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Abstract

In this paper we consider an optimimization problem in water supply systems. This
problem can be formulated as a minimization with probabilistic constraints. We
present a nontraditional approach for the solution of this problem using quantile op-
timization algorithms. It may be practically useful, because the confidence level of
probabilistic constraints is closed to unity, and it is difficult to use other gradient

methods [1],[5],[8]. We present a method to obtain a guaranteeing solution of this



problem based on the Generalized Minimax Approach [4] and a sequence of linear pro-
gram solutions. We show how to use stochastic quasi-gradient algorithms for quantile

function optimization [2],[3] in this case. Numerical results are also discussed.

Keywords: optimization problem, probabilistic constraints, quantile optimization

algorithm, guaranteeing solution, stochastic quasi-gradient algorithm.

1 Introduction.

Optimization in water-supply systems often arises in the design of distant solar pow-
ered plant for fresh water production when fresh water sources are absent. The model
considers stochastic deviation of the solar plant power and the possibility of monthly
external fresh water supplies. The objective function of this problem is the sum of
the capital cost of solar powered plant constraction and the cost of external water
supplies. We consider the probability of complete satisfaction of the demands to be
restricted.

Similar problems were considered in [1],[6],(7],(8]. In general, previous methods
for such problems are based on efficient probability function calculation and different
kind of gradient methods using. However these methods are ineflicient for solution of
the problem under consideration, because their computational reguirements depend

on the probabilistic constraints confidence level a approximatly as ~ -(1—_—10—)2 [4]. We



consider the problem, where « is interpreted as the reliability of the system, and so
a is close to unity. Our approach is based on transforming the initial problem to an
equivalent unconditional quantile optimization problem. It is a specific convolution
of a nonrandom objective function and probabilistic constraints. Our method for
the equivalent problem uses known numerical algorithms [2],[3], which are suited to
deal with high confidence level quantile functions. We also consider a guaranteeing
solution method, i.e. a method for obtaining an upper bound on the optimal value
of the objective function. In fact that the upper bound tends to an exact optimal
value of objective function as « increases [4]. So guaranteeing solution is a good
initial condition for the stochastic quasi-gradient method [3]. A combination of these

methods can be effectively used for the original problem solution.

2 Problem statesment.

Let h = (hy,..., hy) be a nonrandom vector of monthly water demends over n months
and w = (wy,...,wn) be a nonrandom vector of monthly external supply plans. The
internal water-supply system consists of a solar powered plant for water production
with area S(m?) and cistern of volume V(m?) for keeping monthly water overflow.
The solar powered plant’s productivity depends on monthly solar activity and can be
expressed as a random vector t = (%1, ...,t,). The probability distribution of random

vector t is known with support %% . The total cost of the water-supply system is given



=05, V,w) =aS+bV +¢) w; (2.1)
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where a is the cost per m? of solar powered plant;
b is cost per m3 of cistern;
q is cost per m® of externally delivered water.

The surplus water at the end of sth month is expressed by:

;=T +St]-+w,~ - h]'

I
=
S

Y zo=0 j (2.2)

Zj-1 = min(z;_1,V)

\

where Z;_; is water remainder from previous month, which can not exceed the volume

of the cistern.

The system works normally if the following condition is satisfied:

Since equation (2.2) includes the random vector ¢, then holding (2.3) is random event.
The optimization problem is to find nonnegative system parameters S,V and non-
negative external water supply parameter w, which minimizes the objective function

(2.1). The optimal parameters are:

(S*,V*, w*) = arg gnin o(S,V,w) (2.4)

Vaw

by given values of a,b, ¢, h and distribution ¢, subject to probabilistic constraint:

P(S,V,w) = P{t : minz;(t) > 0} > « (2.5)

1,n



Here a € (0,1) is the given system reliability.

Using (2.2) and(2.3) we can transform (2.5) to the probabilistic constraint of
simultaneously holding of N = n % (n + 1)/2 bilinear inequalities, because every ith
month we must add ¢ inequalities to the previous inequality system.

Problem (2.4),(2.5) is a stochastic program with a nonrandom objective function

and probabilistic constraints.

3 Reduction to a quantile optimization problem.

Let us reduce the problem (2.4),(2.5) to a quantile optimization problem. This means
that we must optimize a confidence level a quantile function for some auxiliary ran-
dom variable distribution. This allows us to use effective numerical algorithms for
high confidence level quantile function minimization. Let us express variable w; using
(S,V,®) and (wj, j =2,n) from (2.1). Define a new variable z = V — ®/2. After
changing variables, the probability constraint (2.5) can be reduced to the following
form:

P{t: Fi(S,z,wg,..;wn,t) <® i=1,N} >« (3.1)

where functions F; have the structure:
Fi() = Sfi(t) + fi(z, w2, .., w). (3.2)

Here, fi(-) are linear functions, and f;(t) have the form:

k;
i)=Y tm Li<k<n i=1LN (3.3)

m=l;



Define value ®(S, z,ws, ..., w,) as the minimal value of ® when constraints (3.1)
hold. @,(-) is the confidence level a quantile function of random variable F’s distri-
bution, where F' = F(S, z,w, ..., wn,t) = max;{Fi(-)}. Define u = (S, z,w,, ..., w,).

Then the initial problem can be reduced to the following form:
Ue = arg min o (u) (3.4)

subject to:

ueU={u:5>206V>06w;>0 j=1,n}

4  Guaranteeing solution algorithm.

The quantile optimization problem (3.4) is computationally difficult, because the
quantile function ®,(u) can not be expressed analytically. First we consider an algo-
rithm for obtaining a guaranteeing solution of this problem. We use the Generalized

Minimax Approach [4] to rewrite problem (3.4) as:

(Ua, Eq) = arg muin_ max F(u,t) (4.1)

where E, is the class of confidence sets whith probability measure a. Denote B as
the Borel o- field on the disturbance space. Then E, € B. Choosing an optimum set
E, € E, is a difficult operation. However if we want to find a guaranteeing solution,
we can replace E, by some initial approximation Ey € E,. For standard Gaussian

random disturbances it is convenient to select Ey as a sphere Cy [4]. The center of



C, 1s the mathematical expectation point of the random vector ¢ and P(C,) = a. In

this case then the radius of C, can be obtained analytically. Then the function:

9a(u) = max F(u,1) (4.2)

will be a majorant of the quantile function ®,(u) (3.4), i.e. :

Bo(u) < Do(u) VueU (4.3)

A

Given u € U and (4.2), ®,(u) is the minimal value ®, that satisfies all of the
inequalities:

E%%ffF‘(“’t) <® =L,N (4.4)

For every 1 = 1, N, the maximum in (4.4) is attained at the point ¢! € ®", which
is a tangency point of the hyperplane f;(t) = const and sphere C, and can be found
analytically. Hence, for calculating the guaranteeing solution, it is sufficient to solve

the following linear programming problem:
il = arg min ¢ (4.5)

subject to linear constraints:

Fi(u,tf)<® i=1N (4.6)

This problem can be solved by the standard simplex algorithm.

Suppose that the guaranteeing solution (u4, ®4) is discovered. Then the set of all

vectors ¢ satisfying following inequalities:

Fi(fia,t)<®, i=T,N (4.7)

7



is a polyhedral set:

C={t: fit) < ci(®a,ita) i=T,N} (4.8)
where
ci(®a, ) = &“Tﬂ@ i=1,N (4.9)

A

and 4} = (2,2, ..., Wn).

By construction of ¢}, the polyhedron

fit) < fi(%) i=1N (4.10)

is circumscribed around sphere C,.
By (4.10),(4.6) and that § > 0, all ¢ which satisfy (4.10) belong to C. Hence
Cy € C, and P(C) > @, because polyhedron (4.10) circumscribed the sphere C,.
Let us consider a new confidence sphere C,; with a radius R,; < R,, where R,
is the radius of C,. It is obvious that P(Cy;) < a. Choose at the sphere C,; points

t** by analogy with the selection of t;. Now, consider problem (4.5) subject to:

Fu,)<® i=T,N (4.11)

Let (4%, $*) be a solution to this problem. Denote:
C*={t: fi(t) < i(®,02) i=T,N} (4.12)

where the structure of ¢;(-) is described in (4.9).



Lemma 4.1

If P(C*) > a, then 7 is an upper bound of the quantile function optimal value
of problem (3.4) and the following inequality holds: % < &,.

Proof of the Lemma 4.1 see in Appendix A.

This Lemma allows us to present the following algorithm for obtaining an improved
upper bound of the ®,(-):

Step 1. We find a solution (s, ®4) of the linear programming problem (4.5),(4.6),
where t 1 =1, N are selected on confidence sphere C, with probability measure «,
and the ¢¥ maximize F;(-) (3.2).

Step 2. Using a numerical simulation algorithm , we check inequality P(C' ) > a,

where C is from (4.8).

Step 3. If P(C) > a, we decrease the confidence sphere radius with the given
increment h, and continue the cycle from Step 1.

Step 4. In the opposite case, we select the previous step’s linear program solution,
®,(-), as an upper bound on the optimum value of ®,(-) in problem (3.4) and set

A

Uy = Ug.

5 Stochastic quasi-gradient algorithm.

As mentioned above, the quantile function can not be analyticaly expressed in this
problem. This complicates obtaining an exact solution. We propose algorithms,

which are based on the idea of using stochastic quasi-gradient vector of ®,(-). Let us



consider possible ways of getting quantile function statistical estimates. Using these
estimates we can calculate a stochastic quasi-gradient vector.

Denote an independent sample of random vector ¢ values as {tx};-; and {F}}i_,
to be an ordered collection of function F(u,t) values: F; < F; < ... < F,, ie. a
variational sequence. Then the confidence level a quantile function ®,(u) of random

variable F'(u,t) distribution can be estimated by the following statistic:

O (u)=Fig, 7= 5.1

o(u) = Firq, [(1_0)] (5.1)

where [ra] is the integer path of the ra value. Estimate (5.1) is \/7- consistent and
®7 (u) is also an asymptotically effective estimate.

However, when we deal with a high confidence level quantile function, it is dif-
ficult to use this estimate, because in this case the sample size must be more then
T, = [(li—a)], and process of the variational sequence tracing becomes very com-
plicated. In this case we prefer to use another estimation procedure, based on an
asymptotic propety of extremal order statistics Fr, Fr_;, i.e. extreme right terms of

the variational sequence:
&7 (u) = F, — (F, — F,_1)(p + In(7) + In(1 = 7)) (5.2)

where 7 < [(llf‘)] Estimate (5.2) allows us to estimate high confidence level quantile

function using small size samples. Moreover, we need only extreme members of the

sample. Statistical propeties of estimates (5.1),(5.2) were analyzed in [2],[3], where

the fitness of these estimates for using in stochastic quasi-gradient algorithms for

quantile function minimization was shown.
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Let us define a quantile function stochastic quasi-gradient as a random vector:

=55 Z[cb (Gt ooy Ui + Boy ooy ) = DL (i1, ooy Uy — By oy rfes (5.3)

where 3, is a nonrandom decreasing sequence term; r is the dimention of vector u;

#; ¢ =1,r are random variables, which have uniform distribution on [ui—Bs, ui+Bs);
2 (u) are independent quantile function estimates (5.1),(5.2); &; i =1, are basis
vectors.

The stochastic quasi-gradient procedure for quantile function minimization is :
= py(u - p'(u)p,) W €U (5.4

where py(u) is projector to the set U; p, is a nonrandom sequence of step multipliers;
s is the number of the procedure step. Conditions of strong convergence of u* to u,
are considered in [3].

As an initial condition u® for procedure (5.4) we take i, the guaranteeing solution

obtained in Section 4.

6 Numerical example.

The considered problem is a system with n = 6 months. Two reliability levels,
a = 0.99 and a; = 0.999 are considered. Initial data for this problem are : a =
3.75[unit/m?]; b = 10[unit/m3]; ¢ = 25[unit/m3].

The object water demand per month:

= [29.6;0.0001; 23.9; 36.2; 82.1; 173.4].

11



We suppose, that the random vector ¢ has normal distribution with parameters:
E¢ = [0.00837;0.00828; 0.0185; 0.0631;0.123; 0.137]

oy = [0.000582; 0.000552; 0.00123; 0.00421; 0.00818; 0.00916].

Random variables ¢; j =1,6 are independent.

This problem is model one. We choose short system life for obtaining results
convenient for analysis. The results essentially depend on the a,q,E¢,04 parameters
relations. We omit the description of computational aspects of this problem. It
is more important that this example reflects correlations between guaranteeing and
stochastic quasi-gradient approaches.

Results of the guaranteeing and asymptotically exact solutions are given for a =
0.99 and a; = 0.999 in Table 1. Results are given with accuracy two significant figure

after point.

Table 1.: Numerical Example Solutions

Guaranteeing solution | Asymptotic exact solution
GS AES abs( GS-AES )

var. |a=0.99 | a1 =0.999 |  =0.99 a; =099 | a=0.99 | a; =0.999
® | 4905.96 4995.02 | 4879.05 4973.78 26.91 21.24
S| 1000.19 1017.03 | 1001.29 1017.22 1.1 0.19
\% 61.33 63.21 59.14 61.11 2.19 2.1
() 22.48 22.61 22.06 22.76 0.42 0.15
Wy 0. 0. 0. 0. 0 0.
W3 0 0 0 0
Wy 0. 0 0. 0. 0 0.
ws 0. 0 0. 0. 0 0.
We 0. 0 0. 0. 0 0.

From the table, we see that for the given conditions the optimal water supply

12



system satisfies demand by using fresh water produced by the solar powered plant.
Only in the first month, when plant productivity is small, does the optimal solution
uses an external water supply. This fact can be explained also by the small capital
cost of solar powered plant construction.

With increasing «, the guaranteeing solution tends to the asymtotically exact
solution. This fact allows us effectively to use the guaranteeing solution algorithm
itself, and also to accelerate convergence of stochstic quasi-gradient methods using

guaranteeing solution as a good start point.

7 Conclusion.

Choosing optimal water supply system structure is a typical optimization problem
with probabilistic constraints. We present a nontraditional algorithm for this prob-
lem solution, reducing it to a quantile optimization problem. This approach allows
us to avoid the main lack of solution procedures for optimization problems with
probabilistic constraints. Algorithms traditionally used suffer increasing computa-
tional difficulties and decreasing precision when the confidence level a increases. We
considered the guaranteeing solution algorithm for obtaining successively improving
upper bounds on the objective function value. This algorithm can be reduced to the
sequential solution of linear programming problems. The computational requirements
depend of the confidence level a only by checking the condition P(C) > a under each

iteration of the algorithm, where C is polyhedral set of random vector t. However,

13



we can regulate the number of iterations by choosing the negative increment of the
confidence sphere radius. On the other hand, under increasing of a, the guaranteeing
solution tends to the exact one. Thus we can obtain a good approximation of the
exact solution and find a good starting condition for the stochastic quasi-gradient
method.

Moreover, the computational complecity of the considered stochastic quasi-gradient
method (o(;Z;)) increases more slowly than previous methods (o(a:lg)s;))

So the combination of the two presented methods is an effective algorithm for

solving the cosidered problems.

Appendix A
Proof. of Lemma 4.1
1. Consider set C* (4.12) as a confidence set instad of C,. Then inequalities

(4.6) are:

&%j(“ﬁﬂﬁ(w)s@ i=L,N (7.1)

where u° = (z,wy, ..., wy).

It is obvious, that (7.1) holds for the solution (47, ®?). Hence (4%, $?) is a feasiable
solution for problem (4.5),(4.6), where ¢ i = 1, N are selected on the confidence
set C*. It follows from the condition of the lemma, that P(C'*) > a. Therefore, &’;

is\an upper bound on the objective function optimal value in the problem (3.4) [4].

14



2. Functions fi(-) (3.3) are linear combinations of ¢{; j = I,n with non-
negative coefficients. By R, > R,q, and the fact that vector E consists of positive

elements, the following inequalities hold:

fET) < fi(&) +=1LN (7.2)

A

In fact, (ta, ®4) is the solution of the problem (4.5),(4.6). So by (3.2),(7.2) and
S > 0, inequalities

Fi(tig, ) <&y, i=1,N (1.3)

also hold. Hence, (i, ®,) is a feasible solution for problem (4.5),(4.11), where the
t* are selected on the cofidence set Cy;. However (ii7, ®*) is the optimal solution of

a) T o

this problem. Therefore, ‘I>; < &,. This completes the proof of this Lemma.

Acknowledgements - The authors are indebted to Prof Andrei I.Kibzun for sug-
gested scheme of guaranteeing solution improving and many helpful discussions.

REFERENCES

(1] U.M.Ermoliev,Stochastic optimization methods, Nauka, Moscow, 1976 (in
Russian)

(2] A.LKibzun, V.U.Kurbakovsky, "Numerical methods for runway space mini-
mization under random disturbances”,in Izv. AN USSR, Technic. Kibern., 1 (1991)
(in Russian)

‘ [3] V.U.Kurbakovsky, ” Accelerate method for high confidence level quantile esti-

15



mating”, in collection of works VNIISI: Nonhomogeneous system dynamic, vol
14- VNIISI, Moscow, 1989 (in Russian)

[4] V.V.Malyshev, A.I.Kibzun, Analysis and synthesis of aircrafts high ac-
curacy control, Mashinostroenie, Moscow, 1987, (in Russian)

[5] J.Mayer, ” Probabilistic constrained programming: redused gradient algorithm
implemented on PC”, International institute for applyed system analasis, A 23-61,
Laxenburg, Austria, May 1988.

[6] A.Prekopa, ” On probabilistic constrained programming”, in: Proceedings
of the Princeton symposium on Mathematical Programming, Princeton University
Press, Princeton, New York, 1970,pp 113-138.

[7] A.Prekopa, S.Ganezer, I.Deak and K.Patyi,” The STABIL Stochastic Program-
ming Model and its Experimental Application to the Electrical Energy Sector of
Hungarian Economy”, in: Stochastic programming, Proceeding of the International
Conference of Stochastic Programming, Oxford, England,1974, (edited by M.A.N.
Dempster), Academic Press, 1980,pp 369-385.

[8] S.P.Uriasiev, Adaptive algorithms for stochastic optimization theory

and game theory, Nauka, Moscow, 1990 (in Russian)

16



