First-Order Logic Models for Real-Time, Discrete-Event
Systems

Arch }\I{aylor
University”of Michigan

May, 1993

Abstract

A methodology based on first-order logic for modeling discrete-event systems is
introduced. Time is the real line, and systems. are allowed to have an infinite number
states. Applications of the modeling methodology are presented.

1. Introduction

efhtdology for;discrete-event systems [1, 2, 3, 4]
and to demonstrate its use. The ,method,.mf ‘1s_f'base¢%(n first-order logic [5]. We use logic
because most discrete-event sysf%ms *a,ge.v "a.‘tura]}y cha;l'achenzed by logical conditions and
quantities, and we choose first- ordér logh;b.ecaust it’ 1s*py far the most widely known and
developed version of logic. And, ﬁrs@‘ /s Wéié' Js, aﬂ‘.w’e will show, expressive enough to
model the phenomena of interest. In paffi‘ inwé %an have real time, simultaneous events,

and infinite state sets, yet still obtain classes of tractable models.

Our purpose is to introduce a pﬁ;de’hng)

However, even though first-order logic is the best known version of logic, few know
more than introductory concepts, and setting up our modeling methodology requires more.
Fortunately, using the methodology does not. Here we will cover the background technical
issues but in a largely segregated manner. Thus, a reader willing to accept things on faith
can skip over their discussion.

Another possibility would have been to do everything semantically in terms of sets,
ignoring syntax and the connections to logic. However, we would still have to reason about
these sets, and that would mean we were back to logic, but in an informal, somewhat
disorganized, manner. We believe an orderly theoretical foundation is better. It allows us
to use known facts of first-order logic. For example, Beth’s theorem [6, page 87] is very
useful.

The modeling formalism yields models that are systems of what we call pseudo-
differential-difference equations!. They are analogous to systems of ordinary differential
difference equations, and they are used in the same way. That is, one tries to find closed-
form solutions where they exist; one deduces properties of solutions from the form of the
system of equations; one uses approximations such as linearization, and one exercises the

system of equations in simulations.

2. Dynamic and Static Quantities

We view a discrete-event system as being made up of dynamic and static quantities. The
dynamic quantities are predicate-valued and function-valued functions of time.

Example 1 Time is the real line R. Vehicles are in a set V of ten vehicles. There are
twenty locations in a set L. The predicate Loc_(T,v,L), that is, some subset of the Cartesian
product R X V x L, keeps track of vehicle location. We view Loc_(t,v,{) as a mapping of
R into VXL the power set of V x L. That is, we view it as a predicate-valued function of
time. For example, if < 1,v,,£7 > and < 1,v3,€2 > are the only ordered triples in Loc_ with
T = 1, then the value of Loc. at time 1 is the predicate {< vy,{7 >,< v3,€3 >}. Vehicle 1
is at location 7, vehicle 3 is at location 2, and ‘no other vehicle is at a location; that is, they
are between locations. ‘

Example 2 In Ezample 1 the pnedzcatc Loc_(‘r, v, £) nght contam both < 1,vy,4g > and
< 1,v1,£12 >, that is, it might specify that vehicle 1 is at two dzﬁerent locations at the same
time. In some systems this might not be physically possible, and the model would presumably
have to reflect this constraint.

One way to reflect it is to régyire t‘vh\atr theJSentén'ce

(Vr)¥(r) = (Y7)(Vo)(VE)(VE) [Loc(T,v,£) A Loc(T,v,l') = (£ = £')] (1)

be satisfied, that is, if v is at £ and £' at time T, then £ and L' have to be the same. Using
this approach would require that we would have to show that v was satisfied initially and
that no subsequent event causes 1 (1) not to be satisfied. This is a reasonable approach, and
there are many situations in which this technique is used. Indeed, it is a simple ezample of
supervisory control which we discuss later.

Example 3 Another approach to the problem addressed in Ezample 2 is to replace the
predicate Loc_(t, v, {) by a function Loc_(T, v), that is, by a mapping of R x V into L.
Loc_(r,v) can be viewed as a function-valued function of time; in particular, at any fized

1A related approach is presented in [7].

time 7, Loc_(T,v) yields a mapping of V into L. This mapping assigns a unique location to
each vehicle at time 1. Since Loc_ is a function, we do not need sentence 1. On the other
hand, since Loc. is defined on all of R X V, a vehicle is always at some location, that is, a
vehicle cannot be between locations.

We will organize dynamic quantities into dynamic predicate families and dynamic
function families. A dynamic predicate family is an ordered pair of predicates { P_(7, 21, ...z5),
6P (1,21,...,25)}. We call this a family because, as we will explain below, § P is supposed
to be what we call the pseudo-derivative of P_. We say “supposed to be” because it is not
always the case for technical reasons which we will also explain below. Similarly, a dynamic
function family is an ordered pair {F_(7,z1,...,Z5), 0 F (7,21, ..., Zn,y)}, where F_is a func-
tion and 6F is a predicate. é6F is supposed to be the pseudo-derivative of the predicate
defined by (y = F- (7,21,...,Zn)).

Quantities that have no occurrence of time are said to be static. Further, and a
bit inconsistently, some quantities with occurrences of time are still classified as static. For
example, addition of two times certainly has occurrences of times, but we say that this
addition is static. Dynamic quantities are really things that are dynamic in the discrete-
event system being modeled.

Each dynamic family is classified as either endogenous or exogenous. The endoge-
nous families are inside the system and the exogenous ones are inputs.

3. L, Language

Each model of a discrete-event system is expressed in terms of a first-order language L [5,
page 67] that is appropriate for the system being modeled. Such a language has variable
and constant symbols, predicate and function symbols, and logic symbols. There are the
usual syntactic rules for combining these symbols into well-formed formulas [5, page 73]
and sentences [5, page 75]. The language is “appropriate” in the sense that its constant,
predicate, and function symbols are associated with entities and concepts of interest in the
system being modeled. Each model of a discrete- event system is a collection of sentences
over a language L.

Remark 1 Logic has a syntactic and a semantic side. An ezample of the syntactic side is
a predicate symbol Loc., and an ezample of the semantic side is a predicate that provides
a meaning or interpretation for the symbol Loc_. Predicates Py_(T, v, £) and Po_(1, v, {)
might be two different interpretations. Thus, there are predicate symbols and predicates.
Often authors will use different notations for these two concepts, for example, Loc_ for the
symbol and Loc. for a predicate. Here, however, we will risk a bit of confusion by using the
same notation for both concepts.

Remark 2 An interpretation for a first-order language is a collection of interpretations of
the constant, predicate, and function symbols over one or more universes of discourse. This
is usually called a structure [5, page 79] for the language. There are many structures for
any first-order language. A structure is said to satisfy [5, page 81] a first-order sentence a
if a is a true statement about the structure. It satisfies a set of first-order sentences if it
satisfies each sentence in the set.

We will denote a model of a discrete-event system by Y. The sentences in }_ are
subdivided into the following subsets:

e) 7, the sentences defining time
® Y pp, the sentences defining pseudo-differentation
® > pEB, the sentences defining discrete-event behavior

® Y Rg, the sentences defining the right sides of the pseudo-differential- difference equa-
tions

e Y g, the sentences defining other static quantities

e), sentences added to support universal quantification over time

Initial conditions and inputs are specified by a set of sentences Y ;cyp . A set of
sentences) p connects initial conditions to the original dynamic quantities. We will denote

2 U rceE, U2 H by 4

Remark 3 The subsets > 1,3 pp,>.pep and Y_, are essentially common to all models.
They will differ only because the underlying first-order languages differ. In a sense, this
part of Y defines the mathematical environment of a model. Logical models are peculiar
in that they contain everything that may be needed. In models using ordinary differential
equations, one need not include a definition of differentiation as part of the model: it is
implicit. In contrast Y_pp C .. Of course, as long as Y is going to be worked with only
“by hand”, much of it can be made implicit, too. However, any automated use of 5 will
have to include everything in one way or another.

Remark 4 In the basic version of first-order logic, all the symbols in a structure are in-
terpreted with respect to one universe. Thus, time and parts and vehicles and locations are
mized together into a common universe of discourse. This is sometimes awkward, so dif-
ferent categories are sometimes interpreted with their own separate universes of discourse.
Thus, there would be a universe for times, another one for parts, another for vehicles,
another for locations, and so on.

To do this, one uses what is called a many-sorted first-order language [5, page 277].
For ezample Loc_(t, v, £) could be many sorted with a symbol of the sort time, v of the

4

sort vehicle, and £ of the sort location. A structure then requires a set T for times, a set V
for vehicles, a set L for locations, and Loc. is a subset of R x V X L. If, instead, we did not
use a many-sorted language, a structure would have a common universe U, and Loc. would
be a subset of U x U x U. But we would need additional predicates to say what subsets of U
were times, vehicles, and locations, respectively. For ezample, T(z), V(y) and L(z) would
define times, locations, and vehicles, respectively. Then we would need sentences saying
that the defined sets were pairwise disjoint, for ezample, (Vz)(~(T(z) A V(z))). And so
on. In summary, then, many-sorted languages simplify things, so our models will use them.
However, to simplify things even further, we usually let the many-sortedness be implicit.

Example 4 A transport system has one vehicle which moves from one location to the next
when a move command is given. The route is a fized loop. There are two sorts: lime
and locations. The endogenous dynamic families are {W _(7,1),6W(1,1)}, and {S_(7,1,7,),
65(m,1,75)}. W_ models “Where is the vehicle stopped now?” Its value at any time is either
the empty set or a set containing a single location. The value of § W is empty at all time
ezcept those where a move starts or finishes. S_ models an ongoing move with v denoting
the current time, | denoting the destination location, and 1, denoting the scheduled arrival
times. If there is no move currently in progress, the value of S. will be the empty set.
The value of 65 at any time is empty except at the start and finish of moves. The single
ezogenous dynamic family is {M (1), M(7)}, which models move requests. This model has
an infinite state set because 7, can be any real number.

4. Y7, Time

Time is the real line ®.

Remark 5 However, there is a technical issue. Our modeling methodology is developed
within first-order logic, but we want time to be the real line. Unfortunately, we cannot
have both. If we insist on defining time as ezactly the real line, then we have to go beyond
first-order logic, and if we insist on staying within first-order logic, then we cannot define
ezactly the real line. Let us see why.

First-order logic allows predicates, functions, and quantification of only variables
which refer to elements of the universe of discourse, for ezample, (Vz) and (3z). Second-
order logic allows predicate and function variables, and it allows quantification of these
variables, for ezample, (VX), (3X), (VF), and (3F). That is, we can make statements
such as “there ezxists a set ...” and “there erists a function ...”. Higher-order logics allow
us to talk about sets of sets, sets of sets of sets, and so on.

If one looks at a serious definition of the real line in any graduate analysis book,
one discovers, once the definition has been translated into an appropriate logical formula-
tion, that the definition uses some higher-order constructs, and, it turns out, that they are
unavoidable.

Indeed, let T'y be the set of all first-order sentences that are true statements about
the real line. T' is obviously consistent because R satisfies it. Since any first-order sentence
a is either satisfied by the real line or not satisfied, T is complete [5, page 145]. Complete
means that for any first-order sentence a either a € T'y or a € T's and not both. In other
words, as long as “first-order questions” are posed, 'y contains all the answers, However,
if we ask a second- or higher-order question, 'y may not allow us to determine the answer.

Suppose that (is a higher-order sentence saying something true about the real line.
For example, let B be

(VX){(3y)(¥2) (X (2) — (2 < 9)) A (32)X(2)} -
{@NMVY) (V2)(X(2) = (2 < ¥) = (y< 9)}] (2)

where X is a unary predicate variable symbol. This second-order sentence says that any
bounded nonempty set has a least upper bound. [is certainly a true statement about the
real line, but it does not follow from I', that is, there are structures that satisfy I's U {5}
(e.g.,R) and other structures that satisfy T'p U {-~fB}. This means that neither § nor -
can be deduced ? from T'g. [is an important property of the real line, then, that cannot be
ezpressed in first-order logic. Consequently, our first-order version of time will not be able
to talk about least upper bounds, among other things.

Since there are structures satisfying I's U {-~f} and R does not satisfy I'p U {-f},
there are structures satisfying I'p that are not isomorphic to R. Such a structure is usually
referred to as a nonstandard model® of the real line. The point is that there are structures
which satisfy I'y that do not “look like” R. Since we cannot add any first-order sentence
4 to ' because the resulting set of sentences would be inconsistent (i.e., v and ~y would
both be present), we cannot do anything within first-order logic to remove the nonstandard
models. But the ezistence of nonstandard models is really a side effect; the real issue is that
there are important things that cannot be expressed in first-order logic.

The obvious question, then, is: why not use some higher-order logic? QOur reasons
Jor not doing so are, as we have said, (1) there are fundamental technical problems with
higher-order logics, (2) first-order logic is well developed, and (3) higher-order logics are
familiar to only a relatively few ezperts. But if we cannot formulate a workable modeling
methodology these three reasons are irrelevant. Consequently, we have to show that we can
get a good modeling methodology within first-order logic in spite of its limitations. That this
ts possible is a major result of this presentation.

In passing, we note that we will use the eristence of nonstandard models to show
that certain deductions are not possible. To show that }_ i a, we will describe a structure

2 A technical weakness of higher-order logics is that “not all things that are true” can be deduced. However,
this is not the point here. 8 is just not a true statement about all structures that satisfy I's.

3The word “model” is used here in two ways. First, there is a model of a discrete-event system. This
is a set of first-order sentences) . Second, there is the use of “model” in first-order logic. In that case, a
model is the same thing as a structure. That is, it is a semantic interpretation of the first-order language.
A nonstandard model of the real line is this latter kind of model.

which satisfies 3" U {~a}. The first such use occurs in this section.

Given, then, that we want a first-order theory of time, what should it be? Iy is
inappropriate because we do not have a practical way to specify it. Instead, we choose to
characterize time with the axioms, denoted here by Y 7, for ordered real closed fields [6,
page 41]. The language is {<,+,-,0,1}, where 0 and 1 are constant symbols.

The field axioms are:

(Vz,9,2) [z+(y+2)=(z+y)+7]
(Vz) (z+0=2)A(0+2z = =z)]
(Vz)(3y) [(z+y=0)A(y+z=0)
(Vz,y) [z+y=y+7]
(Vz) [1z = z1 = z]
(Vz,9,2) [2(yz) = (zy)]
(Vz,9) [zy = ya]
(Vz,9,2) [2(y + 2) = (zy) + (22)]
(Vz,y) [zy=0-(z=0Vy=0)
0#1
(Vz) [(z #0) - (Jy)(yz = 1)]

The order axioms are

(Vz) [z <7]
(Vo,4,2) [z <HAWS) - (<)
Vz,3) [(z<y)A(y<2) - (2=1y)
(V2,0,2) [<y)—(@+z<y+2)]
0<1
In addition, there is the axiom
(Vz)(3y) |5 = 2) A (4 + 2 = 0)] (3)
and the two infinite sets of axioms, for each n > 0
(YZ0r 21,00 Zn) [(22 4 23 4+ + 22 = 0) = (80 = 0) A .. A (2 = 0))] (4)

and for each odd n > 0

(Vz,, 21, ..., 24)(Ty) [(z,,y" T ¥4t Tyt 2o = 0V (z, = 0)] (5)

The latter two are called axiom schema in that they each describe an infinite set of axioms.

7

The theory of Y7, Th(3_7), is the set of all first-order sentences over the language
{<,+,,0,1} that can be deduced from 3 . This theory is complete, that is, if a is a first-
order sentence over {<, +,-,0,1}, then either @ € Th (3_r) or ~a ¢ Th (") but not both.
However, there are other first-order sentences that are true of the real line. For example,
if we add a predicate symbol to describe exponentiation, y*, there will be new first-order
sentences that cannot be expressed in terms of the language {<,+,,0,1}. These sentences
will be in Tg but not in Th(} 7). The point is that we are using part of the first-order
theory of the real line: Th(3 7) is a proper subset of I's.

There are really two models recognized as standard models for ;. The first,
R, <,+,-,0,1), is ordered real closed field in the real line. This is our intended model
of time. The other is (A, <,+,+,0,1), where A is the set of all algebraic numbers in the
real line. The former is an uncountable model and the latter is countably infinite, so they
are not isomorphic. We note in passing that the model (A4, <, +,-,0,1) plays a special
role in the theory of ordered real closed fields in that it can be isomorphically embedded
into any ordered real closed field. Though (®,<,+,:,0,1) is our intended model of time
(A,<,+,-,0,1) is sometimes referred to for technical reasons.

In any event, there is no first-order way to say we mean (®,<,+,,0,1) and not
(A, <,+,+,0,1). Moreover, there are nonstandard models that are not isomorphic to either
of these models.

If § is sentence (2) about least upper bounds, then any structure satisfying "7 U {8}
is isomorphic to (R, <,+,+,0,1). That is, if we add 3, we get precisely the ordered real
closed field in ®. However, adding even just this one second-order sentence introduces the
problems associated with higher-order logics, so we do not add it.

5. Y pp, Pseudo-differentiation

Consider a dynamic predicate family {P(7,zy,...,2,),6 P(T,21,...,25)}. Our intention is
that P_ should be left-piecewise constant, éP should be impulsive, and 6P should be the
pseudo-derivative of P.. We define these terms in this section.

Definition 1 A predicate P.(1, 21, ...,2,) i8 left-piecewise constant at time T if the following
first-order well-formed formula is satisfied by P- at time 7.

Ar)@Er)[re<r < JAMVR)VR) (e < My STV (T < 1,72 < 7))
= (V21,00 Zp) {P(T1,Z1y o0y Zp) & P(72,21,..0,25)}]] (6)

Remark 8 Our convention is to use a “—” subscript to denote dynamic predicates and

functions that are normally left-piecewise constant. Those that are right-piecewise constant
will have a “+” subscript.

Remark 7 In a nonstandard model of Y r it is possible that (T, — 7;) could be a so-called
infinitesimal [5, page 164] even though it is greater than zero, that is, it could be smaller
than each algebraic number. Or (1, — 7¢) might be greater than each algebraic number, that
is, it might be an infinite number. FEither case is a technical curiosity because any first-
order statements we deduce will be correct statements about all possible models of time, in
particular, about the real line which is the one that we care about.

Definition 2 A predicate § P(7,z1,...,2,) s said to be impulsive at time 7 if the following
first-order well-formed formula is satisfied by 6 P at time 7.

(3r)(3) [[T(<T < T)A (VTI) [((n <1< T)V(r< < Tu))
= (V21,000 20) (0P(7, 21, 00 2))| (7)

That is, § P is empty for time sufficiently close to 7, and it may or may not be empty
at exactly 7. If it is nonempty, we say that there is an impulse at 7.

Remark 8 Remark 7 about nonstandard models applies here also.

Remark 9 We will usually use a “6” prefiz as in “6 P” to denote dynamic predicates that
are normally impulsive.

Rather than define the pseudo-derivative at one time, we have to define it in a
neighborhood of a time; otherwise, we do not capture the intuitive idea of 6 P being the
step change in P_.

Definition 3 A predicate § P(1, 21, ...,Zy,) i8 the left pseudo-derivative of a predicate P_(, z;,
.eyZy) in a neighborhood of a time T if the following first-order well-formed formula is sat-
isfied by 6 P and P. at time .

Br)(Bru) [re < T < 1] A [(Vr')(n <1 < Ty) = [(31'2)(31':,) [T(< r,' <1< T,', < ru]

Avm)vm) (e < < YA <1 < 7)) = (V21,..0,22) {8P(r', 21, 1.1)
© (P(71,21, -y Tn) + P72, T1, o Z0)) }]]] (8)

where “4” denotes symmetric difference. 7, and 7, establish an open neighborhood of 7 in
which 6 P is the pseudo-derivative of P_. In particular, for each ' in this open neighborhood
there is an open neighborhood of 7' defined by 1',' and 1';. Then for any 7; and 7 in this
latter neighborhood with 7 < r' and 7' < 7, we have that 6P(1", Z1,...,Zpn) is the symmetric
difference of P_(1y,21,...,25) and P(72,Z1,...,Zn).

The following lemma shows that the above definition captures the intuitive idea of
pseudo-derivative.

Lemma 1 If 6P is the left pseudo-derivative of P. in a neighborhood of time T, then éP is
impulsive and P. is left-piecewise constant at time 1.

Proof: Let 7 = r. We know that there are Tt’ and 7'," such that §P(T,2q,...,2,)
P (1,21,....20) + P(72,21,...,25) for all (Tll < <T)A(T< T < 'r;) From this we
conclude that P_(73,%1,...,25) is constant for ‘ré <m<rtandfort<T13< 1'," which shows
that P. is left-piecewise constant at time 7. Let 74 satisfy Tl’ < 14 < 7. Since 6P is the left
pseudo-derivative at P_, we have 6P(14,21,...,25) & P(75,21,...,%5) + P(76,21,...,Ty)
for all 5 and 1¢ is an open neighborhood of T4 contained in the interval (T;,T]. Since
it is constant in this neighborhood of T4, ~6 P(74,%1,...,2,) is satisfied. Therefore, 6P is
impulsive at time T.

Henceforth, we will drop “left” from “left pseudo-derivative”.

Remark 10 Note that had we defined pseudo-derivative at a point rather than in a neigh-
borhood, the above lemma would not be true.

So far we have said that “6P is supposed to be the pseudo-derivative of P.”. We
formalize this idea with a first-order sentence that says that if § P is impulsive at time 7,
then it is the pseudo-derivative of P_in a neighborhood of time 7. That is, for each dynamic
family we require that the following sentence be satisfied.

(Vr) [{Formula 7} — {Formula 8}] (9)

These sentences are part of }_pp. The rest of }_pp, is required for technical reasons.
The additional sentences say that if 6 P is empty over any time interval, then P_is constant
over that interval. These sentences are

(Vr)(¥7e) [{(v7) (72 < 7' < 1) = (Y21, 0020) (<6P(, 21, 001 20))) }
= {(Vr)(V7r2) ((1e < 11,72 < 7)) = (VZ1y.00y 20) (P71, 21, 0y Zp) & P72, 21, ..., 25)))}]
(10)

(¥re) [{(¥7') ((re < 7') = (V21,000y20) (<6P(7', 21, .y 2))) }
- {(VTl)(VTz) ((T[< T1,1'2) - (Vzl, cery z,,) (P_(‘rl,xl, ...,:L'n) « P.(Tz,zl,..., :c,,)))}]
(11)

(¥r) [{(v7) (' < 1) = (Y21, s 20) (<6P(7', 21, 020))) }
= {(Vn)(V72) ((11, T2, < 7)) = (Y21, o0y Z0) (P11, 215 00y Tn) & P(12,21,...,25)))}]
(12)

Remark 11 We need the second set of sentences in Y pp because it is not implied by the
first set. The reason is, once again, that there are nonstandard models of time.

10

6. Y pep, Discrete-event Behavior

A dynamic predicate § P has discrete-event behavior if it has a finite number of impulses
within each finite time interval. In this case 6 P is impulsive at each time, and, therefore,
from Y pp, it is the pseudo-derivative of P_in a neighborhood of each time. Further, P_
will be left-piecewise constant with times of discontinuity the same as the impulse times of
§P.

Remark 12 There is no first-order formula which defines a finite time interval and none
that defines a finite set, so we have to get at discrete-event behavior indirectly. We do so
as follows.

Definition 4 A predicate family {§P, P.} is said to have discrete-event behavior if the
following sentences are satisfied.

(Vre) (V1) [(re < 1) = (Fe)(0 < e) A(Vr) (V) {(me < T, 2 < Tu) A (1 # T2)A
(Fz1y ey Tn)OP(T1, T1y ooy Tn) A (F21, ovey Zn)6 P(T2, 21, ..y Tn) — (€ < |11 — T2|)}]
(13)

(VD) [Bre)(r < 1) A(B21y 0y Z0)OP(T, 1y ooy Tp) = (AT)(T < To) A (214 0oy 0)6 P (T, 21,y o0y Th)
AVR) {(7 < 1 <) = (Y21, .0y 20) (F6 P(Th, Z1, .., Zn)) }]
(14)

(V) [(3rs) (s < T) A (321, o0y 22)0P(T1, 21, ooy Bp) = (3Tp)(Tp < T) A (321, .0y 20)6 P(1p, 21, .., T1)
A7) {(1p < Te < 7) = (V21,0 Z0) (8 P(Te, 21, ooy Z0)) }]
(15)

The above sentences for each dynamic family are the set }_pgzg. The first sentence
says that in each interval defined by 7, and 7, there is a lower bound ¢ on the spacing
between impulses of §P. The second sentence says that if there is an impulse after time 7,
then there is a next impulse after 7 at time 7,,. The third sentence says the same thing
about predecessors.

Remark 13 We need all three sentences (18), (14), and (15); for example, > r U { first
sentence} does not imply the second sentence. That is, there are structures satisfying
Y 7 U {first sentence} which do not satisfy the second. For ezample, let T be a nonstandard
model of time with the real line R embedded in it and with positive infinite times. Let § P
be nonempty at 0 and empty everywhere else in R. Further, let there be a doubly infinite
sequence {zx}, k = ..., -1, 0, 1, ..., of positive infinite times (i.e. z} is greater than every
real number) such that zp41 = zx +1 for all k. For times in T—R, let § P be nonempty at
ezactly these times. This § P will satisfy the first sentence but not the second. In particular,
there is no next impulse after time 0 even though there are impulses after time 0.

11

Remark 14 A variation on the Definition (4) replaces the first sentence by one that treats
only intervals of length one. This definition is implied by Definition (4) but not vice versa.
However, this is another technical curiosity because they are equivalent when restricted to

the real line.

Remark 15 Yet another technical curiosity is that for a nonstandard model of time a
predicate § P can have discrete-event behavior with the bound ¢ being an infinitesimal, that
is € is greater than zero but less than every algebraic number. So we might have § P satisfying
Definition (4) with an infinite number of pulses between 0 and 1. Again, we do not care
about this possibility because every first-order sentence applied to the real line will have a
standard and familiar meaning.

7. Yrs, Pseudo-differential-difference Equations

Consider a simple ordinary differential-difference equation dz/dr = f(z(7),z(r — 1)). The
right side f gives a function of time, the left side says that if f is the derivative of something,
then one of them is z. We use this two part view as a model for our pseudo- differential-
difference equations. Y pp covers one part. A set of first-order sentences) ps — “RS”
for “right sides” — covers the other part. For each endogenous dynamic predicate symbol
family we have a sentence in _gg defining 6 P for times greater than or equal to the initial
time 7,.

Example 5 Continuing the transport system ezample, the pseudo-differential-difference
equations for the two endogenous families are

(V1) [(ro £ 7) = (V) {6W (7, 1) & ((M(T)AW (1, 1)) + ((T =) AS(7,1,7)))}] (16)
(Vo) [(1o £ 7) = (V)(V7a) {6S(T,1,75) ~ (17)
(M(T) AW (1, PL) A (1a = T+ 1)]) + (T = Ta) A S(7,1,7)))}] (18)

that is, 6W and 65 have impulses when moves start or finish, and a move takes one second.
PL is a function symbol denoting the “predecessor location” in the fized loop. PL is an
example of a static symbol. We refer to the subformula to the right of “c” as the “right
side”.

Remark 18 We will usually drop the outer (V1) and the leading (1, < 7) — and consider
them implicit.

The sentences in) grg are the heart of a model because they specify when events
occur and what the events are. Right sides are usually causal in the sense that their current
value is independent of the future. Our models allow “parallelism” in the sense that pseudo-
differential-difference equations can easily model more than one event occurring at a time.

12

8. Ygs, Static Quantities

These sentences define static quantities other than those defined in) 7. Y ¢ has no partic-
ular form; it depends on each particular case.

9. Yy, Histories

Histories are convenient for specifying initial conditions. The histories H_ and §H with
respect to a time 7, of P_ and §P, respectively, are defined by

(Vr)(VZ1, ooy) (V7R) [H(Ty 21y oy By Th) & (T < Th) A P(T,Z1,...,Tp)
+(1h S T)A P(Th,21, .oy Tp)) (19)

and
(VT)(VQ?], ...,.’Dn)(VTh) [6H(7', T1yeeey Ly, Th) > (T < Th) A 6P(Ta I, -"7mn)] (20)

That is, the history of P_ with respect to 7, agrees with P_ up to and including 73
and is constant for times greater than or equal to 7;. The history of §P with respect to 73
agrees with 6P for times less than 7, and is empty for times greater than or equal to 7.

There is a pair of such sentences for each endogenous? dynamic family. The set
of these sentences is denoted Y. Each {H,6H} is a new dynamic symbol family that is
included in the language £, and like all dynamic families it is required to satisfy Y pp.

10. X;cuE-, Initial Conditions and Inputs

Initial conditions are conditions on histories with respect to the initial time 7,. The set of
inputs are, again, the exogeneous dynamic families. The set of sentences }_ ;o4 g, charac-
terizes both. It always says that each H_ is constant for 7, < 7 and that each 6H is empty
for 7, < 7. It also says that each family {H_,6H} has discrete-event behavior.

Often the needed initial conditions are conditions on the history H.. at only 7 = 7,
that is, conditions on H.(7,,21,...,Zn,7o). This is usually the case with pseudo-differential
equations. In such cases we will additionally require that H_ be constant for 7 < 7, and éH
be empty for 7 < 7,. We could have truncated time to [7,,00), but it is more convenient to
have time be R in all cases. So we accept the minor cost of having to be concerned with the
histories for all times, even when most of these times are irrelevant as far as the solution of
interest is concerned.

*We do not bother with histories of exogenous dynamic families in Y because they do not have initial
conditions, at least not in .

13

At one extreme each history and each input can be explicitly defined by a first-order
formula that uses only static symbols. For example,

H(r,z,y,7) o (z=c1)A(y=c2) (21)

where ¢; and c; are constant symbols in £. Here H_ is constant for all time.

§H(t,z,y,7,) «L (22)

that is, 6H is empty for all times (L is false), and
§I(r) » (r=1)V(r=10)V (r = 32) (23)

that is, there is an impulse at times 1, 10, and 32.

The problem with the above explicit way of characterizing initial conditions and
inputs is that it is too limited. We need implicit characterizations. For example, a periodic
input might be characterized.

61(0), (Vr)[6I(r) < 6I(T +1)],
(V7)(Vr) (V) [(T < 71, T2 < T+ 1) ASI(11) A 6I(73) = (11 = 72)] (24)

The first sentence says that there is an impulse at 0, the second says that 41 is
periodic, and the third says that any open interval of length 1 contains at most one impulse.
This is an example of a 6] that cannot be defined explicitly as we did above.

Remark 17 Denote the union of Y r and the sentences (24) by Y s;. We make a dis-
tinction between Y 5; being an implicit characterization of 61 and) 5; being an implicit
definition of 61. The phrase “implicit characterization” is not formal, any set of sentences
can be one. On the other hand, “implicit definition” has a precise meaning.

Definition 5 Y_;; defines 61 implicitly [6, page 87] if

Y51(81) U X51(612) F (V1) [611(7) & 813(7)] (25)

where §I; and 81, are new symbols, and Y ;5;(61;) i8 357 with each occurrence of 61 replaced
by 8I;, i = 1,2.

The above definition says that there is only one 81 over a given model of time.

Beth’s theorem says that Y ;5; defines 61 implicitly if and only if 61 has an explicit
definition. 81 has an ezplicit first-order definition if there is a first-order formula ¢ with no
occurrence of 61 such that

(Vr) [1(r) « &(7)] (26)

14

is implied by > s;.

However, it is not difficult to find two different 61°s over the same model of time.
For ezample, let T be a nonstandard model of time that contains R as a proper subset and
with infinitesimal and infinite times. Let §I; and 61, agree on R but be shifted by 1/2 with
respect to one another on the rest of T. Both satisfy 3 s; but are different. Therefore, st
is not an implicit definition of 1. Consequently, 61 cannot be defined explicitly. The point,
then, is that 3 ;o g, need not be made up of ezxplicit definitions of histories and inputs.

Remark 18 However, it is always possible that the first-order theory of the histories and
inputs will be complete. That is, Th(3 g U 1ok,) is complete, where 3 g is the mathe-
matical background needed to support) jcep . Typically, 3 g contains 31 and Y g plus
the parts of 3_pp,Y.pEB>and)y, pertaining to historics and inputs. It also usually con-
tains the part of Y pp referring to historics and inputs. Y g will also contain the part of
Yoo Teferring to historics and inputs.

The point is that Th(3_gUY jcuE,) can be complete even if there is not an implicit
definition.

Remark 19 We refer to complete theories and completions of theories in a number of
places. It should be appreciated that it is impractical to try to determine if an arbitrary
set of sentences has a complete theory. Complete theories and completions have a mainly
theoretical interest. In fact, even if we have not given a complete first-order description of
the histories and inputs, it can easily be that what s missing is merely a technical curiosity.
For ezample, the sentences (24) together with Y g do not have a complete theory. Never-
theless, the standard model is uniquely defined (but not in first-order logic). The point is
that we have enough information to characterize the things of practical importance.

11. Solutions

A solution for given initial conditions and input is any standard structure that satisfies
Yt = U 1oE- Uy We also call a solution a trajectory. Y p is needed to connect

2 IcxEz and Y.

Remark 20 “Standard structure” is not a technical phrase, and it is, of course, not defin-
able within first-order logic. It does, however, say what our actual intention is.

Remark 21 Two structures are said to be elementarily equivalent [6, page 32] if they both
satisfy exactly the same set of first-order sentences. Complete first-order theories and ele-
mentary equivalence classes of structures go together. Given a complete first-order theory,

15

the class of all structures satisfying this theory is, by definition, an elementary equivalence
class. Given an elementary equivalence class, each structure satisfies the same complete
theory. The point is that technically we work with elementary equivalence classes or, equiv-
alently, complete theories whether we say “standard structure” or not.

12. Existence of a Solution

Most ordinary differential equations have a solution for a given input and set of initial
conditions. Those that do not are usually of limited interest for systems applications. This
is not the case for pseudo-differential-difference equations. A solution can easily fail to exist
in an important way because we require that solutions have discrete-event behavior. This
is illustrated in the next example.

Example 8 The system being modeled has two entities which alternate between being in
a predicate; as soon as one is in the predicate it is immediately replaced by the other one.
Obviously, there will be an infinite number of alternations within any finite interval. In
those cases, where neither or both entities are in the predicate, the system does nothing.

The model has one endogenous family {C (r,z),6C(7,z)} and two constant symbols
“a” and “b”, There is no exogeneous family. The initial time s 0. The only static condition,
other than those in Y r, is a sentence saying that a and b are different. The pseudo-
differential equation is

§C(r,2) = [{CAr,a) + C(r,0)} A((z = @) V (2 = }))] (27)

That is, a and b alternate whenever just one of them is in C_. There are two cases
to consider, depending on the choice of initial conditions.

First, suppose that only one of the entities denoted by a and b is in C_ at time 0.
In that case 6C(0,z) is not empty. This means that a and b are interchanged at time 0.
If {C_,86C} has discrete-event behavior, there is supposed to be a time interval of nonzero
length over which C. is constant and 6§C is empty. But immediately after time 0, 6C is
again nonempty, which is a contradiction. In other words, for these initial conditions,
YUY 1caE: U g 18 an inconsistent set of sentences. On the other hand, it is not difficult
to construct a structure satisfyingd> U 1c65:U Y n — Y pep- For example, let C_ contain
a on the rational numbers and b on the irrational numbers. The resulting 6 C is not impulsive
anywhere, so it does not have to be the pseudo-derivative of C_. That is, if we drop Y pgp
we obtain a consistent set of sentences. The point is that for these initial conditions the
system is attempting to alternate too fast to have discrete-event behavior.

Second, suppose that both a and b or neither is in C_ at time 0. In this case it is
easy to see that there is a solution with C. constant and § C empty for all time. Here, then,

16

YUY rouE: U i 18 a consistent set of sentences. And, of course, (U jcap-Yy)—
S _pEB 18 also consistent. Further, any structure with discrete-event behavior satisfying

S U roxE: U g will satisfy (U joup: Y H) — Speg- However, there are also
structures without discrete-event behavior satisfying this latter set of sentences and not the
former. The point is that the ezistence of bizarre structures satisfying (3UY jcep:Y X H)—
S - pEB 18 physically significant only when YUY jcug: UD g 18 inconsistent.

From one point of view there is a solution if YUY ;cer: U g is a consistent set
of sentences. However, we are not interested in any solution; we want “standard solutions”.
Each sort has a standard interpretation (e.g., the real line for time, the natural numbers for
counting and arithmetic, etc.), and we are concerned with the existence of solutions based
on these standard interpretations.

The usual way to proceed is to construct a structure that (1) satisfies YUY ;005 U
Y_n and (2) uses the standard interpretations. That is, one shows the existence of a solution
by constructing one. And, when doing so one may use any part of mathematics that
helps with carrying out the construction, that is, we are not limited by first-order logic
in our search for a structure satisfying >"UY ;o UD g. Assuming that there are no
inconsistencies in (- UY jcxg:UY 1) — XpEB, the construction will hinge on showing
that the impulses in §C’s will have to be separated from one another in time. Usually, this
is not a major problem.

Remark 22 The above argument is vague. Ideally, we would like to be able to say that
there is a standard solution if and only if YUY jcug: UD g 15 consistent. However, the
author does not have a way to guarantee that this is the case. However, even if the author
had such a guarantee, showing consistency would still reduce to constructing a solution as
sketched above.

In summary, existence is not a crucial practical problem for ordinary differential
equations, but it may be for our equations. Thus, the question cannot be completely
ignored. We have to be assured that we have discrete-event behavior.

13. Explicit Solutions

As in the case of ordinary differential-difference equations, some, but definitely not all,
pseudo-differential-difference equations have “closed form” or explicit solutions. Let

6P(r,...) & ¢(P,8I)(r,...) (28)

be some pseudo-differential equation, and let 7, be the defined initial time. An explicit
solution is a pair of first-order formulas ¥ (7, ...) and §9(7,...) with no occurrence of P_ or

17

6P such that

(V) [(r < 70)
Vr)[(ro < 7) -

vV..){¥(r,..) » H(1,...,75) }]
(V.){P(r,...) & ¢¥(r,..) }]
YT [(r < 70) (v...){6¢¥(7,...) @ 6H(T,....,75) }]
(vVr) (1o £ 7) (V..){6P(r,...) & 6¢(7,..) }]
can be deduced from),. Showing that the first and third sentences can be deduced is

usually trivial because the histories of 1/_ and §1 with respect to 7, will always be defined
to be H(r,...,7,) and 6H(r,...,7,). The challenge is to find the rest of ¥_ and é%.

Ll

Example 7 Consider
6P(t,z) « 8I(T)A(z =c) A P(1,x) (29)

where ¢ is a constant symbol and 7, = 0. In this case the following is the ¥ part of an
ezplicit solution

Pp(r,2) S [(TSO)+{0<) A [(z#)+ (z=)A(NVT) (0T < 1) = =6I(T")]}]
A H(r,z,0) (30)

where, recall, H.(1,z,0) is constant for 0 < 7. Thus, for 7 < 0 1_ is the history, and for
(0 < 7) 9 is constant until the first impulse of 61, if there is one. Then the element denoted
by c is deleted from the value of H. if it is present; otherwise, nothing happens. Subsequent
impulses have no effect. If the first impulse occurs at 0, then c, if present, is deleted at time
0.

Remark 23 Having an ezplicit solution is a fairly strong property. It says that for every
structure that satisfies Y, the solution is represented by the formulas {+_, §v}. In particular,
this is the case even when nonstandard models of time are used. In any event, there are
many applicable 3", ’s that do not have an ezplicit solution.

Remark 24 If we have an ezplicit solution, then the solution is, in an important way,
unique. Indeed, suppose the {P,_,6P,} and {P,_,6P;} are two solutions with the same
histories and inputs. Then both satisfy the above four sentences and are, consequently,
equal because {1_,6¢} and {H_,6H} do not involve {P,,6P;} and {P,_,6 P2}

Remark 25 Since év can be determined from 1, we will often call 1 by itself the explicit
solution.

14. Unique Solutions

In the case of ordinary differential equations initial conditions and inputs usually determine
a unique trajectory (solution). This is essentially the case with pseudo-differential-difference

18

equations, and from a practical point of view uniqueness, or lack thereof, is usually obvious.
For example, if }_ contains a system of n pseudo-differential equations, and if 3 ;e
defines all histories and inputs explicitly, then)", will almost always have a unique solution.
However, this is informal, and if one needs to go further, there are several technical issues.

Remark 28 There are four reasonable ways to define uniqueness.

1. There is a unique standard structure (up to isomorphism) satisfying y_,.
2. Y has an ezplicit solution.
3. 3, is an tmplicit definition of a solution.

4. The theory of 3, is complete, where the theory of 3, denoted Th(y_,), is the set of
all first-order sentences that can be deduced from) _,.

The first definition is the one that we really care about, but it cannot be expressed in first-
order logic. The others are, in contrast, first-order conditions.

The second has already been discussed in section 13. The point made there is that
many useful _,’s do not have an ezplicit solution; consequently, the second definition would
be too strong.

Consider the third definition. To simplify things, assume for a moment that 5,
has just one endogenous dynamic family {P_.,6P}. Let {P,_,6P:} and {P;_,6P;} be two
dynamic families of the same type as {P_,6P}. Let Y ,(P;_) and Y ,(P;.) denote ¥,
with {P_,6P} replaced by {P,_,6P,} and {P,_,6P,}, respectively. An obvious definition
of uniqueness is

Y(P)UY (P) F (VT)(V..) [A(r,y...) & Pa(7,)] A(VT)(Y..) [0 Pi(T,...) & 6P2('r,(.:.$.)])
1

that is, when any two trajectories have the same histories, inputs, and static quantities, then
they are the same. Y, is said to be an implicit definition of the solution if the deduction 31
is possible. This concept of uniqueness is essentially the one used for ordinary differential
equations. Unfortunately, it is too strong. In fact, Beth’s theorem says that definitions 2
and § are equivalent.

The fourth definition is the first-order definition which is generally applicable, but
there are problems. First, suppose that 37U ppUY pepUY sUY 1ceEs has a complete
theory. This says that we have a complete first-order definition of histories, inputs, and
static quantities. 3 U ppUY pggUY.s are included to provide the mathematical foun-
dation for 3 1cugs- If, then, 3, is an implicit definition of the solution, then the theory
of 3_; will be complete. However, as we had said, Y, need not be an implicit definition;
moreover, the theory of 3, need not be complete even when the first definition is satisfied.

19

Suppose that Th(Y,) is not complete but that Th(Y 1 UY pp U pepU Y sU X 1cLE:)
is complete. Further, suppose that there is a unique standard structure satisfying the latter

theory, that is, Y jou g uniquely describes some real histories and inputs. Assuming that
Y, is consistent, as we usually do, Th(y_;) will have a completion. This means that we can
add sentences to obtain a complete theory, in fact there will be many possible completions.
So to get a unique solution according to definition 4 we have to select one of these comple-
tions, that is, we have to add more first- order sentences to our model. The question is:
which ones?

In a sense, the selection is easy. Suppose that definition 1 is satisfied and let S be the
standard structure. The theory of S, denoted Th(S), is the set of all first-order sentences
satisfied by S. Th(S) is always complete, and since S satisfies 3_,, we have Th(}",) C
Th(S). Since we have assumed Th(}_,) not complete, this is a proper containment. The
point is that the natural completion of Th(y ;) is Th(S), so it is the one to pick from all
the possible completions of Th(},).

Ideally, we would like to find a set of sentences) .44 to add to) so that whenever
Th(7 U pp U pEBU Y sUY 1c8E:) was complete, Th(3_,UY,44) would be complete
and have a unique standard structure satisfying it. That is,) .44 1S in a sense a missing
part of the model 3. We discuss this in the next section.

15. Y., Universal Quantification Over Time

If some formula 1(7) is satisfied over each interval (—oo,7;], where 7, is finite, then we
conclude that (Vz)y(7) is satisfied.

Example 8 Consider the pseudo-differential equation
0C(1,z) & 8L, (T)A (z =a)+ 8L(T) A (z = b) (32)

where a and b are constant symbols. The initial conditions are (V1) [(T < 0) —» ~H (7,¢,0)]
and (V1) [(r < 0) = (Vz) (~6H(T,=,0))], where c is another constant. There are sentences
in Y_g which say that a, b, and c are distinct and that any z is one of them. The input 61,
causes a to be added to C. if it is absent and to be deleted if it is present. The analogous
statement holds for b.

The initial conditions say that c is not initially in C_. Since the pseudo-differential
equation does not change the status of ¢, can we conclude that c is never in C_. The answer
is no. At least it is no, if we we do not include the set of sentences Y, being discussed in
this section. To see why, suppose that), is not present.

Then let time T be a nonstandard model with infinite times that contains R as a
subset. It is easy to construct a solution such that C_ does not contain ¢ on R but does

20

contain c¢ for some infinite times. Intuitively, T has more than one part, one of them is R,
the initial conditions determine the solution on R, but not on the other parts.

The point is that having c in C- does not make practical sense, so we want to remove
this possibility. That is the purpose of 5.

Remark 27 Since there is no first-order way to define a finite number, the statement
opening the section must be modified to fit into first-order logic. There are several ways to
do this, and we allow any one of them. For ezample, if we know that v(7) is satisfied over
every interval of the form (co,a], where a is an algebraic number, we then conclude that
(V7)¥(7) is satisfied. Strictly speaking, this introduces an infinite deduction rule because the
deduction of (V1) (7) requires an infinite number of conditions — one for each algebraic
number — therefore this is not really a first-order solution. Another approach is to show
(1) that (7,) is satisfied and (2) that ¥(1) — (1) +6v(T) is satisfied for all . This might
seem like begging the question because we are again confronted with universal quantification
over time. However, in most applications either (V7) [(7) — ¢(7) + é9(7)] or its negation

is implied by S UY joup- U g The reason is that) UY jcep, UY g ts usually a first-
order characterization of what is going to happen over the next instant of time.

Yet another way to proceed would be to (1) show that v(,) is satisfied and then show
that if 1(7) is satisfied at an arbitrary time 7, this fact implies that 1 is satisfied immediately
after the next event, if there is one. From these facts we would again conclude (V7)y(T).
There are other imaginable approaches. We allow any one of them. All of them together
are the set Y, which is a subset of Y, discussed in remark 26. In fact, it is usually the
only part of Y, 44, that we make ezplicit.

Remark 28 The problem arises only if the theory of 3 UY cer: UD g 15 not complete.
Indeed, if this theory is complete, then for any (V7)y(7) either it or its negation, but
not both, must be in theory. However, if the theory YUY jcug: UD g 18 not complete
and neither (V7)y(7) nor ~(V7)y(7) is in this theory, then there is a completion contain-
ing YUY rcae: U g U{(V7)¥()} and another completion containingy U jcepUX g
U {~(V7)¥(7)}. However, only one of them makes practical sense. It is the one that agrees
with Th(S), where S, again, is the standard structure satisfying 3 U jcep-UY . The
various techniques for deciding whether (V7)y() is satisfied are really techniques based on
things that are true in the standard structure. That is, the sentences in), will allow us to
proceed without knowing S ezplicitly.

Remark 29 The last two remarks beat about the bush because the author does not know of
a better way to select the “natural” completion. This has no practical fall out, but it would
be nice to tie things up better.

Remark 30 There is a subtle trap to be avoided. It is connected with Beth’s theorem.
Suppose that 3_,(P,) and ¥_,(P;) are two version of Y, with two different sets of endogenous

21

dynamic families substituted for the original endogenous dynamic families. If we let {(1) =
(V..)[P(7,...) & Pa_(7,...)], it will usually be the case that we can show that

¥(ro) A (V1) [¥(7) = $(Py)(7)] (33)

where Y(Py) is ¢ with P_ replaced by P,., is satisfied, so we conclude that (V7)y(T) is
always satisfied. One might then conclude — erroneously — that by adding a sentence to
Y., we have made it an implicit definition of the solution; therefore, we have an ezplicit
definition of a solution. This is erroneous because we have not added a sentence about P_
to Y, we have added a sentence about P,_ and P,_to Y (P1)U Y (P,), and that is not what
Beth’s theorem is about. In other words, we do not magically force an ezxplicit solution into
ezistence. ‘

Remark 31 If more than one time variable is present or if the natural numbers are used,
the sentences in Y, will have to be augmented to handle these cases.

Remark 32 Something analogous to Y, is built into most temporal logics [8, 9, 10, 11] in
one way or another.

16. Supervising

We present a brief overview of using our modeling methodology in the supervision of
discrete-event systems. By “supervision” we mean constraining the inputs to a discrete-
event system in such a way that some condition is satisfied. The problem is usually that
some inputs cannot be constrained. Such inputs are said to be uncontrollable; the others
are controllable inputs.

To simplify the discussion we assume for a moment that our first-order language has
one endogeneous dynamic family {P_,6P} and two exogeneous dynamic families {u_,éu}
and {c_,dc}, where the first is uncontrollable and the second is controllable. Since we will
never use them, we suppress v_ and c_. We assume discrete-event behavior for all dynamic
entities.

Assume that we want a sentence ¥(P_, 8 P, éu, éc) to be satisfied because it charac-
terizes some kind of desirable behavior. From a practical point of view the set of standard
structures satisfying 1 is the set of acceptable trajectories. This set can be thought of as a
generalization of the event languages used with finite-state automaton models of discrete-
event systems.

The examples presented in this section are relatively simple. However, it often

happens that even in big discrete-event systems that the condition % will refer explicitly to
only a small part of the system. This means that, with luck, one has a chance of attacking

22

a supervision problem even in an enormous system. In any event, some of the examples
in this section have infinite state sets, and, yet, the solution of the supervision problem is
trivial.

Example 9 Suppose that the sentence v is
Y= (Vr)(Vn) [Pi(T,m,a3) > (TS <7+ 1) = (V7)o _(7) (34)
where a3 is a constant symbol; that is, the times 11 recorded in P_ are always in the interval
[r,74+1).
Now apply 1 to the discrete-event system characterized by
6P (r,m,z) o (T=n)A(z=a3) A Pi(T,m,a83) + bc(T)A(z =a3) A(m=T1+1) (35)

When there is an impulse in §c, the subformula §¢(T) A (z = a3) A (11 = 7+ 1) adds the
ordered-pair < T+ 1,a3 > to Py_ if it is not already present and deletes if otherwise. The
subformula (1 = 1) A (z = a3) A P,_(7,71,a3) deletes an ordered-pair < 11,a3 > from P;_
when 7 = 11. So if 6c adds < T+ 1,a3 > to P,_, it is automatically removed one second
later.

Let 0 be the initial time and assume ¢_(0) is satisfied. Since éu does not occur in
this example, we will assume that éc is uncontrollable here.

Since we are assuming discrete-event behavior, ¢_(7) has a pseudo- derivative given
by

§p(r) o (Vn)[PA_(r,m,a3) > (1 <11 <7+1)]
+ (vr) [(Pl_(r, 71, a3) + 6 Pi(T, rl',a3)) s (r<n<T+ 1)] (36)

that is, ¢_(7) + ¢4(7), where, informally, ¢, (7) is ¢_(7+), that is, ¢_ at a slightly later
time.

Assuming that ¢_(7) is satisfied, we want the second subformula on the right of
sentence (36) to be satisfied. Substitution of 6P, yields

(VT{) [((1‘ # ‘r{) AP (T, 'r;,a3) + 8e(T) A (1'; =1+ 1)) = (r< 'r; <rt+ 1)] (37)
for this subformula, and it is implied by ¢_(7). Indeed, < T, ‘r{ > satisfies the subformula to

the left of “—” by either satisfying (r # 1) A Py_(1,71,0a3) or with 7y = 7+ 1, and in either
case (T < 1'{ < 7+ 1) is satisfied. Thus, for any 6c the sentence v is satisfied.

This is a trivial analysis even though this is an infinile state system. Trying to

model this situation with a finite-state model could easily result in a very large state set and
lengthy analysis.

23

Example 10 Consider the following sentence

¥ = (Y1) [(Vr) {P1(7, 71, 83) = (372)(11 £ 72) A Po_(7,72,b2)}] = (V7)9_(7) (38)

that is, any time there is a pair < 11,a3 > in the value of P;_ there must be a pair < 13,by >
in the value of P,_ with 1y < 7,.

Assuming, as in the previous example, discrete-event behavior, the pseudo-derivative

of _(7) is

bp(r) & o_(7)+
(V1) {(Pi_(7,71,a3) + 6 PA(T,71,83)) = (3m2)(1 < 72) A (Pa(7, 72, b2) + 6 Py(7, 73, b))}

Now suppose that we apply the above condition to the discrete-event system charac-
terized by

6P(1,m,2) o (t=n)A(z=a)APi(r,m1,a3)+bc(T)A(z=as)A(rn=T1+1)
6Py (1, m,y) & (T=T)A(y=b)A P (1,72,02)+6u(t)A(y=b)A(ra=7+2)

where éc is controllable and éu is uncontrollable, az and by are constant symbols, and the
initial time is 0.
Substituting the definitions of 6 P, and 6P, into 6¢ yields

6¢(r) & ¢(1)
+ (V) {(t #n)APi_(r,11,a3) + bc(r) A (1 =7+ 1)}
= (@An){(n <) A((T # 12) A Pa(7,72,b2) + 6u(T) A (12 = 7 + 2))}]

Since ¢_ is satisfied, §¢(T) —L corresponds to the second subformula on the right
being satisfied.

We also assume (see the previous ezample) that
(Vr)(Vn) [Pi(Ty1ya3) = (T <11 <7+ 1)) (39)

and
(V7)(V7) [Po(T,72,b2) = (TS 2 < T+ 2)] (40)

are satisfied.

It follows from (89) that

(m#T)AP_(1,71,03) and bc(T)A (1 =T +1) (41)

24

are mutually ezclusive.
Likewise

(M < TR)A(T# 1) APy (1,73,b2) and (T, <) Abu(T)A (T2 =7+ 2) (42)

are mutually exclusive because of (40). If (n # 1) A Pi(7,7m1,a3) is satisfied, then by
é_(r) and (39) it follows that (3r2)(r1 < T2) A (T # T2) A Po(7,72,b2) is satisfied. If
§c(t) A (1 = 1 + 1) is satisfied, then either (313)(11 < T2) A (T # T2) A Po_(1,72,b2) or
(A7) (11 £ 12) A éu(r) A (T2 = T+ 2)) have to be satisfied. After further simplification, we
get

dce(t) = du(r)V(AT) (T+ 1 L 12) A Po(1,72,b2)) (43)

that is, there can be an impulse in bc if there is one in éu or if there is a pair < 713,by >
already in P,_ with 7 + 1 < 7. This assumes that éc can depend on éu. If this is not
posstible, then we have

be(t) = (3Am) (T +1 < 1) A Po(1,72,b2)) (44)

That is, 6¢(1) cannot depend on §u(r) because, for ezample, there is a significant delay
between sensing the ezistence of an impulse éu(7) and creating an impulse é¢(7).
Example 11 This is an extension of the preceding ezample.

Suppose that in addition to satisfying v, we want to select éc so that P, (10,10.5,a3)
is satisfied. That is, we want to have a pair < 10.5,a3 > in the value of P;_ at time 7 =

10.

Assuming discrete-event behavior, this is equivalent to

§P,_(9.5,10.5,a3) A ~P;_(9.5,10.5, ag) (45)

being satisfied. But by (39) ~P;_(9.5,10.5,a3) is satisfied. By the definition of 6P,
§Py(9.5,10.5,a3) «> 6¢(9.5) (46)

But from the preceding ezample
56(95) - 6“(95) \ (3T2)(10.5 < 1'2) A Pz_(9.5, T2, b2) (47)

Since §u is arbitrary, 6u(9.5) need not be satisfied, so we need (312)(10.5 < T2)AP,_(9.5, 72, b2)

25

to be satisfied. But if there is no appropriate impulse in éu before 9.5, the value of Py_ will
be empty at T = 9.5. Thus the sentence

¥ A Py_(10,10.5, a3) (48)

1s not controllable.

In general, we want to be able to select éc in such a way that 9 is satisfied for any
du. This means that allowable éc¢'s will be determined by éu. In fact, éc has to be causally
related to éu.

Remark 33 The foregoing approach can be formalized; however, the formalization requires
higher- order logic. It is useful for stating the above condition precisely, but it is of very
limited value for computational purposes. For example, one part of a formalization might

be

YrUXsUYqF (Véu)[(6u DEB) -
(366)(3 {P-7 6P}) {"»b-(P_’ 6P7 6u’ 60) A EPD A EDEB}] (49)

Y.t and) g are, as before, the definitions of time and static quantities. Y q is a
modification of ¥_,,. In particular, if a(A,B,C) is a sentence in y_,, where A, B, and C are
predicate symbols, then a is replaced by (VX)(VY)(VZ)a(X,Y, Z) where X, Y, and Z are
predicate variable symbols. The idea is that the first-order sentence a(A,B,C) which is a
condition on specific predicates is replaced by the general condition (VX)(VY)(VZ)a(X,Y, Z)
on all predicates. It is reasonable to do this because)", is already a set of general state-
ments about behavior as T — oo. The infinite set 3 U ¢U> q, in effect, sets up the
mathematical environment. The deduction says that in this environment the second-order
sentence on the right is satisfied. This sentence says that for every uncontrolled input §u
with discrete-event behavior, (Véu) [(6uDEB) —, there ezists a controlled input §c and a
dynamic family {P_,6 P} with discrete-event behavior and with § P the pseudo-derivative of
P_ such that v is satisfied, (36c)(3{P_,6P}) {¢(P_,6P,6u,8¢c)} A Y. ppAXpEg- It is a
sentence because Y pp and 3 ppp are finite and their conjunctions can be formed. It is
second-order because we are treating éu,éc, P, and 6 P as predicate variable symbols and
quantifying over them.

The above formal condition says that there is a structure satisfying 1 for every éu.
It does not say, however, that this structure is a trajectory of the discrete-event system
satisfying the initial conditions or any further conditions on the inputs. To include the
discrete-event system we add finite sets Y_ps and Y_jcugr to the sentence on the right of “
F”. The result is

YrUYsUYqF (Véu)[(6uDEB) —
(36c)(3{P.,6P}) {¥(P_,6P,6u,6c) N pp A pEB AL Rs A 1c8E-}] (50)

26

where, recall, Y pg is the set of right sides for the pseudo-differential-difference equations.

However, the above condition does not say that éc is causally related to 6u. This
idea 1s captured by the following deduction.

YrUYXsUYqF Y(P,6P,6u,éc) A s A Ic8Ex
(vr) [(v6u')(v8) {(8 < 7) — (§u(6) « 6u'(6))}

(3{P_6PY)36')(¥8) { ((P(8) = P.(8))) A
((6<7)~ ((6P(9) - 6P'(8)) A (6c(6) < 6¢'(9))) }
AT pp AL pp AT pEE A LDES N TRs A LRs A L1owE: AL 108E: M (Pl, 8P, éu, 661)]
(51)
that is, whenever we have a trajectory for the system satisfying 1 and for any time 1, if
the 6u' is a new uncontrolled input that agrees with the old one éu in the past, then we

can always find a new trajectory using 6u’ that agrees with the old one in the past and still
satisfies the condition ¢. Y pp is Y_pp applied to the new trajectory, and so forth.

Example 12 Let £ ={<,+,-,0,1}U{P,_,6P1, P,_, 6 P3,6u,bc,ay,a3,a3,by, by}, where ay, az, a3, by, b,
are constant symbols denoting different entities. Let (1) = (Vr)¢_(7), and ¢_(1) =
0,_(1)V 02_(7), where 6; (1) = (Vr1)(~P1(7,71,a3)) and 0;_(1) = (Vr2)(=Pa(7, 72, b2))-

Suppose that the discrete-event system is modeled by

6P\(T,11,2) o du(t)A(z=a)A(r=71-1) — — add a;
+(1’ = ‘rl) A (z = a1) A Pl_(‘r, rl,al) — — remove ai
+(1‘ =7 - 1) A (a: = a,2) A Pl_(‘r, - 1,(11) — — add as
+(r=n)A(z=a) A P(1,71,02) — — remove ag
+Hr=n-1)A(z=a3)AP_(1,n1~1,a2) —— add a3
+(r = 1) A(z = a3) A P, (1,71,a3) — — remove a3

and

6Py(1,12,2) o be(T)A(z=b)A(T=T3-2) - —add b

+(T = T2) A (.’E = bl) A Pz_(‘l‘, T2, bl) — — remove by
+(T=T2—2)/\(£=bz)/\P2_(T,T2—2,bl) — —add bg
+(r = 1) A(z = b2) A Po_(7,73,b2) — — remove b,

where the initial time is 0, and P,_ and P,_ are empty for 7 < 0. In each equation an input
impulse sets off a chain of events.

For example, an impulse of éu at time T causes the ordered pair < T+ 1,a; > to
be added to P,_ (assuming it is not already present). The time (T + 1) recorded in this

27

pair is the time when this pair is scheduled for removal. At the same time the ordered pair
< 7+4+2,a; > is added to P,_. Then at time T + 2, the pair < T + 2,a; > is removed, and
the pair < 7 + 3,a3 > is added. At time T + 3 the pair < 7 4+ 3,a3 > is removed. One can
view ay, az,a3 as denoting three different activities which are carried out in sequence and
each of which takes one second.

The sentence v says that activities az and by cannot both be in progress at the same
time.

Since we are assuming discrete-event behavior, ¢_(7) has a pseudo- derivative, and

§¢(r) = (61(r) V 62.(7)) + ((61(r) + 861(7)) V ((2(T) + 662())) (52)
Further,

601(T) = 01_(T) + (VT]) (6P1(T, Ti, (l3) « P1_(7', T1, a3)) (53)

602(T) = 92_(T) + (VT2) (5P2(T, T2, bg) Ad Pg_(T, T2, bz)) (54)

Substitution into 6¢ yields

§p(r)=o(1) + {(Vn)(6Pi(r,11,a3) & P_(1,71,0a3))V (55)
((VT2) (6P2(T’ T2, b2) hns PZ-(T1 T2, b2))} (56)

Assuming that ¢_(1) is satisfied, then 6¢(T) — L is satisfied if and only if the sub-
formula {- - -} is satisfied. There are three ways that ¢_(7) can be satisfied: neither a3 or
by present; az present and by not present; by present and az not present. The subformula
{- - -} describes ¢_ immediately after time 7, that is, it is (7). If (Vr1)(6Py(T,T1,a3) <
P (1,71,a3)) is satisfied, then a3 is not present just after time T because Py 4(T,T1,a3) <
P, (1,7,a3)+6P(1,11,a3) = Py (7,71,a3)+P,_(7,71,a3) L. Similarly, if (V12)(6 Py(T, T2,
b) & Py_(1,72,b2)) is satisfied, by is not present just after 7. Consequently, the disjunction
of these two formulas says that not both a; and by are present.

Next substitute in the definitions of 6 Py and 6 P, from the pseudo- differential equa-
tions. This yields after minor rearrangement the condition

Vn){(r=n-1)AP (r,n—-1,a3)} & {(11 # 7) A Pi_(7,71,03)}]
V Vr){(r=n-2)AP (1,72—2,b1)} & {(12 # T) A Po(7,72,b2)}] (57)

But we see that we do not have, yet, an ezplicit condition on éc or éu, and we need such
a condition. Furthermore, it will not help to take the pseudo-derivative of the above for-
mula. It, after all, is merely ¢, (1), and its pseudo-derivative is the same as that of ¢_(7).
Consequently, we need another approach, and one possibility is shown in the nezt ezample.

28

Example 13 This is a continuation of the previous ezample.

To finish the previous ezample we construct a partial solution of the pseudo-differential
equations. In particular, we analyze the quantities Py _(1,71,a3) and P, (7,7 — 1,a3) that
appear in condition (57). From the definition of 6 Py we obtain

6P1(T, Tl,a3) L d (T =7 - 1) A Pl_(T,Tl - 1,&2) + (7' = Tl) A Pl__(T, T],aa) (58)
and

JPI(T,Tl - 1,(12) > (T =T - 2)/\ Pl_(T,Tl - 2,a1) + (T =T — 1) A Pl_(T,Tl - 1,&2) (59)

Since P, (1,71 — 2,a1) occurs on the right of the second equation, we also need

P (r,m—-2,a) o (tr=n1—-2)AP_(1,1—2,a1) + 6u(t)A (=7 - 3) (60)

The above three equations form the following system

-

6P1(T, T1,0,3) (7' = T1) (T =T — 1) 4 Pl_(T,Tl,a;;)
6P1(T, T1 — 1,(12) > 1 (T =T - 1) (T =T - 2) Pl_(T, T — 1,0,2)
6P1(T, T — 2,(11) L L (T =T - 2) P1_(T, - 2,(11) i
N -
+1 L
(r=71—3)Abu(r) |

(61)

where the obvious matriz manipulations are intended. This is a particularly simple system
of equations to solve. The solution is

Pl_(T, Tl’a3) 1
P (r,m-1lya) | @ ((n—-3)<T7<(n-2)A 1
Pl-(T’ n -2, (1,1) | 6"’(1-1 - 3) J

+(n=-2)<7<(n=-1))A| du(rn - 3)

+({(n-1)<7<n)A 1

(62)

where empty initial conditions have been assumed. More details of this solution method are
presented in a later example.

Simalarly,

29

Py (1,72,b2 1
[Pz-ET,Tz - i,bl)] o (m-9)<r<(n-2)A [bc(my — 4)]

+((=2)<1<R)A [56(7-1— 4

Substituting into condition (57) we get

(V) [{(r=n -1 Abu(r - 3)+ (1 =71) Abu(my — 3)}
o {((n-1)<1<n)Adu(r - 3)}]

V (V) [{(r=m—2)Abc(ra —4) + (T = T2) Abe(2 — 4)}
o {((r2=2) < T <) Abe(m2 — 4)}]

This is equivalent to

(Yr) [((7 - 3) £ 11 < (7= 2)) = ~6u(n)]
VvV (Yr)[((r = 4) < 72 < (1 = 2)) > =bc(r2)]

The first sentence says that there is no impulse éu at an earlier time that could
cause a3 to be present at time 7. The second sentence says the same thing about b,.

The last condition can be rearranged to yield

[se(r) » (v) {(r < 7' <74+ 1) > ~du(r)}] (63)

that is, a controlled input §c at time T requires that there be no uncontrolled input 6u in the
future interval (1 < T < T+ 1), but the latter condition means that 6c be selected on the
basis of the future of §u. Since the future of §u is unknown at 7, the only choice for éc is
(V7)(~6¢(r)). In principle, then, it is possible to control the system to satisfy the original
1; however, it is probably not attractive to say that no controlled input is ever allowed.

The problem with the above system is, of course, that the delay of the uncontrolled
inputs is 3 while that of the controlled inputs is 4. If this were reversed, we could have more
interesting 6c's.

17. Additional Examples and Techniques

The following examples illustrate various aspects of the modeling methodology.

30

Example 14 The following is a simple ezample from a class of models that is quite tractable.
In particular, this class contains large models that can be attacked effectively with the method
presented here.

Let Y contain the single pseudo-differential equation.

OP(T,x1,23) < ber(T,21,22) A P_(T,21,22) + bex(T,21,22) A P_(7,22,21) (64)

where de; and bey are formulas with no occurrence of P_ or 6 P.

If one takes the informal view that z; and z, are “indices” over some indez set,
then for a fized z, and z3 6 P(7,z1,3) can be viewed as a Boolean-valued function of time.
It depends on P_ for the indices < x1,z5 > and for the indices < z9,21 >. Thus, we also
need a pseudo-differential equation to keep track of P_ at < z3,x1 >, that is, we need

§P(1,22,71) < bea(T,22,21) A P(7,21,22) + Se1(7,22,21) A P_(7,22,21) (65)

Combining these two equations in a matriz format yields

{ P(T,21,23)] o [ber(T,21,22) dea(T,21,22)] [P (1,z1,23)] (66)

0P(1,z3,21) bea(r,22,21) ber(r,z2,21) P (r,23,21)

This, then, characterizes the behavior of P_ at < 1,22 > and < 22,21 >, and il is
very simple to solve. However, there may be an infinite number of different sets {z,z,},
s0 it would appear that this approach yields an infinite number of Boolean systems. In fact,
it does, but, fortunately, things can usually be simplified. We will discuss the simplification,
but first we discuss the solution of one of the Boolean systems.

It follows from P, < P_+ 6P that

Py(1,71,22)
[Py(1,22,71) } o {6po0 + 8p1 W1 + 6p; W5 + 6p3Ws + 6psW,

P (1,24, 23)
+ 6psWs + nel} [P(r,23.21) (67)
where
Jpo = 681(1’, zl,zg) A 681(1‘, Z2, :vl)
6/’1 = 661(7" Zl,zg) A _'661(7', T2, 21)
dps = -bey(1,21,22) A bey(1,22,21)
op3 = 662(T, 21,32) A 662(T, Zz,zl)
6p4 = 562(1’, I, 22) A -vﬁez(T, T, a:l)
dps = ~bex(r,21,22) A bex(1,22,21)
ne = none of the above (68)

31

bpo 6p1 bpz bp3 bps bps
I O W, W, Wz W, Ws
wilo wW, 0 W, Wy O
WO W, W, Wy O W;s
W3 | O Wy W, I W, W,
wgelO O Wy, Wy 0O W,
Ws|O Ws O W, W, O
ol|lo o O O o0 o

Table 1: The finite-state automaton

and
1 L 1l 1 T 41
0= 11 Wi = T Wy = 11 (69)
1 7T 1l 7T 1 1 T 4
Wi = T L ,Wya= 1L ,Ws = T 1 A= LT (70)

So if the interval T, — 7y contains a finite number of events, then

[P_(Tz,zl,zg)] - M{ P_(le 31732)] (71)

P_(T2,11,222) P_(TlawZ,ml)

where M is a product of the above matrices, and the product is determined by the sequence of
the events 8p. Initially M=I. After the first event M will be either O, Wy, Wy, W5, W3, Wy,
or Ws, depending on which 6p occurred. It happens that this set of matrices is closed under
matriz multiplication, so M is always one of them, and one can model the progression of
M’s with a finite-state machine described in Table 1.

Thus we see that

o There is a finite-state machine associated with each pair < 21,22 >,< 22,21 >.

e Since each machine has seven states, the set of all finite strings of 6p events associated
with < ¢,,%2 >, < T3,T1 > i partitioned into seven languages L,(z1,23), L1(21, Z2), ...,
Ls(z1,%3), L1(z1,22)

The matriz M is determined by the language that the string of events up to the current time
belongs to.

It turns out that we can represent each of these languages with a second-order for-
mula, and if the language is star free we get a first-order formula.

32

Definition 6 A language W C A*, where A is an alphabet, is star free [12] if it can be
generated from finite sets of strings by repeated application of the Boolean operations (union,
intersection, and complementation) and concatenation.

Below we show how to represent star free languages with first-order formulas. The
languages are strings made up of events that occur between times 11 and 7.

Empty language:

Ly(m1,72) = Some contradiction in §p's (72)

Language containing just the empty string:

Ly(m, 1) = (V8)[(11 £ 6 < 72) — no event at 6] (73)

Language containing just the string w = wy...wyp:

Lw(‘l’l,Tg) = (3'01020,,) [(T1 <t <...<b,< Tg)

A 6p(61) =wi A ... Abp(8y) = wy A no other events) (74)
Union:
Ll(Tl, Tg) Y L2(T1, T2) (75)
Intersection:
Li(71,72) A La(11,72) (76)
Complement:
- L(11,72) A Discrete-event behavior (77)

Remark 34 -L(7y,7;) contains 8p’s that do not have discrete-event behavior, and these
have to be removed.

Concatenation:

(36)L1(r1,8) A Ly(6,72) (78)

Remark 35 Needless to say, nonstandard models will ezists for many of these languages.

If the language is regular but not star free, we have to allow the star operation. It
can be characterized with the following second-order formula

33

L‘(Tl,Tz) = (HX) [X(Tl) A X(Tg) A (VO)(X(H) g (T] < 0 < Tg))
A (Xhas discrete-event behavior) A (N (6y,60;) — L(61,62))] (79)

where N(61,0,) is the formula
N(61,62) = X(61) A X(82) A {(V8) ((61 < 6 < 62) = ~X(6))} (80)

that is, 6, and 8, are neighboring points in X. The above formula is monadic second-order
because of the ezistential quantification of the unary predicate variable symbol X. The pur-
pose of X is to partition the interval [r1,7;). The formula says that over each piece of this
partition we have a string in L(0y,0).

If we denote the formulas for the seven languages in this ezample by L,(z1,Z2,T, 7o),
Ly(z1,%2,T70), ey Ls(21, 22, T, To), L1(21, T2, T, To), where 7, is the initial time and is defined
in terms of static quantities, for ezample, 1o = 0, then we can represent the solution by

P (r,
[P:E:, :::::;] g {Lo(zl, z2, T, To)O + Ll(zl, T2, T, To)Wl + ...

P (4])
+ Ls(z1,22,7,70)Ws + L1(z1,22,7,7)1} [P—E: :; :3] (81)

If each of the seven languages is star free, the above is a first-order explicit solution.
Otherwise, it is a second-order ezplicit solution. Note that even though we said that we were
considering a fized x, and 3, we have, in fact, obtained a formula that works for arbitrary
z; and z3.

Finally, it is really more important that we found finite-state automata than that we
found first and/or second-order formulas. The automata are usually the means by which we
can do something practical.

Remark 36 Y, allows us to conclude that the above solution is unique.

Although we have an ezplicit solution, there are some limits to its usefulness. In
particular, there are still an infinite number of finite-state automata implicit in the ezxplicit
solution, and sometimes we cannot ignore this fact.

One way to go further is to assume some convenient form for ée; and ée;. For
example,

661(T, Zi, :L'g) = 6I1(T) A Dl(:cl, 272)
dea(1,21,22) = 6Io(T) A Dy(24,22) (82)

34

occurs fairly often in practice. It follows that

6pa('r, 131,:1:2) = 6[1(7') /\Dl(ml,.’tg) /\Dl(:vg,:cl)
6p1(t,x1,22) = 66(7) A Di(z1,22) A ~Dy(22,21)
6p2(‘r,z1,:52) = 5[1(T) A ﬁDl(xl,:Eg) A Dl(:tg,zl)

5p3(1‘,.’81,272) = 6[2(1’)ADQ($1,$2)/\D2(Z2,1¢1)
0ps(Tyz1,22) = O8I(7) A Dy(z1,22) A ~Dy(z2,241)
dps(t,z1,22) = 6Iy(1) A ~Do(z1,22) A Do(z2,21)

ne(t,z1,%2) = no event. (83)

A simplification results because the D’s partition the set of all possible z,,z%s into
a finite set of blocks (at most 16), and one finite-state automaton can be assigned to each
block. This means that at most 16 finite-state automata will characterize a solution. The
common inputs to all automata are §I, and é1,.

Example 15 Kitting Station: Consider a kitting station® at which three types of kits are
assembled: the first has one part of type A, the second has one part of type B, and the third
has a part of type A and one of type B. Custom pallets for the kits arrive at the station
on a conveyor one after another at irregular times, and there is a bound on the number
of pallets that can be passing through the station at a time. There are sensors that sense
arrival times and kit type. The conveyor is such that there is a minimum time interval,
m, between pallet arrivals. The appropriate parts are placed on a pallet while it is passing
through the station. It is assumed that loading parts takes zero time and that after the pallet
arrives there is a A-second interval during which the pallet may be loaded. The pallet must
be loaded strictly after the beginning and strictly before the end of this A-interval. There
are two infinite capacity bins at the station, one contains A parts and the other B parts.
New parts are added to these bins at irregular times, and the bins may become empty. If
two parts must be loaded, both must be loaded simultaneously. If a pallet cannot be loaded
because of a lack of parts, it passes through the station.

The above is an infinite state system because the bins have infinite capacity, and the
leaving times can be any positive real number.

The sorts in the model are

e time

e parts

5 A station where parts are combined into kits.

35

o kit types
o pallet load status for parts of type A

o pallet load status for parts of type B

The sentences L1 characterize time, and there are sentences defining A and m. There are
three constant symbols of the sort kit type, ka, kB, kaB, and there are sentences saying that
these symbols denote all the kit types, and each denotes a different kit type. There are two
constant symbols, pa, aa, of the sort pallet load status for parts of type A that are used to
denote that a part of type A is“p”resent or “a”bsent from the pallet. Similarly, there are
constant symbols pg and ap of the sort pallet load status for parts of type B.

Model for the conveyor-pallet subsystem:

In the dynamic predicate symbol family {C_(r,y, 7, u,v),8C(7,y, 1, u,v)}, the pred-
icate symbol C_ denotes pallets passing through the station. The symbol T denotes the cur-
rent time, y denotes the kit type, and 7; denotes the time at which the pallet will leave the
station. Since only one pallet leaves the station at a time, T indirectly identifies a pallet.
The variable symbols u and v denote whether or not parts of type A and B, respectively,
are present or absent on the pallet.

The initial time is zero. We assume that C_ is constant-valued for all times less
than or equal to zero; therefore, the history of C_ with respect to zero is determined by
its value at time zero, C_(0,y,7,u,v). The intuitive idea is that this latter predicate is a
set of pallets at the station at time zero. The predicate shows the type, leaving time, and
load status for each of these initial pallets. The leaving time for one of these pallets must be
nonnegative, so we require that 0 < 7; be satisfied. It takes A seconds to traverse the station,
so these initial leaving times must satisfy 1 < A, and equality is not allowed because that
would correspond to a pallet arriving at time zero, and such pallets are not initial pallets.
Thus, the following sentence must be satisfied.

(V7)) (Vy)(Vu)(Y)[C-(0,y, 71, u,v) = (0 £ 11 < A)]

This sentence s an initial condition.

The pallets are supposed to arrive unloaded at the station, but we allow the initial
pallets to be loaded, that is, the pallets may have arrived and been loaded before time zero.
Similarly, we allow any pallet type. Thus the following sentences must be satisfied.

(V) (Vu)(V0)[C-(0, k4, 71, u,0) = {((u = pa) A (v = aB)) V ((u = aa) A (v = ap))}]

(V7)(Vu)(V0)[C(0, kB, 71, u,v) — {((u = a4) A (v = pB)) V ((u = ax) A (v = ap))}]
(Vr)(Vu)(V0)[C-(0, k4B, 71, u, v) = {((v = pa) A (v=pB)) V (v = a4) A (v = ap))}]

36

That is, we assume that an initial pallet is either empty or properly loaded. There are other
initial conditions.

We restrict even further. Since there is a bound on the number of pallets that can
be passing through the station at one time, we require that the difference in leaving times
for two different initial pallets be greater than or equal to the known minimum m. That is,

the following sentence is satisfied.
(V1) (V1) (Y1) (Vo1) (V1i2) (Vy2) (Vuz) (Vo2)[C~ (0, 91, Tix, w1, v1) A C—(0, y2, Ti2, U2, v2) —

((m=m)AW =y2)A(v1=u) A(vy =v2)) V(m < |1 — 2|)]

That is, they are either the same pallet or their leaving times differ by at least m, that is,
they are different pallets. This is another initial condition.

The following pseudo-differential equation models arrivals of pallets, their loading,
and their departure. Each subformula is explained below.

§C(1,7) &

eo(,) + e1(7, %) A D1(Z) A C(7, /() + - -~
+e4(1,Z) A {Da1(Z) A C-(7, fur(F)) + Daz(T) A C—(7, f22(Z)) + Dua(Z) A C_(r, f13(%))}

where T is an abreviation for y, T, u,v, the e;’s are subformulas characterizing events, and
the f;’s and the fi are formulas characterizing vector-valued functions.

eo(r,%) = [6K(T,y) A(m =7+ A)A(u=a4) A(v=ap)]
61(1',5) = (Tl = T)7 Dl(i) = T, fl(a:—) = (y’ Thusv)
that is, f, is the identity function.
e2(7,%) = [6A(r,n) A (R6B(7,n)) A (T < 1 < T+ A)] D3(%) = ((v = a4) + (u = pa)),
fZ(E) = (ya TI,Q4, v)
that is, f, maps u into ay.
e3(7,%) = [6B(r, 1) A (~6A(T,m)) A (T < 1 < 7+ A)] D3(%) = ((v = aB) + (v = pB)),
f3(5) = (y’ m, U, aB)
es(7,T) = [A(T,) ASB(t,) A(r <1< T+ A)
Du(@) =[((u=pa)A(v=pB))+ ((u=as)A(v=aB))l, fu(Z)=(y,7,04,aB)
Dg(Z) = [(u=pa)A(v=pB)+ (u=as)A(v=pB)], fu(Z)=(y,m,04,PB)
D43(E) = [(u = PA) A (‘U = pB) + (u = pA) A (v = aB)]’ f43(f) = (3/’ Tl’pA,aB)

Consider the subformula eo(7,Z) = [6K(T,y)A (1 =T+ A)A(u=ax) A (v =ay)).
The symbol §K(7,y) denotes the arrivals of pallets at the station, T the arrival time and y

37

the type. If < 7,y,7T1,u,v > is a tuple satisfying eo(T,T), then the value of the predicate C_
switches at time 7. Thus, if the value of C_ does not contain the tuple < y, T, u,v > just
before time T, then it will just afterwards and vice versa.

6K is an exogenous quantity, and it is uncontrollable in the sense that it is not
determined at the station. However, there are sentences which say that only one pallet
arrives at a time and that arrivals are spaced by at least m.

Nezxt consider the subformula e1(1,Z) A C—(7, fi(T)) = [(= 7) A C_(7,y, 71, u,v)].
It says that whenever the current time, T, equals the leaving time, 1|, of a pallet, remove
that pallet from the station. That is, at the end of the A-interval the pallet exits the station.

The subformula ea(1,Z) A C_(1, f2(T)) = [A(T,) A (R6B(r, M)A (T < T < T+
A)A ((u = as) + (u = pa)) A C_(7,y,7,a4,v)] loads parts of type A onto a pallet. The
load command is denoted by 6A(T,T), where T denotes the time of the command and 1
denotes the pallet, that is, the pallet with that leaving time. The -é6B says that a part
of type B is not simultaneously being loaded. If there is no pallet with this leaving time,
nothing happens. If there is, then there is a corresponding tuple in the predicate C_, and if
u tn this tuple is not ay, then nothing happens. Otherwise, a part of type A is loaded onto
the pallet. 6A denotes an erogenous quantity, but it is assumed to be controllable by the
station, that is, a controller at the station can give this load command. Analogous remarks
hold for the subformula e3(7,Z) A D3(Z) A C_(T, f3(Z)) = [6B(r,7) A (m6A(T, 7)) A (T <
n1<T+A)A((v=2ap)+(v=pB))AC_(1,y,71,4,aB)]

Note that the previous paragraph assumes that the bins are never empty. We will
return to this assumption in a moment.

The subformula 64(1', f) A {D41(5) A C_(T, f41(§)) + D42(5) A C_(T, f42(5)) + D43(f) A
C_(T, f43(Z))} is similar to the previous two. It handles simultaneous loading of both types
of parts.

The e;’s are mutually exclusive.
There are few useful facts that are listed below. Their proofs are not presented.

The following sentence says that the initial condition on the identity and spacing of
pallets is true for all times.

(VT)(VT[])(Vyl)(Vul)(V‘Dl)(Vle)(Vyz)(VUq)(V‘Uz)[C-(T, Y1, Tn, U1, vl) AC—(T, Y2, Ti2, U2, ‘02) -

((m=n2) A =y2)A (1 = u2) A (v1 = v2))V(m < | — m2]))]

The next sentence says that if there is a pallet present, then it arrived at the time
denoted by T — A or it is one of the initial pallets.

(Vr)(Vy)(Y)[(Fu)(F)C- (7, 9,71, u,)

38

{(6K(n= A, Y)A(r <1 <T+A)V(C_(0,y,7,u,9)A(0< 7 < A))}]

Bin Subsystems

We model a bin with the following pseudo-differential equation®
§B(7,n) « 6I(T) A (m6R(T))A

{I(n=0) A (B_(r) = 0)] +[(n # 0) A (B—(r) = n) + (B—(r) = n — 1))]}
+
SR(7) A (R8I(T))A
{i(n=0) A (B=(r) =)]+ [(n # 0) A (B_(r) =) + (B_(r) = n+ 1))}}

L s contains first-order sentences describing enough of the natural numbers to allow addition
and subtraction, that is, n — 1 and n + 1 are defined. B_ 1is a function whose value is the
current contents of the bin. 61 denotes the insertion of a part into the bin, and § R denotes
removal. Simultaneous impulses in 61 and 6 R have no effect.

Suppose that B_(1) = 10 and there is an impulse in 6I. Then the value of the first
subformula on the right will be the set {10,11}, and that of the second subformula will be
empty. The effect will be to delete 10 from and add 11 to B_. That is, one part is added to
the bin. Nezt suppose that B_(7) = 10 and there is an impulse in §R. Then the value of
the first subformula is empty, and that of the second is {9,10}. The effect will be to remove
a part from the bin. Suppose that B_(1) = 0 and there is an impulse in 6I. Then the value
of the first subformula is {0,1}, and this causes a part to be added. Similarly, if B_(7) =0
and there is an impulse in 6 R, the value of the right side is empty, so nothing happens. If
B_(7) =1 and there is an impulse in 61, the value is {1,2}, and a part is added. Finally,
if B_(1) = 1 and there is an impulse in §R, the value is {0,1}, and the bin becomes empty.

The two pseudo-differential equations developed above are linear in the sense that
their right sides have a linear form with respect to ezclusive-or “+”. This is useful because
simple solution methods are available for some linear equations. We will discuss this below.
Unfortunately, when we combine these two pseudo-differential equations the result is not
linear.

Interconnection of the subsystems

The model for the interconnection of the two subsystems is

(Vr)(Yn)[6A(r,m) & 8A'(,m) A (Ba(7) # 0)]

%Note that the symbol “+” is used in two ways: + for exclusive or and + for addition of natural numbers.

39

where § A’ is a new predicate symbol, and
(V7)[6RA(T) & (3n)8A (T, 7))

The first sentence in effect replaces §A by §A’ A (Ba # 0) in the first pseudo-differential
equation, and the presence of (Ba(T) # 0) destroys the linearity of this equation. The new
loading command 6 A’ causes loading only when the bin is not empty. The second sentence
says that the new loading command and a removal command must occur simultaneously. A

similar pair of sentences applies to B parts.

Note that if we assume that the bins are never empty (as we did while developing
the first pseudo-differential equation), then we get a kind of linearization. In particular, 6 A
and § A’ become equivalent, and the source of nonlinearity disappears.

17.1. A General Solution Method:

We present a general solution method for linear pseudo-differential equations of the following

form:
§P(1,T) & eo(1,T)+

e1(r,Z) A {D11(Z) A P_(7, fua(T)) + - - - + D1k, (T) A P-(7, fruy (T))} + - -
+eﬂ(T7 i) A {Dﬂl(-f) A P—'(T’ fﬂl(-f)) +- 4+ Dﬂkn(i) A P—(Ta fnkn(f))}

where 7 is an abreviation for z;,...,z;, the ¢;’s are formulas, and each of the f;;,i = 1,...,n,
j=1,...,k; is aset of | formulas defining a mapping of I-tuples to I-tuples” These mappings
are distinct.

The e; A D;;’s represent events and are formulas with no occurrence of P_ or § P. The
e;’s are assumed to have discrete-event behavior. We also assume that the e;’s are pairwise
mutually exclusive in the sense that (V7)(VZ1)(VZ2)[~(ei(T,%1)Ae;(7,F2))] is satisfied. Thus,
events associated with different e;’s cannot occur simultaneously; however, events associate
with a common e;, for example, e; A D;y; and e; A D;2, can be simultaneous.

Example 18 The pseudo-differential equation for the dynamic function symbol family {C_,6C'}
in Ezample (15) is an ezample of such a pseudo-differential equation. The pseudo-differential
equation for the dynamic function symbol family {B_,6B} is also in this form.

Our solution method is based on creating a system of linear pseudo-differential equa-
tions. The basic idea is to add a new equation for each subformula of the form P_(r, fi;(Z))
appearing on the right side of the original pseudo-differential equation. However, the right
sides of these new equations will contain subformulas such as P_(T, fi,(fi;j(Z))), and we
need a pseudo-differential equation for the pseudo-derivative of this subformula. It can

"Since we are allowing a many-sorted language, these mappings will have to respect the sort of each
argument of the predicate symbols P_ and §P.

40

happen that the composition fi,(fi;) is equal to a function for which we already have a
pseudo-differential equation. If it is not, then another equation will have to be added. It
in turn may have subformulas on its right side which require yet more equations. If the
process terminates, the result is a finite system of equations, and this is the case of practical
interest.

Example 17 This is a continuation of Fzample 15.

For the family {C_,6C}, we have

hh=hH hHfe=fi hHfs=fi hHian=fa hHhfse=fiz fifss= fa3
Lh=f fifhi=fi fifsi=fa hfa=fa ffie=Ffi fifiz=fa
fBBh=fi fafi=fu fifs=fi fifa=fa fifu=Ffua fifiz=fis
fmh=fa fafe=fa fufi=fan fufua=fa fafe=FIfa fufss=fa
fh=/fi fufo=fi fofi=fiz fofu=F o fofie=fin fofis=fo
fshi=fi3 fiafo=fi3 fafs=faz fasfan = fa3z fa3faz = fa3 fa3faz = faa

where, recall, some of the f’s have a single subscript in the equation for {C_,6C}. The
significant point is that in this example the f-functions are closed under composition. In
other situations this may not be true. That is, certain compositions of f functions may not
be equal to any f function, and new pseudo-differential equations will have to be added. But
one still hopes that only a finite number of equations need be added; however, this also need
not be the case. For ezample, it is not the case for the pseudo-differential equation for the
family {B_,6B} because of the n — 1 and n + 1 terms, so an infinite number of equations
would have to be added.

Let G be the set of all functions that can be characterized by compositions of the
fij-functions. We assume that G is finite, and let G = {g1,...,g9~8}. Our convention is that
g1 is the identity function. The f;;’s will be in G.

The system of pseudo-differential equations will be
§P(7, gp(T)) < eo(T, 9p(T))+

e1(7, 9p(Z)) A {D11(95(%)) A P-(7, f11(95(%))) + - - - + D1, (95(Z)) A P-(T; f1n, (9p(Z)))} + - -
+en (7, 95(T)) A {Dn1(95(Z)) A P-(7, fr1(95(%))) + - - -
+Dnk, (95(Z)) A P-(7, faka(95(%)))}

where p = 1,..., N. By our assumption that G is finite, each of the compositions of a f;;
and a g, in the above formula will be equivalent to some g function. In other words, we
will have a closed system of equations.

Example 18 In Ezample 15 this system of equations for the family {C_,6C} is

0C_(7, f) & Eo(T, f)+{ea(T,Z)AW1+ex(T,) AW+ e3(7, T) AW3+e4(T, T) AW AC (T, f)

41

where

[6C(7, f1(T)) T [eo(T, fi(Z))] [T L 1 1 L 1]
8C(1, fo(T)) : eo(T, f2(T)) 1 T 1L 1 1 1
_ | 6C(r, f3(T)) _ | eo(r, f3(T)) 1 1 7T 1 4 1
CrN= | s0trfmc@) | BOD=| aimga@y | =L 11T L1
50(T,f42(f)) 1 L L 1L 1 T 4
5C(T,f43(5)) ‘_.L _..L 1l 1L 41 14 T_
"1 T L L 1 L7 T1 L T L 1 L7
L T 1L 1 1 1 1 1 1 T 4L L
- L1 1L T 11 weo |t LT L1l
27 1L L 17T 11 371 1L L 7T 1 o1
L 1L 1 1 T 1 L L 1 1T L
11 L T 1 T |1 1 L 1 1 T
(L L L Du(fi(@)) Da(fi(@) Ds(f(T))] [C_(7,1(T))]
L 1 1 D41(f2(5;; Da3(f2(%)) : ()l) C-gr,fzgfg)
|1 1 1L Dalfs 1 Dg(fs(z | co(r, £s(2))
L T Lo emhn= C_(T,fil('a?))
111 1 T L C_(r, f42(%))
1oL 1 T 1 T | | C(7, f13(%))
Example 19 Since C, « C_+ 6C, in Ezample 18 we get
[Ci(1, A1(T)) T [eo(T, f1(Z))] 1L L 1 1 1 17
Cy(r, fo(Z)) eo(, f2(%)) 1l 1 1 1 1 1
Cy(r, f3(Z)) eo(T, f3(%)) B N]
C:(T,fil(f)) I tamaA L 7 L L)
C4(r, f42(%)) i 1 1 1 1 1 1
L Ci(nf3(@))] L L |1 L 1 L 1 4
T T L L 1 47 T LT L 1 17
1 1 1 1 11 L T 1L T 11
| £ LT T4 d £ 2L
11 1 111 1l 14 14 111
| 1L L L T 1 1) 1L L L 1 1 1,
[T L L Da(fi(T)) Daa(fi(Z)) Daa(f1(Z))] [C_(7, i(T)) T
L T L Du(f27)) Darlfa(7)) L C_(7, f2(Z))
| § T 20H0) L) | 05
1l 1 1 1 1 1 C..(T,f42(-f))
J 1 1 T 1 1 _C_(T,f43(-f))_

where n.(7,%) denotes no event.

42

The discrete-event operation of the system will then be characterized as a product
of the above matrices. However, there will only be a finite number of such products, and
there will be a corresponding finite-state automaton that specifies the product that applies
between 79 and .

18. Final Remarks

Remark 37 The modeling methodology presented here is extremely flerible in that it can
model a vast range of discrete-event systems. Unfortunately, many of the resulting models
will be intractable in that it will be difficult to use them to solve practical problems. This is
analogous to ordinary differential equations: most of them are intractable, too. Still, models
based on ordinary differential equations are of enormous importance. One focuses on special
cases, spectal techniques, and approzimations. This approach applies to pseudo-differential
equations as well. For example, we showed that linear pseudo-differential equations are a
useful concept. We presented a useful solution technique, and we presented an erample of
linearization of a system of nonlinear pseudo-differential equations. And there are other
useful classes of equations that are tractable. The point is, then, that a general approach to
all possible models is impractical but specific ones are.

Remark 38 Although the models of discrete-event systems based on finite-state systems do
have general solution methods, they quickly become impractical because of state-set ezplosion.
This means that technigques to handle models with enormous state sets are needed. But
this just means that one has to consider special classes of models, special techniques, and
approzimation. In other words, the finite-state models really have to be approached in the
same ad hoc manner as our models. Arguably, our models are better for ad hoc approaches
in that they make more of the system’s structure and operation visible. For ezample, it was
trivial for us to treat some infinite state systems.

Remark 39 Temporal logic has also been used for modeling discrete-event systems. The
typical approach considers a special class of discrete-event systems and a restricted class of
logical questions about system operation. Then an analysis algorithm is presented for this
combination of systems and questions.

So far we have been able to model each class of discrete-event system that is modeled
by temporal logic and adapt its analysis algorithm to our framework. Thus, one can think of
our modeling methodology as including temporal logic approaches as special cases. However,
this is a mized blessing since temporal logic analysis algorithms are applicable to only small
systems.

Typically, each version of temporal logic is shown to be complete in some sense. Here

we know that we may not get completeness. That is, even if we have a complete description
of initial conditions and inputs, there may be a first-order sentence a such that neither o

43

nor ~a can be deduced. Roughly speaking, temporal logic avoids this by restricting the class
of sentences that is considered and tatloring the logic to the temporal framework. Since we
allow all possible first-order sentences and insist on remaining within standard first-order
logic, we may miss completeness. However, anything that can be proved in temporal logic
can be proved within our framework. The point is that we may be able to prove more.

Remark 40 Rule-based models are another approach to modeling discrete-event systems.
There one has rules of the form a — [, where a and [are first-order sentences. The idea
is that if a is currently satisfied and the rule “fires”, then (will be satisfied afterwards.
If a is not satisfied, the rule cannot fire. The firing of a rule can be thought of as an
event. The trouble with rule-based models is that they are ambiguous. Suppose that A is
a structure modeling the current state of a discrete-event system and that A satisfies a.
Further, suppose that the rule a — [fires. The new state will be a structure B that satisfies
B. Unfortunately, knowing that B satisfies 3, is not enough information to specify B, and
this is the sense in which rule-based models are ambiguous. To remove this ambiguity one
needs to select a structure from among all those that satisfy 5. The usual approach is to
argue that B should be as close to A as possible, where saying what “close to” means becomes
the key issue.

One can view our modeling system as an unambiguous alternative to rule-based
models. In fact, it grew out of an earlier effort to use rule-based models [13].

References

[1] P. J. G. Ramadge and W. M. Wonham, “The control of discrete event systems,” Pro-
ceedings of the IEEE, vol. 77, no. 1, pp. 81-98, January 1989.

[2] P. Varaiya and A. B. Kurzhanski, editors, Lecture Notes in Control and Information
Sciences, Discrete Event Systems and Applications, number 103, Springer-Verlag, Au-
gust 1987.

[3] Y. C. Ho, editor, Proceedings of the IEEE, Special Issue on Dynamics of Discrete Event
Systems, volume 77, January 1989.

[4] C. G. Cassandras and P. J. Ramadge, “Special section on discrete event systems,”
IEEFE Control Systems Magazine, pp. 66-112, June 1990.

[5] H. Enderton, A Mathematical Introduction to Logic, Academic Press, 1972.
[6] C. C. Chang and H. J. Keisler, Model Theory, North-Holland, 1973.

[7] R. Scheuring and H. Wehlan, “On the design of discrete event dynamic systems by
means of the boolean differential calculus,” in IFAC Symposium, Zurich (Design Meth-
ods of Control Systems, pp. 4-6, September 1991.

44

[8] A. Pnueli, “Applications of temporal logic to the specification and verification of re-
active systems: A survey of current trends,” in Lecture Notes in Computer Science,
Current Trends in Concurrency, J. W. de Bakker, W. P. de Roever, and G. Rozenberg,
editors, number 224, pp. 510-584, Springer-Verlag, 1986.

[9] J. S. Ostroff, “A logic for real-time discrete event processes,” IEEE Control Systems
Magazine, pp. 95-102, June 1990.

[10] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking for real-time systems,” in
Proceedings Fifth Annual IEEE Symposium on Login in Computer Science, pp. 414-
425, June 1990.

[11] E. Harel, O. Lichtenstein, and A. Pnueli, “Explicit clock temporal logic,” in Proceedings
Fifth Annual IEEE Symposium on Login in Computer Science, pp. 402—-413, June 1990.

[12] W. Thomas, “Automata on infinite objects,” in Handbook of Theoretical Computer
Science, J. van Leeuwen, editor, chapter 4, pp. 134-187, Elsevier Science Publishers
B.V., 1990.

[13] A. Naylor and R. Volz, “Design of integrated manufacturing system control software,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-17, no. 6, pp. 881-
897, November/December 1987.

45

