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This paper considers an optimimization problem in water supply systems, which can
be formulated as a minimization with probabilistic constraints. A nontraditional
approach for the solution of this problem using quantile optimization algorithms is
presented. In this case the General Minimax Approach allows to use the linear pro-
gram solution techniques for obtaining an upper bound on the optimal value of the
objective function. Numerical results and application of the stocastic quasi gradient

algorithm for asymptotic exact solution are also discussed.

( WATER-SUPPLY SYSTEM DESIGN; PROBABILISTIC CONSTRAINTS; GUARAN-

TEEING SOLUTION; QUANTILE OPTIMIZATION ALGORITHMS)

1. Introduction.

Optimization in water-supply systems often arises in the design of distant solar
powered plants for fresh water production when local fresh water sources are absent.
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The model considers stochastic deviations of the solar plant power and the possibility
of monthly external fresh water supplies. The objective function of this problem is the
sum of the capital cost of solar powered plant construction and the cost of external
water supplies. We consider the probability of complete satisfaction of the demands
to be restricted.

This optimization problem is the typical stochastic programming problem with
chance constrained. Other similar applications where considered for example in
Prekopa (1980), Prekopa and Ganczer, Deak, Patyi (1980), Prekopa and Szantai,
Prekopa and Kelle (1978). In general, methods for the solution of such problems
are based ( see Prekopa 1987) on the application of suitable nonlinear programming
techniques supplied by Monte Carlo simulation procedures to find values and gradi-
ents of the probability functions. We refer to a few papers ( Prekopa and Szantai,
Prekopa 1987, Prekopa and Kelle 1978, Mayer 1980, Mayer 1988), where the inter-
ested reder can find descriptions of how to use nonlinear optimization techniques for
such problems.

In our paper we reduce the initial chance constrained problem to an equivalent un-
conditional quantile function optimization, i.e. optimization of an auxiliary random
variable distribution quantile function without additional probabilistic restriction.
This allows us to use the General Minimax Approach (GMA) (see Malyshev Kibzun
1987) to use high developing linear program solution technique to obtain the guaran-

teeing solution, i.e. the upper bound on the optimal value of the objective function.



This may be practically useful because the computational requirements for the Monte
Carlo simulation procedures depends greatly on the probabilistic constraints confi-
dence level a. In this problem, a is interpreted as the reliability of the system, and so
a is close to unity. Computational requirements for the guaranteeing solution proce-
dure do not depend on «, moreover the upper bound tends to an exact optimal value
of the objective function as a increases (see Malyshev and Kibzun 1987). We also
discuss the application of the stochastic quasi gradient algorithms for the quantile
function minimization (see Kibzun 1991, Kibzun and Kurbakovskiy 1991a, Kibzun
and Kurbakovskiy 1991b) to find asymptotically with probability one an exact solu-

tion of the equivalent problem. Numerical results are considered in the last section.

2. Problem statement.

Let b = (hy,...,hs) be a nonrandom vector of monthly water demands over n
months and let v’ = (uy,...,u,) be a nonrandom vector of monthly external supply
plans. The internal water-supply system consists of a solar powered plant for water
production with area S and cistern of volume V', where the remaining water is kept.
The solar powered plant’s productivity depends on monthly solar activity and can
be expressed as a random vector w = (wy,...,w,). The probability distribution of

random vector w is known. The total cost of the water-supply system is given by:

¢ =05, V,u') = 1S + a;V + aozuj (1)

=1

where a; is the cost per m? of the solar powered plant;
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ag is the cost per m® of the cistern;
ag is the cost per m? of externally delivered water.

The surplus water at the end of jth month is expressed by:

zj =min(zj-1, V) + Swj +uj — hj,z0 =0, j=1ILn, (2)

where min(z;_, V') is water remaining from the previous month, which can not exceed

the volume of the cistern.

The system works normally if the following condition is satisfied:
z; 20, j=1In. (3)

Since equation (2) includes the random vector w, then satisfying (3) is random event.
The optimization problem is to find nonnegative system parameters S,V and non-
negative external water supply parameter u, which minimize the objective function

(1). The optimal parameters are:

u* = arg min ®o(a), (4)
el

by given values of ag, aj, a3, h and distribution w, subject to a probabilistic constraint:

P(@) = P{w : minz;(%,w) > 0} > a. (5)

In
Here a € (0,1) is the given system reliability and & € U = {(ug, ..., un, 5, V) : § >
0,V>0,u; >0, j=1n}

Using (2) and(3) we can transform (5) to the probabilistic constraint of simulta-
neously satisfying of N = n % (n 4 1)/2 bilinear inequalities, because every jth month
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we must add j inequalities to the previous inequality system. Let us explain this fact

in an example over n=2 months. Then (5) is:

ri=wS+u—h 20
P w: > a. (6)

Ty =min(z;, V) +weS +ug —hy 20

In fact, this system of inequalities is equivalent to the probability of satisfying N' =3

inequalities of the following form:

¢ ( 3\

w1.5'+u1—-h120
Pq w:s (w1+w2)S+u1+u2—h1—h220 Za‘ (7)

L V+’LU25+U2—h22‘0

Hence problem (4),(5) is a stochastic program with a linear objective function and

probabilistic constraints of satisfying N bilinear inequalities.

3. Reduction to a quantile optimization problem.

Let us reduce the problem (4),(5) to an equivalent unconstrained quantile opti-
mization problem, i.e optimization problem of a confidence level a quantile function
for some auxiliary random variable distribution, without additional probabilistic con-
straints. Let us express variable u; using (S,V,¢) and (u;, j = 2,n) from (1).
Define also a new variable z = V — ®/2a,. After changing variables, the probability

constraint (5) can be reduced to the following form:

P{w:®;(u,w) <, 1=1,N+2}2a, (8)



where u € U = {(S,z,uz,...,un) : S > 0,u; >0, j= 2,n}, and functions ®; have

the structure: (

®i(-) = Sfi(w) + fi(z,u3,.00yun), i=T,N

Il

J Bnan() = 2 (9)

®N+2(') = 2(113 + 2(122 + 2(10 Z.’;:Z 'U,j.

Here, fi(-) are linear functions, and f;(w) have the form:
f,'(t) = - }: Wy l,' S IC,' S n, 2 = ].,N (10)

Define value ®,(u) as the minimal value of ¢ when constraints (8) hold. ®,(-) is

the confidence level o quantile function of random variable ®’s distribution, where
b = O(u, w) = max{®d;(u,w)}.
Then the initial problem can be reduced to the following form:

Uq =argiré1[51<1>a(u). (11)

4. Guaranteeing solutior Igorithm.

The quantile optimization problem (11) is computationally difficult, because the
quantile function ®,(u) can not be expressed analytically. Let us consider an al-
gorithm for obtaining a guaranteeing solution of this problem. We use the General
Minimax Approach ( see Malyshev and Kibzun 1987) to rewrite problem (11) in the
equivalent form:

(Ua, Eq) = arg welin . max &(u, w), (12)



where E, is the class of confidence sets whith probability measure a. Denote B as the
Borel o- field on the disturbance space. Then E, € B. Choosing an optimumset E, €
E, is a difficult operation. However if we want to find a guaranteeing solution, we can
replace E, by some initial approximation Ey € E,. For standard Gaussian random
disturbances it is convenient to select Eq as a sphere C, (see Malyshev and Kibzun
1987). The center of C, is the mathematical expectation point of the random vector
w and P(Cy) = a. In this case then the radius of C, can be obtained analytically.
Then the function:

A

®o(u) = max ®(u,w) (13)

w€Cq

will be a majorant of the quantile function ®4(u) (11), i.e. :

Bo(u) < do(u), Yuel. (14)

A

Given u € U and (13), ®,(u) is the minimal value ¢, that satisfies all of the

inequalities:

max ®;(u,w) <P, =1,N+2. (15)

weCq

For every ¢ = 1, N + 2, the maximum in (15) is attained at the point w} € %",
which is a tangency point of the hyperplane f;(w) = const and sphere C, and can be
found analytically. Hence, for calculating the guaranteeing solution, it is sufficient to

solve the following linear programming problem:

o = arg min g (16)



subject to linear constraints:
q’i(U,w?)S% 1=1,N

QN-i-j(u) <o, j=12.

This problem can be solved by the standard simplex algorithm.
Suppose that the guaranteeing solution (i, Qa) is discovered. Let us assume also

that optimal area of solar powered plant S, >0 (the case, S, =0, will be discussed

separately). Then the set of all vectors w satisfying the following inequalities:
®;(flg, w) < &y, i=T1,N, (18)
is a polyhedral set:
C={w: fi(w) < ci(®a, ), i=T,N}, (19)

where

and 4 = (24, Wa2y -y Wan)-

By construction of w, the polyhedron
f,'(U)) < fi(w:), i=1N, (21)

circumscribes sphere C,.

By (21),(17) and that § > 0, all w which satisfy (21) belong to C. Hence C, € C,
and P(C) > a, because polyhedron (21) circumscribes the sphere C,. If S, = 0,
then all feasible vectors w satisfy inequality (18), because in real problems proba-
bility distribution of random vector w has a finite support, and, so, the functions
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filw), i = 1,N, have a finite value on the set of all feasible w. In this case,

Let us consider a new confidence sphere C,; with a radius R, < Ra, where R,
is the radius of C,. It is obvious that P(Cy1) < a. Choose at the sphere C,; points

w?* by analogy with the selection of w}. Now, consider problem (16) subject to:

O;(u,w*) <, t=1,N
(22)
Byys(w) <, j=12
Let (4, o‘) be a solution to this problem. Denote:
={w: fi(w) < C,( o lg), 1= r}, (23)

where the structure of ¢;(+) is described in (20).

Lemmal
If P(C*) > a, then 2 is an upper bound on the quantile function optimal value

of problem (11) and the following inequality holds: d* < d,.

Proof.

1. Consider set C* (23) as a confidence set insted of C. Then inequalities (17)

are:
% ME) gy juy <o, i=TH, (24)
where u® = (2,ug, ..., Up), and 420 = (25,455, .., Up)-

It is obvious, that (24) holds for the solution (i} ). Hence (i $*) is a feasible

a’ o a’ a
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solution for problem (16),(17), where w?, i =1, N, are selected on the confidence
set C*. It follows from the condition of the lemma, that P(C*) > a. As mentioned

above, in the case when 5’; = 0, by analogy with the set C, P(C"') =1, and (2 <I>*)

a) o

is a feasiable solution, because of the finite value of the maximum f;(w), i=1,N,
on the set of all feasible w. Therefore, <I>; is an upper bound on the objective function
optimal value in problem (11) (see Malyshev and Kibzun 1987).

2. Functions f;(+) in (10) are linear combinations of w;, j = I,n. So by

R, > Ra:, the following inequalities hold:

Alwi) < flw)), i=TF. (25)

A

In fact, (4q, @) is the solution of the problem (16),(17). So by (9),(25) and S > 0,

inequalities

O;(ti,w*) < by, i=1,N+2, (26)

A

also hold. Hence, (iiq, ®,) is a feasible solution for problem (16),(22), where the w;*
are selected on the confidence set C,;. However (i, %) is the optimal solution of
this problem. Therefore, ®* < ®,. This completes the proof of this lemma. O

This lemma allows us to present the following algorithm for obtaining an improved
upper bound on ®,(-):

Step 1. Find a solution (&4, ®4) of the linear programming problem (16),(17),
where w!, i = I,N, are selected on the confidence sphere C, with probability
measure o, and the w} maximize ®;(-), i=1,N, (9).

Step 2. Check inequality P(C) > a, where C is from (19).
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Step 3. If P(C) > a, then decrease the confidence sphere radius with the given
increment h, and continue the cycle from Step 1.
Step 4. In the opposite case, we select the previous step’s linear program solution,

&4(), as an upper bound on the optimum value of ®,(+) in problem (11) and set

Remark. In the problem under consideration we approximate the true distribution
of the random vactor w by a Gaussian distribution with given mathematical expec-
tation and covariance matrix. All f;(w), ¢=1=1, N, are linear functions, and so,

for checking P(C) > a, it is sufficient to check the following inequality:

F(c) 2 a,

A

where ¢ = (¢1(®a, tia), ..., cN(Pa, la)), and F() is a multidimensional Gaussian dis-
tribution function of the random vector (fy(w),..., fy(w)). For special methods for
calculation F(c), see Deak 1980. In the case, S, = 0, it is assumed, that P(C) =1

and algorithm continues.

5. Numerical example and applying the quasi gradient algorithm for

asymptotic exact solution.

The considered problem is a system with n = 6 months. The results are obtained
for two reliability levels, a = 0.99 and o; = 0.999. Initial data for this problem are :
ay = 3.75[unit/m?); a; = 10[unit/m3); ap = 25[unit/m®). The object water demand
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per month:

h = [29.6;0.0001;23.9; 36.2; 82.1;173.4].

We approximate the distribution of the random vector w by a normal distribution
with the following parameters:

M, = [0.00837;0.00828;0.0185;0.0631;0.123;0.137]

ot = [0.000582; 0.000552; 0.00123; 0.00421; 0.00818; 0.00916).

Random variables w;, j = 1,6, are independent.

We choose a short system life for obtaining compact results, that are convenient
for analysis. The results are sensitive to the ao, a1, a3, Mg, 0y parameters relations.
We omit the sensitivity analysis of this problem here. It is more important that this
example reflects correlations between the guaranteeing and asymptotic exact solution
of this problem, and the process of improving the guaranteeing solution using the
guaranteeing solution algorithm.

The equivalent problem is an unconstrained quantile optimization problem. This
allows us to use the stochastic quasi gradint procedure for the quantile function
minimization (see Kibzun and Kurbakovskiy 1991a, Kibzun and Kurbakovskiy 1991b)

to obtain an asymptotic exact solution. This procedure is:
k+1 — k_ ¢k ) 0 U 27
u' = py(ut - ¢ (u)pk), W€, (27)
where py(u) is projector to the set U; p is a nonrandom sequence of step multipliers;

k is the number of the procedure step. The quantile function ®,(u) stochastic quasi
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gradient ¢¥(u) is the following random vector:

1 n+l1 — 3 . 5 3
¢k(u) = -2?; Z[‘DZ(ul’ ey U F ,@k, "°7un+1) - Q‘C’;(uli ey Uy — :Bk» ""un-i-l]ejv (28)
J=1

where B is a nonrandom decreasing sequence term; n + 1 is the dimension of vector
w; 4;, j=1,n+ 1,are random variables, which have uniform distribution on [u; —

Br, u; + Bl; &7 (u) are independent quantile function estimates, obtained using a 7

sized sample of random variable ®(u,w); e;, j =1,n+ 1, are basis vectors.
To find the stochastic quasi gradient, ¢*(u), we propose to use the following statis-

tics of the random variable ®(u, w):

a1(u) = Ppra) (29)
$7,(u) = B, — (&, — &,1)( +1In(r) +In(1 — 7))
where [ra] is the whole path of the 7a value; ®[,4) is the [Ta]th term in the variational
sequence of the random variable ®(u,w) sample, which have size 7; ®,,®,_; are
extreme right terms of the variational sequence; y is the Euler constant.

For the &7, (u) statistic, it is nesessary to use a sample size at least several times
more than T, = [-2=]+1, and to build the empirical cumulative distribution function
of the random variable ®(u,w). On the other hand for &7, (u), it is sufficient to use
the sample size 7 = T, and we need only the extreme members of the sample to
obtain this statistic. So ®7,(u) allows us to estimate high confidence level quantile
function using small size samples.

Statistical propeties of the estimates (28) were analysed in Kibzun 1991, Kibzun

and Kurbakovskiy 1991b, Kurbakovskiy 1989. Conditions of the strong convergence
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of u* to u, are considered in Kibzun 1991, Kibzun and Kurbakovskiy 1991a.

Results of the guaranteeing and asymptotically exact solutions are given with the

accuracy 0.01 for @ = 0.99 and a; = 0.999 in Table 1.

Table 1. Guaranteeing and Asymptotic Exact Solutions

Guaranteeing solution | Asymptotic exact solution

GS AES abs( GS-AES )

® | 4905.96 4995.02 | 4879.05 4973.78 | 26.91 21.24

S | 1000.19 1017.03 | 1001.29 1017.22 1.1 0.19

\% 61.33 63.21 59.14 61.11 | 2.19 2.1
wy 22.48 22.61 22.06 22.76 | 0.42 0.15
wo 0. 0. 0. 0. 0. 0.
w3 0. 0. 0. 0. 0. 0.
Wy 0. 0. 0. 0. 0. 0.
ws 0. 0. 0. 0. 0. 0.
we 0. 0. 0. 0. 0. 0.

The process of improving the guaranteeing solution for a = 0.99, using the algo-

rithm from the section 4, is reflected in the Table 2.

Table 2. Improving of the guaranteeing solution.

The probability of the set C was calculated using a Monte Carlo simulation procedure
with sample size 10000. Befor the solving this problem, we transformed it to a
problem, in which the random vector w has a standard normal distribution. So r

in the Table 2 is the radius of the confidence sphere for a standard normal vector

r | Guaranteeing solution | P(C)
4.093 5189.61 | 0.9998
3.693 5100.92 | 0.9996
3.293 5015.09 | 0.9993
2.893 4931.99 | 0.9937
2.700 4905.96 | 0.9901
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(N(0,I)). We start the guaranteeing solution algorithm from the confidence sphere
Cy (o = 0.99) with radius r = 4.093.

From Table 2, we see that in this case, using the guaranteeing solution algorithm,
we can improve the standard guaranteeing solution (5189.61) by approximately 6
percent.

Table 1 shows, that for the given conditions, the optimal water supply system
satisfies demand by using fresh water produced by the solar powered plant. Only in
the first month, when the plant productivity is small, do we need to use an external
water supply. This fact can also be explained by the small capital cost of solar powered
plant construction in this model example.

Taple 1 illustrates, that, with increasing a, the guaranteeing solution tends to the
asymptotically exact solution. This fact allows us effectively to use the guaranteeing
solution algorithm by itself, and also to accelerate convergence of stochstic quasi-

gradient methods using the guaranteeing solution as a good start point.

6. Conclusion.

Choosing optimal water supply system structure is a typical optimization problem
with probabilistic constraints. We presented nontraditional algorithm for this prob-
lem solution, reducing it to an unconstrained quantile optimization problem. After
this reduction, the General Minimax Approach allows us to use linear programming

to obtain an upper bound on the optimal value of the objective function, i.e the upper
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bound on the cost for satisfying random water demand with given confidence level.
An algorithm for improving this guaranteeing solution was also presented. This al-
gorithm consists of a sequence of linear program solutions. Numerical tests showed,
that an improved upper bound is close to the asymptotic exact solution, which was
obtained using the stochastic quasi gradient algorithm for quantile function minimiza-
tion. Moreover, numerical examples illustrate that the guaranteeing solution tends to
an asymptotic exact one, when o increases. So the guaranteeing solution algorithm
can be effectively used by itself and also for obtaining a good starting point for the
stochastic quasi gradient algorithm. Combination of two considered methods is espe-
sially useful for optimization in high reliability level systems. The approach outlined
here could be extended to other similar optimization problem with probabilistic con-

straints.
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