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This paper considers linear probabilistic constrained programming problems. Such
problems can be transformed to equivalent optimization of an auxiliary random vari-
able distribution quantile function. The General Minimax Approach allows us to
obtain an upper bound on the optimal value of the objective function of the equiv-
alent problem. An algorithm for application linear programming solution technique
to improve this upper bound is presented. We present also an algorithm to reduce a
subset of the considered problems to unconditional quantile optimization problems.
In this case we propose to use the stochastic quasi gradient algorithm for quantile
function optimization to obtain an asymptotic exact solution of the equivalent prob-

lem.
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1 Introduction.

In this paper we consider the following probabilistic constrained programming prob-
lem:

gochu—mrLin (1.1)

subject to:

®o(u) = P{w: Au+ Bw <b} > «
AﬂtSbl

where u is (nx1) vector of control variables; ¢, b,b; are accordingly (nxl), (mxl),
(myx1) given deterministic vectors; w is (mgx1) random vector with given probabil-
ity distribution; A, A;, B are given deterministic matrices of appropriate dimensions.
The practical importance of these problem is well known. We only refer to a few
papers [8],[15],[20],[21], where the interested reader can find different applications of
this problem.

In general, methods for the solution of such problems are based [17] on the application
of suitable nonlinear programming techniques supplied by Monte Carlo simulation
procedures or procedures for calculation multidimensional integrals [2],[3],[17] to find

values and gradients of the probability functions. The list of these methods includes



the following: sequantial unconstrained minimization technique [4],[19], method of
feasible direction [5],[16], supporting hyperplane method [20],[21],[22], reduced gradi-
ent method [12],[13].

In many practically important cases, however, the confidence level « is interpreted
as system reliability, so « is close to unity. In this case, the procedure for calculating
value and gradient of the probability function ®g(u), using Monte Carlo or multidi-
mensional integration techniques, becomes complicated or loses precision.

On the other hand, prcblem (1.1) can be rewritten [5] as an equivalent quantile op-

timization in the following form:
min @, (u) (1.2)

subject to:

Alu S bl.

Here the quantile function ®,(u) is:
®,(u) = min{p : P{w: Tu < ¢, Au+ Bw < b} > a}

This allows us to use the General Minimax Approach (GMA) [11] to obtain an upper
bound on the optimal value of the objective function. Let us define ®(u) = c’u

and the vector function Q(u,w) = Au + Bw, then according to GMA, the solution

(®4,1q) of the following problem:

min ®(u) (1.3)
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subject to:

s QL) < b

Alu S bl’

where F, is a confidence set with probability measure more or equal «, has the
property:

min @, (u) < &, (1.4)

for all feasible u. The maximum of the vector function @(u,w) means the maximum

of each it components, i.e.

max A,u+ Biw 1=1,m.
weE,

The quality of the upper bound , essentially depends on the selection of the confi-
dence set E,. For standard Gaussian distribution of random vector w, it is convenient
[11] to select E, as a sphere C, centered at the mathematical expectation of the ran-
dom vector w with probability measure a.

In the problem under consideration, ®(u) and @(u, w) are linear functions. Hence we
can apply linear programming solution techniques to obtain a guaranteeing solution,
i.e an upper bound ®,. In this paper an algorithm for improving this guaranteeing
solution, using a sequence of linear programming solutions, is considered.

Often it is possible to reduce the initial problem (1.1) to an equivalent unconditional

quantile optimization problem, i.e. problem (1.2) without additional probabilistic



constraints on the function @Q(u,w) and the new function ®, which can depend on
the random vector w, i. e. ® = ®(u,w). We present in this paper a general algorithm
for this reduction. This algorithm distinguishes some class of initial problems (1.1),
wich can be reduced to the equivalent unconditional quantile optimization problem.
It allows also us to use a stochastic quasi gradient algorithm [6],[7] to obtain an
asymptotically exact solution of the equivalent problem. This algorithm is especially
effective in the case of optimizing high confidence level quantile functions. We can
also accelerate the convergence of this algorithm using the guaranteeing solution as a

good starting point. We discuss the application of this techniques in our paper.

2  Algorithm for reduction to equivalent uncon-

ditional quantile optimization problem

Let us consider initial problem (1.1) and write the general solution of the equation

¢ = cTu. It can be written in the following form [1]:
i = (Yo + (1 - (), 2.1)

where [ is (nxn) identity matrix; z € ®" and (c7)* is the pseudoinverse with respect
to vector ¢I. The pseudoinverse (cI)* can be defined [1] as a matrix (nx1), which

satisfies the Penrose conditions [16]:
(N () = ()"
()l = (2.2)
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() and (N)*cTare symmetric matrices.

Then we can select (T as [10]:
() =Ve(TVe) T, (2.3)

where V' is (nxn) matrix, which satisfies the following conditions:

Ve #0
(2.4)
VeeT is symmetric.

Let us write the conditions of the initial problem (1.1) using general solution (2.1)

Plw: A(c") o+ A(I = (T)*cT)z 4+ Bw < b} > o

(2.5)
Al Yo+ Ai(I = ()2 < by
Our goal is to reduce (2.5) to the following form:
Plw: A*24+ B*w - b*<¢p*} > a
(2.6)

Atz < b},

where ©* = (¢, ¢,...,0)T,0* € ®™"; A* B*, b*, A}, b} are deterministic matrices and
vectors with corresponding dimensions: (m*xn),(m*xmy),(m*x1), (mjxn), (mixl);
m™, m] are new dimensions.

It is obvious, that according to this goal, it is sufficient to select matrix V in such
a way, that every element of the column vector A(c?)t becomes negative, every
element of the column vector A;(cT)* becomes nonpositive, and matrix V satisfies
(2.4). When some ith element of the column vector A;(cT)* is negative, we add: the
corresponding row Ayi.(I — (¢7)*cT)/(A1i(cT)*) to matrix A*, a row consisting of

6



zeroes to matrix B*, an element by;/(A;.(cT)*) to column vector b* and an element

¢ to column vector ¢*. This allows us to obtain an equivalent system of restrictions

in the form (2.6).
Let us consider V' as a matrix of n? variables v;;, ¢ = 1,n, ;7 = I,n. Hence, by

(2.3),(2.4),(2.5), for obtaining the required matrix V, it is nesessary to find feasible

solution of one of the following systems of restrictions:

AVe< —e, 1=1,m

-

Ve >e,
(2.7)
Vil =ViCi, i,j=Tn, j#i,
Ah'.VC < 0, 1= 1,m1
or
AVe>e, 1=1,m,
Ve < —e,
(2.8)

where C = cc7.

Both (2.7) and (2.8) are systems of linear inequalities and equations. To obtain
nonstrong inequalities, we replace zero on the right side of the strong inequalities (2.7),
(2.8) by a small parameter e, whicn has absolute value close to zero. In this case, we
can apply the first phase of the standard symplex method [14] to find feasible solutions

of the restrictions systems (2.7),(2.8). Hence, it was shown, that the following lemma

holds:



Lemma 2.1 If there exists a feasible solution of at least one of the restriction systems

(2.7),(2.8), then the initial problem’s restriction system can be reduced to the form in
2.6).

If we obtained the system of inequalities (2.6), then we can write initial optimization

problem (1.1) in the following form:

 — min (2.9)

subject to:

Plu: Az +bw—b <o, i=Tm)>q,
Alz < b

Problem (2.9) is an unconditional quantile minimization problem:
®,(2) — min (2.10)

subject to:

Atz < B,

where ®,(z) is confidence level a quantile function of auxiliary random variable:

®(z,w) = max {A}z+ Biw — b’} (2.11)

1=1,m*

Lemma 2.1 select some class of the initial optimization problems (1.1), which can be

reduced to the form (2.10).



3 Methods for the solution of the equivalent

problem.

Fist of all we extend the results concerning the guaranteeing solution, which was
obtained in [15], to the general case of quantile optimization problem (1.2). Let w be
a standard normally distributed vector. Assume, that the function ® depends also
on random vector w, and can be expressed in the form (2.11).

Under this assumption we can write the general quantile optimization problem for

the case under consideration in the following form:
o = Oy(u) — min (3.1)

subject to :

Aju < b7,

where ®,(u) = min{p : P{A*u + B*w — b* < ¢*; Au+ Bw — b < 0} > «}, and
©* = (©,¢,...,0) € R™". Here the control variable u has dimension (nx1); the random
vector w has dimension (m2x1); vectors b, b*, b7 are accordingly (mx1),(m*x1),(m}x1)
given vectors, and other matrices and vectors have corresponding dimensions.

In fact, optimization problems (1.2) and (2.10) are particular cases of the quantile
optimization problem in general form (3.1). Hence, the algorithm presented below
can be applied to them too.

According to GMA, the problem for obtaining the guaranteeing solution of (3.1)



can be written in the following form:

¢ — min (3.2)

subject to:

maXyeE, A:U, + B:w - b: S ®, i

1]
3

maxyep, Aru+ BLw -6 <0, | (3.3)

Il
—_
g
3
S

Aju < b3

Let us consider the confidence set F, as a sphere Ey, centered at the mathematical
expectation of the random vector w with probability measure a. Denote a radius of
the confidence sphere Fy, as Ry.

All functions in (3.3) are linear functions of the control variable v. Maximums in
(3.3) with Fy, insted of E, can be found analytically. Suppose they are attained at
the points w? € R™2 for 1 = T, m* and at the points w € ®™ for [ = 1, m.

Define the solution of (3.2),(3.3) as (42, ®9). Let us consider a new confidence sphere
E\ with radius Ry < Ry, then P(E;,) < a. Consider also a solution of new proplem

(3.2),(3.3) with Ey4 insted of Eg,. Define it (41, ®!). Then the following set:

Brw<®! +br—Ardl, i=T,m*

- a) 9

o8
Il
g

B].w _<_ bl - Al.’&;, 1= ,m

has the property: Ei, € C. Hence, P(C) > P(Eyq).
Lemma 3.1 IfP(C') > a, then (I)(lx is an upper bound on the quantile function optimal
value of problem (8.1) and the following inequality holds: éi < (Pg

Proof.
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1. Consider the set C (3.4) as a confidence set instad of E,. Then inequalities

(3.3) are:

Alu+ <i>(11 — Al <o, 1=1,m*
(3.3)

Aiu— Al <0, I=1,m
It is obvious that (3.5) holds for the solution (&L, ). Hence (&, d!) is a feasible
solution for problem (3.2),(3.3), with C instad of confidence set E,. It follows from
the condition of lemma, that P(C) > . Therefore, % is an upper bound on the

objective function optimal value in the problem (3.1) [11].

2. Let the maxima on Ey, in (3.3) be attained at the points w}!, for : = 1,m*, and

at the points w}, for [ = I,m. Then by R; < R, the following inequalities hold:

Biw! < Bfw?, i=1,m*
(3.6)
Biw} < Blwl, 1=T1,m.

In fact, (42,99) is the solution of the problem (3.2),(3.3). So by (3.3),(3.6),

inequalities

A0 + Brw! —br < @0 =T m*
(3.7)

A’ + Bowl =5 <0, I=1,m
also hold. Hence, (42, 9) is a feasible solution for problem (3.2),(3.3) with Ei, instad
of E,. However (4L, 1) is the optimal solution of this problem. Therefore, ® < $°.
This completes the proof of this lemma. O
This lemma allows us to present the following algorithm for obtaining an improved

upper bound on ®,(-):
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Step 0. k = 0. Set linear program (3.2),(3.3) solution ®° as an upper bound on
the ®,(-).

Step 1. Decrease with given decrement h, a radius of the confidence sphere Fj,.
Find a solution (@i¥+1, ®**1) of the linear programming problem (3.2),(3.3) with new
confidence sphere insted of the Fy,.

Step 2. Check the inequality P(C) > a, where C is from (3.4) with (@51, §k+1),

Step 3. If P(C) > «, then set £ = k + 1 and continue the cycle from Step 1.

Step 4. In the opposite case, we select the previous step’s linear program solution,

A

®* . as an upper bound on the optimum value of ®,(-) in problem (3.1) and set
Uy = u';

The algorithm presented above allows us to obtain an upper bound on the optimal
value of the objective function in the general problem (3.1). Moreover, when the initial
problem (1.1) can be reduced to an unconditional quantile optimization problem
in the form (2.10), we propose to use the stochastic quasi gradient procedure for

quantile function optimization [6],[7] to obtain an asymptotically exact solution. This

procedure can be expressed in the following form:
= py(2F = 65 (2)pe), ‘zo e, (3.8)

where U = {z : A}z < b}; pu(z) is projector to the set U; pi is a nonrandom

sequence of step multipliers; k£ is the number of the procedure step. The quantile
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function ®,(z) stochastic quasi gradient ¢*(2) is the following random vector:

¢k(z) = 55; Z[(I);(Zl, ey 25 + ﬂk, ...,Zn_|_1) - (I)Q(Zl, - ﬁk, cery Zn.H]Ej, (39)
3=1

where i is a nonrandom decreasing sequence term; n is the dimension of vector
z; Zj, J = l,n, are random variables, which have uniform distribution on [z; —

Bry 2 + Brl; &);(z) are independent quantile function estimates, obtained using a 7

sized sample of random variable ®(z,w); e;,j = 1,n, are basis vectors.
To find the stochastic quasi gradient, ¢*(z), we propose to use the following statis-

tics of the random variable ®(z,w):

87, (2) = Bpra -
87,(2) = @, — (&, — ®,_1)(u+ In(r) + In(1 — 7))
where [ra] is the whole path of the 7 value; ®(,4) is the [Ta]th term in the variational
sequence of the random variable ®(u,w) sample, which have size 7; ®,,®,_; are
extreme right terms of the variational sequence; y is the Euler constant.

For the é;l(z) statistic, it is nesessary to use a sample size at least several times
lager than T, = [{2=]+1, and to build the empirical cumulative distribution function
of the random variable ®(u,w). On the other hand for ®7,(z), it is sufficient to use
the sample size 7 = T, and we need only the extreme members of the sample to
obtain this statistic. So ®7,(z) allows us to estimate high confidence level quantile
function using small size samples.

Statistical propeties of the estimates (3.10) were analyzed in [5],[6],{9]. Conditions

of the strong convergence of u* to u, are considered in [5],[7].
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4  Conclusion.

Using quantile optimization techniques, we have presented the nontraditional ap-
proach for the solution of linear probabilistic constrained programming problems.
The presented guaranteeing solution algorithm allows us to obtain an improved up-
per bound on the optimal value of the initial problem objective function, using linear
programming solution techniques. Moreover, in some cases, the initial stochastic pro-
gramming problem with probabilistic constraints can be reduced to an unconditional
quantile optimization problem, i.e. a quantile optimization problem without addi-
tional probabilistic restrictions. The algorithm Presented for this reduction allows
selection the class of such initial problems. For this class of problems, we have pro-
posed also to apply a stochastic quasi gradient procedure to obtain an asymptotically
exact solution of the equivalent problem. Practical application of these methods to
probabilistic constrained programming problem for water supply system design was
considered in [15]. It shows, that the guaranteeing solution is close to an asymp-
totic exact solution, and illustrates the fact, that the guaranteeing solution tends to
it, when « increasing [11]. The computational requirements to obtain the improved
guaranteeing solution depend on the confidence level a only by checking the condi-
tion P(C) > o under each improving iteration, where C' is a polyhedral set of the
random vector w. However, we can regulate the number of iterations by choosing
the decrement of the confidence sphere radius. On the other hand, the closeness

of the guaranteeing solution to an asymptotically exact one allows us to obtain a
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good approximation of an exact solution and a good starting point for the stochas-
tic quasi gradient algorithm and for other gradient methods, which were mentiond
in the introduction. So, application of these quantile optimization methods can be
used effectively to solve the initial probabilistic constrained programming problems,

especially for high reliability level systems.
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