoric components of stress and strain, the operators
P,(0) involving the constant coefficients Cén) (m = 1,2,3,4) are defined by

Nm.
v n (Nm)
Fa@=2 e 6n 5e, "zl
> (2.2)

6

and t denotes time.

|

For future reference, we also recall that the Laplace transform with re-
spect to t of a (suitably restricted) function U(x,t) is given by5

A @ _st
U(x,s) = o@{U(xzt)Js}ES e U(X)t) dt (2.3)

o

where s 1s the transform parameter, and that the Hankel transform of order

2. The Latin indices have, unless otherwise stated, the range of i, = 1,2,
3, and the repeated indices imply the summation convention.

5. See, for example, Churchill [11]; the argument x in U refers to the
space variable.
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A
zero of the function U(x,s) is dﬁi}ned by

* A
Us) =\ x J (5x) Jws) o (2.4)

provided that (i) the integra&.o}'m ﬁ(x, )dx 1is absolutely convergent, and
(ii) the function ¥ is of boundeé)varlatlon over the region of interest.
Furthermore, in connection with the Hankel transform of BU/BX (x,8), we need
the property that (iii) xﬁ(x s) vanishes at x = O and as x + o; this en-
sures the existencé of the inverse transform of U*(g,s).

As the operators P, (6) in the physical plane become Py(s) in the Le-
place transform-plane, the Laplace transform of (2.1) may alternatively (in a
form more suitable to the theory of shells) be written as”

A -1 A -1
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where Bij is the Kronecker delta.

It follows from the correSpondencevprinciple6 that the field equations
and the boundary conditions governing the original viscoelastic problem are
reducible to the field equations and boundary conditions of an associated
broblem in the linear theory of elasticity, with Young's modulus E and
Poisson's ratio v of the elastic solid replaced by

EG) A 3ReRe
= [ﬂ(s)@(snzﬁ (5)3(5)] (2.6)

Hs) [FoRe-ReRe]

L. See, for example, Sneddon [12]. It may be noted here that the Hankel
transform defined by (2.4) formally differs from that defined in [17]: how-
ever, with the transformatlon U(s s8) = x'1/2 f (f being the function cor-
re8pond1ng to 0 in [17], multiplying both sides of (2.4) by §1/2 and set-
ting 7 = §1/2 U*, the two definitions are brought together.

5. It should be noted that unlike P ( ) the operators P (G) are in gen-
eral noncommutative [13].

6. The correspondence principle as stated by Sternberg [3] holds also in- the
presence of inertia forces.



It is easily verified that the correspondence principle and the results
(2.6) are also valid for any of the various (consistent) theories of thin

shells.

We also note that in (2.6) the linear, homogeneous,and isotropic elastic
medium may be identified by allowing E(s) - E and v(s) + v (corresponding to
Pi(s) =Py =1, Pg(s)=2p, Pa(s) = 3K, p and K being the shear and the bulk

moduli of the elastic solid, respectively).

and (2.6) becomes

-l
Pey=s+c Py =2/s

Be) =S ) P4($)=3KS

E(s)% S

S + —'-;- )

4+ _~|
S+ 35" 4 ¥

S + —;— (+r)c!

y(s) =

where T = n/u is the relaxation time,-n being the viscosity.

the Kelvin solid

and.

vhere in (2.8b) T

R(s) = , P =.z/o(/+cs)

By =cs , 'F’4(s) =3Kzs

denotes the retardation time.

For the Maxwell solid

(2.7a)

(2.70)

Similarly, for

(2.8a)

(2.8b)



3, DIFFERENTIAL EQUATIONS FOR TRANSVERSE VIBRATIONS OF SHALLOW
ELASTIC SPHERICAL SHELLS

Let H denote the rise of the shell segment, L the characteristic length
(which for spherical shells may be conveniently taken as the radius of curva-
ture R), h the shell thickness, p the density, and vy (defined by y™2 =
paﬁ/E, ® being the circular frequency) the representative wavelength. Then,
for transverse vibrations of thin shallow elastic shells, with the stipulation
that (H/L)2 << 1 and (h/y)2 << 1, it has been shown By E. Reissner [8] that the
effect of longitudinal inertia (in comparison with transverse inertia) may be
omitted (with negligible error) from the differential equations governing the
motion of the shell as long as'

(7{—) 21 L= (5.1)

Thus, with references to polar coordinates (r designating the polar ra-
dius) and with omission of the longitudinal inertia term, the differential
equations for the axisymmetric transverse vibrations of shallow elastic spher-

ical shells are characterized by [10]
v 1 vrF = (1)
DY VW +g VF=-p atﬁf/’
A ’% V2 =0 e

and the various stress resultants and stress couples are given by

F’ N9=F”5VAF‘;'5F/

)

l
Ny = %
M, = -D[w"s 2L 2’| , M, =-D[L'+yw’] (3.30)

Q =-Dyw) (3.3¢)

where w 1s the axial displacement, ¥ 1s the Airy stress function, p 1is
the axial component of the surface load, D = Eh3/12(1-v2), v2 ( ) = ( )"
1/r ( )', and prime denotes differentiation with respect to r.

7. In [8], E. Reissner has further remarked that the neglect of the effect

of longitudinal inertia is permissible when (%) << 1 but not when (%) > 1.



It is also relevant to recall here that the steady state solution.(for
axisymmetric transverse vibrations of shallow elastic spherical shells)
given by E. Reissner [10], where w and F are assumed to have the form
w o= W(r) eI F = £(r) 0t [i - (-1)1/2], involves Bessel functions
(Jo» Yo, Io, Ko) of argument Ar where

4 -2 R .2
) =-—/~‘Z—£—}-€£)—é [/—("x‘)] (3.4)

Indeed, since by (3.1) the case of (%) = 1 (corresponding to A = 0) is not
admissible, for axisymmetric vibrations treated in [10] two sets of solutions
of (3.2) associated with the two frequency ranges (7) z 1 exist.

The integration of the second of (3.2), together with the condition of
vanishing circumferential displacement (which as in the elastostatic solu-
tion of shallow spherical shells [14] demands the vanishing of the coef-
ficient of the logarithmic term) leads to

VF = _’%’? w +C@) (3.5)

If attention is confined to unlimited shallow shells, then since w(w,t) = O
and y2F(o,t) = O [the latter condition, by (3.3a), is due to independent
vanishing of N, and Ng at r = «], it follows that in (3.5) C(t) = 0 and for
unlimited shallow shells the system of differential equations (5.2) reduces
t.o

DV'Vw+x VF = /J»Q et (5.6)
V-5

Furthermore, for unlimited spherical shells, the remaining boundary con-
ditions associated with (3.6) are

1 (00, t) = Var(»t) =0 5.7)

and the regularity requirements for oscillating distributed load are Speci-
fied by

2 ©t), ' Ot), N ©ot), Ngort) 5 fine (5.62)

. .8b)
M, ©01), My t) ; fencte ©



and those appropriate for an oscillating point load are given by (3.8a).

L. UNLIMITED SHALLOW VISCOELASTIC SPHERICAL SHELLS

The differential equations and the boundary conditions (as well as the
regularity requirements) appropriate for an unlimited shallow viscoelastic
spherical shell (0 < r < w), subjected to an arbitrary time-dependent axi-
symmetric load, foiiowiﬂg the application of the Laplace transform, and with
an appeal to the correspondence principle (Sec. 2), are cobtained from (3.6),
(3.7), and (%.8) with the moduli E and v (of the elastic solid) replaced by
E(s) and v(s), respectively. In particular with zero initial conditions, i.e.,

w(~,0) = .a_.zt‘__’(a,o) =F®o0) =0 (k1)
0

the differential equations of motion in the Laplace transform-plane read

De) Vv wr +é—VlF +/£szz3— =/6A

A
VF - __f_g@;, (h.2)

As the solution of the system of differential equations (L4.2) involves
Kelvin functions whose arguments are polynomials (of fourth degree for com-
pressible and second degree for incompressible media) in s, thus prohibiting
simple inversions, the determination of w and F will in general require
cumbersome contour integration in the complex Laplace transform-plane. To
overcome this difficulty, we consider the application of Hankel transform of
order zero to (M.Q), and require that w and its derivatives up to the fourtl
end F' and its derivatives up to the first, vanish to a suitable order at in-
finity such that all integrals employed in the following analysis exist.

Recalling the formula tor the derivative of Hankel transform of order
zero [12, p. 62], i.e.,

S (Vlal}) 2 Jo (2¥)de = - gz w*(g) $) (k.32)
0

and by iteration

¥ iaa 4 * (4.3b)
S (VV w)2J@rg)dt =§ w (§)s)
0
then, with the aid of (4.5), and application of the Hankel transform of zero
order to (4.2), we reach



D) 54 w* + 'f% (v*F)* +phs’ w --:/7*
WZF)# - ﬁ,é‘(s) ZJ*

Elimination of (V2F)¥ from (4.4) results in

.y _
Z}*_—_ ]5'(5) [ 54 +)ko4 (s)] /5*(§) s) (h.5)

(k)

where

il

2 S 2 S1

>\j /2%;,; ;ﬂ— [HR (i—(s, )}
-4 2[1-7)] s (.6a)

=4+ £ E s

24 (Rf)l (1.6b)

2 [/ -y‘(sJ]

pu—

It is now clear that since the right-hand side of (4.5) involves only
polynomials 1n ¢ and s, the inversion of w* in s is easily carried out, and
its inversion in the Hankel transform parameter ¢ (being a real variable) is
also possible. Thus by first taking the inverse Laplace transform of (4.5),
followed by the inverse Hankel transform (which is a self-reciprocating trans-
form), we obtain t

2 (2 t) :JE J(’(/Lg)o{g SL—,{/*(SJS)SS}x
L)

-l . 4 \4 ]" (4.70)

(4. 72)

It remains to determine the function ¥. However, since F does not neces-
sarily conform to the requirements for the validity of its Hankel transform,
while Ny and Ng as given by (3.3a) are independently finite at r = O and
vanish at r = o, we proceed instead to establish y2 F and l/r F'. To this end
we turn to the second of (4.4) and, with the aid of (k.5), write

2% LEG) * ot 2 _@)}-’.(4.8)
Y F) = . /5 {Du% +/;€$+ 7




Again, taking the inverse Laplace transform of (4.8) followed by the inverse
Hankel transform, we obtain

Ve - [T geds [ p0;
5}06-'{5(5) W(gjs)o)'t-ﬂ}dlS (4.9a)

and by intergration, since N.(o,t) = Ne(o,t) =,%Y72F(o,t) s

2
a
Na, - 7'5 F’= -/-';i S X [V Ft)ox (4. 9v)
o}

which completes the desired solution.

Before closing this section, we record some special types of loading as
well as their Hankel transforms, which will be of interest presently.

For
a pulse instantaneously applied and removed at t = tg

/(4,?5) = g(/z,) S(ﬁ—t,) (L.10)

where the Dirac delta function is defined by

d(t-t,) =0, (t#2,)
Uste-tydt =1

(L.11)

If, on the other hand, the pulse applied at t = t, continues to act indefi-
nitely, then it is-only necessary to replace 8(t-ty,) in (4.10) with the Heavi-
side step function H(t-ty) defined by

1 (ﬁ—t‘,)O)
H(t'ta) = *'i' (f':to)

o (t<t,) (h.12)°

Among the various forms which the function q(r) may assume we specifically

cite those associated with (a) uniformly distributed pulse over 0 < r < a(a/R << 1),
8.

The use of the letter H with argument (t—to) for the Heaviside step func-
tion should not be confused with the notation for the shell rise in Sec. 2.



and (b) point load pulse applied at r = 0, each given \respectively) by

g@) = —/’, fH(a-2) (k. 135)
3(/),) = - 2_ S(’L) (4.13b)

Also, for future reference, the Hankel transform of q specified by (4.13a)
and (4.1%b) are given, respectively, by [12, p. 88]

Z*(ﬁ) = - 'f—‘ J( 5) (4.14a)

and by [15, p. 67]

P (b.14D)

?*(5) = -

5. THE ELASTIC SOLUTION AS A BY-PRODUCT. REDUCTION TO KNOWN RESULTS

By allowing E(s) = E and v(s) > v in (4.5) and (4.8), and by taking their
inverse transforms , Wwe deduce the complete solution for the unlimited shal-
low elastic spherical shell under arbitrary time-dependent axisymmetric load.

In particular, when the load is specified by (4.10) and (4.13%a), then with the
aid of (L.lka) and tables of integral transforms [16, Teble 5.2] and [9, p. 323],
there follows

‘ oo
wcat)z_fﬂﬁgq,%ﬁ,(ag)qbd% (5.1)
’ PR
5 4 , X £ o
F R
v = - Je8)J eE)ddE (5.2)

F @t 450 f;R Ax | o
| Y

b - L {(é)/z“’"[”‘(/g)"] “‘w} (5.3)
5™ L 1+ (o]

As further specialization of the above solution, consider the case of a
flat plate by letting R + » and setting F = 0. Thus, for an infinite elas-

where

10



tic circular plate subjected to a pulse uniformly distributed over O §>f < a,
(5.1) reduces to

W)= —f—-— (”g)/lfgsc g)“{('z Setl

(5.4)

which, with t, = 0, the notation r E/p 1/2 t, and the use of [17, Table 8.2]

becomes
w(uﬁ)_ / [/z(/-y) ] Qz-%'f—)l(;y)(“)

SL) = -y A"’”‘dx = luy S“w (5.5b)
L )

Si(r) being the sine integral.

(5.52)

In the remainder of this section, we confine attention to shallow elastic
spherical shells subjected to loading of the types

4boi?
St) = fH@4) e -
wl

(5.6p)

put) = T dw &

which vary harmonically in time. For such steady state solutions, it is more
convenient to return to the viscoelastic solution (4.5) in the Laplace-Hankel
transform-plane. Following Lee [6] we replace s by iw in all quantities ex-
cept in p*(&,s) which is replaced by p¥(t), and then take the inverse Hankel
transform leading to the (real) steady state amplitude W(r) for the axial dis-
placement. When p(r,t) is specified by (5.6a), through the process just de-
scribed and with the aid of (4.1ka), we obtain

07 38T @E)

Wer =240 ) Tera ]

along with similar expressions for ¥2f and f'(r), f(r) being the amplitude
of F(r,t). Unfortunately, the solution (5.7) does not admit a closed represen-
tation; and probably for this case a more direct approach, involving the use of
the elastic solution of the problem [10], and the Laplace transform,will (from
a practical point of view) prove fruitful.

dg (5.7)

9. Here, this process is equivalent to taking the inverse Laplace transform.

11



For the steady state solution due to an oscillating point load specified by
(5.6b), with the aid of (4.14b), W and v2f are given by

gw §J,E)
W) = "D [§4+>\ﬂ

Ak

(5.8a)

Viw = - _%f W) (5.60)

The integral in (5.8a) with Kg as positive, admits a closed representation
[17, Table 8.2]. Hence

W) = “—’5‘3 kei (A2) (5.9)

which is in exact agreement with the results given in [10] for (R/y)2>1 or w2 >
(E/p)/R® (corresponding to A§>0); in (5.9) kei x (together with ber x, bei x,
and ker x to be introduced presently) are the Kelvin functions

On the other hand, if in (5.8) A%2<0, i.e., for (R/y)2<1 or w2 <(E/p)/RZ,
we introduce the guantity N\ through
-L'J}

>\4

o

Af (5.10)

[where, by (4.6a) with s

replaced by iw, A is defined by (3.4)] and also em-
ploy the relations [18]

k%(i-) = -iI- [.4, Jo(e—cg-i) Y (ét% 3) o
+<J (eai) Y( 4z ] (5.11a)
ke (2) = [J(e z)MY(e "z)

BT ST et

z = x + iy is complex. Thus, for Ae < 0, substitution of (5.11)

and (5.10) into (5.8) and the use of [15, Table 8.2] lead to expressions whose
real partslo, i.e.

W_.: RO. {%—;\i[&@ow +ZY Q) -< T IO /a)‘)

whose argument

(5.122a)

10. It may be recalled that on account of the assumed form of the exponential

time-dependence of the solution, the various quantities are in general complex,
and their real parts give the desired results.

12



g Rﬂ' (f [ O - T Y On) +4 TI0 +2-£n.2']

(5.12p)

agree with the corresponding results in [8]ll for (R/y) <1

6. SOLUTIONS FOR SPECIAL VISCOELASTIC MATERIALS

As N(s), specified by (4.6), contains fourth-degree polynomials in s, for
simplicity's sake we limit ourselves to incompressible media (v = 1/2), in which
case (2.6) and (4.6) become

-1
E(s) = i PP @

2.
X = [ = ] (€
?2 EG)
and deduce explicit solutions for the viscoelastic Maxwell and Kelvin solids.

(a) For the incompressible Maxwell solid with the aid of (2.7b), (6.1)
reduces to

£ (s) > _ £
S +r"

4 3 (6.2)
>\o (5) = ££1 fk ]

As tables for inverse transforms of the functions involved here are available,
we turn to (4.5) and write

- *
W) = Zﬁ S;‘ A )
§ £>€‘ [s +sz+
s+T -l (6.3a)

= -———/5 58) s|(staoy')*+ (p-aoy g

m*]

11. With (5.10) and with the use of known relations of the type (see e.g.,
[18, p. 20])

o(1%/2 x) = [bei x + 1 ber x] + 2 [~ ker x + 1 ket x]

(5.12) for the range R/y > 1 may be reduced to the form (5.9); in this connec-
tion compare with [10, Egs. (42) to (45)].

13



where

/2
/3 :{(—ﬁ—{)(%—)l[w(/é)"]} ! (6.30)

Then, for instantaneous pulse specified by (4.10), recalling the Laplace trans-
form of the ®-function [11, p. 27], as well as its inverse transform [11, p.

%2%], and using [16, Table 5.2], we take the inverse (Laplace followed by Han-

kel) transforms of (6.%a) to obtain

w(at) -___y [g;m:m&)] % {(-

t t°z
<C94 (-3 1) -

z/ -(w)' 0 /l(t t) }
P g=r Al 2e) ]> (6.1)

In a similar manner

v Fost) = /—)% [Te g*csmoug)j{
RS
27

£ | t)] } dt

2

- L

4 (6.5)

and F', as in Sec. 4, is obtained by integration.

(b) For the incompressible Kelvin solid with the aid of (2.8b), (6.1)
reads as

£(s) = (J#Ts)E

g st Hem] e
>‘()- Ep (/+Ts)

and again to avoid the convolution integral in (4.7) and (4.9), we return to
(4.5) and (4.8) and obtain

(6.6)

14



(st N (tt)
) = /) f[sg(wusﬂe x

4lpl- T e} =
Al 1- &)

‘“Ezgﬂkt't;)

Ve = £E £ (577 Ten]e*
con A1~ NPt S 4

|- () 7%
Nl P1I-65 )] (t-2) (6.8)
1;/3[: (rzé)z Va <<: :>>

In the above solutions, it is to be noted that as t + x, the second
term in the integrand of (6.4) diminishes exponentially while the first re-
mains finite. Hence, under instantaneous loading, the shell medium for the
Maxwell solid will assume a permanent deformation; no such effect is present
in the solution (6.7) for the Kelvin solid. That this observation is not un-
expected becomes evident by merely recalling the absence and presence of a
restoring force in the one-dimensional Maxwell and Kelvin models, respectively.
On the other hand, for an oscillatory load which itself (unlike an instan-
taneous load) supplies the restoring force, no permanent deformation takes
place in the Maxwell medium.

As the integrals appearing in the solution (6.4) and (6.5), as well as
(6.7) and (6.8), converge rapidly, numerical evaluation of the results is
feasible. By way of example, with R/h 30 and for a pulse of the type
(4.10) and (4.13a) uniformly distributed over the circular region O < r/4
< a/£ = 0.257, the plots of the axial displacement observed at t/T =
1o, 05 x 1076 for the incompressible Maxwell and Kelvin solids (both media

being characterized by
‘\1/2
@A;.L. = 2x10%
(R/7)
12

in the range of 0 < r/1 < 3 are shown respectively in Figs. 1 and 2. Also
shown in Fig. 1 is the axial displacement for an elastic shell due to the same

12. The numerical work resulting in Figs. 1 and 2 was carried out on the I.B.M
704 electronic computer.

15



pulse and observed at the same time as that of the Maxwell (and Kelvin) solid;
the apparent coincidence of the two solutions (which are not the same) in

Fig. 1 is due to the fact that in the range plotted, their numerical dif-
ference occurs only in the fourth significant figure. For further comparison,
the axial displacement of an infinite elastic plate (for both compressible and
incompressible media) of corresponding thickness, subjected to the same identi-
cal pulse, and observed at the same corresponding time, i.e.

OLERRE

is shown in Fig. 3.

The displacement contours in Figs. 1 and 2 are reminiscent of those of a
viscoelastic rod under impact given by Lee and Kanter [4], who attributed this
behavior to the fact that the differential equations (of the rod) for the Max-
well and elastic solids are hyperbolic and therefore admit wave phenomena,
while the differential equation for the Kelvin solid is parabolic and represents
a diffusion phenomenon. It is furthermore of interest to note that for all
three solutions presented in Figs. 1 and 2, as well as for the case of the
elastic plate in Fig. 3, at any instant t > O and at any finite distance from
the origin, there is some small disturbance resulting from the instantaneous
load at t = 0. This implies that some components of the responsé propagate
with very high velocities and that the shell (or plate) acts as a dispersive
conductor for transverse waves. It is this dispersive effect which makes it
difficult to clearly locate the wave front in either the elastic or the visco-
elastic shell. If, however, for purposes of discussion we consider the inner-
most zero value of the disturbance in Figs. 1, 2, and 3, as defining a pseudo
wave front, then it is seen that such a front moves with a smaller velocity
than that of a sound wave. The position of this latter wave front, considered
as originating at the outer edge of the loaded region (a/f = 0.257) at the time
of impact and moving outward with the velocity (E/p)l/2, is indicated by the
vertical dashed line in Figs. 1 to 3.

‘. SHALLOW VISCOELASTIC SHELL SEGMENTS

The solutions for shallow viscoelastic spherical shell segments, in princi-
ple, may be obtained in a manner similar to those for unlimited shallow shells
(Sec. 4); the chief difference, however, is the use of finite Hankel transform
(in place of Hankel transform) together with some manipulations necessary in
order to accommodate the edge boundary conditions of the shell segment, Al-
though the method of solution (to be discussed presently) permits the treatment
of shell segments with various boundary conditions (such as those considered in
[14], i.e., simply supported, clamped, etc.), for simplicity's sake we confine
attention to the case of shallow spherical shell segments (O 5 r:§ ro) with

simply supported edge at r = r Here, the regularity requirements at r = 0O

0"
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are identical with (3.8), and the boundary conditions are given by

W, t)=N,»,t) =M@ t)=0 (7.1)

Before proceeding further, we recall that the finite Hankel transform of
a (suitably restricted) function U(r s), as well as its inverse transform in
the interval 0 < r < r, are defined respectively by [12, p. 83]

* J"’o A
U(é‘.s =§ @J(é§,)U(@S)d¢ (7.2a)
and
(j (1,8) = Z U (8. % @5) (7.20)
) (T8
where £

are the roots of the transcendental equation

Jo (/Lo gL) = (7.2c)

and in (7.2b), the summation is intended over all positive roots of (7.2¢)

After introducing the new variables v and G

1_/?’1 2
V=2r- 4'4 eV, U =V Wit
G=VF - G, , G, =V F(/zo,t)) (7.3)

defined to satisfy

]

i

V(a,t) =T v @,t) = Gt)=0 (71)

we return to (3.2) and, following the application of Laplace transform (with
zero initial conditions) and with an appeal to the correspondence principle,
we deduce

DS V'Y v +_T‘€<é +é) »/5(4 s)

vlé‘_ R Es)

(7.5)



From the finite Hankel transform of (7.5), there eventually follows

?}*<§4.)S) = [§ + X (S)l { (S> J, 2.5,) v(S)
% )Gu /’Cse»s) } (7.62)

_RD© §, D

and

4 T a4 A
G#(g.)s) = g;@ ,]I(;,,og_)[gjju,\o(s)] {—5_3 X ) Us)

a . 4
- &6 +R £6s) D'(s)[§j+>°<$>
RD® &,

IR IRYCE D z}cs)} (7.60)

The above two equations may be put in the form

?f*(§,-‘,8) = 2; f'*(i;) s) - GA §:(§¢.)s) + vf'&g‘,)s) (7.7a)

G(&s) = z'} ag(g.,S) - C-Aro ?}Z(gc.)S) + Gf(gc.}s) (7.70)

where the functions fl, f2, g-)f, 8o, vale, and Gl are defined by direct comparison

with (7.6). It may be noted here that except for vi and Gy all other functions
involved in (7.7) are polynomials in the Laplace parameter s.

In order to eliminate the functions ’V:O

and ﬁo, we take the inverse Hankel
transform of (7.7) and obtain

Dws) = § 09 - L6 5wy (7.8e)
G@®,s) = v %‘ *s8) - G, %l(’%s) + G’ *5) J (7.8b)

and also by the second of (7 3)

s 97 3F - G S’é’ [’_%‘(2('2)5)].&7
A A A
+ Z)¢; S‘ )Z%()I, S)OL‘Z + S\ 'ZGK'[,S)J,? (7.8¢)
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In view of the functional form of My in (3.3), we next introduce the operator

o, > 9 (7.9)

and with the aid of (7.3), by virtue of the last two of the boundary condi-
tions (7. l) when applled to (7.8), determine %o and Go as functions of

A N
fl) f2) gl) g2, Vl) and Gy 1.e.,

?:Z{“‘[A §l(¢o,8)] [A§l(¢,,,8)]" f 1%, 47
f’z[' AL

[AS(@O)S)] /\_2;(4,“5) /\S(/:, $) §7A47
-7

(7.10a)

and
2

Cieeiga] fi e[} e

Next, substituting (7.10) into (7.8), and taking the inverse Laplace transform
followed by inverse Hankel transform, we obtain

L8 fnst]
L6 55605t +d 57 9); ]}[——-——
Gut) = 5 Z{OC"[OE g 4.9)t] -

% J@8,)
[ o %’2 S) t} +o£> [ "t} [———-—-—~J| (@og‘,)tlz (7.12)

'U'(A)'b) =

which together with (7.3) and (7.10) formally complete the solution for simply
supported shallow viscoelastic spherical shell segments subjected to arbitrary
time-dependent axisymmetric loads.
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