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1 Introduction. \

This presentation is devoted to stochastic optimization problems with criteria in the
form of quantile function. I would like to consider two examples of quantile optimiza-
tion theory application to water-supply system design problem and to nursing budget
planning model. Some theoretical results concerning solutions of these problems will
be cosidered too.

To the recent time in the literature concerning stochastic programming, quantile
optimization problems (QOP) were considered as a special case of probabilistic or
chance constrained programming problems (CCPP). First papers in which QOP were
investigated as independent class of stochastic programming problems, were published
in late 70th - early 80th (for example, see [9]). Most powerful results in this area
had been reflected in the monography of Malyshev and Kibzun [10], where, as a

generalization of CCPP, QOP were considered in the following form:
Uq = arg Héllljl ®o(u), a€(0,1), (1.1)
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where U is a set of feasible solutions, « is a reliability (or confidence) level and ®,(u)

is a quantile function of the following form:
Ba(u) = minfp : P{w : 0(u,w) <9, Q(u,0) <0} >ahpc HER,  (12)

where ®(u,w) is a scalar function, which characterises a quality of our strategy u €
R"; w € R™ is a random variable with given distribution function; Q(u,w) is a vector
function of restrictions, and "P” means ”probability”.

According to Prekopa’s paper [13], under CCPP I mean problem in the following
form:

min &' (u) (1.3)

subject to:

P(q1(u,w) £0,¢q2(u,w) £0,...,¢-(u,w) <0) > a

ha(u) 2> by, ..oy hn(u) > by

where ¢ (u, w), ..., ¢-(u, w) are the elements of the vector function Q(u, w), and system
of restrictions hy(u) > by, ..., hm(u) > b, describes the set of feasible solutions U.
Indeed, problem (1.3) can be rewritten in the equivalent form of quantile opti-

mization problem (1.1), where objective quantile function is:
8! (u) = minfy : P{w: 8(u) < g (1) <0, g (u,0) <O} 2}, (L)

and the set of feasible solutions is U = {hy(u) < by, ..., Am(u) < by }.
Most powerful result of Malyshev, Kibzun’s monography is the Generalised Min-

imax Approach (GMA). It establishes an equivalence between QOP (1.1) and the



following minimax problem:

Eaa Ug) = I .
(Eq, tq) = arg EeE,ﬁeU[zlég@(u’w)] (1.5)

subject to:

¢ (E,u) <0

Here, ¢*(E,u) = sup,g Q(u,w), E, is a family of confidence sets with probability
measure a. Let us define:

U(E,u) = sup ®(u,w).
w€E

Then, by definition, the equivalence between the problems (1.1) and (1.5) means, that
1) U(Esls) = o(ua);

i) For every u, € U,, there exist E, € E, subject to ¥U(E,, ua) = Po(u,). Here
U, is a set of all optimal solutions of the problem (1.1);

iii)  For every couple (Eq, iq), which is optimal in the problem (1.5), the following

condition holds: U(E,, fis) = ®4(a).

Optimization with respect to confidence set F is a difficult operation in the problem

(1.5), but the following proposition takes place:

Proposition.
For fized confidence set E, an optimal solution (E,u®) of the problem (1.5), without

optimization with respect to E, has a property:

o (u) < U(E,uF). (1.6)



A quality of the upper bound ¥(E,uF) essentially depends on a confidence set E
selection, but in many cases we can obtain W(E,u%), which is close to the optimal
value ®,(u,y). I will illustrate this fact with an example.

There are several reasons to survey and develop an application of the quantile opti-
mization technique to economic models. The first one is, that according to Prekopa’s
paper [13], in general, methods for the solution of probabilistic constrained program-
ming problems, which are often used to describe economic systems, ( even in the
case of linear functions ®!(u), ¢;(u,w), h;j(u) ) are based on the application of suit-
able nonlinear programming solution technique, supplied by Monte Carlo simulation
procedures to find values and gradients of probability functions. In many practically
important cases, however, the confidence level « is interpreted as a system reliability,
so « is close to unity. In this case, the procedure for calculating value and gradient
of the probability function, using Monte Carlo simulation or multidimensional inte-
gration techniques, becomes complicated or loses precision. On the other hand, by
transforming initial problem to minimization of auxiliary random variable distribution
quantile function, we can use GMA to obtain an appropriate quality upper bound on
the optimal value of the initial problem objective function. Moreover, in some cases
it is possible to reduce initial problem to unconditional quantile optimization, i. e.
quantile optimization problem without additional constraint Q(u,w) < 0. An algo-
rithm for this reduction in the case of linear functions ®(u, w), Q(u, w), and polyhedral

set U was presented in [6]. Such reduction allows us to use effectively stochastic quasi



gradient algorithms [4], [5], which were developed especially for quatile optimization
in high reliability level systems.

The second reason is that for some economic systems an application of quantile
optirﬁization models can be more adequate than CCPP, and it may be especially
useful if we would like to n%ake a decision with high confidence level.

So, I would like to consider the following two examples of linear systems, and show

how the quantile optimization technique can be applied to them.

2  Water-supply system design model.

Let us consider a system for fresh water production in desert distant region, where
fresh water sources are absent. Let A = (hy, ..., h,) be a nonrandom vector of monthly
water demands over n months and let v’ = (uy,...,u,) be a nonrandom vector of
monthly external supply plans. The internal water-supply system consists of a solar
powered plant for water production with area S and cistern of volume V, where
the remaining water is kept. The solar powered plant’s productivity depends on
monthly solar activity and can be expressed as a random vector w = (wy, ..., wn).
The probability distribution of random vector w is known. The total cost of the

water-supply system is given by:

¢ =0(S,V,u') = ar1S +aaV + a0 ) u; (2.1)

i=1

where a; is the cost per m? of the solar powered plant;



a, is the cost per m3 of the cistern;
ag is the cost per m3 of externally delivered water.

The surplus water at the end of jth month is expressed by:

¢; =min(z;-1, V) + Sw; + u; — hj,z0=0, j=1,n, (2.2)

where min(z;_;, V) is water remaining from the previous month, which can not exceed
the volume of the cistern.

The system works normally if the following condition is satisfied:

:Ej > O, ] = l,_n (23)

Since equation (2.2) includes the random vector w, then satisfying (2.3) is a random
event.

The optimization problem is to find nonnegative system parameters S, V, and non-
negative external water supply parameter u, which minimize the objective function

(2.1). The optimal parameters are:

u* = arg min $o(a), (2.4)
el

by given values of ay, a1, a;, h and distribution w, subject to a probabilistic constraint:

P(2) = P{w : minz;(%,w) > 0} > a. (2.5)

1n
Here o € (0,1) is the given system reliability and @ € U = {(u1y.eryun,S,V): S >

0,V>0,u;20, j=T,n}



Using (2.2) and (2.3), we can transform (2.5) to the probabilistic constraint of
simultaneously satisfying of N = n % (n 4 1)/2 bilinear inequalities, because every
Jth month we must add j inequalities to the previous inequality system. Let us

explain this fact in an example over n=2 months. Then (2.5) is:

I =w15+u1—h1 20
P{ w: > a. (2.6)
2 =min(zy,V)+waS +us —hy >0
In fact, this system of inequalities is equivalent to the probability of satisfying N =3

inequalities of the following form:

( ( )
w15+u1—h120

P{ w: | (W +wy)S+uy+ug—hy—hy 20 (20 (2.7

\ \ V4+w,S+u;—hy 20 ,
Hence, the problem (2.4),(2.5) is a stochastic program with a linear objective function
and probabilistic constraints of satisfying N bilinear inequalities, and it can be solved
using nonlinear programming solution technique [11], with Monte Carlo simulation
procedure to find a value of the probability function (2.5).

Let us reduce the problem (2.4), (2.5) to unconditional quantile minimization. First
of all, let’s show how to do this on the example over n = 2 months considered above.

Then initial CCPP is:

min_ ¢ (2.8)

U1 y“2)s»v

subject to (2.7), u; > 0,u; 20,5 >0,V >0, and

p= (115 + agV + (lo(ll.l + ’Uz) (29)
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Let us express variable u;, using ¢, S, V, u; from (2.9):
uy = ((,0 - GIS - agV - a0u2)/a0. (210)

Let’s also define a new variable z = V — ¢/2a;. Then, after changing variables, we

get the following problem:
mgn {¢: P,(ug,S,2) > a}, (2.11)
u2,0,2

subject to u; > 0,5 > 0, where

( (

@1(”2, S, z, w) = 2(01 - aowl)S + 2(122 + 2(101[2 + 2(10h1
®y(uz, S, z,w) = 2(ay — ag(w1 + w2))S + 2azz + 2a9(hy + h2)
Py(ug,S,2) = ¢ w: 4 ®3(uq, S, z,w) = —2a,w,y S — 2a5z — 2a5u3 + 2azh;

®4(uy, S, 2,w) = —2ay2

Qs(UQ, S, 2, w) = 2(115 + 2(122 + 2(1011,2

\ \

(2.12)
Here, the consraints on the functions ®4(-), ®5(-) are obtained from the restrictions

u; 20,V > 0. Then by the definition (1.2):
min{yp : P,(uz,S,2) > a} = Ba(uy, z,5), (2.13)

where ®,(us,2,5) is a quantile function of a distribution of the following random
variable:

®(uz, 2, 5, w) = max ®;(us, z, S, w). (2.14)
So, the equivalent quantile optimization problem for this case is:

: 2
[nin, ®,(u’), (2.15)




where u? € 2 = {(8,2,u3): § > 0,u > 0}.

By analogy, in general case (over n, month)

)

velU = {(S, z, u;,...,un) . S > 0, U Z 0 ] = Z_-r;} (216)

and @, (u) is a quantile function of a distribution of the following random variable:

A

Qt() =Sf,(ll1)+f,(Z,U2,,Un), l=m

@(U, ‘U)) = i=% ¢N+](') = —2(122 (217)

(I’N+2(‘) =2a,5 + 2ayz + 2ay Ej=2 uj.

Here, f,() are linear functions, and fi(w) have the form:
flw)=d-d' ¥ u,, i<k<n, i=TN (2.18)

where d?, d}, 1 k; are some constants. Then injtia] optimization problem cay be

reduced to the following form of quantile optimization problem without additional

probabilistic restrisctions:
Uy = arg min D, (u), (2.19)

where U from (2.16).

reduction, which distinguishes a class of such problems, was considered in [6], and ]

will talk about it below in my presentation.



3 Two-stage quantile optimization problem for

nursing workforce budget preparing.

In modern literature concerning stochastic programming, there are a lot of publi-
cations devoted to two-stage stochastic programming problems with criteria in the
form of mathematical expectation, but I don’t know any papers, where such problems
with first stage objective function in the form of quantile function were considered.
There are some reasons for this. The first one is that more powerful results in the
quantile optimization theory had been obtained only in the last several years. The
second reason is that the nature of two-stage programming problems implice that we
know a realization of the random variable ( usualy demand ) on the second stage of
the problem. Hence, we can exactly satisfy second stage constraints ( if we will not
consider a question of an existence a feasible solution of the second stage problem).
So, CCPP could not be applied adequately to describe these systems.

However, two-stage quantile optimization statement can be especially useful when
we would like to estimate our possibility to satisfy, for example, workforce budget
requirements with high confidence level. This estimate can be used, for instance,
when we would like to make a decision about the begining of a new business. One
attempt to apply probabilistic constrained programming models to two-stage system
of energy network planning was undertaken in [14]. The objective function of the

optimization problem considered in this paper is still in the form of mathematical
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expectation, but author puts a probability restriction on the first stage of the problem
to take into consideration the question of an existence of the second stage problem
feasible solution.
_ I

Here I would like to consider an example of application quantile optimization
theory to nursing workforce butget preparation. Different models of this problem
with criteria in the form of mathematical expectation were considered in [2]. Here I
am going to consider a simple single period agregate probabilistic model.

Let us denote:
R - a number of regular-time nursing hours;
O - a number of overtime nursing hours;
A - a number of agency nursing hours;
p - a fraction of the productive regular-time workforce available (0 < p < 1);
r,0,a - costs per hour of regular-time, overtime and agency nurse respectively;
d - random demand in total nursing hours in considered period with given distribution
function.
A maximum available overtime workforce is bounded by factor g times the productive

regular-time workforce . Then the considered problem can be formulated as a two-

stage stochastic optimization, where the second stage optimization problem is:

®(R,d) = 13ind0 + aA (3.1)
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subjec to:
O+A+pR>4d
~0>-gpR (3.2)
A>0,020
Here, an optimal value of the problem (3.1) objective function is a budget plan for
overtime and agency nurse during cosidered period.

Since ®(R,d) depends on the random demand d, then ®(R,d) 1s 2 random variable.

Let us define ®,(R) as a confidence level & quantile function of the random variable

®(R,d) distribution, 1.e.
,(R) = minfy: P8R d) S ¢} 2 o) (33

Then the first stage problem can be formulated as follows:

ot = m'mR(TR + q’a(R)) (3 4)

~st. R20

So, let us define the problem (3.1),(3.2),(3.4) as a two-stage quantile optimization
problem, and @7 here is an estimate of 2 minimal value of the foundation, which

is necessary to satisfy the random demand of total nursing hours in the considered

period with given confidence level a.

In the case of single period model, even an exact solution of the considered problem

can be found, using CGMA and linear programming solution techniques.
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4  An algorithm for reduction linear CCPP to an

equivalent unconditional QOP.

Let us consider initial linear CCPP problem in the following form:

(p:CTu—)n}‘in (4.1)

subject to:

®o(u) = P{w: Au+ Bw<b} > a
Al'U,Sbl

where u is (nx1) vector of control variables; c,b,b; are accordingly (nx1), (mxl1),
(m1x1) given deterministic vectors; w is (m;x1) random vector with given probability
distribution; A, A;, B are given deterministic matrices of appropriate dimensions.

Tu. It can be written in the

Consider the general solution of the equation ¢ = ¢
following form [1]:

i = () + (I - (), )
where I is (nxn) identity matrix; z € " and (cT)* is the pseudoinverse with respect

to vector ¢I. The pseudoinverse (c7)* can be defined [1] as a matrix (nx1), which

satisfies the Penrose conditions [12]:
(CT)+CT(CT)+ — (CT)+

(e = (4.3)
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()t and (T)*cTare symmetric matrices.

Then we can select (¢7)* as [8]:
() = Ve(cTVe) ™, (4.4)

where V' is (nxn) matrix, which satisfies the following conditions:

CT [
Ve#? (4.5)

VecT is symmetric.

Let us write the conditions of the initial problem (4.1) using general solution (4.2):

P{lw: A(N) o+ A(I = (D) tcT)z + Bw < b} > o

(4.6)
AI(CT)+§0 + Al(I - (CT)+CT)Z S b1
Our goal is to reduce (4.6) to the following form:
Plw: A2+ B*w—-b0*<¢*} > a
(4.7)

Ajz < by,

where ¢* = (p,0,...,¢)T,0* € R™*; A*, B*,b*, A%, b} are deterministic matrices and
vectors with corresponding dimensions: (m*xn),(m*xm;),(m"x1), (mjxn), (m}x1);
m*, m] are new dimensions.

It is obvious, that according to this goal, it is sufficient to select matrix V in such
a way, that every element of the column vector A(cT)"’ becomes negative, every
element of the column vector A;(cT)* becomes nonpositive, and matrix V satisfies
(4.5). When some ith element of the column vector A;(cT)* is negative, we add: the
corresponding row Ay.(I — (cT)*cT)/(A1i.(cT)*) to matrix A*, a row consisting of
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zeroes to matrix B*, an element by;/(Ay;.(cT)*) to column vector b* and an element

¢ to column vector *. This allows us to obtain an equivalent system of restrictions
in the form (4.7).

Let us consider V as a matrix of n? variables v;;, ¢ = 1,n, j = 1,n. Hence, by
(4.4),(4.5),(4.6), for obtaining the required matrix V, it is nesessary to find feasible

solution of one of the following systems of restrictions:

AVe<—e, 1=1m

~

TVe>e,
(4.8)
Vil;=ViCi, i,i=Tn, j#i,
A Ve<0, 1=1m
or
A,'.Vc Z €, 1= W,
Ve < —e,
(4.9)

V,é] = Vj-é-i, L,J)=1n, 1 ?é I
1=

Al.‘.VC 2 0,

1,my,
where C = ccT.

Both (4.8) and (4.9) are systems of linear inequalities and equations. To obtain
nonstrong inequalities, we replace zero on the right side of the strong inequalities
(4.8), (4.9) by a small parameter e, which has an absolute value close to zero. In
this case, we can apply the first phase of the standard symplex method [11] to find
feasible solutions of the restriction systems (4.8),(4.9). Hence, it was shown, that the

following lemma holds:
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Lemma 4.1 If there ezists a feasible solution of at least one of the restriction systems

(4.8),(4.9), then the initial problem’s restriction system can be reduced to the form in

(4.7).

If we obtained the system of inequalities (4.7), then we can write initial optimization

problem (4.1) in the following form:
0 — mzin

subject to:

Plw:Ajz+bjw—-b <y, i=1,m*}>aq,

Az < B

Problem (4.10) is an unconditional quantile minimization problem:

d,(z) — min

subject to:

Alz < b],

(4.10)

(4.11)

where ®,(2) is a confidence level a quantile function of auxiliary random variable:

®,(2,w) = max {Ajz + Bjw - b}}.

i=1,m*

(4.12)

Lemma 4.1 selects some class of the initial optimization problems (4.1), which can be

reduced to the form (4.11).
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5 An improved guaranteeing solution algorithm.
Let us define a general case of linear QOP in the following form:
o =Pu(u) - min (5.1)

subject to :

Aju < b},

where ®,(u) = min{p : P{A*u + B*w — b* < ¢*;Au+ Bw - b < 0} > a}, and
¢* = (¢,¢,...,p) € R™". Here the control variable u has dimension (nx1); the random
vector w has dimension (m3x1); vectors b, b*, b} are accordingly (mx1),(m*x1),(m;x1)
given vectors, and other matrices and vectors have corresponding dimensions.

In spite of the problem (2.19) contains bilinear constraints, specific structure of this
restrictions, when all linear functions fj(w) times on the same positive variable S,
allows us to consider this problem as a particular case of the problem in general form
(5.1). This question was discussed in details in [15). Hence, the algorithm presented
below can be applied to (2.19) too.

Let us define the guaranteeing solution as a vector u,, which secures an upper
bound &, on the optimal value of the problem (5.1) objective function. Assume also,
for simplicity, that random vector w has normal distribution whith given parameters.
Then according to GMA, the problem for obtaining the guaranteeing solution of (5.1)

can be written in the following form:

¢ — min (5.2)
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subject to:

maXyeg, Afu+ Blw -0 <o, 1

I
‘:—‘
3

*
-

MmaXyek, Aiu+ Biw = b < 0, [ (53)

I

—
-

3
-

Aju < b}

Let us consider the confidence set E, as a sphere Ey, centered at the mathematical
expectation of the random vector w, and P(Eoq) = a. Denote a radius of the confi-
dence sphere Fqy, as Ry.

All functions in (5.3) are linear functions of the control variable u, and random vector
w. Maximums in (5.3) with Ey, instead of E, can be found analytically. Suppose
they are attained at the points w? € R™ for i = 1,m* and at the points w) € ®™
for 1 =1,m.

Define the solution of (5.2),(5.3) as (42, °), where @2 is an optimal value of the con-
trol variables, and <I)2 is an optimal value of the objective function. Let us consider
a new confidence sphere E,, with radius Ry < Ry, then P(F},) < a. Consider also
a solution of a new problem (5.2),(5.3) with Ey, instead of Eoq. Define it (4L, 1).

Then the following set:

Biw<® 45— A, i=T,m

1-a)

o
Il
g

A'l s
B,.w S b{ - A[.’ua, t=1,m

has the property: Ej, € C. Hence, P(C) > P(Eyq).

Lemma 5.1 IfP(C’) > a, then @}x is an upper bound on the quantile function optimal

value of problem (5.1) and the following inequality holds: <I>}, < ‘Dg
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The proof. of this lemma you can find in [6]. This lemma allows us to present
the following algorithm to obtain an improved guaranteeing solution (% o) of the
problem (5.1):

S‘tep 0. k = 0. Set linear program (5.2),(5.3) solution &)g as an upper bound on
the ®4(-).

Step 1. Decrease with given decrement A, a radius of the confidence sphere Ej,.

k+1

Find a solution (4*!, ®*+1) of the linear programming problem (5.2),(5.3) with new

confidence sphere instead of the Ei,.

Step 2. Check the inequality P(C) > a, where C is from (5.4) with (ak+1, §*+1),

Step 3. If P(C’) > a, then set k = k 4+ 1 and continue the cycle from Step 1.

Step 4. In the opposite case, we select the previous step’s linear program solution,
®*  as an upper bound ®, on the optimum value of ®,(-) in the problem (5.1) and
set fiq = UF.

The algorithm presented above allows us to obtain an upper bound on the optimal
value of the objective function in the general problem (5.1). Moreover, when the initial
CCPP can be reduced to an unconditional quantile optimization problem in the form,
for example (4.11), we propose to use the stochastic quasi gradient procedure for
quantile function optimization [4],[5] to obtain an asymptotically exact solution. Let

us define exact solution of the problem (4.11) as (za, ¢a), then this procedure can be

expressed in the following form:
M= py(t - ¢*(2)m), €U, (5.5)
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where U = {z : Ajz < bj}; pu(z) is a projector to the set U; px is a k-th term
of nonrandom sequence of step multipliers; k is the number of the procedure step.
The quantile function ®,(z) stochastic quasi gradient ¢¥(z) is the following random

vector:

1 g - 2. .
d)k(z) = ZB: Z[‘I);(zl, w25+ Bk, ..., Zn-H) - (Da(zl, vy 2 — Bk, .ery zn+1]ej, (5.6)
=

where B; is a nonrandom decreasing sequence term; n is the dimension of vector
z; %, j = 1,n, are random variables, which have uniform distribution on [z; —
Bry z; + Bi]; ®7(z) are independent quantile function estimates, obtained using a
sized sample of random variable ®,(z,w); e;,j = I, n, are basis vectors.

To find the stochastic quasi gradient, ¢*(z), we propose to use the following statis-
tics of the random variable ®,(z, w):

(i);l(z) = ®rq) 5
87,(2) = @, — (8, — &,_1)(s + In(r) + In(1 — 7))
where [ra] is the whole path of the T value; ®[,,) is the [ra]th term in the variational
sequence of the random variable ®,(z,w) sample, which have size 7; ®,,®,_, are
extreme right terms of the variational sequence; u is the Euler’s constant.

For the ®7,(z) statistic, it is nesessary to use a sample size at least several times
lager than T, = [{£-]+1, and to build the empirical cumulative distribution function
of the random variable ®;(z,w). On the other hand for ®7,(z), it is sufficient to
use the sample size 7 = T, and we need only the extreme members of the sample to

obtain this statistic. So ®7,(z) allows us to estimate high confidence level quantile
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function using small size samples.
Statistical properties of the estimates (3.10) were analyzed in [4],[7]. Conditions

of the strong convergence of zk to z, are considered in [3],[5].

6 Approach to the solution of nursing budget

preparing problem.
According to [9] for the function @4(R) from (3.3) the following equation holds:

%s(R) = min max &(R, d), (6.1)

where (R, d) is from (3.1); E, is a family of confidence sets with probability measure
a. For considered case of the single period model, E € ®!, i.e. E is confidence level
« interval of the random variable d.

Then we can consider the following problem to find value of the quantile function

®.(R):
®.(R) = z?éi:‘i r&ag(%l'ijl(éO + aA) (6.2)
subject to:
O+A+pR2>d
-0 > —gpR (6.3)
A>0,0>0

By the fundamental duality theorem [11], if there exists a solution of the second stage

programming problem (3.1),(3.2), then we can consider as equivalent a dual problem
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for it and change the order of maximization in obtained problem:

%o(R) = min maxmaxv(d - pR) — vagpR (6.4)

subject to
V1 — Vg S 0
nn<a

v 2 050220

where vy, vy are dual variables.

Let us fix the confidence interval F, then maximum with respect to random variable
d can be found analitically as a right side d* of the confidence interval E, because
of the nonnegativety of the dual variable v;. Then for every R an upper bound on

®4(R) can be found as a solution of the following problem:

&, (R) = maxv,(d* — pR) — vagpR (6.5)

v1,v2

subject to

vy 20,0220

If there exists a solution of initial problem, then using again the fundumental duality
theorem we can obtain a problem to find a guaranteeing solution in the following
form:

d* = mj
* R0,

rR+ F (6.6)

-]
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subject to

600+aA=F
O+A+pR2>d"
-0 > -gpR
A>0,0>20,R>0

where @; is an upper bound on the minimal value ®}. In this simple case of single
period model, we can even find an exact solution of the initial problem. The confidence
set E is an interval in ®!, so it can be parametrised by the parameter d € R, which is
the right side bound of this interval. By nonnegativety of dual variable v;, maximum
with respect to d in the problem (6.4) is attained at d, i.e. d* = d. Hence, by the
structure of the objective function and v; > 0, the optimal confidence interval has a
minimal right side bound, i.e d* is a confidence level a quantile of the random variable
d distribution. So, an optimal solution of initial problem can be found using standard
simplex method to solve linear programming problem (6.6).

Considered problem was solved for the confidence level a = 0.99. Initial data for
this problem was:
r = 4.9556;6 = 6.7591;a = 8.7877;9 = 0.2.
The factor of the productive regular-time workforce available was: p = 0.8828. Ran-
dom demand in nursing hours had normal distribution with mathemetical expectation
d; = 12414, and variance d; = 1666.
Optimal solution of the problem (6.6) in this case is quite obvious. The demand can

be satisfied using only a regular-time nurse, because of a cheapest cost factor. So the
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solution is: optimal value of the control variable R = 19723.6067, optimal value of
the objective function, i.e. minimum value of the foundation, which is necessory to
satisfy demand with given confidence level, ®% = 97742.3054.

However, in the case of multiperiod model, the solution is not so obvious, and de-
veloping of the algorithm to solve this problem seems to be an interesting topic for

future investigation.

7 Numerical results concerning water-supply model.

Considered water-supply system design problem was solved over n = 6 months for
two reliability levels: a = 0.99 and a; = 0.999. Initial data for this problem are :
a; = 3.75[unit/m?; a; = 10[unit/m3]; ag = 25[unit/m®. The object water demand
per month:
h = [29.6;0.0001;23.9; 36.2; 82.1;173.4].
We approximate the distribution of the random vector w by a normal distribution
with the following parameters:
M; = [0.00837;0.00828; 0.0185; 0.0631; 0.123;0.137)
ot = [0.000582; 0.000552; 0.00123; 0.00421;0.00818; 0.00916].
Random variables w;, j = 1,6, are independent.

We choose a short system life for obtaining compact results, that are convenient
for analysis. The results are sensitive to the ag,a;, a3, Mg, ot parameters relations.

We omit the sensitivity analysis of this problem here. It is more important that this
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example reflects correlations between the guaranteeing and asymptotic exact solution
of this problem, and the process of improving the guaranteeing solution using the
guaranteeing solution algorithm. Results of the guaranteeing and asymptotically

exact solutions are given with the accuracy 0.01 for @ = 0.99 and a; = 0.999 in Table

1.

Table 1. Guaranteeing and Asymptotic Exact Solutions

Guaranteeing solution | Asymptotic exact solution
GS AES abs( GS-AES )
a 0.9 | 0.999 0.9 | 0.999 | 0.99 [ 0.999
¢ | 4905.96 4995.02 | 4879.05 4973.78 | 26.91 21.24
S | 1000.19 1017.03 | 1001.29 1017.22 1.1 0.19
V| 6133 63.21 59.14 61.11 | 2.19 2.1
wy 22.48 22.61 22.06 22.76 | 0.42 0.15
Wy 0. 0. 0 0. 0. 0.
w3 0. 0 0 0. 0 0.
wy 0. 0 0 0. 0 0.
ws 0. 0 0 0. 0 0.
we 0. 0 0 0. 0 0.

The process of improving the guaranteeing solution for a = 0.99, using the algo-

rithm from the section 4, is reflected in the Table 2.

Table 2. Improving of the guaranteeing solution.

r | Guaranteeing solution | P(C)
4.093 5189.61 | 0.9998
3.693 5100.92 | 0.9996
3.293 5015.09 | 0.9993
2.893 4931.99 | 0.9937
2.700 4905.96 | 0.9901

The probability of the set C was calculated using a Monte Carlo simulation procedure
with sample size 10000. Before solving this problem, we transformed it into a problem,
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in which the random vector w has a standard normal distribution. So, r in the Table
2 is the radius of the confidence sphere for a standard normal vector (N(0,1)). We
start the guaranteeing solution algorithm from the confidence sphere C, (a = 0.99)
with‘the radius r = 4.093.

From Table 2, we see that in this case, using the guaranteeing solution algorithm,
we can improve the standard guaranteeing solution (5189.61) by approximately 6
percent.

Table 1 shows, that for the given conditions, the optimal water supply system
satisfies demand by using fresh water produced by the solar powered plant. Only in
the first month, when the plant productivity is small, do we need to use an external
water supply. This fact can also be explained by the small capital cost of solar powered
plant construction in this model example.

Table 1 illustrates, that, with increasing a, the guaranteeing solution tends to the
asymptotically exact solution. This fact allows us to use effectively the guaranteeing
solution algorithm by itself, and also to accelerate convergence of stochastic quasi-

gradient methods using the guaranteeing solution as a good start point.

8 Conclusion and open problems.

In conclusion I hope, that considered models show that quantile optimization methods

can be successfully applied to different kinds of economic systems, especially if we need
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to make a decision with high confidence level.

Algorithm for reduction of some class of linear CCPP considered in the presenta-
tion allows us to apply quantile optimization methods to such problems too.

Presented guaranteeing solution algorithm can be used effectively to improve an
upper bound on the optimal value of the objective function in considered problems.

Further improvement can be attained by application of stochastic quasi gradient
procedures for asymptotically exact solution in quantile optimization systems.

By example of nursing workforce budget planning problem it was shown, that in
some cases quantile optimization models allow us to describe system more adequately
than CCPP.

To compare the results of calculation for this problem with the solution of the
same problem, but with a criteria in the form of mathematical expectation, we can
see essensual difference between obtained estimates. So, estimate obtained by using
mathematical expectation criterion [2] may be very optimistic in some cases, and
comparison of these two solutions can give additional useful information to make a
final decision.

Numerical results concerning water-supply model show, that improved upper
bound is close to asymptotically exact solution, and can be used as a good approxima-
tion and also as a good start point for stochastic quasi gradient algorithm to improve
its convergence.

All this results lead us to develop research in this area and to find a solution for
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problems, that are still open. Some of these problems are:

i) To extend obtained results to the linear-quadratic case;

ii) To find necessary and maybe sufficient conditions of confidence set optimality
in Iiﬁear QOP,

iii) To investigate converity of quantile criteria in two-stage linear QOP and a
question of solution ezistence for such problems;

ilii)  To eztend obtained results to multi-stage linear QOP (multiperiod case).
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