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191 Eq. (6.43) should read:
p(t) + upy(t)= L cos [101.8¢ + 0.156n |

+ 80,92 x 10con [101.8t + 0.395n]] + 9.5 x 107cos [305.1t. + 0,178n ]}

191 Eq. (6.4li) should read:
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+u {150 x 20™cos [101t + 0.305n] + 6L.5 x 20~Ycos [303¢ - 0.566n]}
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+¢4{-313 x 107%cos [IOOt - 0.6ha§ + 324 x 10™%cos [300t +.100n]}
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+ 13,0 x 10"Bcos [305.1it = 0,6061l]
+ 2.83 x 10"0cos [509.0t + 0.687x]

192 Eq. (6,47) should read:
p,(t) % 22.3 x 10™cos {101t + 0.8651]
+ 1,49 x 107%con [303¢ - 0.591]
+ 0,056 x 20™%cos [505t + 0,9Ulin]

192 Eq. (6.h48) should read:

po(t)® 1,76 x 104 cos [1001; + o.elsul] 0,79 x 10™%cos [ 3001»,]
+ 0,84 x 0™ cos [500t + 0.1714]
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19L Point 3: should read:

% +ua11z J100 + HE1.79 ]

R N jro0 + uk2,71

a30 +£1031~ -1w + u[ hehb]

200 hth 1line from bottom: change principle to read principal
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ABSTRACT

The purpose of this study is to develop a new method for
employing perturbation techniques for investigating the stability of
and approximating the periodic responses of a class of nth-order non-
linear feedback systems under the influence of a periodic forcing func-
tion. The ordinary differential equation which characteriies the class

of the system considered is assumed to be of the form:

il

A(z)x-B(z) [F(X) + e(t)] =0 (Z a‘%)

where A(z) is an nth-degree Hurwitz polynominal in z with real coeffi-
cients, B(z) is an mth-degree polynomial in z with real coefficients

(m < n), B(z)/A(z) can be identified with the transfer function of a
physically realizable network, x is a real variable, F(s) is an entire
function (s a complex variable), B(0O) = 0, A(O) # 0, and e(t) is a
bounded, continuous, periodic function of the independent variable t
with least period Té (Te > 0). Nontrivial solutions, x = D(t) (there
may be more than one), periodic in t with least pericd T, T = q_Te

(q a positive integer), are sought and their stability investigated.

1f D(t) is dominated by a term of least period T, Ty = T/p, (p a posi-
tive integer) then the following designations have been used to describe
the types of responses: (1) if p = q, then synchronization, lock-in, or
frequency entrainment have been used; (2) if p = 1 and q > 1, then sub-
harmonic response has been used; (3) if p > 1 and q = 1, then ultrahar-
monic response has been used; (4) if p > 1, ¢ > 1, and p # q, then ultra-
subharmonic response has been used. TS is related to Te by a rational

factor q/p; i.e., T, = (q/p)Te, and T = pT_ = qT .

xix



The method developed in this study for finding the desired
periodic solutions, D(t), is based upon a restatement of the problem,
which allows certain ideas from perturbation theory to be applied. This
restatement, called the "inverse-perturbation problem" in this study, in-
volves the regrouping of the terms of the differential equation and the
introduction of a parameter p. Two canonical forms exist for this restate-
ment. The form which is applicable in a particular case is determined
by whether or not the frequency spectrum of e(t) contains a term of fre-
quency 55 . The result of this restatement is an imbedding of the ori-
ginal di?ferential equation into a family of differential equations which
is continuously dependent on u so that a separate member of the family
corresponds to each value of . The member which corresponds to u = 1
is the original differential equation. The member which corresponds to
u=201s a lineér differential equation with constant coefficients.

This linear differential equation is homogeneous or inhomogeneous, de-
pending on which canonical‘form for the restatement is applicable., In
either case, this linear differential equation has a two-parameter family
of solutions periodic in © with period T.

Selected members of this last family, p(t), act as generating
solutions or first approximations for the pe:iodic solutions, x = éb(t),
of the original or y = 1 differential equation. A method for accom-
plishing this‘selection is presented here. Further, an existence condi-
tion, based on the work of Coddington and Levinson, is developed which
guarantees the existence of solutions, x = p(t,u), for a family of dif-
ferential equations periodic in t with period T, continuous in y for
arbitrarily small |4, and such that each lim p(t,u) = p(t), a generating

u=0
solution. These p(t,u) are developed recursively as power series in .



As an aid to this recursion procedure a set of describing functions and
relations is defined. In the first canonical form the member of this
set associated with the first approximation or generating solution is
shown to be the usual describing function from control theory. Assum-
ing that the radius of convergence of these power series in pu includes
L = 1, the solutions x = p(t, 1) are of the desired type, x = D(t),
for the original or u = 1 differential equation. They are not, however,
necessarily all solutions for the original differential equation of this
type. This is one limitation of the method developed in this study.

The stability question for the periodic solutions, x = p(t,u)
is answered by use of a method based upon some of the work of
Moulton in celestial mechanics. For each p(t,u) & system of variational
equations is obtained which has coefficients dependent on u as well as
being periodic in t. Associated with each of these variational systems
is a set of n characteristic exponents dependent on pu. The signs of the
real parts of these characteristic exponents determine whether or not
the solutions, x = p(t,u), are stable. These characteristic exponents,
along with certain particular solutions of the variational equations,
are developed recursively in a power series of p. These recursive devel-
opments are accomplished through transforming, by means of n linear time-
dependent transformations, each variational system [i.e., one for each
p(t,u)] into n different systems of n first-order linear differential
equations. Because of the choice of transformation, each new system
has a solution periodic in t with period T. Each of these linear, time-
dependent transformations is also dependent on one of the unknown char-
acteristic exponents which in turn depends on pu; consequently, each trans-
formation depends on u. Therefore, these transformations are not known

at the outset, but are obtained recursively along with the characteristic

xxi



exponents. The needed recursion procedures are developed by employing

the periodicity conditions on the periodic solutions of the linear sys-

tems which result after transformation. Each linear system is suitable

for determining only one characteristic exponent. Once the series for

the characteristic exponents are known, the stability question is answered.
The final part of this study consists of a presentation of an

algorithm based upon the results obtained in this study and a working of

an example.
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CHAPTER I

INTRODUCTION

1.1 Statement of the Problen

It is well known that if a periodic forcing function acts upcn
an oscillating nonlinear feedback system it may cause synchronous and
resonant-like responses. Probably the most widely known example of such
an interaction is the van der Pol oscillator under the influence of a
sinusoidal forcing function [1]. This sinusoidal forcing function is
assumed to have a least period Te’ which is within some small neighbor-
hood of the undisturbed oscillator's least period of oscillation, TO.

If Te is imagined to vary slowly through TO, then response can be obser-
ved in the oscillator which is typical of those of interest in this study.
In particular, as Te comes sufficiently close to TO, the period of oscil-
lation will shift from TO to Te’ and the amplitude of oscillation will
exhibit a resonance-like maximum as Te passes through To. The shift in
the period of oscillation is known by various names: frequency entrain-
ment, synchronizatioﬁ, and lock~in. The changes in amplitude of oscil-
lation are usually réferred to as nonlinear resconance. When both phe-
nomena are considered simultaneously the term "harmonic response' has
been used [2].

The preceding van der Pol oscillator case is a comparatively
simple example of the systems of interest in this study. In general,
both the nonlinear feedback system and the forcing function are consider-
ably more complex. The order of nonlinear feedback system may be higher
than two; that is, the differential equation which characterizes the sys-
tem may be of order higher than two. In addition, the nonlinear element

in the feedback loop may be described by a transfer charecteristic which
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is more complicated than the y = ax - bx” of the van der Pol oscillator.
Further, the forcing function need not be limited to a simple sinusoid.
It may be a more general periodic function of time. The least period
may be near some rational multiplel, p/q, of TO instead of simply ‘I‘O
ie., T = (p/q)Ts, where T_ is within some small neighborhood of T _.

As in the case of the simple van der Pol oscillator example,
many of these more general systems exhibit some special response as Ts
passes slowly through TO. As before, it is possible that as TS approaches
sufficiently close to TO the period of oscillation will shift from TO to
Ts and a resonance-like reaction will occur in the amplitude of oscilla-
tion, It is not expected that a forcing function with a least period
Te, associated with evefy rational multiple of Ts, will cause such phe-
nomena. In many physical systems only those forcing functions associated
with the simpler rational numbers cause significant response: for example,
it is more likely that in a given system & significant response will arise
from a forcing function with least period (l/Q)TS rather than one with
least period (249/323)TS. Moreover, it may be that even some of the
simpler rational numbers (e.g., 1/2, 1/6, etc.) will not have significant
responses associated with them. Whether or not this happens in a parti-
cular system can be determined only by a detailed examination of that
system.

On the other hand, it is possible that a given system will ex-
hibit a periodic response with & least period which has no obvious rela-
tion to TO. Moreover, it may be that the undisturbed system does not

execute a nontrivial periodic motion; therefore, it has no To associated

1 Throughout this study each rational factor is assumed to have a
numerator and denominator with no common divisor other than one.



with it. 1In any event, the periodic motions executed will preserve the
feature of having their least periods, T, be integer multiples of the
least pericd, Te, of the forcing function. As an example of a system in
which this might occur, consider an oscillator in which the linear net-
work has one resonant peak at w, and another at w.. Assume that W and

L 2

w, are not related by a ratioral factor., Further, assume that the entire

2
system is such that the undistgrbed cscillator executes a periodic motion
with least period Tl, near 2n/wi. It is then conceivable that as a for-
cing function with least period T2, near 2n/ué, is applied to the oscil-
lator, a periodic motion with least period T2 will be executed. There
may be even more abstruse responses, but of all possible responses only
those that are periodic with a least period T equal to some integer nul-
tiple of Te are considered 1in this study.

If, in addition to being periodic with period T = qTe, the
response 1is dominatedl by a term cf least period Ts = T/p (p a positive
integer), then the rational number p/q provides a convenient method for
classifying the response. Thne simplest case is l/q = 1, for which the
designation is, as in the above van der Pol oscillator example, harmonic
response, If p/q = p, then the response is called ultraharmonic. If
p/a = 1/q, then the response is called subharmonic. And, if p/q is any
other rational number, then the response is called ultra-subharmonic.

The purpose of the present study is to develop a technique for
determining periodic responses, such as discussed in the preceding para-

graphs, and ascertaining whether or not the determined solutions are

1 A periodic solution, P(t), is said to be dominated by a term of
period Ty if, in the frequency spectrum associated with ®(t), a
term with frequency 1l is significantly larger than a combination

of all the other freq&ency components of the spectrum.



stable, This is done for a special class of nonlinear feedback systems

and a special class of periodic forcing functions. A block diagram which

characterizes this class of systems is shown in Fig. 1l.1l.

elt) + B(z) X
A(z) |

F(x)

FIG. 1.1 BLOCK DIAGRAM OF THE NONLINEAR SYSTEM
CONSIDERED IN THIS STUDY

The nonlinear ordinary differential equation which characterizes

this class of systems mathematically is as follows:

A(z)x - B(z) [ F(x) + e(t)] =0 (z = é%) (1,1)

il

The terms in this equation have the following definitions and restrictions.

i) x is a real variable.



ii) t is a real variable: time.
iii) n is a positive integer.
iv) m is a positive integer, m < n.
v) A(z) is an nth-degree Hurwitz polynominal in z with real

coefficients (coefficient of z° = 1),

vi) B(z) is an mth degree polynomial in z with real coeffi-
cients (m < n),
vii) B(z)/A(z) can be identified as a transfer function of a
physically-realizable linear passive network.
viii) F(s) is an entire function (s a complex variable).
ix) B(0) = 0, A(0) # 0.
x) e(t) is a real, continuous, sufficiently-differentiable,
periodic function of t with least period Te.
xi) y is the output of the nonlinear element.

It is readily seen that this differential equation is suitable
for characterizing a large class of nonlinear feedback systems. The linear
network is limited only by the requirements that it be physically reali-
zable and have a transmission zero at z = O (considering z, for the mo-
ment, as the complex variable in a transfer function). This latter re-
quirement guarantees that dynamic shifts of the operating point of the
nonlinear element will not be transmitted from its output back through
the linear network to its input. The methods which are developed in this
study are, therefore, not immediately applicable to low-pass servomechan-
isms. However, it is shown in Chapter VII that this limitation can be
rather easily removed. The only restriction on the transfer character-
istic of the nonlinear element, F(x), is that it be an entire function

when considered as a function of a complex variable. This is a



mathematical convenience which does not limit seriously the types of
nonlinear physical elements which can be characterized. However, F(x)

is a function of x only and of none of the time derivatives of x; there-
fore, it is not suitable for characterizing nénlinear elements which
exhibit a hysteresis effect. The forcing function is suitable for almost
all periodic forcing functions which are encountered physically.

The solutions @ (t) sought of Eq. (1L.1l) are, if they exist,
nontrivial, periodic in t with least period T = qTe, and often domin-
ated by a term of least period T_ = (q/p)Te. In addition to finding
the solutions @ (t), it is also desired to know whether or not they are
asvmptotically stable.  Throughcut this study asymptotic stability is

defined as follows:

A periodic solution @ (t) of Eq. (1.1) with period T which is defined
for t > 0 is said to be asymptotically stable if, given any ¢ > O,

there exists a & > 0 such that any solution x of Eq. (l.l) satisfying

x(k)(O) -cp'(k)(o) <® k=0, 1, 2 vvo, (n=-1)]

where x(k) _ dkx @(k) g_]ig—)—

1

satisfies

0, 1, 2, ve., (n=-1)]

i

) - (g I <e (t>0) [k

0, 1, 2, vu., (n-1)]

1}

and ’X(k)(t) _(b(k)(t) l - 0 (t » ) [k

A similar definition applies to differential equations in matrix form.

The usual situation of interest in this study is the one in

which the system has & stable periodic motion when e(t) = 0. This periodic



motion is then disturbed as a rontrivial e(t) is applied. On the other
hand, the technique developed here is not limited to this situation. The
undisturbed nonlinear system could have, among other possibilities, x = 0
as 1ts only asymptotically stable motion. The method is, however, limited
to a consideration of only periodic responses to periodic forcing func-
tions. Transient behavior is considered only in connection with the sta-

bility question for the periodic responses.

1.2 Review of the Literature Pertinent to the Problem

The literature which pertains to the problem of interest in
this study can be divided into two groups. The first group consists of
papers in which various approximation techniques are utilized in the
analysis of physical systems similar to the one considered in this study.
The second group consists of papers which consider various aspects of
perturbation theory. This latter groub is important to this study be-
cause perturbation theory is the central core of the techniques which
are developed in it. A discussion of each of these groups of publica-
tions is given below.

1l.2.1 Approximation Techniques: Many authors have treated

the problem of forced oscillations in nonlinear feedback systems. Refer-
ences to their work is given in the bibliography under items (3], [4],
(5], [6], [7], and [8]. The authors from this first group whose work is
the closest to the present problem are Tucker [3] and Smirnova [4].

Each of these authors considers a nonlinear feedback system under the
influence of a sinusoidal forcing function. The forcing function is,
therefore, less general than that considered in this study. Their prob-

lem is further limited in that they consider only harmonic response and



not the subharmonic, ultra-harmonic, or ultra-subharmonic response. There-
fore, the type of response, as well as the type of forcing function, con-
sidered by Tucker and Smirnova is less general than that considered in
this study.

The nonlinear feedback system investigated by Tucker is a slight
variation of the one shown in Fig. l.l. A block diagram which character-

izes Tucker's system is shown in Fig. 1l.2.

> B(z) X
A(z)
+
t
y F(x+e) + elt)

FIG. 1.2 BLOCK DIAGRAM OF THE NONLINEAR SYSTZM
CONSIDERED BY TUCKER

A comparison of this block diagram with the one shown in Fig. 1.l shows
that, except for the injection point of e(t) and the limitation of the
forcing function to a sinusoid, Tucker's system is the same as that con-

sidered here.



The technique which Tucker employs for finding, or rather approx-
imating, the periodic responses of the above system is based upon a set
of plausible assumptions which are typical of linearization techniques
such as the describing function method. The key assumptions are that a

Jw t x —do_t

simple sinusoidal function, xo(t) =Ce ° +¢Ce¢ % (¢ = complex con-
jugate of C), is a satisfactory approximation for the periodic response
and that the linear network, which is mathematically characterized by
B(z)/A(z), has a pass band which includes o, and stop bands which include
all higher order harmonics of Wy s i.e., 2&5, 3m%, +ee, €tc., Granting

these two assumptions, the output of the nonlinear element, y(t), be-

comes & function pericdic in t with least period 2n/w%; i.e., F(x + &) =

‘s t s
Jw Jw%t

*
F [(E + C)e + (BE +C e ] . [The forcing function, e(t), is

+ju%t -jagt

equal to Ee + Ee (E real).] This periodic function is not usually
a simple sinusoidal function, but has an associated Fourier series with

a fundamental period equal to 2n/wg; consequently, the output of the non-
linear element, y(t), has frequency components at integer multiples of

ws. Since these highgr order harmonics fall within the assumed stop bands
of the linear network, they will not be transmitted through this network.
The fundamental, or @ 5 component is, therefore, the only component that
must be considered. Tucker defines a "gain" for the nonlinear element

as follows:

The magnitude of the fundamental component of the
o = output of the nonlinear element (1.2)

The magnitude of the sinusoidal input to the
nonlinear element

This gain is a function of 2 \E + Ci, the magnitude of the sinusoidal
input to the nonlinear element, and can be thought of as defining & linear

element, characterized by n, which replaces the nonlinear element,
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characterized by F(x+e); i.e., F(x+e) - nX+ne .

After the preceding replacement has been made, Tucker derives
a system equation in a manner similar to that which would be used if the
system were actually a linear feedback system. The resulting system

C ot
equation is

=0 (1.3)

-n =
B(do,)  © B(dw,)

A(Jy) AJ,) [ E ]
E+C

The solutions of this complex equation determine which values of C are

admissible for a given amplitude, E, and angular frequency, @, (recall

that o = % we), of the forcing function. It is possible that more

than one C will satisfy the above system equation. For each allowed C
Jo t x ~Jw_t

there is a periodic response xo(t) =Ce ° +Ce ° which may or may

not be asymptotically stable.

In addition to deriving Eq. (1.3), Tucker presents a graphical
technique for solving it which involves the separation of Eq. (1.3) into
real and imaginary parts. He also discusses the stability question.
Unfortunately, his discussion of the stability question is not complete.
As he himself points out, it was not possible for him to determine all
the necessary stability criteria.

On the other hand, Smirnova claims to have been able, using
essentially the same technique as Tucker, to obtain stability criteria.
These criteria are only approximate, in the same sense as the solutions;

nevertheless, they may be useful in many systems. Unfortunately, some

of the steps in her argument are difficult to appreciate.

1 Neither Tucker's nor Smirnova's symbols are adhered to here.
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The system considered by Smirnova is, except for the limitation
of e(t) to a simple sinusoid, the same as that shown in Fig. 1.1. The
only difference between it and Tucker's problem is, therefore, the injec-
tion point for e(t). The nonlinear ordinary differential equation which

characterizes this system isl

d
A(z)xéB(z)[F(x)+2Esinmét] =0 (z = I ) (1.4)
The symbols in this equation are, except for a real constant E, defined
above for Eq. (1.1).
The equation in Smirnova's method which plays the role played
by Eq. (1.3) in Tucker's method is
A(Jw%) E

-n == =0 (1.5)

B(jmé) c

The difference between Egs. (1.3) and (1.5) is due to the different
injection point for e(t). Smirnova solves this equation graphically to
obtain allowed values for C (magnitude and angle).

It should be remarked here that Smirnova's graphical technique
appears to be different from Tucker's, although both techniques are basi-
cally the same. Smirnova solves Eq. (1.5) directly in the complex plane
with vector quantities, whereas Tucker considers the real and imaginary
parts of this complex equation separately.

Another difference between the methods of Tucker and Smirnova

is the way in which each defines n,; the equivalent linear gain for the

1 Neither Tucker's nor Smirnova's symbols are adhered to here.
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nonlinear element., By Tucker's definition, Eg. (1.2), nO is real, whereas
Smirnova's definition is intended to allow a complex n, e Since Smirnova
appears to believe that she has generalized no, it is of interest to
inspect her definition. Assuming that n, =g+ jb (g and b real), the
linear replacement for the nonlinear element in Smirnova's work is char-

acterized as follows:

F(xo)z Eg[Clsin(w%t + L2) + Eblclcos(a%t + LC) (1.6)

and xo(t) =2 c{sin(wst +2L¢C) (1.7)

The significant aspect of Eq. (1.6) is that it allows the linear replace-
ment for the nonlinear element to introduce a phase shift between its
input and output. However, according to Smirnova's definition, b must
be identically zero. This can be seen by considering her definition

which is as follows:
® 2n/ug
= f F[zlclsin(wst + Lc)] cos(u)st +4LcC)at  (1.8)
nC
o)

e

b

The above integral has a periodic integrand with period i? and an inter-
]

val of integration that is also %ﬁ ; therefore, this integral is indepen-
dent of the placement on the t-axis of the interval of integration. If
the variable t is transformed by translation such that the sine function
in the above equation becomes a cosine and the cosine becomes a sine, then
the function F becomes an even function with respect to the new origin
and is multiplied by a sine function; therefore, the new integrand is an
odd function with respect to the new origin. Since the value of the

integral is independent of the placement of the interval of integration,

this interval can be centered about the new origin. The result is the
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integral of an odd function over an interval centered about the origin:
the value of this integral is zero.

It is apparent from the preceding argument that Smirnova has
not generalized nO as she thought she had. Moreover, it is clear that
any nonlinear element which is characterized by a function of x only
always has a real n.o associated with it. This is true whether Tucker's
or Smirnova's definition is considered. A complex n, is legitimate if
the nonlinear element concerned is a function of the time derivatives of
X as well as of x itself.l An example would be a nonlinear element that
exhibited a hysteresis effect. This is the point that Smirnova missed.

The approximate method used by Smirnova to handle the stability
problem is an extension of the equivalent linearization method which
she and Tucker each use to obtain the approximate pericdic solutions,
xo(t). A discussion of the rigorous approach to a stability problem
of this nature is given in Appendix A. Contrasted with this rigorous
approach, Smirnova's method seems to depend on two implied assumptions.
The first is that a variational equation (see Appendix A) based upon
xo(t), the approximate solution, answers the "yes or no" part of the
stability question correctly even though the values of the characteristic
exponents may be shifted away from those of a variational equation based
upon the actual periodic solution. Unless the actual periodic solution
is known exactly, this is an assumption which must always be made. The
second assumption is that satisfactory estimates for the characteristic

exponents of a linear differential equation with periodic coefficients

1 It is also shown in Chapter III of this study that a complex n_ may
arise in problems involving subharmonic, ultraharmonic, and ultra-
subharmonic response.
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can be obtained if the periodic coefficients are replaced by constant co-

efficients equal to their mean values. For example, consider the systen,

x = Lx + P(t) x. (1.9)
L is an nxn constant matrix. P(t) is a periodic matrix with mean value
zero; i.e., each element of the matrix has mean value zero. This sys-
tem has n characteristic exponents associated with it. The second assump-
tion is that each root of the characteristic equation, det{L - N E] = O,
is close to one of the characteristic exponents of Eq. (1.9). Above all,
it is assumed that a characteristic root having a given sign for its real
part implies the same sign for the real part of the neighboring charac-
teristic exponent.

In order to appreciate the danger attending this assumption,
recall the Mathieu equation [9] which is a classic example of this assump-
tion not being justified. Unfortunately, Smirnova's steps in the imple-
mentation of these assumptions are not clear.

As has been pointed out previously, Tucker's and Smirnova's
methods for finding the approximate periodic solutions are equivalent to
the describing function method from control theory. The graphical method
of Smirnova is exactly that which would be used if the describing func-
tion method were applied to the type of problem she considers. It is only
with the stability questions that differences occur.,

In addition to Tucker and Smirnova, Adler [5] has investigated
a problem which is closely relatéd to the one of interest in this study.
The nonlinear system that he considers is not so general as that of
Tucker or Smirnova; however, he does attempt to handle responses which
are not limited to being periodic. The technique which Adler develops

is based upon instantanecus frequency and phase concepts. His basic
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result is a differential equation describing the behavior of the instan-
taneous frequency of oscillation. Adler's method is not related in an
obvious manner to those of Smirnova or Tucker. Nevertheless, for very

simple systems, similar results should be obtained from all three methods.

Adler's method does not supply information regerding the amplitude behavior
of the oscillation.

Huntoon and Weiss [6] have expanded Adler's method so that it
predicts the behavior of the amplitude of oscillation as well as the fre-
quency. Further, their method is suitable for treating more complicated
oscillators than those treated by Adler.

l.2.2 Results from the Theory of Perturbations. As was stated

previously, the second group of authors whose work pertains to the pre-
sent problem is composed of writers who have discussed aspects of the
Theory of Perturbations. These authors do not, in contradistinction to

the foregoing group, consider directly the physical problem of interest

here or even a closely related one. They are concerned with the mathema-
tical tools of perturbation theory. It is just these tools, however,
that are used in the creation of the analysis technique presented in this
study. It will be shown in detail in Chapter II that the original prob-
lem can be restated as a problem which can be treated with the techniques
from perturbation theory.

The results given below from the work of these authors are not
intended to be a general survey. Only those results which are needed
later in this study are selected and presented.

The idea behind perturbation theory is the assumption that as
a differential equation is continuously transformed into a neighboring

differential equation a periodic solution of the first differential
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equation is continuously transformed into a periodic solution of the
second, or neighboring, differential equation. The application of per-
turbation theory can be considered as a process of continuation of a
known periodic solution to an unknown periodic solution.

The type of problem from perturbation theory to be considered
here is as follows. An ordinary differential equation that depends on
a parameter, say u, is assumed given. Let it have the form,
- Rt % w), (1.11)
in which dx and F(t, x, o) are n component column matrices. As x appears

dt

in (t, X, u), it is an abbreviation for X1 X5 X ooy xn; where the

3,
X)) x2, ces, and X are the components of the n-component column matrix
x. The column matrix F(t, x, u) is periodic in t with pericd T (not

necessarily a least period) and satisfies continuity and Lipschitz con-

ditions. 1
It is assumed that a periodic solution™, p(t), with period T

(also not necessarily a least period) is known for this differential
equation for some value of y, say u = O. The problem is then to deter-
mine whether or not a solution p(t, p) exists for sufficiently small
|u{ which is continuous in n, periodic in t with period T, and such that
lig p(t, w) = p(t). Further, it is useful to know the conditions under
:hich p(t, u) may be expanded in a convergent power series in Moo

An important theorem by Poincare regarding the preceding prob-
len in perturbation theory is as follows:

Theorem I. If F and F_are real and continuous in (t, x, u) when (t, x)

is in some domain V of (t, x) space containing the curve

1 Unless stated otherwise, all periodic solutions are nontrivial in this

study.
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(t, p(t)], and when |u| is small, and if the first variationl

of Eq. (1.11) at y = O with respect to the solution p(t) has
no solution of period T, then for small |u| the Eq. (1.11)
has a solution p(t, u), periodic in t with period T, contin-
uwous in (t, u), and with p(t, o) = p(t). There is only one
such solution for eagh e

FX is the nxn matrix made up of Béi (j, k=1, ..., n) where the fj are

the components of the matrix F. Let the condition that the first varia-

tion of Eq. (1.11) with respect to p(t) has no solution periodic in 't

with period T be denoted by H.

If the conditions of the above theorem are satisfied, then

it is at least justifiable to consider periodic solutions, p(t, p), for

sufficiently smalllul. In this case, p(t, u) is the continuation of p(t)
for }pl sufficiently small. Note that this theorem says nothing about
the maximum range of . over which p(t, n) exists.

A complete proof of this theorem is given on page 349 of [10];
however, since this proof follows a line of reasoning which is typical
of theorems in perturbation theory, it is outlined here, The solution
of Eq. (1.11) which assumes the initial value p(o) + @ at t = O is
denotedd = (¢, a, u). It follows from the uniqueness of @ and the
periodicity of F that for this solution to be periodic of pericd T it
is necessary and sufficient that ®(T, @, u) = (o, a, ) or that

d(T, @, ) - plo) - @ = 0. This last system of equations is an impli-
cit relation between the components of & and yu. For u = O, it has g
solution @ = 0. In order to see this, recall that p(t) is a periodic

solution for y = O and that O (T, o, o) = p(o). If the Jacobian of

1 See Appendix A for a discussion of first variations.
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this system taken with respect to the components of @ is nonvanishing
at uw = 0, @ = 0, then it follows from the implicit function theorem that
the system has a unique solution, a = a(g), in the neighborhood of yu = O,
@ = 0, and a(u) is continuous in p with @(0) = 0. The remainder of the
proof shows, by some manipulation of the equations ihvolved, that the
nonvanishing Jaccbian condition is equivalent to the condition that the
first variation with respect to p(t) have no periodic solution with
period T. The key idea in this proof is the employment of a periodicity
condition in conjunction with the implicit function theorem. Note that
the Jacobian which arises from the application of the implicit function
theorem depends only upon the known solution p(t).

Unfortunately, in many important cases the condition H is not

satisfied. A classic example is an autonomous system of differential

equations. Such a system would characterize an undisturbed oscillator.

Consider the following system of differential equations:
dx
T - F(x, H) (1.12)

The symbols in the above equation are similar to those in Eq. (1.11).
The first variation of this equation with respect to a known periodic
solution p(t), where p(t) is defined as before, is

dy _
& = Fle(e), oly. (1.13)

It is easily shown that dp/dt is a periodic solution with period T of the
variational equation, Eq. (1.13). This immediately demonstrates that the
condition H cannot be satisfied by systems of this type; therefore,

Theorem I is not applicable to this important class of differential equa-

tions.
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It is shown on page 352 of [10] that if there exists only one
periodic solution of the variational equation, then there exists for |u|
small a unique solution p(t, u) of Eq. (1.12) continuous in p and peri-
odic in t with period Tu’ where Tu = T(u), a continuous function of u.
It is, on second thought, not surprising that the period of oscillation
of an autonomous system should depend on u.

Another example of an important system that does not satisfy

condition H is the following:

%XE = Lx + p F(t, x, p,) . (1.14)

. . dx .
L is an nxn constant matrix; x, 3T and I are n-component column matrices;

the components of F satisfy the same conditions as the F in Eq. (1.11);

x in (t, X, u) is shorthand for x ooy xn; and p is a real para-

1’ %2’
meter,

If 4 = O, then Eq. (1.14) reduces to the linear system,
X (1.15)

It is assumed, as before, that this reduced, or p = O, differential equa-
tion has a periodic sclution p(t), with period T. Since the first varia-
tion of Eq. (1l.1l4) with respect to p(t) is the same as Eq. (1.15), p(t)
| must also be a periodic solution with period T of the variational equation.
Therefore, the condition H is not satisfied, and Theorem I does not apply.
Therefore, the difficulty which arises in the consideration of
systems which are characterized by Eq. (1.14) is the determination of
which solutions, p(ﬁ), if any, can be continued. As before, the word

"continued" is intended to mean here the relation between p(t) and p(t,u).
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The problem is that the u = O differential equation is linear; there-
fore, it has a family of periodic solutions. For example, if pl(t) and
pe(t) are two linearly independent periodic solutions with period T (not
necessarily a least period) of the p = O differential equation, Eq. (1.15),
then plpl(t) + pgpg(t) (pl and p, arbitrary constants) is also a periodic
solution. If the linear differential equation has k linearly-independent
periodic solutions with period T (not necessarily a least period), then

it is said to have a k-parameter family of periodic solutions. It should
not be surprising that in most cases only selected members of this k-
paremeter family of solutions may be continued for u # O. The linear sys-
tem, Bq. (1.15), is the limit, as u - O, of & nonlinear system, Eq. (l.1k4).
The limit cycles associated with each p(t, p) are expected to approach
limit cycles of the u = O differential equation as p - O. It is not
usually the case for nonlinear, p # O differential equations that these
1limit cycles of the u = O differential equation which are approached will
comprise the entire k-parameter family of Solutions; however, such a sit-
uation is not impossible.

Systems of the type discussed in the preceding two paragraphs
are a form of degenerate system. The order of their degeneracy is said
to be equal to the number, k, of linearly independent solutions with
period T of the variational equation. For a general discussion of de-
generate systems see [11], [12], [13], and [14]. The particular degen-
erate problem of interest in this study, i.e., Eq. (1.1k4), has been
treated by Coddington and Levinson [10]. They present a method for selec-
ting the members of the k-parameter family of periodic solutions of the
u = 0 differential equation which can be continued. Further, they show
that if a certain Jacobian is nonvanishing, then the existence and

uniqueness of the continuations, p(t, u), are guaranteed for p suffi-
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ciently small. The essential features of the Coddington and Levinson
method are, as in the proof of Theorem I, the utilization of a periodicity
condition to obtain an implicit relation between the initial conditions
and ;. and the application of the implicit function theorem.

Coddington and Levinson show also that if F is analytic in x
and 4, then the desired periodic solution, p(t, ), can be obtained recur-

sively as a power series in u.

Lewis [15] has considered a problem which includes the problem
considered by Coddington and Levinson. The important difference between
Lewis's results and those of Coddington and Levinson is that Lewis is
able to estimate a range of u over which the solution can be continued,

whereas Coddington and Levinson develop a solution for which the existence

and uniqueness is guaranteed only for|u| sufficiently small., Unfortunately,
Lewis's method depends upon making an a priori estimate of the maximum
value of x to be expected. This is a disadvantage, because the guaranteed
range of y may depend on this initial estimate.

Moulton [16] has considered another problem in perturbation
theory which pertains to the stability of the periodic responses of the
nonlinear feedback systems considered in this study. The problem con-
sidered by Moulton is the finding of the solutions and characteristic
exponents of a system of n first-order linear differential equations
that have coefficients periodic in t with period T and analytic in .
for 0 <p < Mg The importance of this problem to the present study

is discussed in Section 4 of this chapter.

1.3 An Outline of the Development of the Technique Developed for Deter-

mining Periodic Responses

The development of the method for determining the periodic res-

ponses of a class of nonlinear feedback systems to periodic forcing func-



22

tions proceeds in three steps. Each of these steps is accomplished in
one of the three following chapters.

The first, and crucial, step is a restatement of the differential
equation which characterizes the nonlinear feedback system under the in-
fluence of a periodic forcing function. This restatement results in a
new differential equation amenable to treatment by the techniques of per-
turbation theory. This step is accomplished in Chapter II of this study.
The restatement has two parts: (1) a regrouping of the terms of the orig-
inal differential equation, and (2) the introduction of a parameter e

If, after restatement, u is set equal to zero, a linear system with constant

coefficients is obtained which has two linearly-independent periodic
solutions of period T (not necessarily a least period) and, as before,
T = qu. If, also after restatement, u is set equal to one, the orig-
inal differential equation is obtained., The regrouping is accomplished
by dividing the original differential equation into two sections. The

1

first section contains all those terms which comprise the "y = 0" linear
differential equation., The second section contains those terms which
make up the difference between the original differential equation and
the "y = O" linear differential equation. This latter section contains
all the nonlinear terms. The parameter j is introduced as a multiply-
ing factor for this second section.

The above restatement of the original differential equation
can be thought of as an imbedding of the original differential equation
into a family of differential equations. A separate member of this family
corresponds to each value of . The member of this family that corres-

ponds to u = 1 is the original differential equation. The member which

corresponds to u = O is the aforementioned linear differential equation
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with constant coefficients. Recalling the discussion in Section 2 of

this chapter, it can be seen that this p-dependent family of differential
equations is related to the type of problem treated by Coddington and
Levinson. The "u = 0" differential equation has a known two-parameter
femily of periodic solutions with period T (not necessarily a least period).
The group of terms multiplied by u is either independent of t or periodic
in t with period Te (T = qTe). The group is independent of t if the for-
cing function, e(t), is not a part of it, If the forcing function is a
part of it, then the group is explicitly and periodically dependent on t.
The period is, of course, Te. Concomitantly, the ", = O" linear differential
equation is homogeneous if e(t) is multiplied by u, and inhomogeneous

if it is not. The existence of the possibility of these two locations

for e(t) motivates the use of two canonical forms in the restatement of

the original differential equation.

The choice between these two canonical forms for a given prob-
lem depends upon the frequency spectrum associated with e(t). If this
spectrum contains a term of the same frequency as that of the periodic
solution, p(t), for the "u = O" linear differential equation, then the
canonical form is chosen in which the forcing function is multiplied by
uw. The reason for such & choice is simply to avoid the resonance res-
ponse that would occur in such a inhomogeneous system, i.e,, t sin t.
This type of response would destroy the periodicity of the solutions of
the "y = 0" differential equation. The reason for choosing the other
canonical form is more subtle, because it is related to the satisfaction
of the nonvanishing Jacobian condition. The choice of canonical forms
is discussed in Chapter III.

In addition to the above restatement, a transformation of vari-

ables is carried out in Chapter II. The transformation used is similar
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to that employed in the variation-of-constants technique. The result is
the transformation of an nth-order differential equation obtained after
restatement into a system of n first-order differential equations of the

following form:

r2 = “fg (I’l, I'2, e ooy rn, t)

i‘n = p.fn (I’l, 1'2, ey I‘n) t) (lal6)

The form of the solution to the original, untransformed differential

equation with initial conditions I (Ili>Il, I, eeey In) is denoted,

2)
X = Cp(t) 1, p‘))

and the corresponding solutions of Eq. (1.16) are denoted,

rj = pj(t: A, H): (J =1, 2, «0e0, n):

where

t AT AL

2
@(t) I, H) = Dl(t: A, U)e + pE(t’ A, H)e + eee + pn(t, A, H)e o s (1017)

and A> (al, 8.5 esey an) is the transformation of I and the A's are the

2)

characteristic roots associated with the "

p = 0" linear differential equa-
tion. This form of the solution 1s shown later to have a corresponding

generating solution or first approximation of the form,

jmst % -jagt
p(t) = cp € + ¢ € , (1.18)
*
where Cip is & constant (clo is the complex conjugate of clo) a.nd(rl =

*
107 To = S0 ry = 0y veey T = 0) is a solution of Eq. (1.16) at u = O.
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This complex form for the generating solution is to be compared with that

of van der Pol, p(t) = b, cos wst + b_ sin wét, and that of Kryloff and

1 2

Bogoliuboff, p(t) = A cos (w%t +0).

In Chapter III, the method of Coddington and Levinson is adapted
so that it can be applied to Eq. (1.16). The results of this chapter are
the development of a graphical technique for the finding of the generating
solutions (i.e., clo) aﬁd determining whether the Jacobian condition is
satisfied or nct.

In Chapter IV, a recursion technigue is presented for obtaining
the pj[t, Alp), nl = cj(t, w)'s [A(p) are those initial conditions which
correspond to the selected solutions of Eq. (1.16)] which correspond to
periodic solutions, p(t, u), of the untransformed, p-dependent family
of differential equations as a power series in y; i.e.,

0]

(8, 1) = Z e W (=1, 2 ey n) (119)
k=20

The actual periodic solution is obtained by substituting the above expres-
sion into Eq. (1.16). As part of this recursion technique, additional
functions and relations are designated which are similar in nature to

the describing function. It is, in fact, shown that the member of this
group associated with the determination of the cjo(t)'s, the generating
solutions, is just the ordinary describing function. Table 1.1l lists,
defines, and relates some of the more important differential equation

solutions and variables that appear in this study.

1.4 An Qutline of the Technique Developed for Handling the Stability

Question
The general approach to the question of asymptotic stability

for a periodic solution of a nonlinear differential equation is presented
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TABLE

1.1

All elements of the left-hand column refer to the variable x, and

all elements in the right-hand column refer to the r: variables:

both

columns are related by the coordinate transformations which relate the

r.'s to x.
dJ

Dependent variable in Eq. (1.l), and
input to the nonlinear element (also,

An n-component column ma
which results from a tra

assumed that

& (t) = p(t, 1)

X used as a column matrix in other (3 =1, 2, ves, 1) |formation of x and its d
parts of this study) vatives. Dependent varii
in both canonical forms.
Periodic solutions of the "u = 0" lo. ] Solution of the canonica
(v, 1) | Giff. eq. with period T snd initial Pjo form at y = O correspond
Pt conditions I. Includes all such (=1, 2 n) [to @ (t, 1)
solutions for the "p = O" Qiff. eq. Tty P
Continuable @E(t, 1); i.e., [Cjo] Solution of canonical fo
p(t) p(t) = pp(t, 1(0)) = p(t, 0), (=1, 2, ..., n)|corresponding to p(t)
Generating solutions > ?
Solution of the py-dependent family [pj(t, A, u)l Solution of canonical fo
p(t, I,u) | of differential eq's. with initial with initial conditions .
conditions I. (3 =1, «v., n) |A is the transformation :
Continuable periodic solutions of [Cj(t, W)l Solutions of canonical f
o(t,u) the p-dependent family of diff. eq's., corresponding to p(t, u)
| a p(t, 0) = p(t) and p(t,u) = o(t, I(u),| I =1, «ec, n c;(£,0) = cjo, and cj(t”
4 o30e a6, %)
I Arbitrary initial conditions A Arbitrary initial condit
I(u) Initial conditions for p(t, u) Aw) Initial conditions for
[cj(t: H)]
Desired periodic solutions of original a.(t)] Transformation of & (t)
B (t) differential eq., Eq. (1.1). It is J It is assumed that

(%) = cy(t, 1)
(?“i %, Efjf.-, n)
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in Appendix A. This approach leads immediately to a so-called first vari-
ation of the differential equation with respect to the periodic solution
or, more concisely, the variational equation. This variational equation
is, as has been mentioned before, a linear differential equation with
periodic coefficients. The common period of these periodic coefficients
is the same as that of the periodic solution for which the stability is
being tested. According to Floquet [17], the preceding linear system

has solutions made up of combinations of functions of the form ¢ ot u(t),
where u(t) is a periodic function with a period equal to that of the co-
efficients, and @ is a constant. The a is referred to as a characteris-
tic exponent, and there are n of them associated with an nth-order vari-
ational equation. These characteristic exponents are comparable in nature
with the characteristic roots associated with a linear differential equa-
tion with constant coefficients.

If all the characteristic exponents have negative real parts,
then the periodic solution of the nonlinear differential equation is asymp-
totically stable (see Appendix A). Unfortunately, it is usually difficult
and laboriocus to determine these characteristic exponents. One approx-
imate method is to replace the pericdic coefficients in the linear dif-
ferential equation by their mean values and treat the linear system as
if it had constant coefficients. Markus [18] has shown that in certain
cases this method gives satisfactory results. In more general problems,
methods from perturbation theory, quite similar to those utilized here
to develop recursively the periodic solution of the nonlinear differential
equation itself, have been applied.

However, in the present situation there exists the added diffi-

culty that the solution about which the stability question is being asked
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is known only approximately. This lack of knowledge causes difficulty
because the periodic coefficients of the variational equation are func-
tions of this solution; therefore, so are the characteristic exponents.
This means that if the solution is known only approximately, then the
"true variational equation' is known only approximately. In such a case,
even if this "approximate variational equation” were solved exactly,

there would still be some question about the stability. It is, therefore,
clear that something more must be done than just finding a method for

determining the characteristic exponents of a linear differential equa-
tion with periodic coefficients.

The key to this problem is supplied by some of the work of
Moulton in celestial mechanics [16]. The type of equation considered by
Moulton is a linear differential equation that has coefficients depen-
dent on a parameter u as well as being periodic in t. The form of this

type of problem is,
L L) d
7 = P(t, uly <y = a—%) . (1.20)

where y and y are n-component column matrices, and P(t, p) is an nxn
matrix analytic in u for 0 < p < T and periodic in t with period T.
P(t, O) is a constant matrix. The general solution for this differ-

ential equation is of the form,

y(t, I, u) = D(t, w)eRW) 1 (L.21)

D(t, u) is an nxn matrix analytic in p for some finite p interval and
periodic in t with period T. R(p) is an nxn matrix analytic for y in
some finite y interval. I is an n~component column matrix of initial
values. The n characteristic exponents of Eq. (1.20) are denoted

ai(“) (i=1, 2, ..., n) and are solutions of the equation,
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det [R() -aE] =0, (1.22)

where E is the identity matrix.

The basic idea behind Moulton's approach to the problem of deter-
mining the ai(“) is the recognition that there exist n linearly indepen-
dent choices for the initial value vector, I, such that the solution
associated with each of these choices is of the form,

a, (u)t

y(t) Ii(H)) H) = € Ui(t: H)) (1-23)

where Ii(“) is the ith choice of initial condition vector é,(a?% Ui(t, w)
is an n-component periodic column matrix with period T. ¢ i is a
scalar multiplier, A different characteristic exponent, ai, appears in
this multiplier for each choice of an initial value vector from the above-
mentioned linearly independent group. The immediate counsequence of this
selection of initial conditions is that a complete set of lineérly inde~
pendent solutions to Eq. (1.20) is obtained, each member of which con-
tains one and only one characteristic exponent.

At this point Moulton introduces n linear time-dependent trans-

formations of the form,

Yy =€ i U (l.Qh)

After substituting Eq. (1.24) into Eq. (1.20), the following linear dif-

ferential equation for U is obtained;
U= [-0E+P(t, u)] U , (1.25)

where E is the identity matrix. The characteristic exponent that appears
in this equation is as yet unknown. It is known that one solution of the

above differential equation is periodic in t with period T. This follows
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from the discussion regarding Eq. (1.23). It also follows from the same
discussion that the periodic solution is Ui(t). All this assumes, of
course, that the proper value of ai has somehow been determined and been
substituted into Eq. (1.25).

The technique which is presented by Moulton for treating Eq.
(1.25) is a recursion procedure somewhat similar to that used in Chapter
IV to determine the periodic solutions of the nonlinear differential
equation characterizing the nonlinear feedback system. The significant
difference is that in addition to developing the periodic solution as a
power series in p the characteristic exponent ai(“) is also developed as
a power series in u.

The above method is modified and applied in Chapter V so that

it constitutes a technique with which the stability question can be

answered.



CHAPTER II

DEVELOPMENT OF CANONICAL FORMS

2.1 Introduction

The purpose of this chapter is the development of two canonical
forms for the restatement of the original differential equation, Eq. (1.1),
as a problem amenable to treatment by perturbation techniques. Assuming
that the desired periodic solutions, P(t), of Eq. (1.1) are dominated by
w

terms of frequency 5% , the first canonical form is intended for those

systems in which the forcing function, e(t), contains a term of frequency

w
= , and the second canonical form is intended for those systems in which

2xn ®
e(t) does not contain a term of frequency §% .

A discussion of certain aspects of perturbation theory which is
meant as a background for the actual development of the canonical forms
is given in the next two sections of this chapter. The first of these
two sections deals with what is called in this study the "normal pertur-
bation problem;'" the second deals with what is called in this study the

" As these names imply, some type of in-

"inverse perturbation problem.
verse relation exists between these two problems. As is demonstrated in
the next sections, this inverse relation arises from the fact that the
"normal perturbation problem" is essentially an analytic problem, whereas
the "inverse perturbation problem" is essentially a synthetic problem.

The actual development of the two canonical forms is carried

out in the last two sections of this chapter.

2.2 Normal Perturbation Problem

Although, so far as application of perturbation techniques to

physical problems is concerned, the "normel perturbation problem" is the

31
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second stage and the "inverse perturbation problem" is the first, these
two "problems'" are discussed here in reverse order of appearance because
a prior understanding of the '"nmormal perturbation problem" facilitates
comprehension of the "inverse perturbation problem." The word "normal"
has been used in the title of the "normal perturbation problem'" merely
because it is "normally" the problem considered in the mathematical
literature. Conversely, the "inverse perturbation problem" is usually
given scant attention, if treated at all. In fact, the motivation for
meking a definite distinction between these two "problems" is the desire
to emphasize their existence and their fundamentally different character,
i.e., analysis versus synthesis.

At the outset of a "normal perturbation problem," a u-dependent
(b a parameter) family of differential equations is given. One member of
this family, say the "u = 0" member, is assumed to have one or more known
periodic solutions. Presumably, other members of this family also have
periodic solutions, and it is reasonable to suspect that members of this
family which are neighbors of one another may have, in some sense, neigh-
boring pericdic solutions. In particular, members neighboring the "u = Q0"
differential equation may -have periodic solutions which neighbor, in

some sense, certain known periodic solutions of the "u = 0" differential
equation. However, it is easy to construct counterexamples which demon-
strate that this suspicion is not always Jjustified; i.e., X +ux +x =0
has a periodic solution for only p = O. On the other hand, there do

exist pu-dependent families of differential equations that do possess solu-
tions periodic in t and continuous in u over some u interval. This

type of periodic solution for the p-dependent family of differential

equations is referred to in this study as "continuable." The "normal per-

turbation problem" is to discover the existence of and determine
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expressions for continuable periodic solutions which approach distinct
periodic solutions of the "u = Q" differential equation as u —» 0. An
example of such a continuable periodic solution for a time-dependent
system is shown in Fig. 2.1. Note that this figure is not the usual
phase-space representation of the solution trajectories of a differential
equation. It merely portrays the functional relation between X, %%, and
p for one continuable periodic solution, and it does not portray the more
general or aperiodic behavior as would be the case in the usual phase-
space representation. Also, the disappearance of periodic solutions for
u > 3 should not be considered the only manner in which a solution can
fail to be continuable.

It can now be seen that the "normal perturbation problem" actu-
ally consists of three problems. The first of these is the problem of
determining which, if any, of the known periodic solution of the "u = 0"
differential equation can be continued away from u = O. These periodic
solutions are referred to in this study as generating solutions and can
be considered as first approximations to the continued periodic solutions
for values of u other than zero.

The second of these three problems is to determine the composi-
tion of these solutions for y # O. This is usually accomplished by a
recursion procedure which develops the solution as a power series in u.

The third problem is to determine the u intervals over which
the periodic solutions can be continued. Whereas the two preceding diffi-
culties can be handled more or less easily, this last problem still awaits
complete solution. In this study a Jacobian existence condition is devel-
oped which guarantees the u interval for |u| sufficiently small. As was

mentioned in Chapter I, Lewis [15] has published results regarding this
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FIG. 2.1 EXAMPLE OF A CONTINUABLE
PERIODIC SOLUTION



35

problem.

A convenient method for graphically presenting the information
regarding allowable u intervals is shown in Fig. 2.2. Each horizontal
line in this figure is associated with a particular periodic solution
and has a projection -on the u~axis which corresponds to the u interval
over which the solution in guestion can be continued. For example,
solution number 1 can be continued over an interval including p = O and

Ho= . Solution number 2 can be continued away from g = O, but not all

~
~

}=0 =

FIG. 2.2 GRAPHICAL REPRESENTATION OF THE ALLOWABLE
w INTERVALS FOR A "NORMAL PERTURBATION PROBLEM"

the way to My Solution number 3 can not be continued at all. Of these
three examples, numbers 1 and 2 would satisfy the aforementioned Jacobian
condition at u = 0, and solution number 3 would not. It is assumed here

that the periodic solutions are denumerable, but if they are not, the
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insight gained with this figure is still valid.
Finally it can be seen, from the above statement, that the
"normal perturbation problem" is the analysis of (i.e., the finding of

the periodic solutions of ) a given differential equation.

2.3 Inverse Perturbation Problem

In this case a differential equation is also given at the out-
set of the problem, but it does not depend upon the parameter u. It is
desired to find the periodic solutions of this original differential
equation with the aid of perturbation techniques, and in order to do
this the original differential equation must be imbedded into some ''nor-
mal perturbation problem." The selection or synthesis of this "normal
perturbation problem" constitutes the "inverse perturbation problem."

This selection can be divided into two separate parts: (1)
the selection of a "u = 0" differential equation, and (2) the selection
of a p-dependent family of differential equations which contains both
the "u = 0" and the original differential equations as members.

It is, of course, not to be expected that every imbedding will be

1

a satisfactory solution to the "inverse perturbation problem.” To begin
with, there is the unsolved problem of allowable u intervals. The sizes

of the various intervals depend on the selections of both the "u = 0"
differential equation and the u-dependent family of differential equations.
A diasgram, similar to Fig. 2.2, which presents a possible configuration
for the continuable periodic solutions of some u-dependent family of
differential equations is shown in Fig. 2.3. In this figure u = Ky is

assumed to correspond to the original differential equation. Solution

number 1 is an example of the desired type of continuable solution. Its
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FIG. 2.3 GRAPHICAL REPRESENTATION OF THE ALLOWABLE . INTERVALS
FOR AN "INVERSE PERTURBATION PROBLEM"

allowable u interval includes both p = 0 and u = “l' Considering it from

left to right, the continuable periodic solution of the "u = O" differen-

tial equation, which satisfies the Jacobian condition, can be thought of
1" "

as predicting a periodic solution of the "y = Hqy

equation. The word "predicting" is used here to emphasize the danger which

or original differential

exists as long as no actual guarantee of the u intervals is employed. For
instance, solution number 2 satisfies the Jacobian condition, but predicts
a non-existent periodic solution of the "y = pl" differential equation. View-
ing solution number 1 from right to left, it can be seen that a periodic solu-

tion exists at p = u, which is predicted by a periodic solution at p = O.

1
Solutions numbers 4 and 5 exist at p = Ky but are not predicted by periodic
solutions at u = 0. Solution number 6 is continuable over a satisfactory

u interval except at one point, "a". This point could be the transition

between stable and unstable periodic solutions. Solution number T does
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not exist at either yp = 0 or u = Mo therefore, it would have small im-
portance as far as the original differential equation is concerned.
It is now apparent that the relation, in the above context, be-

"o = 0" and the original differential equations is a completely

tween the
mutual relation; i.e., either of these equations may be viewed as a per-
turbed differential equation whose periodic solutions are continued until,
assuming continuability, they become periodic solutions of the other. The
only difference between them is that one happens to have periodic solu-
tions which are relatively easy to find.

As was previously mentioned, the u-interval problem is only
partially solved in this study, and a Jacobian existence condition is re-

"

lied upon; i.e., every periodic solution of either the "u = 0" or the

"wo= ul" differential equations is assumed to be part of continuable peri-
odic solution similar to solution number 1 in Fig. 2.3.

Now along with those factors which relate to the u-interval prob-
lem, there are several desirable characteristics which the selected "u = Q0"
differential equation should exhibit. Naturally, it should possess periodic
solutions; however, this is not enough. Unless these soiutions are easily
found, there is liftle point in introducing perturbation techniques. Some
of these periodic solutions should satisfy sufficient conditions for their
being continuable away from p = O, and the ascertaining of whether or not
these conditions are satisfied should not be too laborious. These continu-
able periodic solutions are, of course, the generating solutions. Finally,
these generating solutions should be good approximations to the correspond-
ing periodic solutions of the original differential equation.

With the above desired characteristics as a background, consider

the possible choices for a "u = 0" differential equation. Nonlinear
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differential equations can be immediately ruled out simply because their
periodic solutions are not usually easy to find. The fact that nonlinear
differential equations exist which have easily determined periodic solu-

tions does not help a great deal. The main interest of this study is

the creation of an analytic tool which can be used upon a wide range of

"w = 0" differential equation

nonlinear feedback systems. Therefore, the
must be drawn from a class of differential equations, any member of which
would be a satisfactory "u = 0" differential equation. The class of non-
linear differential equations is notoriously not such a class. However,
it does seem possible that certain subclasses of nonlinear equations

might be constructed--perhaps all nth-order differential equations with
xj(t) = a cos (wt + mj) as solutions--but this is outside the scope of
this study.

The range of possible choices for the "p = 0" differential
equation is, therefore, rather quickly reduced to the class of linear dif-
ferential equations. Linear differential equations with time-dependent
coefficients are eliminated just as quickly using roughly the same argu-~

"o = 0" differential equation becomes restricted

ment. Consequently, the
to the class of linear differential equations with constant coefficients.
The problem, then, becomes one of determining which linear differential
equation with constant coefficients is satisfactory for a given original
differential equation. Needless to say, as in any synthesis problem,
there is no single answer.

The first decision to be made is whether to choose a homogeneous
or an inhomogeneous differential equation. Some of the statements which

follow regarding this decision are necessarily somewhat vague. Their clari-

fication occurs in Chapter III, where the details of finding the generating
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solutions are developed, especially the details of the Jacobian condition.

It is shown in Chapter III that an inhomogeneous "u = 0" differ-
ential equation has continuable periodic solutions in cases where a
related homogeneous equation would not have them; i.e., in the latter situ-
ation the Jacobien is not satisfied. Obviously, in such cases the inhomo-
geneous differential equation should be chosen. On the other hand, if the
forcing function of the inhomogeneous equation contains a term equal in
frequency to a natural mode of undamped oscillation for the reduced homo-
geneous equation, a resonant response of the form, t sin wt, results which
implies that the "u = 0" differential equation cannot have periodic solu-
tions.

There are other, less important, differences between homogeneous

"

and inhomogeneous "u = 0" differential equations. For instance, a given-

order inhomogeneous differential equation can have more involved generating

solutions, whereas an nth-order homogeneous equation is limited to gener-

n
2 .

could be important in relation to the first approximation problem. Differ-

ating solutions which contain, at most, different frequencies. This

ences of similar importance between homogeneous and inhomogeneous "y = O"

differential equations will become apparent in the course of this study.
Whether the selected equation is homogeneous or inhomogeneous,

the problem of choosing the location of the characteristic roots exists.

Those characteristic roots whose associated characteristic solutions are

periodic have, of course, real parts equal to zero. Further, since the

only solutions of interest in this study are those that are periodic with

a period T (T = qTe)’ periodic characteristic solutions which form part

of a generating solution must have period T (not necessarily a least period).

Add to this latter consideration the assumption that the periodic solution
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of the original differential equation is dominated by a term of frequencyl

w
—E~, and the first choice for the location of the characteristic roots

2n
becomes ijms and the remaining (n-2) with nonzero real parts. For a
homogeneous "u = O" differential equation of this type, the generating

solution would be

p(t) = 1o € +¢ € .

Assuming that the order of the "u = 0" differential equation
were four or higher, this approach could be carried another step, and two
characteristic roots could be placed at, for example, t j3ws (i.e., some
harmonic suspected of contributing a significant term to the sclution) in
addition to those at fjws. Presumably, this would lead to a generating
solution which was a better first approximation, but, because the coeffi-

+J3w t -Jo t *
cients of € and € as well as 10 and 10 would have to be deter-
mined, it would also lead to a generating solution whose determination was
more laborious. This procedure could be continued until all the charac=-
teristic roots were at various, separate, integer multiples of J%ﬁ . If
singular perturbations [19] were allowed, a "u = 0" differential equation
of higher order than the original differential equation could be used;
therefore, a generating solution of arbitrary complexity could be consid-
ered. However, at this point the determination of the generating solution
becomes as formidable as the determination of the periodic solution of
the original differential equation.

After the "u = 0" differential equation has been chosen, & u-

dependent family of differential equations must be selected. Clearly,

1 Recall that W, = %ﬂ»and that T = (%)Te where % is a rational number.
S
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there are an infinite number of these families which contain both the
"w = 0" and original difterential equation. The somewhat arbitrary
choice made in this study was one of the simplest: +the difference be-

1"

tween the original and "u = 0" differential equations was multiplied by
u and added to the "u = 0" differential equation. Therefore, the orig-
inal differential equation corresponds to the "u = 1" member. The impli-
cations of other choices for the u-dependent family have not been investi-
gated by the author.

Note that in the above discussion the method for choosing Ts
is not actually given. The reason for this is that there does not exist
a straightforward a priori procedure for ascertaining Ts. The usual

procedure employed is simply to make an intuitive guess. In relatively

simple nonlinear systems this guess is usually satisfactory.

2.4 First Canonical Form

With the preceding three sections as a foundation, it is now
possible to appreciate the steps taken in the following development of
the first canonical form. This canonical form can be considered a par-
tial solution of the particular "inverse perturbation problem" associated
with the nonlinear feedback system characterized by Eq. (1.1l). The part
of this "inverse perturbation problem" solved in this section is the
selection of a "u = 0" differential equation and a p-dependent family of
differential equations. The part left unsolved is the determination of
the allowable ranges for u.

Equation (1.1) is repeated below.

A(z)x - B(z)[F(x) +e(t)] = 0 (1.1)
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The symbols in this equation are defined on pages 4 and 5 of Chapter I.
It can be seen from the discussion in the preceding sections
of this chapter that the first move in the solution of this "inverse per-

turbation problem" is the selection of a "u = 0" differential equation.

As was previously stated, the type of "u = 0" differential equation
selected in this study for the first canonical form is a homogeneous

linear differential equation with constant coefficients. However, the
selection of a satisfactory "u = 0" differential equation from this

class of differential equations is not straightforward. This is especially
true when Eq. (1.1) is of large order (i.e., n large). Even assuming that

'u = 0" differential equation

two of the n characteristic roots of such a '
are known (e.g., Al = +jcuS and KE = -jws), the selection is still compli-
cated by the existence of a seemingly-infinite number of possibilities

for the location of the other (n-2) characteristic roots, and, in the
sense that there is an infinite number of linear differential equations
with constant coefficients "close to" the original or "u = 1" differen-
tial equation, an infinite number of these possible "y = 0" differential
equations is satisfactory.

Moreover, there exists another consideration which affects the
selection of the "u = 0" differential equation for both the first and
second canonical forms. In addition to having a "u = 0" differential
equation that satisfies all the requirements connected with the pertur-

!

bation problem, it is desirable for the selection of a "y = 0" differen-
tial equation to result in recognizable and tractable functions appearing
in the later stages of the analysis. For instance, it is obviously

desirable for any selection of a "u = O" differential equation to keep

the functions A(z), B(z), F(x), and e(t) somehow intact and recognizable
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as building blocks.

It is this last consideration, together with the considerations
discussed in the previous sections, which motivates the particular choice
of the first canonical form which follows. The main idea behind this
choice is the development of a formal procedure for selecting suitable
locations for all the characteristic roots associated with the "u = Q"
differential equation.

As a first step in this procedure for the first canonical form,
introduce a real constant, N, into Eq. (1.1). This constant, N, serves
in the formation of a linear approximation for F(x): Nx & F(x). It is
not, however, equivalent to a describing function which appears later and
is denoted n,. The following differential equation is obtained from
Eq. (1.1) by adding the quantity, -B(z)Nx, to both sides of the equation

and rearranging some terms.
A(z)x - B(z)Nx = B(z)[F(x) - Nx] + B(z)e(t) (2.4)

Now consider the linear differential equation with constant
coefficients which is obtained if the left side of Eq. (2.4) is equated

to zero,
A(z)x - B(z)Nx = O. (2.5)

The characteristic roots of the sbove differential equation are a func-
tion of the real constant, N. It is assumed that for one or more values
of N, two characteristic roots are purely imaginary and the complex con-
Jugates of one another; Iet these values of N be designated Nj5 denote

the corresponding pair of imaginary characteristic roots by ? ij . Thus,

J
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the differential equation,

Az)x - B(z)NJx = 0, (2.6)

has ¥ joy as two of its characteristic roots. The other (n-2) charac-
J
teristic roots are assumed to have nonzero real parts and to be distinct.

Therefore, Eq. (2.6) has the following periodic solution:

+ij.t -ij.t

e 9 e o9 (2.7)

x(t) = ¢ + 10

10

(Since throughout this study only real solutions are of interest, complex

*
10 107 are used.) Equation (2.6) has,

therefore, some of the features desired for & "u = O" differential equa-

conjugate coefficients, c.,. and c

tion. However, the angular frequency, wN., of the periodic solution Eq.
(2.7) does not necessarily have the propeg relation to ) the funda-
mental angular frequency of the forcing function. Recall that it was de-
sired that the least period of the periodic solutions of "u = 0" differ-
ential equation be related to the least period of the forcing function by
a rational factor; i.e., Ts =_(%)Te. Therefore, the characteristic roots,

+ Jwy » must be shifted somehow to t Joog «

J
The shift of these characteristic roots is accomplished by sub-
tracting selected terms from Eq. (2.6) so that if the characteristic roots

of the equation were located at Ki, N vy Xﬁ, then the characteristic

2’
roots of the resulting differential equation would be located at Kl =
Bxi, A, = BXé,..., A = BXﬁ (B is a real constant). In particular, N
= jws and AQ = -jws. The selection of the terms which are to be subtracted

can be most easily understood with the aid of a transformation of the time

scale.
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Az) = 2"+ c(z). (2.8)
Egquation (2.5) becomes
2% + ¢(z)x - B(Z)ij = 0. (2.9)

Transfcrm ¢ toc a new independent variable, 1, with the linear transforma-

tion,

t = B1. (2.10)
This transformation implies that
k . .k
d 1 d X 1 _k
O —f o Oore = = W, (2.11)
at B at p

where w = Equation (2.9) becomes

&
dr °

n

vk + pC(R)x - ana(E)NJ.x = 0. (2.12)

B B

This is, of course, still a linear differential equation with constant
coefficients that has a known periodic solution. This periodic solution
is

-Jo, BT
N,
* J

+JaﬁLﬁT
J 2
10 € . (2.13)

x(1) = clO € + C

The anguler frequency of this periodic function of 7 is BwN . If B is

J
chosen such that

(Ds .
B = (‘B—l\-w—, (2-14)



then the angular frecguency of the functicn x(1) becomes w,. Correspendingly,
=
the characteristic roots of Eq. (2.12) will be at Ay = BAs Ay = BA,een,

If in Eq. (2.12), t is substituted for 1 and z for w, &g. (2.12)

n

becomes a suitable "u = 0" differential eguation. The terms which must be

subtracted from Eg. (2.9) in order to obtain Eq. (2.12) are
[C(z)x - N.B(z)x | - 8" [c(,-z,-)x - N.B(%—)x] ) (2.15)
J J ) J B
The choice for the '"u = 0" differential eguation is then

n

2"x + g" [c( ) - NJB(E-)]X = 0. (2.16)

z
B 4
The choice for the u-dependent family of differential equaticns is

2% + gt [C( )x - NJB(g)x] = u [ﬁn{c(é)x - NJB(g)x} -

Z
B

(2.17)
{c(z)x - NJB(Z)X} + B(z) {F(x) - ij}+ B(z)e(t)]

Immediately notice that the terms in Eq. (2.17) multiplied by u are noth-
ing more than the difference between the original differential eguation,
Eq. (1.1) and the "u = 0" differential equation, Bg. (2.16). The member
of this family corresponding to p = 1 is, therefore, the original differ-
ential equation. Alsc, note that most of the desired functions have been
kept intact. Even A(z) is present and intact, although it doesn't appear
that this is the case in Eq. (2.17). The "u = 0" differential equation

has periodic solutions of the form,
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+Jjw T -dw L
o s
[+ 7) . 5 S s o
Qo T 1) = pyg € + Do € (2.10)
Cans
Jes, T % —do.t
. \ Ce - N o 3 ,
from which the generating solutions, p(t) = ¢y € FCyy € ®, must
RV

ve selected.

Since Eq. (2.17) includes both the "u = 0" and tre

1

Terential equations, it is a possible u-dependent ramiiy of differential
equations. Hewever, it is not in a convenient form for further analysis.
4 representation of this eguation as a system cf n first-order equations
is a form which leads to easier manipulation. The coordinate transfor-
mation {rom the variaticn-cf'-constants technigue is utilized below to
transform £g. (2.17) into such a form. This coordinate transformation

is as follows:

B ] RS e ] T 7
X € e e e " r
' 1
. Klt Kﬂt
X Kle e e e Ahe r2
ALt At
. N 2 1 2 n )
X = A€ e e NG Ty (2.19)
(n-1) (n-1)
x(n'l) M e MO L A e Mt r
i n n
where X, X x(n-l) re, respectively, °X Qfﬁ d(n—l)x‘ Ay A
3 Kyesvsey are, 1% LY, at’ dt2)--~: m: 12 Moo
cees Ay (kl = jo, and A, = -jws) are the characteristic. roots of the

"uw = O" differential equation, and the rj‘s are the new coordinates. Ex-

pressed in matrix form, Eq. (2.19) becomesl

1 Throughout this study symbols are used for matrix equations that are
similar to symbols used in scalar ecquations. In case a possibility
of confusion exists, the type of equation intended will be specifi-

cally stated.



and

'.__A

) _
X
'X.
X(n-l)
1
M
2
)\'2
(n-1)
)\2
0]
}\.21)
€
0

n

n

AP,
’\ ool

3

/
‘

(2.22)
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inverted (see Appendix E).

is the Vandermonde matrix which can be relatively easily

A direct consequence of Eq. (2.19) is that the following rela-

tion is satisfied for all t.

_ (2.23)
hnt .
€ ry
Knt
Kne r2
At
2'n . .
Ne r =0 (r. =
n 3 ( J
(n-E)K N
A el r
n n

This relation can be verified by a consideration of the time derivative

of Eq. (2.19).

equations.

Note that this relation involves n unknowns and (n-1)

Now substitute the appropriate components of Eq. (2.19) into

Eq. (2.17).

, B
H [B > Xy
J=1
At
+ B(Z)F‘{rle L

The resulting equationl is

PN

(n-1) N\t
1M c 17+ ...

{c@ - v} o

At

+ «.. + T € n } - N,
n J

(2.24)
t
+ fnkn<n_l)exn

At

c(z) - N.B(z)}e J

n
in T3 { J

n AT
S r.B(z) e Y +B(z)e(t)]
j=1

It is significant in Eq. (2.24) that although the rj's are

1 Note that the subscript "j" of Nj in Eq. (2.24) is not a summation

index.
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functions of time they can be considered to te constants as far as the
linear operators B(z) and C(z) are concerned. This is true because
these operators do not involve derivatives of order higher than (n-1).
Referring to Eq. (2.19), it can be seen that derivatives of x of order
less than n do not involve derivatives of the rj's. Therefore, the
operation by B(z) or C(z) and multiplication by the rj's can be com-

muted as follows:

Klt Knt Klt Knt
B(z)[ re +ee. TTE ] = rlB(z)e + oee. + rnB(z)e (2.25)

For the same reason, B(z)F contains no derivative of an rj.

Further, from Eq. (2.16),

¢ 9 = - g" [C(E) - N.B(%)] e J . (2.26)

Nt
This is true because each € Y is by definition a characteristic function

for this "u = 0" differential equation. Substituting Egs. (2.26) and (2.8)
into Eq. (2.24) and combining the resulting equation with Eq. (2.23) gives

the following system equation:

1
fl = Wy € gl(t,rl,...,rn)
-Klt
By,o= owv,, € gl(t,rl,...,rn)
(2.27)
-Knt
I‘n = I_J.Vnn € gl(t,rl,...,rn),

where the Vin are elements of the matrix V [Eq. (2.21)] and
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Klt Knt
gl(t,rl,...,rn) = B(z)F{jrle + e.. 4T € }
(2.28)
n ALt
+ B(z)e(t) - 3 r. A(z)e J
j=1 °

The above two equations constitute the first canonical form. Note that
periodic solutions of Eq. (1.1) do not transform into periodic solutions
of Eq. (2.27). The needed "periodicity" condition is developed in Chap-

ter III and is of the form

AT
¢ (Ton)e I cj(0m) = 0 (3 = L,2,...m)  (2.29)

where ry = Cj(t;u) (§ = 1,2,...,n) is the desired solution of the canoni-

cal form in question.

2.5 Second Cancnical Form

The second canonical form is developed in a manner that is simi-
lar to the development of the first canonical form. The basic difference
is that the term B(z)e(t) is not included in the group of terms which is

"u = 0" differential equation becomes an

multiplied by u; therefore, the
inhomogeneous differential equation. The main reason for introducing

this second form is that the first form does not lead to a satisfaction

of the Jacobian condition if the frequency spectrum of e(t) does not con-
tain a term of frequency W Therefore, the second canonical form pre-
supposes that the frequency spectrum of e(t) does not contain a term

with frequency giu Moreover, as was mentioned previously, if this assump-
tion were not made, the "u = 0" differential equation for the second

canonical form would not have a periodic solution.

The "w = 0" differential equation for the second canonical form



is the following inhomogenecus equation:

2% + " [c( ) - NB(2)]x = B(z)e(t). (2.30)

2
B J

™

The "u = 0" differential equation has periodic solutions of the follow-

ing form:

jwst -jwst
o, (t,I) = pyg € * pog € + h(t;0,), (2.31)

where h(t;ws) is the particular solution corresponding to the forced
oscillation of this linear system caused by B(z)e(t). Here, h(t;ws) is
considered to be a function of w (ws = % me) as well as t in order to

simplify later consideration of the Jacobian condition. e(t) can be

expanded in a Fourier series as follows:
e(t) = 3 E" ¢ (2.32)

(Note that O is used instead of @y, Since Wy = A, only every qth Ez

can be nonzero.) Therefore, h(t;ws) has the following form:

jlet
@ , B(jle)e
s = " 2-
h(t;w,) z—sz —— i, e (2.33)

=- . STy _gp(—ZL ]

[(310y)® + g™ {c(—7) - Na(—5)

(0, = payp)
Since the e(t)'s which can be used with the second canonical form do

® .

not contain terms of frequency 5%’ h(t;ws) does not contain a term of

w
frequency 5%. The generating solutions, p(t), are, of course, a set of

periodic solutions of the "u = O" differential equation, Eq. (2.30),

which must be selected from among the @P(t,I)'s in Eq. (2.31).

The u~-dependent family of differential equations similar to
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Eq. (2.17) of the previous section is:

2"x + Bn[c(é)x - NJB(é)x] = B(z)e(t) + p[Bn{C(é)x - NJB(E)X}

(2.34)
-{?(z)x - NJB(Z)X} + B(z) {F(x) - ij}].

Now, similarly to Eq. (2.19), introduce the following coordinate trans-

formation:
B 1T At st [ 1T ]
X el ... ..... " r, h(t;ws)
. At At ,
X Kle khe ?2 h(t;ws)
= + (2.35)
_ -1) At (n-1) At (n-1)
- | B M n .
P M € R € r h (t,ws)

It can be shown that Eq. (2.23) is satisfied by the rj's defined in Eq.

(2.35).
Substituting Egs. (2.33) and (2.35) into Eq. (2.34), gives
. (n-1) At . (n-1) At n At
r N € LIERRIE I € = u [-A(z)h(t;ws) - jilrjA(z)e J
(2.36)

Klt hnt
+ B(z)F{rle +oee. +TE + h(t;ws)}]
Combining Egs. (2.35) and (2.36), gives the second canonical form:

-hlt

Wy, € ge(t,rl,...,r )

(2.37)



5

where

At At
gg(t,rl,...,rn) = B(z)Fﬂ{rle * oo+ TE + h(t;ws)}

(2.38)

n K.t
- Y ra(z)e ? - A(z)h(ti0).
. J S
J=1
Therefore, as far as the rj variables are concerned, formally the two
canonical forms are quite similar. In particular, both forms reduce to
the same equation at u = 0. However, it should be kept in mind that the
untransformed "y = 0" differential equations, Egs. (2.16) and (2.30), are,
respectively, homogeneous and inhomogeneous.

Finally, it should be realized that there does exist some lati-
tude regarding the two canonical forms which are presented in this chap-
ter. It is possible that a mixture of the two might be used. A part of

the forcing function e(t) could be included among those terms multiplied

by u, and the remaining part could be independent of u.



CHAPTER III

FIRST APPROXIMATION AND EXISTENCE CONDITIONS

3.1 Introduction

Two canonical forms, Egs. (2.27) and (2.37), for the restatement
of the original differential equation, Eq. (1.1), as a form which is amen-
able to treatment by perturbation techniques, are developed at the end of
Chapter II. Each of these two canonical forms is a system of n first order
u-dependent differential equations in n variables (rl, Tos eee rn). The
solution of this system, which takes on the arbitrary initial conditions
A.:>(a1, 85 ees an), is denoted ry = pj(t,A,u) (=121, 2, vo., n).

The desired solutions of this system, denoted [Cj(t,p)] = [pj(t,A(p),p)]
[where A(u) is a special set of p-dependent initial conditions], are
those solutions which are analytic in u for |u| < 1 and which satisfy
the following "periodicity" condition for |u| <1.
AT

cJ.(T,u)e Jo. cJ.(O,p.) =0 (3=1,2, «.., n)
This requirement is called a "periodicity" condition because it is the
necessary and sufficient condition for the periodicity in t with period
T of p(t,u), where p(t,u) = .E cj(t,u)ehjt [see Egs. (2.19) and (2.35)].
As u = 0, a desired solution?=%cj(t,p)], approaches a solution, [cjo]’

of the transformedl ". = 0" differential equation. This solution, [cjo]’

1 Note that there are actually two "u = 0" differential equations for a
given problem; (1) the untransformed "u = 0" differential equation [e.g.,
Eq. (2.16)], and (2) its transformed representation in the rs variables
[e.g., Eq. (2.27) with u set equal to zero]. Similarly, the generating
solutions for a given problem occur in pairs; (1) the continuable peri-
odic solution, p(t), of the untransformed "p = 0" differential equation,
and (2) its transformed representation, [Cjo]: which is a solution of the
transformed representation of the "u=0" differential equation.

56
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is referred to as the generating solution for the desired solution which
approaches it as y - O. In this chapter, perturbation techniques are
employed for the determination of the generating solutions. In the fol-
lowing chapter, a recursion procedure is developed for the determination
of the desired cj(t,p)'s as power series in p; i.e., Cj(t,u) =Cc, +4u

Jjo
2(t).... The method used throughout both these chapters

cjl(t) + pz ¢,
is an adaptation of the one employed by Coddington and Levinson ([10],
pages 363-U4) for the treatment of a perturbed system which is closely
related to the class of systems encompassed by both the canonical forms
in this study.

Before becoming enmeshed in the details and proliferation of
symbols which follows, it is worthwhile to consider a simple outline of
the argument presented in this and the following chapter. Referring to

Egs. (2.27) and (2.37), it can be seen that both canonical forms have

the following "u = 0" differential equation.

. = O
)
. dr
1“2 = O (r. = _—"J' )
J at
r = 0
n

Therefore, the general solution of the ", = 0" differential equation is

an arbitrary set of constants, (al, cen, an). The purpose of this chapter
is to develop a method for choosing those solutions (al, ae, cosy an), if

any, of the above "y = 0" differential equation which are generating solu-
tions [ch]. The approach to this problem has two parts, (1) the develop-
ment of two necessary conditions for the existence of a [Cj(t,p)] which
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select what might be called tentative generating solutions, and (2) the
development of a set of sufficient conditions for the existence of
[Cj(t,p)] for l“i sufficiently small. These sufficient conditions are
suitable for determining whether or not a tentative generating solution
is a true generating solution.

At the outset of the development of the aforementioned two ne-
cessary conditions, a solution, [cj(t,u)] of the desired character is
assumed to exist. The two necessary conditions are then developed by
considering the behavior, as y - O, of the equation which is obtained by
requiring the following integral equation expressions for the cJ(t,u)'s,
which are obtained from a straightforward integration of either canoni-

cal form,

-N\.S
Cj(t)u) = CJ(O)H) + I-len f e J g(s:cl;“':cn) ds, (j=1,...,n)
(0]

to satisfy the "periodicity" condition; i.e.,

. S I
(e ¥ -1) cj(O,u) tuvy e J j' e Yalt,e e ) dt =0, (§=1,...,10).

The first necessary condition is simply that the generating solu-
tions, [cjo]’ must be selected from among those solutions of the "u = O"
differential equation which satisfy the "periodicity" condition. These
latter solutions are denoted [pjo] and are a special subset of all possi-

'

ble solutions of the "y = 0" differential equation. The generating solu-
tions, [cjo]’ are, in turn, a subset of the [ij]. This first necessary
condition is arrived at by merely noting that as u - O the above integral

expression for the "periodicity" condition reduces to

AT AT

(e 3 -1) ¢;(0,0) = (e I 1) C1o =0 (3 =1,000m)



59
The second necessary condition, which in effect selects the

ey

integral expression for the "periodicity" condition that for j = 1 and

OJ's from among the [pjol's, is arrived at by noting from the above

J = 2 the following integrals must vanish for all y within the domain
of existence of [cj(t,u)].

ALt
J g(tyes vves cn) it =0 (j=1, 2)

T

[ e

o

AT

That this condition is Jjustified follows from the fact that (e ¢ -1) = 0
for j = Lor j=2. The above condition must be satisfied at u = 0, and,
as 1s shown later in this chapter, it is suitable for selecting tentative
[cjo]'s from among the [pjo]'s.

The second part of the approach employed in this chapter is the
determination of a sufficient set of conditions for the existence of
[Cj(t,p)]. If the existence of [cj(t,u)] is not assumed a priori, then
the previous two necessary conditions can be thought of as selecting
tentative generating solutions, [cjo]’ which may or may not be part of
a continuable solution, [cj(t,u)]. It is shown in this chapter that by
viewing the integral expression for the "periodicity" condition as an
implicit relation between y and the initial conditions of the desired
solution, [cj(t,u)], the implicit function theorem can be employed to
develop a Jacobian condition which, if satisfied, guarantees the exis-
tence of [cj(t,u)] for |u| sufficiently small. This Jacobian condition
can be thought of as selecting the actual generating solutions [cjo]
from among the tentative generating solutions.

Throughout this chapter the expressions which determine the
first approximations or generating functions are reduced to describing-

function-type relations. Furthermore, the last section of this chapter
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presents some useful relations between the Jacobian condition and the

behavior of the generating solutions as the forcing function frequency,

w
S

B is varied.

In Chapter IV, a recursion technique is developed for the deter-
mination of the cj(t,u)'s as a power series in u; i.e.,

2
Cj(t;u) =c, +u cjl(t) + p ng(t) F oeees

Jo

The key tool in the development of this recursion procedure is the re-

quirement that each cjk(t) nmust satisfy the "periodicity" condition.

3.2 Determination of the Generating Solutions for the First Canonical Form

Consider the first canonical form, which is repeated below:

-Klt
rl = p'vlne gl(t)rlJ"')rn)
-At
I, = uv,e gl(t,rl,...,rn)
» L] . . L] . . L] L] * . . . L2 . . L] (2.27)
At
roo= v e gl(t,rl,...,r ),
where
Klt Knt
gl(t,rl,...,rn) = B(z)F {rle teoodT € }
(2.28)
o A
+ B(z)e(t) - Z r, A(z)e
=1 Y

Suppose that Eq. (2.27) hes a unique solution [rJ = pj(t,A,p)] with initial

conditions, A>> (al,.,,,an), which exists for t in some interval containing
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the interval 0 < t < T, and is continuous in u for p sufficiently near
uw = 0. The solutions of Eq. (2.27) which are sought are those that cor-
respond to continuable periodic solutions of Eq. (2.17) with period T,
p(t,u) = o(t,I(n),u] [where I(n) denotes a special set of p-dependent
initial cénditions}. The corresponding solutions of Eq. (2.27) are de-
noted [e (6,u)] = {0,(6,A(a), u)}, and, just as p(t,u) = () as u > O,
[cj(t,u)] - [cjoj as u » 0. Owing to the nature of the transformation,
Eq. (2.19), the solutions, Cj(t;u); are not themselves necessarily peri-
odic with period T, although the corresponding p(t,u) is. However, the
periodicity of the p(t,u)'s can be utilized to develop a corresponding
"periodicity' condition for the cj(t,u)'s. Since Eq. (2.17) is, in its
explicit dependence on t, periodic with periocd T, and since the solu-
tions of Eq. (2.17) are unique, the following is a necessary and suffi-

cient condition that a solution of Eq. (2.17) be periodic in t with

period T.
@(k)(T;I:H) - Q(k)(O)I;H) =0 (k = 011:2)"°)n“l): (5-1)
(k) - 3%
where @ = —f . From Eq. (2.19), (2.20), and (2.22), Eq. (3.1) becomes
ot

Kif
pl(T)A:H)e - pl(O:A)H)

: Kéf
DE(T;A)H)Q - p2(O,A,u)

XﬁT
Dn(T:A’H)€

pn(O:A;H)

Since the determinant of Vnl is nonzero (all hj's are distinct), the only

solution of Eq. (3.1A) is the trivial solution; therefore, the "periodicity”
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condition on the individual pj(t,A,u)'s is

KJT
QJ(T:A)H)G - DJ(O:A:H) =0 (J =1, 2, «.u, n)- (302)

Integrating Eq. (2.27) and substituting the result into Eq. (3.2), this
"periodicity" condition becomes

. AT fT At
qJ(A,u) = (e -l)pJ(O,A,p.) tuvs e / € gl(t,pl,...,pn)dt = 0 (3.3)

(J = 1, 2, 3, «es, n)

[qJ(A,u) is introduced for subsequent convenience.] Therefore, the above
equation is the necessary and sufficient condition that a solution of Eq.
(2.27), [pj(‘t,A,u)], corresponds to a solution of Eq. (2.17), p(t,u), with
the desired periodicity. Considering this condition, Eq. (3.3), as an
implicit relation between A and u, the desired type of continuable solu-

tions of Eq. (2.27) corresponds to solutions, A(u), of this implicit re-

lation which are continuous and unique for |u| < 1; i.e., [Cj(t;u)] =
{p,(tJA(H):ﬂ)} .
J

In order to ascertain the necessary conditions for the exis-
tence of A(u) for |u| sufficiently small, and, thereby, the necessary
conditions for the existence of continuable periodic solutions of Eq.
(2.17), p(t,u) for |u| sufficiently small, assume that such a function,
Alp)> [al(p),...,an(u)], exists. As y - 0, Eq. (3.3) reduces to

AT
(€ J —l)pj[O,A(O),O] = 0 (j =1, 2, «.u, n)) (3.&)

where

DJ[O:A(O);O] = aj(O) (j =1, 2, «s4, n)'
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Since at u = 0 Eq. (2.27) reduces to

e

e

r
n

it is apparent that pj[t,A(O), 0] = pJ[O,A(O),O] = aJ(O); therefore,

¢ = aj(O). Now referring back to the transformation, Eq. (2.19), that.

relates

X dx d(n-l)x
>ag 2 Y dt(n-l§

to (rl, Ty eee rn), it can be seen that Eq. (3.4) is equivalent to re-
quiring the solution [cjo] = {pj{t,A(O),O]} to correspond, through the
transformation, Eq. (2.19), to a periodic solution of the untransformed
"u = 0" differential equation,'Eq. (2.16). This necessary condition was,
of course, expected.

Now let [pjo] denote all solutions of Eq. (3.4A) which satisfy
the necessary condition, Eq. (3.#). Not every solution [pjo] is a gener-

ating solution, [cJO]: the [c o]‘s are a selected subset of the [pjo]’s.

J

The [pjo}'s can be further delineated by taking into account the assumed

distribution of the Aj's and the requirement that eventual expression of

any solution in dx d(n-l)x
Xy ST 5 seey - ~variables
dat dt(n 1)

must be a real function of t. Since all xj's except xl and xé have non-

zero real parts, the condition, Eq. (3.4), can be satisfied only if P50 0

for j=3, 4% ..., n. On the other hand, xir and xér are both integer
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| AT AT
multiples of j2x; therefore, (¢ ~ -1) = O and (e © -1) = O. Consequently,

the condition, Eq. (3.4), is satisfied by [pjo] = [pygr Pogr 05 05 «..,0],

At
where P10 and Poo are arbitrary complex numbers. Finally, because €
AT
is the complex conjugate of ¢ (hl = jag, kz = -Jwg), and because of

*
the reality condition on the x, it is necessary that Pog = P1g °

In order to determine which P10 corresponds to 10’ Eq. (3.3)
' AT AT
must be considered agein. Because (¢ ~ -1) = O and (e © -1) = O, inde-
pendently of u, the condition, Eq. (3.3), reduces to

T
-A.t
() =v, [ e gt 0, e p )it =0 (521, 2) (3.5)
: .

for j = 1, 2 and |u| sufficiently small. As it appears in Eq. (3.3),
this integral is multiplied by p; therefore, it might be thought that

Eq. (3.5) does ﬁot hold at yu = 0. However, the integral is continuous

in the pj's, which, by assumption, are continuous in u; therefore, the
integral is continuous in u, and the condition, Eq. (3.5), must be satis-
fied at uy = 0. Therefore, employing the conclusions reached regarding

the first necessary condition, Eq. (3.4), at u = 0, Eq. (3.5) becomes

*
gl(t’ plO’ plO’ 0, «ov, O)dt =0 (J =1, 2) (3-6)

This appears to be an over-determined system with two equations, j = 1 and
J = 2, and one unknown, P10° However, referring to the definition of &)
*
Eq. (2.28), it can be seen that g =8
* *
P10 2 = M

form a consistent set. The satisfaction of either of the above two equa-

for all values of [ij] = [plo’

0, «.., 0]; therefore, since A the two equations of Eq. (3.6)

tions is the second necessary condition for the existence of a generating

solution. Furthermore, all plo's which satisfy Eq. (3.6) can be thought
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of as tentative generating solutions.

So far, only necessary conditions have been given for the exis-
tence of a continuable solution which terminates in [cjo] at 4 = 0, Now
the sufficient conditions for the existence of such a solution will be
presented, i.e., sufficient conditions that a tentative generating solu-
tion from Eq. (3.6) be a genuine generating solution.

First, of course, the necessary conditions in Egs. (3.4) and
(3.6) must be satisfied by the tentative generating solution in question.
Then the standard theorems regarding the dependence of solutions of dif-
ferential equations on parameters and initial conditions (see Ref. [10],
pages 32-37) guarantee the existence of unique solutions, [pj(t,A,u,)],
for Eq. (2.27) which are continuous in the initial conditions and p
for initial conditions sufficiently close to those of the tentative gen-
erating solution and lul sufficiently small. These latter solutions do
not all satisfy Eq. (3.2). The desired solution, [Cj(t,p)], if it exists,
is that one whose initial conditions form a unique, continuous function,
A(u),which satisfies Egs.(3.3) and (3.5), and is such that A(u)- [al(O),ag(O),
ee., a (0)] = (ClO’ C:O, 0, «v., 0), as u —» 0, where the generating solu-

n

tion (clo, CIO,...,O) is equal to the tentative generating solution under

consideration. The implicit relation between A and p which is obtained
through considering Eq.(3.3) for j = 3,4%,...,n and Eq.(3.5) for j = 1,2
is, because of its known solution at py = O, in just the form needed for

the application of the implicit function theorem. According to this theorem

([20], p. 191) if the following Jacobian condition is satisfied, then
for |u| sufficiently small a unique, continuous function, A(u), exists

' ' *
such that A(p)— [al(o), a2(0), cee an(O)] = (plo, Pio» Or «.+,0), asu~0.



— N .
dq, 5%_ o dq,
BEI y % , BE; ,
qu Bq2 . 8q2
BEI . 55; , 65; ,
J(A,p) |7 = det T I (3.9)
9, | 9, 99,
-azz , 8_6-.; , o s 65.;: ,

where A\ implies A = A(0) and y = O. % (3 =3, % ..., n) is defined in
Eq. (3.3) and EJ (j = 1, 2) is defined in Eq. (3.5).

There can, of course, be more than one tentative generating solu-
tion which satisfies the necessary conditions given in Egs. (3.4) and (3.6).
However, each such sclution corresponds to a continuable periodic solution
of Eq. (2.17) only if the above Jacobian condition is also satisfied.
Those which do are denoted (clO’ c;O, 0, +.., O) in order to distinguish
them from the tentative generating solutions, il.¢., the {plo, Bros e o
which satisfy Egs. (3.4) and (3.6).

At this point it is possible with the aid of the relations, Egs.
(3.4), (3.6), and (3.9), to determine which solutions of the "y = O"
differential equation can be continued away from y = O, However, these
relations are not expressed in a convenient form. A simplification of
these expressions is carried out in the remainder of this section.
Zeroth-Order Describing Function Relation:

Assuming for the moment that a generating solution, [CjoJ’ is
known to exist, substitute [cjo] into Eq. (2.28), the definition for 815

and then substitute Eq. (2.28) into Eq. (3.6). The necessary condition,

Eq. (3.6), thereby becomes ,since Vin (=1, ..., n) £ O [see Appendix E],



T Ayt Jo t « -dat
f- € [B(z)F LI + cpp€ } + B(z)e(t) -
0 (3.10)
ja)st % —jwst
clOA(st)e - clOA(-st)e Jat =0  (§ =1, 2),
where kl = Jog and kz = -Jwg.
Assume that
0 ’ Jltht
e(t) = L E* ¢ (recall that w = pr), (3.11)
2: -0 5
Jo_t ~jo t % Jlayt
8 * s JJ “p
E‘{cloe +¢y0€ } = E F e R (3.12)

and
+,jwst % —Jo t} o 2 ejlu;l,t

(This function is needed in the following discussion of
the Jacobian condition.)

Then, substituting Egs. (3.11) and (3.12) into Eq. (3.10) and

integrating gives the following two consistent, equations:

. +s . +s .
B(ng)Fo + B(Jwé)E - ¢y A(Jwé) =0, (3.14)

and

B(-du )F.% + B(-ju )™ - o7y Al-Ju) = O, (3.15)

Is s |
where E  and F;b are the Fourier coefficients of the terms of frequency

®
+ i.e., such that EQT =w_ . That E+s is nonzero, is a prerequisite
_Eﬂ) ) s

for the use of the first canonical form. The necessary condition for an

allowable ClO is thus
A(ja%) gts (3.16)

n - . + =0 ) 301

o) B(Jwé) 1o




where n = — = = (a real function of the
magnitgde of lclOl’ see
Appendix C)
If the existence of [cjo] is not assumed, then the solutions of the above
equation are the tentative generating solutions which must be tested with
the Jacobian condition. Note that nO is equivalent to the normal describ-
ing function [21]. Further, note that Eq. (3.16) is formally the same

as Eq. (1.5), which is Smirnova's system equation. The difference between
Egs. (1.5) and (3.16) is that the solution of Eq. (3.16) is intended as

a first approximation to the periodic response of the nonlinear system

to the general forcing function, e(t), rather than to just a simple sinu-
soidal forcing function, as is the case for Eq. (1.5). The implication
here is that for a first approximation to the response, only the term in
the frequency spectrum of e(t) equal in frequency to the dominant term

of the solution need be considered. The other terms of this frequency
spectrum enter into higher-order approximations, which are developed in
Chapter 1IV.

Simplification of the Jacobian Condition:

Now consider the simplification of the Jacobian condition, Eq.

(3.9). Recalling that pJ(O,A,p) = a,, it can be seen from Eq. (3.3) that

J)

3q. _
o] =0 forj+k;J, k41,2 | (3.17)
aak u=0
and
dq. AT
—d =(e?d -1) forjg41,2 . (3.18)
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Therefore, the Jacobian condition, Eq. (3.9), reduces to

da, dq, dq, dq AT
e e [T (9 -1)4o. (3.19)

But all kj's for j + 1, 2 have nonzero real parts; therefore, the product
in Eq. (3.19) is alwayvs nonzero. The Jacobian condition is, therefore,

further reduced to

8ql 8q2 ) Bql Bqa Lo
aal aa2 aaE aal

(3.20)

It is shown in Appendix B that following a procedure similar to that used
in the derivation of Eq. (3.16), the Jacobian condition, Eq. (3.20), be-

comes

vy v, {B(30,)sO - aG)} {B(-d0)82 - Al-ju )} (3.21)

. . +28 .-28
-vlnv2n}3(;|a>s)B(-st)so S, 10,

+2s
(o] and . . : .
where SO and SO are defined in Eq. (3.13). Assuming vlnv2n B(JQE)B(_JQE) * (

Eq. (3.21) becomesl
A(Jw,) o Al-dw,) .2

s° - S s . — 81| gt g1y, (3.22)
(o] . O . o) (o]
B(Jjw,) B(-Ju,)

If the above expression is considered to be a function of wg and Iclol
(Appendix C shows that it is independent of Lc,, ) and denoted by d, then
the equation, d = d(w%, lclol), describes a surface above (or below) the
w, lclol-plang. Those combinations of w  and Iclol which lie on the in-
tersection of the d-surface with the @, Iclol-plane are the points at

which the Jacobian condition is not satisfied. This point is discussed

1 In the remainder of this study, the expressions in (3.21) and (3.22) are
both referred to as the "Jacobian expression". In all cases, the intended

reference is apparent.
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again in the last seqtion of this chapter.

The determination of generating solutions for the first canoni-
cal form has now been reduced to a simple two-step procedure: (1) tenta-
tive generating solutions are selected by the condition, Eq. (3.16); (2)
these tentative generating solutions are tested with the condition, Eq.
(3.22), and those that pass are up-graded to genuilne generating solu-
tions, (clO, C;O’ 0, ««., 0). Transformed into the | x, %%, ceey 3%;%%%?
coordinate system these generating solutions become

jo t -Jjo t
Ja% * Ja%

p(t) = ¢ o€ +Cyg€ (3.23)

3.3 Determination of the Generating Solutions for the Second Canonical Form

Since the argument which must be made regarding necessary and
sufficient conditions for the existence of continuable solutions of the
second canonical form follows closely the argument used for the first
canonical form, the development of the conditions associated with the
second form is only sketched in this section. Recall that the second

canonical form is

-Klt
P)o=uvye gg(t, Tiseees rn)
-\t
T, = uv, € e g (t, r ,eee, )
2 2n 2R A (2.37)
. -\t
T, =MV e g,(t, Tiyeens rn),
where
hlt Knt
= . e 0 2'8
g2(t, PR rn) = B(z)F{:rle + + € } (2.38)

n At
- L r, A(z)e Y - A(2)h(t; o)
j=1 ¢ °
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The "periodicity" condition for the desired solutions of Eq.
(2.37) is once again

AT
pJ(T,A,u)E J - pJ(O,A,u) = O (J = l’ 2, veey n)o

And, similarly to Eq. (3.3), this condition becomes

AT
qj(A:H) = (€ J -l)pJ.(O,A,p.)

T T At (3.24)

A
IR [ e 8y(ts by wees p )AL =0 (§=1,2, ..., 0).
0

The first necessary condition for the pj(O,A(O), 0)'s is

AT
(¢ 7 -1) 0,(0,A(0), 0) = 0 (3=1,2, ..., n), (3.25)

*
plo) ploi

tentative generating solutions are then selected from among the solutions

which has, once again, solutions of the form ( O, «e., 0). The
of Eq. (3.25) by the following necessary condition which is developed fol-
lowing an argument similar to that followed for the condition, Eq. (3.6).

T -N.t
i *
Je 9 et pygr oy 0eee0)at =0 (3=1, 2), (3.26)

0
The solutions of these two, again consistent, equations are

the tentative generating solutions. In order to simplify Eq. (3.26), let

Jw t -Jo T © Jﬂth
S * s )
. — ‘2
F‘{cloe + € + h(t; ws)} 2§-m F e ,  (3.27)
2n
where G =F >
+5 -8
and F F
n =-2 andn = - - (3.28)
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+8
As before, FO is the Fourier coefficient of the term in Eq. (3.27) with

angular frequency + w_ . Substituting Egs. (2.38), (3.27), and (3.28)
into Eq. (3.26) and then integrating gives the following simplified ex-

pression for Eq. (3.26).

no - m = 0 . (3'29)

Note that nO is no longer necessarily a real number. The presence of
h(t; ug) in the argument of F introduces the possibility of complex no's,
even though F(x) is not a function of %. Moreover, n.O may now be a func-
tion of @, as well as the amplitude and argument of ClO'
The Jacobian condition is again
dq, ¥, 31 3,

- $ 0. (3.30)
aal Ba2 aa2 aal

Referring to Appendix B, this Jacobian condition reduces to

A(Jw,) A(-jw_) pe
sz - = s‘; - —2 ] - s’c’)a’5 so26 4 0. (3.31)
B(Jwé) B(-Jw%)
Here it is assumed that
Jo t -jw t 0 leTt

4ar s * s £

- ; = S .32

o ‘{cloe + ¢ g€ + h(t; m%)} [E-m oE (3.32)

2s
en res
where Gp = 7 , and S,  1is the Fourler coefficient of the term in Eq.

(3.32) with angular frequency +2w_ .
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3.4 Relations Between the Jacobian Condition and Behavior of Generating

Solutions as Functions of the Forcing-Function Frequency

A, PFirst Canonical Form

It is shown in this section that for either of the canonical
forms a simple relation exists for the determination of whether or not
the Jacobian cohdition is satisfied.

First Canonical Form:

Consider Eq. (3.16) again:

A( Jo, ) g+s

n - B(jwé) + o =0 (3.16)

If E+S were zero, this equation would reduce to

A(jw.)
n - B_(Ta‘)':T = 0 (3.34)

which is the usual describing function for an undisturbed oscillator.
However, it is possible for g*® to be zero and e(t) $ 0. In such a sit-
uation the first approximation, given by a solution of Eq. (3.34), would
not reflect the presence of a forcing function and would not, in most
cases, even result in a generating solution whose frequency was commen-
surate with that of the forcing function. Moreover, substituting Eq.

(3.34) into the Jacobian condition, Eq. (3.22), gives

{so-n} {s5-n} - §7%° 57%% 4 o, (3.35)

But from Egs. (C5) and (C6) in Appendix C,

S;ES s;2S = '{Sg B no} {Sg b no} (3.36)
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Therefore, if ETS = 0, the Jacobian condition in Eq. (3.35) cannot be
satisfied. Thus, there are two reasons for not using the first canonical
form if E'° = 0. First, since the n, s defined for the first canoni-
cal férm, is real, Eq. (3.34) does not usually have a nontrivial solution
which is a continuous function of @, . Secondly, even if Eq. (3.34) is
satisfied, the Jacobian condition cannot be satisfied.

Now the conditions under which the Jacobian condition is not

satisfied with E'° 4 0 will be investigated.
Je

Let o= % € , where "a" and © are real. Equation (3.16)
becomes
A(jw ) +5
] 2E -je
no(a) - + = o0 . (3.37)
B(J,)

Assume that this equation has a solution of the form: w, = ws(a) and 6 =
o(a). The following system of equations is obtained by differentiating

Eq.. (3.37) and its complex conjugate with respect to "a."

4 A(Jug) da + 3 2E*® LB U -Eﬁg . Zol 99
dm% B(Jwg) da a da da aa
_ (3.38)
a | A(de) | d . 225 4jo a0 _ an,  op® _+36
do, | B(-jn.) | da a da da a®
Assume that the determinant of this system is not zero; i.e.,
A JZE-S +j6 4d A(,j(l)s) 2E+S -jo d A_("J(Ds) .
= - —— ¢ — - = . .39)
= ¢ & |Fay | T4 e ¢ @ | semy|tO B

Then the solutions of the system, Eq. (3.38), are
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Es . dno E-s . E-s . dno Es
- * ox Ra o~
Ws 1%\ Do “lo & cg (3.10)
da &y o A(-jo ) s A(jw.) '
E d s’ ), E d J%g
_- * 0
_%D Mﬁ B(m%) CM) &% ﬂh%) N
and ' .
<a dn ) gts > d < A(-Jw%) > ) < . Eﬁg ) g > q ( A(Jw%)>
-. * . *
- da 10 ce B( Jw%) da c¥o/ o, \ Bliw,)
a . .
g a [ Alde) , E° 4 Al+da,) (3.51)
-- * 3 L]
i 0 dm% B( Jwgf X, dmb B(#Jm%y B
Now consider the numerator of the right side of Eq. (3.40):
P A T ) )
* * . .
°10 da iy To da ¢y

From Appendix C and Eq. (3.16) this expression is eguivalent to

A(Jm%) 0 A(was) +2s _-2s

o
S~ B(ja%$ S - Bl-jagi -5 5 . (3.43)

But this is just the expression which appears in the Jacobian condition,

Eq. (3.22).

Therefore, a sufficient condition for the Jacobian condition not
to be satisfied is that the slope of wg versus "a," for constant E+S; be
zero. Further, except for those special points at which both the numerator
and denominator of Eq. (3.40) vanish, this is also a necessary condition.
Since wg is determined by “b(mb = P ), the testing of whether or not
the Jacobian condition is satisfie® reduces to investigating the slope of
the generating solution amplitude versus the forcing function frequency,

We
251

B. Second Canonical Form:

The Jacobian condition for the second canonical form is
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A(Jw,) Al-Jo.)

B(Jo)

S

I8

and the equation which determines the tentative generating solutions is

B(-Jw,)

A(Jwy)

n (a,0,w ) - =0

B(Joy)

Assume that this equation has a solution of the form: wg ag(a) and

e = o(a). 'Differentiating this equation and its complex conjugate with

respect to "a'" gives

a M) o) % e %
dw. B(jw.) dw da 0 da da
s s s |
a Alde) gl ds % g M
dw, B(-jw_) Aw da % da da
S S s |
Assuming that the determinant,
*
. Bno a A(~Jwé) ano ) ano 4 A(Jwé) ) Bno Lo (3
% | dw B(-JmSS 86; “da do, Bljo)) — dw )
the solutions of Eq. (3.44) are
* *
daw dn on on_ dn
_s _ 1 o o _ o~ o
da A da 4o da 90
and
an Ajo ) o an A(-jo ) 3
ae _ 1 "o d 9% __0 o[ d 9% __o
da A | da dug B(Jw%) aws da dwb B(FJwS) am%
Noting from Appendix C that
ano o +2s =J2e
30 = 385 -85 € T ol

(3.31)

(3.29)

(3.44)

(3.46)

(3.47)

(c10)



T

on

o _ o] +28
= - (SO + SO € -n ) (ClQ)

O

it can be seen that the expression in brackets on the right-hand side of

Eq. (3.46) reduces to

But, from Egs. (3.29),

A(st) * A('jws)
nO = and n.O = ——,
B(Jo,) B(-Jw,)

Therefore, Eq. (3.4) becomes

Efi - 2 ° . A(st) s° . ff:ffél _ gtes g-as (3.48)
da =~ a o) . o] o) o) 3.
B(Jw%) B(-st)

2 .
This numerator is, except for the coefficient gi , the same as the expres-

sion which appears in the Jacobian condition.

Therefore, as in the first canonical form, a sufficient condi-
tion that the Jacobian condition not be satisfied is das/da = 0. Also
similarly to the first canonical form, as long as the determinant, Eq.
(3.&5), is nonzero, this condition is necessary.



CHAPTER IV

HIGHER-ORDER APPROXIMATIONS

4,1 Introduction

In the preceding chapter a procedure was developed for deter-
mining the generating solutions, [Cjo]' In this chapter the next step
is taken: a procedure is developed for determining continuable solu-
tions [Cj(t:u)]- This procedure is a recursion procedure which deter-
mines the continuable cj(t,u)'s in power series of wu. The corresponding

p(t,u)'s are developed in the following form:

First Canonical Form

At S )
i) = et I e (F+.ve® T oo (0N (4.1)

k=0 k=0

Second Canonical Form

MU o2 K At K
p(t,u) = € kzo G T ;; e (Bl + h(tse), (4.2)

where h(t;ws) and the A,'s are as previously defined in Chapter II, and

J
each Cjk(t) [not the same functions in Eq. (4.1) end Eq. (4.2)] is a func-

tion of t satisfying the following "periodicity" condition:
K T j = l’2’.'.,n

c. (Ted -c, (0) = O (4.3)
Jk Jk ’ kK =0,1,2,...

]

This will be recognized as a sufficient condition for the periodicity of
p(t,u) in t with period T. There is & separate series such as Eq. (4.1)
or Eq. (4.2) for each continuable periodic solution p(t,u). At u =0,

these series reduce to the generating solutions as follows:

78



First Canonical Form

p(t,0) = p(t) = cye ° +oe . (k1)

Second Canonical Form

Wt =kt
p(t,0) = p(t) = ¢ oE *oe € T+ h(t;ws). (k.ba)

At p = 1, the series, Egs. (4.1) and (4.2), correspond to the desired
periodic solutions,®(t), of the original differential equation, Eq. (1.l).

Because of the formal similarity between the canonical forms,
Eqs. (2.27) and (2.37), it is not necessary to develop completely sepa-
rate recursion procedures for each canonical form. Those minor differ-
ences that exist between the first and second canonical-form cases are
pointed out toward the latter part of the development of the recursion
procedure which follows.

Finally, in the recursion procedure, a hierarchy of equations
arises which can be viewed as a set of describing function relations.
Each succeeding equation of this hierarchy is associated with a succeed-
ing step in the recursion procedure. It is shown that the first relation
of this hierarchy is~~not too surprisingly--exactly the same as that ob~
tained in Chapter III as a necessary condition for continuability of a
generating solution. Depending upon the canonical form considered, the
first equation of the hierarchy is, therefore, either First Canonical
Form,

) A(dwg) ) S

o BlJug) =~ cq

= 0, (3.16)

n

or Second Canonical Form,

Ao, )

oy " By - O (3.29)
o B st

The succeeding equations have similar forms but involve more complicated
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describing functions, which are labeled I . Again, the initial steps of

this development are variations on the work of Coddington and Levinson

([10], pages 356-36L4).

4,2 Development of the Recursion Procedure

Assuming that a generating solution, [CJOJ, is known, its
continuation, [cj(t;u)], exists for |u| sufficiently small by definition
of the term "generating solution.” Integration of either of the canoni-
cal forms, Egs. (2.27) or (2.37), gives the following integral equation
expression for [cj(t,u)].

t =A.s

1
ci(tsn) = 8 () + v, £ € g(s,c 50050 )ds
. . . . . . . . . . . . . . L] . . . . . L3 L] . . L] . (}+'5)
t 'an
Cn(t;}i) = an(H) + WV g € E(S;Cl:"-;cn)ds)

where the function g is either g, or gy- A(u) is the set of initial con-
ditions for the desired solution.

The first question which must be answered is whether or not the
cj(t,u)'s are analytic in u for |u| sufficiently small. That this is
indeed-the case follows easily from a consideration of the usual theorems
regarding the dependence of differential equations upon parameters (Ref.
[10], pages 32-37) and the implicit function theorem for analytic functions
(Ref. [20], page 191). The former theorem gusrantees that all the solu-
tions of Eq. (2.27) or Eq. (2.37), with initial conditions within a suffi-
ciently small neighborhood of the initial conditions of the generating
solution and with |u[ sufficiently small, are analytic in both u and the

initial conditions. The latter theorem guarantees that the initial condi-

tions of the desired solutions are analytic in p for |u| sufficiently
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small. The cj(t,u)'s can, therefore, be represented as follows:
ot k
Cj(t)u) = 2 Cj(t)l-l (J = 1,2,...yn), (4.6)
k=0
for |u| sufficiently small. The initial conditions of such a solution

are expressible as follows:
a,(u) = a +a, n+a u2 + . (3 = 1,2,...,n). (4.7)
J Jo J1 J2 o S )

The periodicity condition on the Cj(t,u)'s is, from Chapter III,

KJT
CJ(T)H')G - CJ-(O:H)

0, (3.2)

for |u| sufficiently small. Substituting Eq. (L4.6) into Eq. (3.2) gives

- AT
J
W [egu@e - e 0)]

W= 0 (3=1,2,..0n), (4.8)
for |u| sufficiently small. Therefore, each coefficient in this power
series Of.p must be equal to zero, and the condition, Eq. (4.3), is justi-
fied.

In order to obtain a recursive procedure for developing Eq. (4.6),
substitute Eqs. (4.6) and (4.7) into Eq. (4.5), and equate equal powers of

u. The resulting recursion formulas are

Cjo(t) = 8y (a constant) (§ = 1,2,404,n) (%.9)
and
A t -Ans A A
where
© A A Kk
g(s,cl,...,cn) = Z 8k(s,clk,...,cnk)p. ("*'-ll)

k=0
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and

éjk ) (cjo’cjl’cJE""’cjk)'

Each c'(k+l)(t) depends only upon the preceding c,,(t)'s, which have pre-

J Jk
sumably been determined in earlier stages of the recursion procedure. It

remains only to choose the a )'s so that: (1) the c (t)'s satis-

J(k+1 J(k+1)
fy the condition, Eq. (4.3), and (2) the cj(k+2)(t)'s can be chosen to

satisfy Eq. (4.3).

The ajo's are the first set of aJk's which must be chosen.

Since p(t,u) must be real and A, = Jo_ and KE = -Jo_ and all other xj's

1

have nonzero real parts, it is apparent, as well as expected from Chapter

III, that the a O's which lead to cjo's that satisfy Eq. (4.3) are

J
815 = 89 (axrbitrary)
R
820 T %10
a3o = 0
anO = 0,

Thus, (n-2) of the ajo's are determined by the requirement that the c. 's
jo

satisfy the condition, Eq. (4.3). Th i '
y » Eq. (4.3) € remaining two 855"8s 819 and a,.,

are determined by requiring that it be possible to select a set of cjl(t)'s

which satisfy Eq. (4.3). From Eq. (4.10), the expression for cjl(t) is

t =\,s
cjl(t) = 85 * Vi £ ¢ 9 go[s,alo]ds (3 = 1,25..05n).  (4.13)

1 t
As all cjo s and ajo s, except alO’ are determined before this stage, 8o

is considered to be a function of only t and a,, in Eq. (4.13). Applying
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the condition, Eq. (4.3), to Eq. (4.13) gives

KJT XJT T -hjt
(¢ ¥ - l)ajl Ve £ € go[t,alo]dt = 0 (Jj=121,2,00.,n) (L4.14)
KlT AT
Since (¢ ~ - 1) =0 and (¢ © - 1) = 0, the above condition for j = 1 or
J = 2 reduces to

T =A.T
[ e 9 gyltadat = o (3 =1,2). (4.15)
(0]

These two equations are consistent for the same reason that the two equa-
tions in Eq. (3.6) are consistent, and either one of them determines the

real and the imaginary parts of a This completes the determination

10°
of [Cjo]'
It is shown below that go[t,alO] is a periodic function of %

with period T for any a,.; therefore, Eq. (4.15) is equivalent to requir-

10

have no components in its frequency spectrum of fre-

ing that gn(t,alo)
o

quenc * 5 .| This last statement can be Jjustified by merely noting that

~ N
2

Eq. (4.15) is the definition for the pertinent Fourier coefficients. More-
over, referring back to Chapter III demonstrates that Eq. (4.15) is the
same as Eq. (3.6) or Eq. (3.26).

At this point the function go in Eq. (4.13) is completely de-
termined; consequently, the cjl(t)'s, except for their initial conditions
ajl a%é, after integration, also completely determined. The stage in the

recursion procedure has therefore been reached at which the second set

of initial conditions, the a,,'s, must be selected.

31

Since the A,'s for j's other than 1 or 2 have nonzero real

parts, (n-2) of the ajl's can be easily obtained from Eq. (4.14) as follows:
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AT
v € J T ALt
ay = —Q_‘X_T [ e ¢ gyltsaypldt, (5 =3,4...,m). (4.16)
(1-e 9) ©°

It is important to note that Eq. (4.16) is equivalent to requiring that
cjl(t) have mean value zero in the sense of Cesari [22]. That is, after

integration the integral in Eq. (4.13) results in a constant plus a
-A.t
periodic function of t multiplied by € Jo,oIr ajl is chosen such that

the sum of this constant and a,, is zero, then cjl(t) has & zero mean

Ji

value in the sense of Cesari. For example, let

© ), ,jU.)TSZ
golssa gl = L gje ;
==
then
2
t  -\.S ® g (=N +3tw,)t
J - O J 5T
Of € go[s,alo]ds _IE_MW[E l].

Therefore, the mean value of le(t) [see Eq. (4.13)] in the sense of

Cesari is zero, if

2

ajl = an lé_w (ZXEIEZEET ’

which can be shown to be equivalent to Eq. (4.16). The choice of the

a,,'s for j = 3,4,...,n is, therefore, quite straightforward. It is neces-

Ji
sary merely to choose them such that the mean values of the ch(t)'s (§ =

3,4,...,n) in the sense of Cesari are zero. This requirement cen be seen
to be related to the requirement in the preceding step of the recursion
procedure that the 830 = 0 (J = 3,4,5,..44n).

Now there remains only the determination of a;q and a21 to com-~

plete the determination of the c,, and c Once again, due to the reality

11 21’
*
condition on p(t,u), 85, = 8qq- The initial condition, ;15 is determined
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analogously to a in the previous step, by requiring that it be possible

10
to select a set of cje(t)'s which satisfy Eq. (L4.3).

Now consider the general case. Assume that, except for the

*
= alk), the ¢, 's are known completely. Sub-

1k ( 2k Jk
stituting Eq. (4.10) into the condition, Eq. (4.3), gives, as in the case

initial conditicn a a

of Eq. (4.1k4),

AT ' AT T =At
(e d - l)aj(k+l) Ve d [ e Y g lt,aJat = 0 (4.17)
o

(J = 112:-'~:n)-

Again, gk is a function of only t and aqpe It will be shown later in
this discussion that gk[t,alk] is a periodic function of t with period T

for any a Following an argument similar to that which led to Eq. (4.15),

1k’

alk is determined from either of the following two equations.

T =A.t
[ e ? gltepdat = 0 (3 =1,2). (4.18)
o}
This 8y is, in turn, substituted into the integral expression, Eq. (4.10),

which determines c Integration of the resulting integral in Eq.

j(k+1) "

(4.10) determines ey ( t) up to its initial condition, 85 (ke1) " As in

k+l)(

the case of Eq. (4.16), the 85 (k41) for j = 3,4,...,n, are determined by
AT OV
V.in€ J T -Ajs
8y(kel) = —A—TKTT— £ € gk[s,alk]ds (3 = 3,4,..05n).  (4.19)
(1 7))

The above expression is again a requirement that the mean values in the

sense of Cesari of the Cj(k+l)(t)'s be zero. The remaining initial con-

*

dition, ) (again, 8 (k41) = al(k+l))’ is determined by requiring

81 (k41
that it be possible to select a set of ¢ (xk+2) which satisfy Eq. (4.3).

This requirement results in an equation similar to Eq. (4.18), wherein
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k is replaced by (k+l1).

The proof for the uniqueness of the above recursion procedure
follows the argument used by Coddington and Ievinson ([10], pages 363-
364).

An adequate recursion procedure has now, in principle, been
developed. However, for the purposes of this study, the structure of
the terms which arise in this procedure must be investigated in more
detail so that simpler and more familiar expressions can be obtained.

First consider the above recursion procedure applied to the
first candnical form. In this case, g = g+ [Note that there is a
possibility of confusion between the 81 of the first canonical form

and the g, of Eq. (4.11).] The definition of g, is repeated below:

klt xht
gl(t,cl,...,cn) = B(z)F{éle *e.. tcCE }
(2.28)
n At
+B(z)e(t) =L c.A(z)e Y.
j=1 9
Klt Aht
By substituting Eq. (4.6) into F c,€ + ..o+ CE } and recognizing

MY At
that F{cle t ... +CE } is an analytic function of p for |u| suf-

ficiently small, the following expression is obtained:

At At 0
F{c el 4+ ... +ce® } = L F uk. (4.20)
1 n k=0 k

A A A
As Fk appears in this equation it is a function of t’clk’c2k""’cnk; how-

ever, at the stage in the recursion procedure where F, is to be employed,

k
the cjk's are presumably known completely except for the initial condition

Therefore, F, can be considered as a function of t and
k
xlt xht

€ ees 4+ C
1r + nr€ 2

d‘%k,ie.,auf
Moreover, since the cjr's in each X,=¢

alk.
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where O < r < k, are determined by the steps in the recursion procedure

so that each X, is periodic in t with period T and x, itself is periodic

k

in t with period T for all values of a must be periodic in

1 Fr(ts8gy)

t with period T for all a Therefore, Fk(t,alk) can be expressed as

1k’
follows:
) P J Zth
Fk(t,alk) = ;%_m Fk(alk)e , (4.21)
where Fi(alk) is considered as a function of only By Recalling Eq.
(3.11), e(t) can be expressed as
) 2 ijTt
e(t) = 2 Ee . (3.11)
L==

Substituting Egs. (4.21), (3.11) and (4.6) into Eq. (2.28) gives the

following expression for the g, of Eq. (4.11):

For k =0
0 s leTt
go(t)alo) = B(Z) -Z::-m Fo(alo)e
(k.22)
] ) jlet 2 AT
+B(z) X E'e - CjoA(Z)e J
== j:l
In the above equation use is made of the fact that cjo =0 for § =
3,h,.'.’n.
For k> O
o ot 2 At
= £ T i
g (t,8,) = B(z)l}_:__“°° F(ag,)e -321 cjk(t,alk)A(z)e J
(4.23)
n kjt
- T ey (t)A(z)e

J=3

It can be seen by inspection of the above two equations that gk(t, alk)

(k =0, 1, 2, ...) is periodic in t with period T for all &
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for j = 1,2 and independent of a,, for

Note that c¢., is a function of a 1k

Jk 1k
j =3,4...,n. This follows directly from the definition of cjk: see
Eq. (4.10).
Applying the condition, Eq. (4.15), to Eq. (4.22) gives
A(st) \ g+s
0 B(jws) 10

n

= 0, (4.2}-4-)

which determines 810 This equation is, of course, exactly the same as
Eq. (3.16).

As was previously shown, the initial condition a., is chosen in

1k

the course of the recursion procedure such that gk(t,a contains no
w
s

terms of frequency 5;; therefore, alk

tains no terms of frequency §%. However, the making of this choice is

1K
is chosen such that Eq. (4.23) con-

not so simple as it was for g, in Eq. (4.22). Since the cjk's which
appear in Eq. (4.23) are functions of t rather than constants as are the

cjo's, it is necessary to investigate the composition of these cjk's in
order to discover which of their components contribute to terms of fre-

w
quency 5; in Eq. (4.23). From Eq. (4.10), the equation for ¢ i is
t -st
cjk(t) = BtV £ € gk-l[s’al(k-l)]ds’ (3 = L,2,.045n). (L4.25)

Assume that all cjk(t)'s have been completely determined except for the
initial condition 8yye This means, among other things, that the initial

condition 81 has been chosen such that gk_l[t,ak_l] contains no terms
w
of frequency % 5%. This in turn means, since xl = Jw_ and AE = -jw_ and

Smst -Smst

all other A.'s have nonzero real parts, that only c.,e€ and c,. €
1 At Lk (%k
of the cjk(t)e J 15 in Eq. (4.23) contain terms of frequency # 5%. Fur-

must be periodic in t with period T. Consequently,
At
1 Recall that all Cjk(t)e J 's are periodic with period T.

ther, 1 and Cokx




o ! jlet
clk(t) = E_w ey € (4.26)
and
co ! jl(th
Cgk(t) = [E‘-m c2k € * (4027)

*

Again, only real solutions are of interest for all u; i.e., Coy = Cpps con-

1
2k’

Substituting Egs. (4.26) and (4.27) into Eq. (4.23) and applying

¥
sequently, (Clk) =c

Eq. (4.18) to the result gives the following two conditions which, when

€

satisfied, guarantee that 8 contains no terms of frequency T 5%.

A(jw,)
S o] 1l +2s
[nk " B0, ] ‘i T Blw) [A('J‘”s)czk ] (4.29)
and
A(-jw_)
* S o _ 1l . -2s
[y - B(-30_) Jeax = B(-30_) [A(seg)eTy | (4.30)
+S -5
wher = Fi— * = .F‘_k._
€ o ° ’ B = ° )
1k 2k
[Note that cik is a simple linear function of a,,; see Eq. (4.25)]. How=
ever, re-examination of Eq. (4.25) shows that c'ii = 0 and cgis = 0 because
w
Y does not contain terms with frequency # §§ . Therefore, the final

system equation reduces to the following familiar form:

A(J0,)
nk(alk) - W = 0 (h"Bl)

This equation determines a,, and, thereby, completes the determination of

1k
all the cjk(t)'s and g, . If it should happen that Eq. (4.31) did not have
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a solution, then the correct cik would be cik = 0. It is known from

the existence of [cj(t,p)] and the uniqueness of this recursion proce=-

dure that Egs. (4.29) and (4.30) have one and only one solution. The

cj(k+l)(t)'s are determined by Eq. (4.10) which is repeated below.
t -kjs
Ci(k+1) T Zy(x+1) T Vyn £ € gy 5,8y, lds
(4.10)
(J = 1,2,...,n),
where 84 (k+1) for j = 3,4,...,n are determined by
AT
vjne J T -hjs
fi(k+l) T T AT i € gls,ay, Jds. (4.19)
(1~e 9 )

That is, for J f 1,2 the cj 's have zero mean value in the sense of

(k+1)

Cesari. The initial condition, al(k+l)’ is determined by
Adw,)
m 41081 () - Be) 0, (4.32)
and
*
So(k+1) T Bi(x+1)”

At this point gk+l is completely determined, and a further step of the
recursion process can be executed.

The entire recursion procedure has thus been reduced to a rela-
tively simple process, and it can now be seen that the ordinary describing
function relation is Jjust the first in a hierarchy of such‘relations.
Equation (4.32) would be the (k+l)th-member of this hierarchy.

Now consider the application of this recursion procedure to the

second canonical form. As is shown below, there is little difference
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here between the first and second canonical forms. In this case, the g

in Eq. (4.5) is g, as defined in Eq. (2.38) and repeated below.

ANt

ge(t,cl,...,cn) = B(z)F\{cle L s c € ooy h(t;ms)}
- 2 c A(z) - A(z)h(t;ws).
J=1
Again, let
At At o
F {cle L s c € noy h(t;ws)} = X Fkuk (4.33)
k=0
and
© ’ leTt
F (t,8),) =!§mﬁkhnge . (4.34)
Substituting Egs. (4.6), (4.33), and (4.34) into Eq. (2.28) gives the
following terms in the series expansion, Eq. (4.11), for 8se
For k =0
e Jogt 2 At
go(t,alo) = B(z)lz:,.oo rt (alo)e Jzi g Az)e ¢ - A(z)h(t;ws), (4.35)

where use is made of the fact that Cjo =0 for j = 3,4,...,n. Once again,

*

B0 = 8100 C10 = Byp0 BRd Cpo = 85
For Xk >0
) j!d)Tt K'jt
gk(t’alk) = B(Z)lé_mF (alk)e - Z cjk(t,alk)A(z)e
_3 ¢ (£)A(2)e J
J=3
It can be seen by inspection of the above two equations that gk(t, alk)

(k =0, 1, 2 .,..) is periodic in t with period T for all 8
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Again, c is independent of ayy for j = 3,4,...,n.

Jk
Applying the condition, Eq. (4.15), to Eq. (4.35) gives, as
expected,
AJw,)
no(810) - BEmy = O (4.37)
+S s
Fo
where n = —— . This equation determines a,., which in turn completes
° 10

the determination of the cjo's. If Wy is considered as a variable, n,
is also a function of W recall that this was the point of view in Chap-
ter III.

In a general step of the recursion procedure, the cj(k+l

are determined by Eq. (4.10). The initial condition 81y is chosen such
w

that gk(t,alk) contains no terms of frequency 5% . From Egqs. (4.36) and

)'S

(4.18) and an argument similar to that which led to Eq. (4.31), the equa-

tion which determines 8 is

A(Joy) \
n(a),) - B(wy) 0. (4.38)

The ¢ 's are, after integration in Eq. (4.10), determined, except

J(k+1)

for their initial conditions a. .
J(k+1)

are determined by the requirement that c

. '
FOI‘ J - 3,""”0.0,11, th.e a'j(k+l) S

3(k+1)’ j =3,4,...,n, have a

mean value in the sense of Cesari equal to zero. The reality of p(t,u)
*
2(k+1) T %1(k+1)’ 1(k+1)

ing step of the recursion procedure by the equation

requires that a and a is determined in the follow-

A(Jo,)
nk+l(al(k+l)) N ETEE;T = 0. (4.39)



CHAPTER V

STABILITY CRITERIA

5.1 Introduction

At this point the [cj(t,u)]'s which correspond to periodic
solutions, p(t,u), of either Eq. (2.17) or Eq. (2.34) can be determined

recursively as a power series in u; i.e.,

[oe]

cy(tu) = kilo cjk(t)uk, (3 = 1,2,00.,n).

The relation between a [cj(t,p)] and its corresponding periodic solution,
p(t,u), is

At At At
p(tsu) = ci(tou)e = + e (toule = + won + e (t,u)e

for the first canonical form, and

At Ayt Nt
P(t,u) = ci(tou)e =+ e (toude © + won + e (tou)e & + h(tsm)

for the second canonical form, where, in both cases, Al, kz,..., and xn
are the characteristic roots of the "u = O" differential equation. The
remaining problem is to determine whether or not this periodic solution,
p(t,u), is asymptotically stable as défined in Chapter I. This stability
guestion is treated in this chapter.

The first step of the treatment of this question, carried out
in the next section of this chapter, is the development of a suitable
variational equation, where a variational equation is considered to be
suitable if its trivial solution possesses stability characteristics which

are similar to those of the periodic solution, p(t,u). This variational
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equation is, as expected (see Section L of Chapter I and Appendix A), & u-
dependent system of n simultaneous first-order linear differential equa-~
tions with coefficients which are periodic in t with period T and analy-
tic in p for |u| sufficiently small. This variational equation can,
recalling the outline in Section 4 of Chapter I regarding the étability

question, be written in the following form:

*

¥y = P(t,un)y (¥

1]
2

) (1.20)

where ¥ and y are n-component column matrices and P(t,u) is an nxn matrix
which is periodic in t with period T and analytic in p for l“! sufficiently
small.

The relation between the stability characteristics of the
periodic solution, p(t,u), and those of the trivial solution of the above
variational equation are shown to be as follows: (1) if the trivial solu-
tion of the variation equation is asymptotically stable, then p(t,u) is
asymptotically stable; and (2) if the trivial solution of the variational
equation is not stable, then p(t,u) is not stable. Consequently, the
key to the stability question is a knowledge of the behavior of the
solutions of the variational equation.

It is known ([10], pages 78-81) that the general solution of the

sbove variational equation must be of the following form:
tR
y(t,Tu) = D(t,metRM), (1.21)

where y(t,I,u) is an n-component column matrix, D(t,u) is an nxn matrix
which is periodic in t with period T and analytic in u for lul sufficiently
small, R(u) is an nxn matrix which is analytic in p for |u| sufficiently

small, and I is an n-component column matrix of initial conditions. The
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characteristic roots of the matrix R(u) are referred to as the charac=
teristic exponents of the variational equation and are denoted ai(“)

(i = 1,2,00eyn) in this study. If all these characteristic exponents

have negative real parts, then the trivial solution of the variational
equation is asymptotically stable; and if one or more of‘these characteris-
tic exponents has. a positive real part, then the trivial solution of the
variational equation is not stable.

After the variational equation has been developed in Section 2,
the remainder of this chapter is devoted to determining the characteris-
tic exponents; ai(“)’ recursively as power series in u. The technique
employed for this determination is an adaptation of one utilizéd by
Moulton ([16], pages 331-348) in celestial mechanics. The im@ortant fea~
ture of this technique is the introduction of n new coordinate transfor=-
mations, each of which depends upon a separate, as-yet-unknown, charac-
teristic exponent, ai(p). These transformations are of the-form

a, (u)t
y = € U, (i = 1,2,-..,11) (1.2)+)

a, (u)t .
1 X s X
where € is a scalar and U is an n-component column matrix. These

transformations are carried out in Section 3 of this chapter.

As is shown subsequently in this chapter, when the variational
equation is expressed in terms of any one of the n new possible sets of
variables, U [one set for each ai(u)], it is known to possess a solution
which is periodic in t with period T. As an illustration consider the

following first-order linear system with periodic coefficients:

y = la(w) + B(t,0) 1y,

where P(t,u), a scalar here, is periodic in t with period T, of mean
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value zero, and analytic in u for |u| sufficiently small; and a(u) is
analytic in u for !u] sufficiently small. The general solution of this

equation is
t

a(w)t £ P(s,u)ds
y(t,y(0),u) = y(O)e € .

t

g P(s,u)ds
Note that € is periodic in t with period T. Now, introducing

the coordinate transformation y = ea(“)tu, the differential equation be=-

comes

U o= {[a(u) + P(t,u)] - a(u)}u-

This new equation has the following u-dependent periodic solution:
t

£ P(s,u)ds
u(t,u(0),u) = u(0)e .
In the case of higher=-order systems, a similar argument can be followed.
It is necessary to note only that for n selected, linearly independent,
initial condition vectors, Ii (i= 1,2,..f,n), the solutions of the varia-
tional equation reduce to a periodic column matrix multiplied by an
appropriate scalar, ea (“)t, where each ai(u) (i =1,2,...,n) is associated
with one of the n selected initial condition véctors, Ii'
Therefore, in place of the one variational equation, the n

coordinate transformations result in n new variational equations of the

form

U = [p(t,u) - o, (W)EIU (i =1,2,...,n) (1.25)

where U = %%, E is the identity matrix, and each of these n systems is
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known to possess a periodic solution. Moulton's technique then involves
expanding all the quantities in Eq. (1.25) in power series in u, carry=
ing out the indicated multiplications of power series, and equating the
coefficients ofrequal powers of u on either side of the equality sign to
one another. The result of this equating is & hierarchy of differential
equation systems which can be solved recursively for both the character-

istic exponent,

‘ 2 .
ai(u) = aio + “O&l + M ai2 + eee (l = l,2,...,n),

and the known=-to=exist periodic solution,

2 . s
uij(t}“) - uijo(t) + “uijl(t) + “ uijg(t) + oo (l)J = l,2,...,n).

The recursion procedure employed is similar to that already used in Chap=-

ter IV to determine [cj(t,p)]. As in Chapter IV, the key to carrying out

each step in this recursion procedure is theArequirement that each term,

uijk(t) (1, = 1,e0e,n; k = 0,1,2,...), satisfy a periodicity condition.
A typical step in the recursion procedure employed in this

chapter, say, for the determination oi‘d,i » follows the ensuing pattern:

k
() At the outset of this step a system of n inhomogeneous
linear differential equations involving the uijk(t)'s
(J = 1,2,¢00,n) is known. This system is the appro=
priate member of the above-mentioned hierarchy. The
forcing functions of this system are made up of the,
as-yet-undetermined, Oty g and the uijo(t)"'°’uij(k-l)(t)
(j = 1,2,444,n) which have, with the possible excep-

tion of one of the initial conditions for the
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. . . .
uij(k-l)(t) s, been determined in the previous steps

of the recursion procedure.
(b) In the first part of this step of the recursion pro-
cedure, «,

ik

remaining from the previous step, if it is present,

and the undetermined initial condition,

are selected so that the solutions of the system of
inhomogeneous differential equations can have a
periodic solution with period T. This selection

determines the a,, and completes, with the deter-

Kk

mination of the initial condition, the determins-

tion of the u, (t)*s.

1j(k-1)

(¢) In the second part of this step of the recursion

procedure, the initial conditions, uijk(o)

(J = 1,2,.s.,n),are selected so that the uijk(t)'s

(J = 1,2,+.0,n) are periodic in t with period T.
At this point it can happen (for i =1 or i = 2)
that one initial condition can be chosen arbitrarily

without destroying the periodicity of the u, . (t)'s.

ijk
This undetermined initial condition must then be
determined in the following step of the recursion pro-

cedure.,

The foregoing recursive development is carried out in Sections
b, 5, 6, and 7 of this chapter. The organization of these sections is

as follows:
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In Section 4, all the first approximations, Qo

(i = 1,2,...,n), to the n characteristic exponents,

a,(u), and all the u,, (t)'s (i,j = 1,2,.0.,n), ex=-
i ijo

(0) and u

cept for u are determined. Note

120 210(0)’
that these determinations are the first steps in the
application of the recursion procedure to n different
systems of differential equations; i.e., there is a

separate system associated with the determination of

each ai(u).

In Section 5, all the second terms, (i =1,2,4..,n),
in the series for the n charactefistic exponents are
determined. At the same time, the undetermined initial

conditions, ulEO(O) and u 0), from the preceding

210(

step in the recursion procedure and all the uijl(t)'s
(i, = 1,2,...,n), except for the initial conditions,

0) and u are determined. Note that these

Uy ( 211(0)’

determinations are the second steps in the application
of the present recursion procedure to n different sys-

tems of differential equations.

In Section 6, all the third terms, ., (i = 1,2,.40,0),

i2

in the series for the n characteristic exponents are

determined. At the same time, the undetermined initial

conditions, ulgl(o) and ugll(o), from the preceding step

in the recursion procedure and all the u,..(t)'s

ij2

(i, = 1,2,..4,n), except for the initial conditions,

+, 1 .
ulge(o) and u212(0), are determined
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() 1In Section T, the procedure to be followed in the
determination of the ¢, 's and u,, (t)'s for k > 2
ik ijk

is presented.

At each step in the recursion procedure relations which sim=-
plify the determination of approximate stability criteria are pointed
out. These relations involve previously defined variables such as

+28

o . .
n, 55 8, A(st), and B(st).

o
Throughout the following discussian of the stability question,
special or degenerate cases-=-such as those with repeated roots--are
ignored. Although such cases have mathematical importance and even, some=-
times, physical importance, for the purposes of this study they can be
neglected. This can be appreciated by noting that in such cases a slight

change of a component or parameter in the physical system often removes

the special or degenerate condition.

5.2 Development of a Suitable Variational Equation

The solutions [cj(t,u)] which are of interest are known to pos-
sess certain properties. First, [cj(t,u)] is a solution of the following

differential equation

drl -Klt
T T WV € g(t;rl,rg,...,rn)
dr2 -Xet

'd-%"“' = }.lV2n€ g(t;rl,re,ooo,rn)
dr -\t

— n Ld
gt T M€ g(t’rl’rZ""’rn)’

vhere g is g; [Eq. (2.28)] in the first canonical form and & [Eq. (2.38)]
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in the second canonical form.

Secondly, the components, Cj(t,u) (3 = 1,40.,n), of a given

solution [cj(t,u)] have been developed by the procedure of Chapter IV

in the following form:

(j = 1,2,...,1’1).

(4.6)

Thirdly, each c, (t) satisfies the following "periodicity" con=
Y) jk

dition:

KJT
cjk(T)e - cjk(o)

o {°

k

]

l’e,.",n

}

0,1,2,000 .

(4.3)

This condition on the cjk(t)'s implies that [Cj(t,u)J also satisfies this

conditione.

Fourthly, the [cj(t,u)J's are related to the continuable periodic

solutions p(t,u) by one of the following two transformations.

First Canonical Form:

P(t:H)

ﬁ(t,u)

p(n-l)(t,u)

. * L . .

, (n-1) Mt
M€

Second Canonical Form:

—

P(t;H)

ﬁ(t;“)

p(n-l)(t,u)

-

L ] L d . » L4 Ld L * .

AT

(n=1) "n

o o o N €
n

Cl(t;u)
Ce(t’ ‘J')
?<P(n-1>(t,u) =
_Cn(t:ﬁz
h(t;ws
ﬁ(t;ms)
n +
] | h_h(n'l)(t;ws{

(2.19)

(2.35)
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where

and 'h(t;ws), which is defined in Eq. (2.33), and its first (n-l)
derivatives with respect to t are continuous and periodic with period
T. The function p(t,u) is, of course, a periodic solution of either
Eq. (2.17) or Eq. (2.34).

Now, the actual stability problem is related to the continuable
periodic solutions, p(t,u), and not to the corresponding [Cj(t,u)]- It
can be seen that these two points of view can give different answers to
a stability investigation by considering only the following relation:

Klt Knt

p(t,u) = cj(tou)e ™ + ov + e (t,u)e ™ o (5.1)

Let Aj be one of the A's in the above expression. Further, assume that
Aj is real and negative. Then in the process of determining whether or
not the periodic solution p(t,u) is asymptotically stable, expressions

of the following form arise:

ICP(t:I:H) - P(t)lvl)' -0 as t -, (5.14)

where @(t,I,u) is a solution whose initial conditions neighbor those of
p(t,u)s. But, from Eq. (5.1), this implies that

At

¢ lpy(8,85m) = cy(tu)| 0 85 t 5w (5.2)
where pj(t,A,p) is the jth component of a solution whose initial condi=-
tions neighbor those of cj(t,p). It is immediately apparent that the
above condition can be satisfied without even having |pj(t,A,u) - cj(t,u)l

bounded as t = «, It is necessary only that
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(In,]-8)t
|pj(t)A}H) - Cj(t,HH < Ke J ) (5-3)

where K and & are real positive constants. Therefore, asymptotic stability
for a solution [c,(t,u)], assuming the obvious extension of the definition

J
of asymptotic stability to aperiodic solution such as the [cj(t,p)], is

not a necess;ry condition for the asymptotic stability of the correspornd=-
‘ing p(t,u). Moreover, it will not be a sufficient condition if some of
the xj's have positive real parts.

In order to investigate the stability of the continuable
periodic solution, p(t,u), the canonical forms must be transformed to new
forms whose solutions exhibit the same stability qualities as the p(t,u)’s.
One obvious choice for this transformation is just to re-express the

‘canonical forms in the original (x,i,...,x(n'l))

system; however, this
choice is not so convenient as the system which results from the following

coordinate transformation:

— — — Alt - - —

Xl € O o o o O rl

S
2

X2 O € e« o o O I‘2

- . (5.4)
Knt
Xn 0 0 o o o € rn

(n-l))

This new set of variables (xl,...,xn) is related to the (X,%,...,x

variables by the following transformation:
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L (n-1)
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1 1 .

kl KE .
2 2

Al Ke .

K£n-l) Kén-l).

o (5.5)
s l Xl
.« e Ah x2
2
. e Kn x3 .
(n-1)

Since the A,'s are distinct, the above transformation is nonsingular.

The new variables are a linear, time-independent, combination of the old

ones; consequently, the stability qualities of the periodic solutions

are invariant under this transformation, and the solutions p(t,u) remain

periodic in t with period T if they are transformed by Eq. (5.5).

Introducing the coordinate transformation, Eg. (5.4), into

either of the canonical forms results in the following system of differ-

ential equations for the characterization of the nonlinear feedback sys-

tem.
X M
x2 0
o
X 0
n
L - .

. O X
1

. O x2

. }‘-n Xn

-\t
vlng(t,xle
-\, t
G
+u

")
,Q..’Xne

e B )
,...,xn

(5.6)
At ]

-\t

where the g is gl in the first canonical form and gE in the second. Note

that g is now a function of (t,xl,...,xn) instead of (t,rl,...,rn).
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The stability problem now becomes the problem of determining
whether or not the periodic solutions of Eq. (5.6) are asymptotically
stable. This is just the problem which is considered in Appendix A;
therefore, the methods given in that appendix can immediately be applied.

The variational equation is

(5.7)
[ ] [ 1T ] [ -\t AT
. og 1 og n
,Yl )\.l O « s o O yl VJ_n Ei" izc LI } -Vln g‘r‘; izzc yl
yg 0 hg. .. 0 Yo
= +d

-A. T -\t
. g 1 og n
In O 0...N In mn or. | € ** Von 3r |
B i i 1L N l'r=c n'r=c | |

where r = ¢ implies {rl = cl(t,p),...,rn = cn(t,u)}. Note that in the

time-dependent coetficient matrix the following identity has been employed:

ALt
%i_.. = B (§ = 1,2,.00,10). (5.6)

Jlo(t,u) arj r=c

This has been done so that the final stability criteria can be expressed
in terms of the same variables, 2 as the solutions [Cj(t,u)]- From the
definition of either g,, in Eq. (2.26), or g5, in Eq. (2.38), it can be

-\t

seen that the g%— J 15 are periodic in t with period T and analytic
J

€
r=c
in p for |p| sufficiently small.

Floquet [17] has shown that a homogeneous linear differential

equation with periodic coefficients has a fundamental solution matrix of

the form,

M(t,u) = D(t)#)€tR(“): (5'9)
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where D(t,u) is periodic in t with period T, and R(u) is independent of
t. The characteristic exponents are the roots of the following nthe-

degree polynomial in o
det [R(u) = cE]l = O, (5.10)

where E is the identity matrix and the characteristic exponents are de=-
noted al(u),...,ah(p). The so-called characteristic multipliers are

o (u)T o, (u)T

obtained as follows: e gevey€ .

543 Transformation of the Variational Equation

In this section the variational equation, Eq. (5.7), will be
transformed with the aid of n time-dependent transformations into n
separate systems of linear differential equations with periodic coeffi-
cients. Each of these new linear systems is known to have a solution,
denoted [uij(t’“)] (i3 = 15+.4,n), which is periodic in t with period
T and analytic in u. In Section 4 of this chapter a recursion procedure
similar to that used in Chapter IV for obtaining [cj(t,u)] is developed
which gives each of these latest periodic solutions, [ﬁij(t,u)], in a
power series in u, and concomitantly results in developing'each of the
ai(p) in a power series in u.

Owing to the composition of the fundamental solution matrix

M(t,u), as expressed in Eq. (5.9), it is possible, after assuming the

characteristic multipliers to be distinct, to select n linearly independ-

ent solutions of the variational equation which have the following form:
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T ' ]

yil(t)u) uil(t’“)

yie(t,u) ai(“)t uig(t)“)
- € (i = l,2,noo’n), (Soll)

_yin(t,u)d _uin(t,p.)_

where ai(“) is one of the characteristic exponents, and each uij(t,p)
(i,§ = 1,...,n) is & periodic function of t with period T for |p| suffi-
ciently small.

If the n coordinate transformations,

r - - -
41 U1
Y2 a; (1)t ”
= € (i = l,2,...,n), (5.12)
Y U,
L7 "

are introduced into the variational equation, the following n new varia-
tional systems are obtained (one for each value of the integer index i,

i = l,2,...,n)2

4+ [ozi‘(u) - }\l]ul = uvln[l“l(t,u)ul+=--+ Fn(t:u)un]

I

Adu

v, +...+Fn(t,u)un]

e
+
~—

nS

—~

r

g
'

vagn[ Fl(t,“)ul

(5.13)

* . L o . L * L L] * o * * o L ° 4 L] L ] e L] L] L L4 L] L] *

ﬁn + [oci(p) - )‘n]un = “vnn[ Fl(t’“)ul+°"+ Fn(t,u)un],
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-A\.t
where f}(t,u) = §%~ e v (5= 1,2,44.yn)s It is known from Eq.
Jlr=c

(5.11) that each of the above systems [i.e., a different system for each

of the n ai(u)’s} hes a periodic solution with period T, [uij(t’“)]’ More -
over, because the coefficients in the variational equation, Eq. (5.7),

are analytic in u in the same domain in which the solutions [cj(t,u)] are
analytic in u, the characteristic exponeﬁts, ai(p), are analytic in pu
within this domain with the possible exception of a finite number of branch
points. Similarly, the general solution, [uj(t,uj(o),u)},is analy@ic in

u within the same domain. In particular, the periodic solution, [uij(t,p)],
of Eq. (5.13) with period T, which 1s known to exist, is analyfic in u for
@ within the above domain. For a further discussion of these last two

points see Cesari {(22], page 59} and Moulton {[16], pages 331-352}.

o (i =1,2,...,n), in the Power

Series Expansion for the Characteristic Exponents, Q&(u) (1 =1,2,...,0n)

5.4 Determination of the First Terms, «

Since the characteristic exponents, ai(“) (1 =1,.44,n), are
analytic within the same domain as the coefficients of the variational
equation, Eq. (5.7), with the possible exception of a finite number of
branch points, they can be expanded in power series as follows:

P
ai(u) = ) aikuk (1 = 1,2,¢00,n), (5.14)

k=0
where u is within the domain of analyticity for ai(u). It will be assumed
throughout this discussion that, with the exception of one case discussed
later, all characteristic multipliers are distinct for !ul < 1l. This
assumption removes the branch points as a source of difficulty. Similarly,
the solutions of Eq. (5.13) which are periodic in t with period T can ue

represented as follows:
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o0 k .
Uij(tyu) = kzg uijk(t)“ (1,d = 1,2,444,1), (5.15)

where the index i indicates that periodic sclution associated with

ai(u). Since the uij(t,p) are periodic in t with period T over some u-

interval of nonzero length, the individual u, t)'s are also periodic

1jk(
in t with period T.
The f}(t,p)'s in Eq. (5.13) can also be represented in series

form; i.e.,

Iy(tw) = X ij(t)uk (5 = 1,2,000,0). (5.16)

k=0

From Eq. (5.13),

I}(t:u) = 3. € (J = L,2,44.,n)
J' r=c

From Egs. (2.28) and (2.38), g is either

ME A
gl(t,rl,...,rn) = B(z)F{rle teautT € }
(2.28)
n At
+ B(z)e(t) - L r.A(z)e ¢
j=1 Y
or
Klt Knt
ge(t,rl,...,rn) = B(z)F ri€ 7 .. € + h(t,ws)}
n AT (2‘38)
-L rA(z)ed - A(z)h(t,ws).
J

J=1

Then, since (see Appendix D)
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» At A AT
0 1 n dF J
B F cee = B —— s
5;3[ (2) {rle ToootT € i} e (Z)[dx‘xip(t,u)] (p1)
At At AT
5%—-[B(Z)F{rle 1 teoodr € noy h(t,wsi}] B(z)[%g- ¢ ! ], (D13)
J r=c x=p(t,u)
where (j = 1,2,.4.,n),
and
' ALt AT
B(z)[ | ¢ = ¢ 9B a) SE , 1
(&gl =2 lE )b e

the expression for I}(t,u) in either of the canonical forms is

. |
Fj(t,p) = B(z + xj)[ai sz(t,“)] - A(xj). (5.18)
Iet
%g = s (%) +us,(t) + 178, (£)40e e, (5.19)
x=p(t,p)

where the So(t),Sl(t),... are periodic functions of t with period T.

The expressions for the'Isk(t) are, therefore, as follows:

For k = 0,
f}o(t) = B(z + hj)So(t) - A(xj) (3 = 1,2,e00,n); (5.20)
For k >0,
| J = 1,25000,n
Fp(t) = Blz +2,)8,(¢) {k=l£”“m}. (5.21)

Now, the object of this chapter is to develop & procedure for

determining the [see Eq. (5.14)] recursively. Not too surprisingly,

|
ik °

this involves determining the u,

1 * 3 1
ljk(t) s simultaneously with the Qyp S
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The initial step of this development is to substitute Egs. (5.1k4),
(5.15), and (5.16) into Eq. (5.13). If the indicated multiplications of
power series are carried out and the coefficients of like powers of u on
each side of the equation are equated to one another, a sequence of
linear inhomogeneous systems of equations 1s obtained. The system of

equations which arises from the “o terms is

Ui * (%o = Muyg = O
Biog + (O = My = O
(5.22)
Yino ¥t (aﬁo - >“'n)uino = 0,
Where (i = 1,2,...,1’1).
The system of equations associated with the “l terms is
Gy * (o = MIujpy = - oyqu0 ¢+ Vln{:rlo(t)uilo+"'*'rho(t)uino}
Uipp *+ (g = Mugsy = = oyqug + Vzn{Iﬂlo(t)“ilo+"‘+]7no(t)uino}'

(5.23)

L] . L] L d . L . L . * . L] L] L] . * . L L] L4 L L [ L ) * L] L] . . * L4 » . . .

4 + (o, = A)

inl 1o " M/%n1 T T %%no t Vnn{'rio(t)uilo+"'+ I-'no(t)“ino} )

where (i = 1,2,...,n). DNote that the right-hand side of Eq. (5.23) is,
assuming that a first step in the recursion has already determined the

appropriate uijo(t)'s, a known forcing function. Similar systems of
3

equations are associated with u ,HM’.‘. terms.
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The first step in the recursion procedure is to select the
O&O’s and the initial conditions for the uijo(t)'s in Eq. (5.22). The
key to this selection is the requirement that all uijk(t)'s be periodic

with period T. Therefore, one possible choice for the a&o's is

A A . (5.24)

a = ;\ e,ooo,ano = n

10 12 %0

As far as the periodicity requirement is concerned, the choice
of Qﬁo's is not unique. Any integer multiple of jaT can be added to any
of the o&o's in Eq. (5.24) without destroying the fequired periodicity of
the particular solutions [u,. (t)]. This ambiguity is just what is ex-

ijo

pected from Floguet Theory, which states that the characteristic exponents
can be determined only up to integer multiples of JwT. On the other hand,
the choice in Eq. (5.24) does have a simple relation with the "y = O"
differential equation of Eq. (5.7). That is, as u approaches zero the
characteristic exponent, o&(u), approaches the characteristic root, ki.

After a particular a;  has beeﬁ substituted into Eq. (5.22) the
initial conditions must be chosen so that the uijo(t)'s are all periodic
with period T. Since Eq. (5.13) is a linear system, each set of initial
conditions corresponding to a periodic solution [one set for each ai(“)]
can be determined only up to an arbitrary factor. Therefore, one component
of each set of initial conditions, say uii(o,p), can always be chosen arbi=-
trarily and each of the others adjusted so that the ratio between it and
uy 4 (
of p so that uii(o?u) = uiio(o) and uiik(o)

O,u) is correct. Furthermore, uii(o,u) can be chosen to be independent
=0 for k = 1,2,+s¢s For the

remainder of this chapter, the initial conditions are selected according to
the preceding pattern. Therefore, the periodic solutions [uijo(t)] are as

follows:
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For Ghy = he,

For ., = A,
io i

113

ullo(t) = ullO(O) (an arbitrary constant)

-32w_t
0)e s

uljo(t) =0 (J = 3sb4ye00,n);

+jawst
uElO(t> = quO(O)e (uelo(o), undetermined )
ueeo(t) = UEQO(O) (an arbitrary constant) (5.26)
u2jo(t> =0 (3 = 3545.005m);

. e o [} . . .

(5.27)

uiio(t) = uiio(o) (an arbitrary constant)

uino(t) = 0.
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It is immediately apparent from Egs. (5.25) and (5.26) that, although Eg.
(5.22) is sufficient for the determination of the o&o's it is not suffi-
cient for the complete determination of the [uijo(t)]. The difficulty is

that u and u are undetermined. Reminiscent of the recursion

120 2109
procedure in Chapter IV, “120(0) and uElO(O) must be determined in the

next step of the recursion procedure.

Equations (5.25) and (5.26) demonstrate also that @ and O,

are special cases and require slightly-more-involved treatment than the
other aio's (i = 3,¢4.,n)s The essential difference between these two

to 3 -
groups of @, 's is that (alo
al(“) —éaio and a2(u) —>aéo as p - 0, and the characteristic multipliers

oy ()T

associated with these two characteristic exponents are ¢ and
oé(u)T 2Jo T
€ , as u = 0 the two characteristic multipliers approach 1 (e =1).

ago) is an integer multiple of jwj. Since

Therefore, the significance of (Oio - Qéo)

jw@ is that the two associated characteristic multipliers coalesce as pu — 0,

even though the characteristic exponents remain distinctl. Recall that it

being an integer multiple of

was assumed previously that the characteristic multipliers weré distinct.

It is now apparent that this assumption must be modified to allow the above

coalescence. Therefore, it will be assumed that all the characteristic mul-
oy ()T a,(u)T

tipliers are distinct with the exception of € and € at p = 0.

Moulton ([16], page 335) shows that in this situation a, (u) end

az(u) are still analytic in the neighborhood of p = O but that the recursion

1 The word "distinct" here is somewhat ambiguous. It is known from Flo=-
quet Theory that the characteristic exponents can be determined only
up to integer multiples of jw_; therefore, in that sense, (1) and

a,.(u) are not distinct at p ="0 because jw_ = -Jw mod Jm?} On the
o%her hand, in the ordinary meaning of thesword, a (u) are
distinct at u=0. It is just this ambiguity that %ery often makes it
easier to discuss the characteristic multipliers, which are unchanged
no matter how many integer multiples of J are added to the charac-
teristic exponents, than the characteristiC exponents.
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procedure based upon & periodicity condition for the [uij(t,u)]'s leads‘
to two possible analytic functions al(“) such that ai(u) >y as 1 -0,
and, similarly, there are two possible analytic functions ae(u) such that
ag(u) =0, 8s p = 0. However, these four analytic functions are not
unrelated. The difference between either of the two Oi(u)'s and a
corresponding one of the two aé(p)'s is just an integer multiple of ij.
Therefore, these four functions characterize only two u-dependent charac-
teristic multipliers. One of theval(p)'s is associated with one of the
two p-dependent characteristic multipliers, and the othgr ai(“) is asso=-
ciated with the remaining p-dependeht characteristic multiplier. Conse-
quently, in a recursion procedure it is necessary to guarantee that an
al(p) and an a,(u) are developed which correspond to distinct characteris-

2
tic multipliers. This guarantee exists as long as the al(“) and ag(u) are

selected from the four functions so that they do not differ by an integer

multiple of j&@.

5.5 Determination of the Coefficients, a.. (i = 1,2,...,n), of u in the

11

Power Series Expansion for the Characteristic Exponents, ai(u) (i =1,2,...,n)

The u, ., (t)'s (i,j = 1,2,...,n) satisfy Eq. (5.23) and are

ij(
periodic in t with periocd T. The termsf&hich appear on the right~hand

side of Eq. (5.23) are all, except for a4 (i =1,2,004,n), ulgo(o), and
“210(0)’ known from the first step in the recursion procedure. These known
terms are given in Egs. (5.20), (5.25), (5.26), and (5.27). For each of
the n systems of equations encompassed by Eq. (5.23) (one system for each
choice of index i) the appropriate, undetermined quantities on the right-
hand side must be chosen so that the uijl(t)'s (i, = 1,3,...,n) can be
periodic in t with period T. Thus, for i =1, op, and ulEO(O) must be
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chosen so that the uljl(t)'s can be periodic with period T. For i = 2,

' > I3
a,, and uElO(O) must be chosen so that the uejl(t) s can be periodic with
period T. And, for i = 3,4,...,n, the Oﬁl must be chosen so that the

uijl(t)'s can be periodic with period T.

For all:

1 and with Eq. (5.25) substituted

Consider Eq. (5.23) for i

' — — 13
for the uljo(t) s. Recall that o, = A, A = Jo_.

(5.28)
U111 = ~agy up0(0) + vy { Ty (8)uyp4(0)
-jew
+ Top(tduy 5p(0e }
. -jaw_t
Uppp + Jawg Uyp = =0y Uppp(0de + Ven{irlo(t)ullo(o)
~jew t
+ T (8)uy 1 (0)e }
6131 + (Jog=ng)uy ) + v3n{ Iy ()uy54(0)

-Jew_t
+ Tp(thuy(0)e  ° }

L] L] L . * L] L] . . L] . . . L d * * - L] . . * L] L] * L] . L] L) L] L . . L

by g+ (o duy o = + v £ Tyo()uy54(0)
-jEwst
+ Iéo(t)uleo(o)e }.

It can be seen from the first equation of the above system that ulll(t)
is periodic with period T if the mean value of the right-hand side of this
first equation is zero. From the second equation, ul2l(t) is periodic with

period T if the right~hand side of this second equation contains no term
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of angular frequency -Ews. These two conditions are satisfied if Oil and

ulEO(O) are chosen so that they satisfy the following pair of simultaneous

equations.
v T v T ~jaw_t
{flﬁi Tyo(t)at = oy fuy6(0) +{q’rl'££ Too(t)e  © dtfu)(0) = 0
T Jow t T 5-29)
v + v
{T?E'Lf) Fo(t)e  ° atfu;4(0) +{ig££reo(t)dt - "‘11}9120(0) = C.

This system has a nontrivial solution if the following determinant is

ZeYr0.

vln T v2 T -
{F'g [plelat - O‘11} {ﬁf"'r'l'i Too(t)at = apy |
(5.30)

Vin T ~jaw_t v, T +52m t
'{fﬁglldﬂe sdQ{faérmﬁk sﬁ}:o

The above equation can be reduced, with the aid of Eq. (5.20), to the

following form:

ocil - 0y { vy [B(J0g)ST = AlJw )T + vy, [B(=jw,)sT - A-do) T}

+ vlnvgn[B(ij)Sg - A(jws)][B(-jws)Sg - A(=Joy)] (5.31)

- vanEnB(st)B('jws o o

(1) (2)

The two roots of the preceding equation, say, 7 and Qil , are an evi=-
dence of the previously-discussed fact that two Oi(“) functions are pos-

sible. Moreover, in the determination of Gsq it is shown that Gsy also
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satisfies Eq. (5.31); therefore, there appears to be a certain redundancy

However, recall that if the same

in the determination of Qil and Oél.
root of Eq. (5.31) is used for both o, and a,,, the first two terms of
the series for Oi(“) and ag(u) are Jo + paq) and -jo + poy,, respec-

tively; but in such a case the characteristic exponents, as presaged by
these first two terms, are separated by an integer multiple of ij (ws =
pr, P an integer), which indicates that the two series are associated
with the same characteristic multiplier. The apparent redundancy can,
therefore, be resolved by choosing a1 equal ;o either one of the roots

of Eq. (5.21), and choosing @, equal to the remaining root of Eq. (5.31).

Consequently,

O 0y = vlnv2n[B(‘jws)sg - A(jms)][B(-jws)Sg - A("j(‘os)]

(5.32)

. +25,.=25
-vlnvenB(jws)B(-st)S0 Sy »

and

oy + 0y = vy [B(Je)sY - Ak )] + v, [B(-jo)S0 - A(-gu)]. (5.33)

A comparison of Eq. (5.32) with either Eq. (3.21) or Eq. (3.31)
reveals that the right-hand side of Eq. (5.32) is the expression which
appears in the Jacobian condition. Therefore, the Jacobian cbndition
yvields information regarding the roots of Eq. (5.31). Since in many non-
linear feedback systems the answer to the yes-or=-no part of the stability
question can be obtained from only the first two terms of the power series
representation for the characteristic exponents, ai(“) (1 =1,...,n), this
relation between the roots of Eq. (5.31) and the Jacobian condition is

important. In particular, from the discussion regarding Egs. (3.40) and
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(3.46), Eq. (5.32) leads to the following observations:

(a)

(v)

If the Jacobian expression is less than zero, then one

of the pair, o4 and ¢ is real and negative and the

21’

other is real and positive.

If the Jacobian expression is greater than zero, then

both all'and aél

or a complex-conjugate pair located anywhere in the

are real numbers with the same sign

complex plane.

If the Jacobian expression is zero, then one (repeated
roots are ruled out) of the pair, oy and o, is zero.

Assuming that a =+ uo g (1 =1,444yn) is a satisfac-

dw
8

tory approximation to ai(“) and recalling that s— =0

if the Jacobian expression vanishes, a simple stability
dw

criterion results; that is, EEE = 0 at the points in

(a,6 , ws)uspace which form & boundary between the re-
gion in which the product of the roots of Eq. (5.31) is

positive (a > 0) and the region in which their

11%1
product is negative (Qiloél < 0). Note that the roots
of Eq. (5.31) can be in the right-hand plane even
though the Jacobian expression is positive.

Unfortunately, it is not true that the sign of the
dw

Jacobian expression is determined by the sign of EEE .
The van der Pol oscillator under the influence of a
sinusoidal forcing function is a classic counter-

example. It has stable solutions with both positive
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dw

R 5
and negative I

(e) If the Jacobian expression is positive, then the
other stability criterion associated with Eq. (5.31)
is
Re { vy, [B(3w,)8] - A(Jw )]} < o. (5.34)
This criterion follows from the fact that each of
the two terms which make up the coefficients of %
in Eq. (5.31) is the complex cénjugate of the other.

It is shown later that this criterion Is related to

the stability criteria developed for the a&l’s (i =

354y000,n).

Note that the coefficients in EqQ. (5.31) depend only on the generating
solution, [ch], and on none of the higher-order approximations, [Cjk]
(k = 1,2,+..). Furthermore, it is not necessary to complete the deter=-
mination of the uljl(t)'s (J =1,...,n) in order to find o;. Therefore,
the first two aik's of each series can be obtained with relative ease.
On the other hand, if the first two terms of the power series representa=-
tions for the ai(p)'s (1 =1,..0,n) do not provide sufficient information
regarding stability and it is desired to determine more terms in these
power series, the determination.of the periodic solutions, uljl(t) (5 =
l,...yn), of Eq. (5.28) must be completed. This determination is
carried out in the remainder of this section.

Assuming that ail has been chosen as one of the rocts of Eq.
(5.31), it can be substituted into Eq. (5.29) to determine u

120(0) «
Utilizing, in Eq. (5.29), the definitions for Flo(t) and I"zo(t) from Eq.
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(5.20) gives the following two equivalent relations for the determina-

tion of ulQO(O):

u)5(0) {odl - vy [B(dw,)s? - A(jws)]}

U)15(0) vlnB(jws)sgzs
(5.35)
=25
ulEO(O) _ V2nso B(-st)
U;16(0) {og) = vop[Bl-d0)sS = A(=ju,) ]}

This relation completes the determination of all terms on the right-hand
side of Eq. (5.28). The functions, uljl(t) (3 = 1,44.,n), can then be
determined by straightforward integration of the n firste-order, linear,
inhomogeneous differential'equations which comprise Eq. (5.28). It is

now necessary only to choose the initial conditions of the uljl(t)'s 80

that they are periodic in t with period T and so that “111(0) = 0. The
results of this integration are as follows:
.t
ulll(t) = ullO(O)g [-all + Vln{ [B(z + st)SO(S) - A(st)]
) (5.36)
u 0) =jow s
120 s . s
+ W € [B(z - Ju)s)SO(S) - A(-J(Ds)]}] ds,
-j2w_t t =jow_(t-s u,.~(0) =j2w s
u, ., (t) = u,,.(0)e s +u [ € 8 ) -Q 120( ) € s
121 121 110 5 1l ullOZOS
+v, {[B(z + o )5 (s) = A(Jw,)] (5.37)
U.l2o(0) -jE(DSS [ . }}
+ W € B(z - JG)S)SO,(S) - A(-jws) ds,

and



122

(xj-st)t t (xj-a'ws)(t-s)
uljl(t) = uljl(O)e + ullO(O) £ €
[V {132 + 05 (5) - AC3)) (5.38)
-jaw s u (0)
se 8 Eﬁ)ﬂﬁi [8(z - Ju,)s (s) - A(-ju_)1}] as;

‘where (j = 3,4,...,n) in Eq. (5.38). Since uljl(t) in Eq. (5.38) must be
a periodic function of t with period T, the initial condition, uljl(o)’

is chosen as follows:

ullO(O)an T (st-hj)s

up(0) = v [ e { Bz + 30)s_(s) - AQw)]
€ -1
( ()) (5.39)
=j2w s u 0
S 120 . :
+ € 5115T67 [B(z - st)so(s) - A(-st)]} ds.

Except for the initial condition of ulEl(t)’ the above equations com=
pletely determine the u,..(t)'s (Jj = 1,2,...,n). The u,. .(t) is periodic

1jl 121
in t with period T for any ulEl(O); therefore, a periodicity condition on

(t) is not sufficient for the determination of u 0). As in the case

Y101 101

of the initial condition uleo(o)’ the initial condition u,..(0) must be

121
determined in the next step of the recursion procedure for al(p).

For Oél:
Consider Eq. (5.23) for i = 2 and with Eq. (5.26) substituted

1 i = = = -
for the uzjo(t) s (J =1,2,.00,n). Recall that Upg = Moy Ay = =Joo e

See Eq. (5.40) on the following page.
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, . +jawst +jamst
Uppp = I Uyy gy = =GpyUy6(0)e +'Vln{]710(t)uelo(o)€
+ Iéo(t)uaeo(oﬁ
. r _ +jamst
Yooy = =OpyUpp0(0) + Ven{ 10{t)u515(0)e
. FQO(t)u220(0>}
. . +ja»st
Upzp * (-st - }\3)11231 = + v3n{:rio(t)uglo(0)e
(5.40)
+ réo(t)u22o(0)
+32wst
Uopy + (=d0g = Auyyy = * Vnn{ [1o(t)uy 5 (0)e

+ Iéo(t)uezo(o)}‘

All the terms on the right-hand sides of the equations in Eq. (5.40) are

known, except for «.., and u ‘As in the case of the determination

21 210(0)-
of the uljl(t)'s, a,, and uglo(o) are chosen so that the uejl(t)'s (§ =
l,...,n) can be periodic in t with period T. Therefore, they [aél and
u2lO(O)] must be chosen so that the right-hand side of the first equation
in Eq. (5.40) contains no term of angular frequency +2w_ and the right-
hand side of the second equation has mean value equal to zero. These two

conditions lead to the following pair of eguations:

+28

{1800, )8 o0 (0) +{ v, [Blany)S] = A(ieg)] = agfuy(0) = 05

(5.41)

{v2n[B(-jws)s§ - A(=303)] = ay b (0) +~{v2nB(-jws)S;28 u,0(0) = o.
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This system has a nontrivial solution only if its determinant is zero.
The equation resulting is, as has already been mentioned, the same as

the quadratic equation, Eq. (5.31), for « Therefore, the previous

11°

statement that « satisfy the same quadratic equation is sub~-

11 and ¢

2l

stantiated.

As soon as the G5 is determined, the undetermined initial con-

dition, uZlO(O)’ can be determined from Eq. (5.41) as follows:
Uyy0(0) VlnB(j‘”s)Sges
Uppo(0) {a21 - vln[B(,ij)Sg - A(jws)]} ’
or (5.42)
U100) {a) = Vo [B(=3e)s] - A(-ju) ]}
Uypo(0) VEnB(-ja)s)S;ES .

Equation (5.42) completes the determination of all the terms on the right-
hand sides of the equations in Eq. (5.40). The functions ugjl(t)'s (5 =
l,...,n) can, therefore, be obtained from a straightforward integration
of the differential equations in Eq. (5.40). The results of these inte-

gations are given below.

Jew t t jaws(t-s) uZlO(O) +jow s
uell(t) = uell(o)e + uQEO(O) g € [-aél E;;5T5T e
Uyp5(0)  +32w s
ey e B deg)sy(e) - AT (5.43)

+ [B(z - Ju)s_(s) - A(-jms)}] ds

[Recall that uiil(o) (1 = 1,2,...,n) has been chosen equal to zero.]
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t 210(0) jEmss
Uopp (B) = ugea(0) [ [' Gpy * v2n{ To0) ¢ (B(z + joy)s,(s) - A(Jw,)]
o]
(5.44)

+ [B(z - jws)So(s) - A(-jws)]}] ds

(Kj+jws)%
UEJl(t) = ugjl(O)e
t (kj+jws)(t—s) jawss

(O)
210
uQEO(O) £ € '[ Jn{

[B(z + jo )5 (s) (5.45)
- AQje )T+ [B(z - Jo)S (s) - A(-ju ) }] as

where j = 3,4,...,n. Since u must be periodic in t with period T,

251 (%)

the initial condition, ugjl(o) (3 = 3,+40,n), is chosen as follows:

v, u, . (0) T Jw +A )s +jEw s
. _Jnee20 210 S
231(0) T G { [(B(z + Jwg )8 (s)
J o
€ -1
(5.46)
- A(st)] + [B(z - jws)so(s) - A(-jms)]}ds.
The above equation completes, except for the initial condition uzll(o),
e . o ).
the determination of the u2jl(t) s (§ =1y.0eyn). The ugll(o) must be

determined in the next step of the recursion procedure for ag(u).

For o, (1 = 3,45000,n):
Consider Eq. (5.23) for (i = 3,4,...,n) and with Eq. (5.27) sub-

stituted for the uijo(t)'s (3 =1,e0e5n)e
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Gigp * Oy = Mgy = vy (005 (%)
Gipp * O = Mwypy = vy (00D (%)
| (5.47)
. - . I"
Ui { Aq + Vip io(t)}uiio(o)
i1 N A = Vo (0 I (%)

All terms on the right-hand sides of the equations in Eq. (5.47) except

for Qﬁl are known. Qﬁl

(§ = 1,250005n; i = 3,4,...,n) must be chosen so that the uijl(t)'s are

and the initial conditions for the uijl(t)'s

periodic with period T.

It can be seen that uiil(t) is periodic with period T if the
right-hand side of the equation in Eq. (5.47) involving uiil(t) and Q
has mean value zero. This requirement is satisfied if

T |
= | T (t)at (1 = 3,4,000,0). (5.48)
O

<

%y =

i

Using Eq. (5.20), this equation reduces to

agy = vy BOS - A} (= 3em). (5-49)

Note the similarity between this relation and Eq. (5.34). Utilizing the

value for a& determined by Eq. (5.49), integration of the appropriate

1
equation in Eq. (5.47) gives the following expression for uiil(t) (i =

3’}-‘-;000,11):
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t
g, (8) = u, (0) £ [ g, + vin{B(z +2;)8_(s) - A(Ai»]:is

(5.50)
(i = 3,4,400,n).

Again recall that uiil(o) = 0. The expression for the other uijl(t)'s,

obtained from integrating the other equations in Eq. (5.47), is

(xj-xi)t
uijl(t) = uijl(O)e
(5.51)
t (x.-xi)(t-s)
+vm%mm)£e J {Bu+xg%@)-mﬁgu
i=23,4,.005n
J = 1,2,000,(i=1), (i+1l),eee,n

1£3.

The initial condition, uiji(O), must be chosen so that uijl(t) is periodic

with period T; therefore,

(0) T =(N.=\.)s
[ e P {BG s (s) - Al fas  (5.52)
- 1} ©

V. u,
Jniio
(ki-xj)T

Y500 =

{e
i = 3,&,-.0,11
j =1’2,oc.,(i‘l)}(i"’l),.oo,n

JFL.

Equation (5.52) completes the determination of all the uijl(t)'s with the

exception of the initial conditions for ulal(t) and u2ll(t).

5.6 Determination of the Coefficients, Q5 (1 =1,2,.04,n), of ue in the
Power Series Expansion for the Characteristic Exponents, a&(g) (i =

lzezoooznz

Equations (5.22) and (5.23), from which o, and a (1 = 1,2,.0.,n)
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are determined in the preceding two sections of this chapter, are a con=-
sequence of expanding both sides of Eq. (5.13) in power series u and
equating coefficients of the like powefs of 4 on each side of the‘equality
sign to one another. Equation (5.22) is the result of equating the coef-
ficients of the p° terms, and Eq. (5.23) is the result of equating the
coefficients of the ul terms. Thé following equation results from

equating the ccefficients of the u2 terms.

Gipp * (O = MJugpp = - aypuy0(8) - agquy, (1)

oeee +-f' (t)u ( t)]

ino

[qgﬁﬂ%lﬂt)+...+r (t)u, , (t)]

inl

e e e e e e e e e e e e e e e e e e e e e e (5.53)

Ce

ing * (aio - Kn)uin2 = ° aizuino(t) - OLi].uinl(t)

vnn[I1 (t)u  oeee +'r£l(t)uino(t)]

110( )

(t)]

+ oeee + f‘ (t)u

nn lO<t) ill(t) inl

The determination of the @;,'s and the uije(t)'s follows the same pattern

as that followed in the previous section for the determination of the

t t
a,,"s and the uijl(t) S.

For a12:
Consider Eq. (5.53) for i = 1 and with Eq. (5.25) substituted

for the uljo(t)'s (3 =1,...,n) and the results of the preceding section

substituted for the uljl(t)'s (3 = 1,4eeyn). Recall that a,. = Ay, A

10 1P M T

jws.
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t)

e

112 = - %p¥30(0) = gy
-jew t
Vil (8)ugy0(0) + Ty (8)uy 54 (0)e ]

+vhjﬂpﬁﬁ%iﬁt)+...+Fthﬁhm“tH

-jaw
(0)e - %1 (8)
320 t
+ Vo1 (8)ug35(0) + Ty (8w (0)e — ° ]
(5.54)
+ vgn[Iao(t)ulll(t) + e +I"no(t)ulnl(t)]

!

1pp + JawU

122 = T %2%00

Upge + (Bog = Nup o = = aqquy ()
~Jaw ¢
+ V1 (B)uy 1 5(0) + Ty ($)uy 0 (0)e ]
+

vnn[flo(t)ulll(t) P +Iﬂn0(t)ulnl(t)]

The terms on the right-hand sides of the equations in Eq. (5.54) are all,

except for o, and the initial condition u,,.,(0), known. These two unde-

12 121

termined constants must be chosen so that the solutions of Eq. (5.54) can

be periodic in t with period T. The function u (t) is periodic if these

112

constants are chosen so that the mean value of the right-hand side of the

first equation in Eq. (5.54) is zero. The function u122(t) is periodic

if the right-hand side of the second equation in Eq. (5.54) contains no

term of angular frequency -ams. - These two requirements lead to the follow-~

ing pair of simultaneous equations.
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Vip T -Jawet U5, (0) oy Ty, (t)
%o ‘{'1'3‘—{.) I poltde dt}ulm(oj = TF Uy 15(0) v (5.55)
v T (0) =jow_t
+ 22 [, () + Ty () ‘ﬁ%me ® lat
Vin T Uy pq (%) Uppy (
*r— [ hol®) gy + Tool) g oy + ++r +Tno(t) g roylé®

ulel(t) +32m t

i) © at  (5.56)

T
%y ’{T'z'n" grzo(“"‘t %)

H
O

where u It is possible to simplify

Upr(t) = upp(t) = upp (0)e
Eqs. (5.55) and (5.56) by use of the relations which have been developed

in the foregoing sections of this chapter. It follows from Eq. (5.20)

that
v T -jaw t
= I Tpltle " “at - v, B )ste8 (5.57)
and
on T
7 Do(tdat - oy = v fB(-jo.)s] - A(=du)} - oy (5.58)
o
From Eq. (5.21)
v, T u. . (0) =jaw_t (5.59)
=2 [Qlu)+l‘(t)5ﬁfﬁge lat = v B(jo Ms
N 120(0) 5725}
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and

Von uppo(0)  +jewt o

_en L _(t)]at = B(=j S

21 [ i e Tytilee = vat o 6
llO -2s}
__'_T'T 1 e

Equations (5.59) and (5.60) can be even further reduced with the aid of

Eq. (5.35), which implies that

(0)
v B(,jw NS + _120 stsl -y B(jw_)s®
{ lloioi 1 } in s’71
+2s (5.61)
+{ozll - Vi [B(jws)sg - A(,jws)]} SiES
o]
and
o llO( ) -25 0
VEnB(-ij){Sl + —TT 1 } Vo B(=dog )85
o (5.62)
0 Sl
+{ % - vEnIB("'JO')s)So - A(-‘jws)]} =28 °
S
o)
Utilizing the foregoing reductions, Egs. (5.55) and (5.56) become
lnB(jw )S+ES
u ..(0) =
%0 { U)1010) } 121
+25
+ VlnB('jws»)S(:lD. +{all - vln[B(jws)S - A(jo )]} prer (5.63)

O

In T Ay y Y22 (t) 121( 1(8)
+ T"{) [{Flo(t) }ullO(O) +Io(t) 3 RIRE '_TT]dt’

<

and
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Von{B(=de, )8, - A(-dw Jf -
U900

]121(0) = +v2nB('st)S§lJ.

-285

S (t)
+{ay, - v, [B(-g)s0 -A(-st>1}g%§§ T"’n f[ L, (s )%37 (5.64)

0

(t) U, oq () (t) . +jaw_t
+{F20(t) - all} izz + F ot 131 inl 8

) EI;ETGT + e fIﬂ ————T—y] dat.

This system has a unique solution if its determinant does not vanish;

i.e.,

o Bl >s - a3 )} - o] [v B(J 0 )85

Utilizing Eq. (5.35), this requirement becomes

A = u——l-‘z-c-)-j-{Eall - vln[B(st)Sg - A(J'ws)]

(5.66)
- v [B(=J_)8D - A(-o N1} £ o.
But, introducing Eq. (5.33), Eq. (5.66) reduces to
%1 " %
A = # O. (5.67)

Therefore, it is necessary only that o, and (., be distinct, but this

21
has already been stated as a precondition for this analysis. Conse-
quently, Eq. (5.67) is always satisfied for the problems considered.

The solution of the two simultaneous equations, Eq. (5.63) and

Eq. (5.64), is
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1 . o .
%o = Qqq = Oy [{all - v2n[B("Jms)So - A(-st)]} "G

(5.68)

+{ayy - vy [B(I0 )Y - A(Je )]} - 02]

Uy 50(0)
U, ,(0) = =——— " (C, -¢C) (5.69)
121 Qq - O, 2 1
Where
cl = The right-~hand side of Eq. (5.63)
C, = The right-hand side of Eq. (5.64).

The functions ulja(t) (j = 1,2,...,n) can now be determined
by substituting the values for Q,, and ul2l(0) from Egs. (5.68) and
(5.69) into Eq. (5.54) and integrating the differential équations in-
volved. The initial conditions, ule(o) (3 = 35++.5n), are chosen so
that the uljz(t)'s are periodic with period T. The initial condition
ullz(o) is, by assumption, zero, and, as in the case of Eq. (5.37),

ulze(t) is periodic for any choice of initial condition, u122(0). There-
fore, the undetermined constant, u122(0), must be determined in the next

step of the recursion procedure.

For aégz

Consider Eq. (5.53) for i = 2, with Eq. (5.26) substituted
for the uejo(t) (3 = 1,2,+4.,n), and the results of the foregoing sec=-
tion of this chapter substituted for the uajl(t)'s (3 = 1,2540.5n). Recall
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. +jamst
Uppp = JgUpyn = = Gpoliny(0)e = OppUnys (1)
+jamst
+ Vln[ Fll(t)uglo(o)e + Ql(t)uEQO(O)]
+ vln[ PlO(t)uzll(t) +F20(t)u221(t) + oeee +Fno(t)u2nl(t)]
Uopp = = Gpplinsg(0) = apyuy,, (t)

+jawst

+

v2n[ I"ll(t)ugm(o)e + FEl(t)uQQO(O)]

(5.70)

+

v2n[ l"lo(t)uell(t) P +Fno(t)u2nl(t)]

. L * L] . . . * . * L . L . . . L * L] LJ . L . * . . L . . L)

o
1

opo = (305 + N Uy = - 0, (8)

+jawst

+

Vool Tpq (8)uy0(0)e + I, (£)u,,,(0)]

+

Vnn[ I-'lo(t)uen(t) Foeee + rno(t)uznl(t)]

As in the case of Eq. (5.54), all the terms on the right-hand side of

the equations in Eq. (5.70), except for a,, and uell(o) , are known. As

4 ] -
before, the a,, and “211(0) must be chosen so that the u, jE(t) s (=

1,2,...,n) can be periodic in t with period T. The function uzla(t) is
periodic with period T if the right-hand side of the first equation in

Eq. (5.70) contains no terms of angular frequency +9w'S , and u,..(t) is

222
periodic with period T if the right-hand side of the second equation in
Eq. (5.70) has mean value zero. These two requirements lead to the

following two equations.
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v T u,..(0) o T u,,,(t) =jaw_t
in 211 21 21l s
Ay, +{a,, = a=—[ [,,(t)dt = o € at
22 { 2L T o 10 } Us19 0 T u210 0

v.. T u220(0) ~Jaw t
+ 7 J ril(t) + EZISTBT-rél(t)G Jat (5.71)

v, T u..(t) (t) =jaw t

In 211 2nl s

+ T—_{) [l-'lo(t ——mglo ST+ e +Pno(t) ——-(-yuglo 5T Je dt

+aw t . u__(0) Q (t)
2n 8 211 21 221
Y22 TAT {a Folte ° Upo0) T T g 220(0) +
v T u..~(0) +j2w t
2n 210 s
= [ [ [,(t) o7 © +I" 5, (t)lat (5.72
T o 11 5220(0) 21 ( ) )
v T u t u, t
2n 211 2nl
+ =1 [T, (t) + oo +1__(t) Jat
T o 10 u2202 0 5 no “2202 0 )
N jaw t
where uell(t) = uell(t) - uell(o)e .

Then, utilizing relations analogous to those given in Egs.

(5057)) (5-58): (5-59): (5-60): (5.61) and (5-62): Egs. (5.71) and

(5.72) can be reduced to

Vi [B(st) A(jw )]

%1 -
o + TN () }upn(0) =
+28
lnB(aw )82 +{ay - v 1al2(50, )87 - AGi)1} 128 (5.73)
(t) (t) , =jaw t
Vin %1, Y11 Yon1
+ i,--{) [(I‘lo(t) - vln) Tyt + T (¢) ——W] 8 at
-28
v, B(-jo)s
oy ={ 220(o? - }uyy(0) =
S-ZS
* v2nB(-st)s§. +{ a&l -V [B(-jws)sg - A('st)]} S:-I-.ES ( )
~ 5. T4
Vo T Upyy (%) Oy, Yooy () °
£ 1 [T (¢ (TLA(t 21y
*E £ 10(t) "'""("T* Foo(t) - Vo Upo0(0) +

u, ,(t)
+T_ (%) 3-2232%(57 lat.
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The determinant of this pair of simultaneous equations is

-25 o)
| V5 B(-jw _)S Q- vln[B(jw )8 - A(jw )]
& ° -{ - uoeo?O)o }'{ uelo(o)s - - }’ (5.75)

and, with the aid of Egs. (5.42) and (5.33), this becomes

L ,
H = W [all - 05211 . (5-76)

This determinant is nonzero for the same reason that Eq. (5.67) is non-
zero. Therefore, the above pair of simultaneous equations has a solu=~

tion which is as follows:

-1 . \aO .
Yo T T -a [{O‘el - Vo [B(-d0)S ] - A('J“’s)]} C3
11 21
(5.77)
o
+&El-vhJMm%BO-AQw)”CM]
and
u,.,(0)
210
U, 4(0) [c, -c.]l, (5.78)
211 a4y = O L 3
where
03 = The right-hand side of Eg. (5.73)
C, = The right-hand side of Eq. (5.74).
The functions u232(t) (3 = 1,...,n) can now be determined by
substituting the values for a,, and uell(o) from Egs. (5.77) and (5.78)

into Eq. (5.70) and integrating the differential equations involved.

The initial conditions, uaje(o) (3 £2; 3 =1,3,k540.5n), are chosen so
that the ueja(t)'s are periodic with period T. As in the case of Eq.
(5.43), uala(t) is periodic for any choice of initial condition, u212(0).

This undetermined constant must be determined in the next step of the
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recursion procedure. The initial condition, u222(0), is chosen equal

to zero (ioeo, all uiik,(o) = O’ k = 1,2’000)0

For (112 (i = 3,)-‘,—000,1'1):

Consider Eq. (5.53) for i = 3,4,...,n with Eq. (5.27) substi=
tuted for the uijo(t)'s (j = 1,2y...,n) and the results of the fore=-
going section of this chapter substituted for the uijl(t)’s (i, =

l,..0y0n). Recall that Ay = Mo

igp + (0 = Mg, = =gy, (8) 4 Vln[ril(t)“iio(o)]
+ vy [T o()u 5 (8) + oo + T (t)uy 5 (8)]

. L * . . . L L] L] . L] L] L] L . . L] L] . L L] L . L] L L L] L] . . ° . L4 .

Uiio o= = aguy (0) = agguyyg () + vy [T (8)ugy (0)]

(5.79)

+ vin[ fio(t)uill(t) 4 oees +'rho(t)uin1(t)]

* L . . L] . . - L . L . L] L] * L] L) . L] Ld * L L . L . L] - . . . L] L] L]

4 + (hi - xn)u

in2

in2 = ailuinl(t) + Vnn [Fil(t)uiio(O)]

Von [Ilo(t)uill(t) +'...-+I;o(t)uinl(t)]

(i = 3,“,..0)!1)

Once again, all the terms on the right-hand side of the above system of

equations, except for O&l’ are known. In this case there is only one

undetermined constant because (hj - Ak) (§ #k; 3,k = 3,4,...,n) 1is not

an integer multiple of JwT. The constant @5 must be chosen so that the
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uije(t)'s can be periodic with period T. Referring to the ith equation

in Eq. (5.79) it can be seen that u,, . (t) can be periodic with period T

ii2
only if the mean value of the right-hand side of this equation is zero.

Therefore, ., is chosen as follows:

12
- (t T
0, = ailf _i_i%_.)ydt inf [ (t)at
° (5.80)
v, T (t) (t)
in ill inl
=[ | [ 5(t) Foeee + f' t dt
1o 35 SbEwmol
(i = 3,4,,..,n),
or
%y T vy,
o, = Vi B(A)E] - (f) 0 ;1(0) dt o
5.81
Vin T Uy 14 (t) Uy g (%)

+ T——g [T t) v ORMRE +T_ (t) '_TT]

(i = 3,)4,.00,n)n

The functions uijz(t) (3 = L,254003n; 1 = 3,...,n) can now be

determined by substituting the value of a,, from Eq. (5.81) into Eq.

i2
(5.79) and integrating the differential equations involved. The initial
conditions, u 32(0), are chosen so that the u, (t)'s are periodic with
period T. Since uiia(o) is arbitrarily chosen equal to zero, none of

the initial conditions remains undetermined; therefore, this situation is

somewhat different from that for i = 1 or 2.
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5.7 Determination of the Coefficients, aik (1 =1,2,600,03 kK = 3,4,004),

of the Higher-Degree Terms in the Power Series Expansion for the Character-

istic Exponents, a,(u) (i = 1,2,...,0)

The determination of the @.,'s for k > 2 follows exactly the

ik
same pattern used to determine the ail.S and the aia's. The system of
differential equations which involves the uijk(t)'s 1s obtained by equat-
ing the coefficients of the uk terms from each side of Eq. (5.13) to one
another. This system of differential equations is similar to Egs. (5.54),
(5.70), or (5.79), depending on which integer i.is considered. For i =

1l or 2, the right-hand side of this system is known except for Qe and

one initial condition from the previous recursion step, and, just as in
the previous cases, these two undetermined constants are chosen so that
the uijk(t)'s ggg_be periodic with period T. The system differential
equations are then integrated, and the initial conditions uijk(o) chosen
so that the u; Jk(1;)':;; are perio@ic with period T. One initial condition
remains undetermined and must be determined in the next step of the recur-

sion procedure, and u (0) is chosen equal to zero.

iik
For (i = 3,4,...,n), the procedure is, as was just demonstrated
for ai2 (1 = 3,4544.yn), simpler. The right-hand side of the appropriate
system of differential equations is known except for Qg pee This constant
is chosen so that the uijk(t)'s can be periodic with period T. The system
is then integrated, and the initial conditions, uijk(o)’ chosen so that
the uijk(t)'s are periodic with period T. Again, uiik(o) is chosen equal

to zero. In this case, there is no undetermined initial condition which

must be determined in the next step of the recursion procedure.



CHAPTER VI

ALGORITHM FOR THE APPLICATION OF THE TECHNIQUES DEVELOPED IN THIS STUDY

6.1 Introduction

In this chapter the key results from the foregoing chapters are
restated so that they form an algorithm for the application of the tech-
niques developed in this study. An attempt has been made to make this
chapter self-contained except for a few references to other chapters.

It is hoped, thereby, to obviate a detailed examination of the first five
chapters in this study by the reader who is interested only in applying
the techniques which are developed here to a given nonlinear feedback
system.

This algorithm is divided into two main parts. The first part
presents the procedures to be followed for the determination of the first
approximation to the periodic response and the first approximations to
the stability criteria. As is demonstrated by the example worked out at
the end of this chapter, these first approximations can be quite satis-
factory. The second part of the algorithm presents the procedures to be
followed for the determination of higher-order approximations to both the
periodic response and the stability criteria.

Owing to the existence of two canonical forms, each of the two
main parts of the algorithm is further divided into two parallel groups
of sections. One group is applicable to the first canonical form, and
the other group is applicable to the second canonical form. In addition,
one common section, which acts as an initial step, is presented in the
first part of the algorithm. This section discusses the selection of a

canonical form.

140
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Consequently, this chapter is arranged in the following pattern:

a)

b)

d)

In Section 6.2, the selection of the pertinent canonical
form is discussed.

In Section 6.3, the method is presented for determining the
first approximation to the periodic responses of a nonlinear
feedback system which is characterized by the first canoni-
cal form.

In Section 6.4, the method is presented for determining the
first approximations to the stability criteria for a non-
linear feedback system which is characterized by the first
canonical form.

In Section 6.5, the method is presented for determining the
first approximation to the periodic response of a nonlinear
feedback system which is characterized by the second canon-
ical form.

In Section 6.6, the method is presented for determining the
first approximatiohs to stability criteria for a nonlinear
feedback system which is characterized by the second canoni-

cal form,

The above five sections constitute the first part of the algorithm which

is presented in this chapter. The second part of the algorithm is com-

posed of the following sections.

£)

g)

In Section 6.7, the method is presented for determining
higher-order approximations to the periodic responses of
& nonlinear feedback system which is characterized by the
first canonical form.

In Section 6.8, the method is presented for determining
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higher-order approximations to the stability criteria for
a nonlinear feedback system which is characterized by the
first canonical form.
h) 1In Section 6.9, the method is presented for determining
higher-order approximations to the periodic responsés of
a nonlinear feedback system which is characterized by the
second canonical form.
i) In Section 6.10, the method is presented for determining
higher-order approximations to the stability criteria for
a nonlinear feedback system which is characterized by the
second canonical form.
The final section of this chapter, Section 6.11, presents an example of
the application of this algorithm to a third-order system which is charac-

terized by the first canonical form.

6.2 Selection of a Canonical Form

If it is assumed at the outset that the periodic response in

question is dominated by a component in its frequency spectrum of fre-

quency ;% , then the selection of the pertinent canonical form is straight-
forward. The first canonical form applies if the frequency spectrum of
the forcing function, e(t), contains a term of frequency ;% , and the
second canonical form applies if the frequency spectrum of the forcing
function, e(t), does not contain a term of frequency ;% .

Unfortunately, the above assumption regarding a knowledge of
the dominant term in the response hides the basic problem in the selec-
tion of the pertinent canonical form; namely, the a priori determination

of the angular frequency, @, of the dominant term. As has been discussed
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previously (see the last paragraph of Section 2.3), there is no general

method for making an a priori selection of TS(T = 2 . The reason that

s
s
there is no such method is intimately connected with the lack of a com-

1

plete solution of the "inverse perturbation problem" as discussed in
Chapter II. 1In any event, it is sufficient for the purposes of this
chapter to say that it is necessary in every case to guess @ . Conse-
quently, it is worthwhile to consider briefly how one might‘make such a
guess.

The development of both the first and second canonical forms

in Chapter II begins with & consideration of the following linear system:

A(z)x - B(z)Nx = 0 . (2.5)

The characteristic roots of this system are functions of N. It is assumed
that for each of certain values of N this system has a pair of complex-
conjugate, purely-imaginary roots which are denoted i jaN.' These special
values for N are denoted NJ’ where j is an integer index.J It is shown
in Chapter II that by the use of suitable transformations the character-
istic roots * ij. can be shifted so that their magnitude becomes a
rational multipleJof the fundamental angular frequency of the forcing
function, e(t). The question of "guessing an ug" is really the question
of deciding which pair iij. is to be shifted and to where it is to be
shifted [i.e., which rationil multiple of the fundamental angular frequency
of e(t)].

In many cases the decisions are obvious. For example, consider
a system whose linear part, %%%% , has poles and zeros located in the

complex plane as shown in Fig. 6.1.
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A Im(2)
POLE ~
X
ZERO Re(z)
\? 2
POLE ~
X

B(z)
FIG. 6.1 LOCATION OF POLES AND ZEROS OF A POSSIBLE Alz) °

The root locus pattern for such a system is sketched in Fig. 6.2.

A Im(2)

LOCUS OF POLE
LOCATION AS N VARIES

Re(2)

r<j\é< »> >

FIG. 6.2 ROOT LOCUS ASSOCIATED WITH THE %%:—} PORTRAYED IN FIG. 6.1

It is apparent that for the above system there exists only one NJ.; conse-

quently, there is only one pair % j . Let the forcing function under
le
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consideration be a simple sinusoid of angular frequency @, where @, is

in the neighborhood of ZwN , as illustrated in Fig. 6.3.
1

A Im(2)
X +jwe
X +jwn,
Re(2)
>
X "j(l.)N1
X —jwe

FIG. 6.3 LOCATION OF iij and ijm% IN THE COMPLEX FLANE
1

w
Clearly, the poles * ij should be shifted to * j Z? .
1

Fortunately, this type of rather-crude reasoning suffices for
many nonlinéar feedback systems. This is especially true of those systems
for which the characteristic roots of Eq. (2.5) near the imaginary axis are
clustered in a narrow frequency interval. In more éomplicéted systems
the problem becomes more difficult, and it may be necessary to try several
possible w%'s before a suitable one is discovered. Just as the "inverse
perturbation problem" has more than one solution, there may be more than
one suitable Wy However, once an @y is selected the selection of the
pertinent canonical form follows immediately, as is discussed at the be-

ginning of this section. Note that the same canonical form is not
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necessarily the pertinent one for each of the possible w%'s. For example,
consider a simple system under the influence of a purely-sinusoidal forcing

function of angular frequency @, Let this system have two possible Wy 's;

J
the first in the neighborhood of w%, and the second in the neighborhood

w

of — . If the first Wy is chosen, the first canonical form is applica-

2
J
ble; and if the second W is chosen, the second canonical form is appli-
J
cable., It is quite possible that either o will give the correct solu-
' J
tion. However, one may lead to a better first approximation or a more

rapidly converging series representation than the other.

6.3 First Approximation to the Periodic Response: First Canonical Form

The step presented in this section is quite simple and comprises
nothing more than the solving of the following equation:
A( Jo, ) E+s

n - + = 0 , (3.16)
B(Ju,) 10

where:
(1) The solution of this equation is of the form g = clO(E s

1
ug), a complex function of two real variables. Letting

. clo = 'é' € (a., g I‘ea.l) )

the solution of Eq. (3.16) can be written

+8
a(E", wé)

®
]

+5

oo}
{

=0(E ", w).

S

+5
1 E = can always be assumed to be real without a loss in generality.
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Note that the solutions "a" and 6 may be considered to be
functions of system parameters other than E+S and w%; e.8.,

some component value in the linear network characterized

A(Jw,)
by W .

(2) The first approximation to the periodic response of the

nonlinear feedback system is

i}
Q

S
p(t) 10 € +Ci €

a cos [w%t + 6]

(3) no, the zeroth-order describing function, is a function

of "a" and is defined as follows:
= 1 T/2 F{ c ejwst + c* e-stt} e-stt dt
= )
o= o T / 10 10
-1/2

where (see Appendix C) the function F(x) characterizes the
nonlinear element in the feedback system and T, in this
case, equals an integer multiple of %ﬁ .

A(,jws) ]

(%) ﬁTEEQT is the reciprocal of the transfer function for the
linear part of the nonlinear feedback system.

(5) w, is the angular frequency of the first approximation.
The determination of this quantity is discussed in the
section preceding this one.

+5 +jo t

(6) E is the Fourier coefficient of the ¢ term in the

Fourier series for the forcing function, e(t).

The solution of Eq. (3.16) can be accomplished by many standard techniques.

Probably the most useful one is a graphical technique. 1In this technique
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A(jw,)
non ‘ - S .
the locus of n0 as 'a varies and the locus of ETE—;T as w% varies are
plotted on the same complex plane. For a given amplitude, "a", and a
A(jw_)
given angular frequency, ®, the vector whose head is i: ETEEST and whose
tail is at nb(a) gives the magnitude and argument of%%—— . An example
10
is shown in Fig. 6.4,
A MAGINARY
AXIS
Aljw,)
—— LOCUS OF ——O
B(jwo)
LOCUS OF n.(a)
REAL AXIS

>

—_—

- a=0 a INCREASING

Yj INCREASING

FIG. 6.4 EXAMPLE OF A POSSIBLE GRAPHICAL
METHOD FOR SOLVING EQ. (3.16).
Needless to say, there are many other ways for solving Eq. (3.16). A con-
venient and significant way of ‘presenting the solution of Eq. (3.16) is
to plot "a" wvs. W, for constant E° , and 6 vs. for constant E°, Among
other things, such a presentation allows those points at which the Jacobian
condition is not satisfied to be easily determined. These will be the

points at which g(%- becomes infinite.
SES
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6.4 First Approximations to the Stability Criteria: First Canonical Form

As is discussed in detail in Chapter V, there are n so-called
characteristic exponents associated with a periodic solution of an nth-
order nonlinear system. The signs of the real parts of these character-
istic exponents determine whether or not the periodic solution in question
is asymptotically étable: if all the real parts are negative, it is; if
at least one of the real parts is positive, it is not stable.

In this study, the characteristic exponents are denoted, al(g),
az(u), cee, an(p), and are functions of the perturbing parameter p which
is introduced in Chapter II. The true stability criteria--that is, the
ones corresponding to the physical system--are obtained by considering
al(“)’ aa(u), ceey an(“) evaluated at y = 1. A procedure which develops
the ai(p)'s recursively as pover series in p is presented in Chapter V.
With this procedure, the characteristic exponents, ai(p) (i=1,2, .v., n),

for a given problem can be determined in the following form:

2
ai(p) el T R P T

and the "true" characteristic exponent will be

ai(l)=aio+a + Q + ese . (i=l,2, s ey n)

il i2
The approximate stability criteria presented in this section
are based upon the assumption that the first two terms in the power series

for ai(p) form a satisfactory approximation to ai(“)5 that is, that
ai(l) Qg+ O (i=1, 2, «v., n).

In particular, it is assumed that the real parts of ai(l) and (aio + ail)

(i=1, 2, ..., n) have the same sign, although they may differ in magnitude.
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Moreover, it may be assumed that al(l) and az(l) are the signi-
ficant or dominant characteristic exponents and that the remaining (n-2)
characteristic roots can be ignored as far as a first approximation to
the stability criteria is concerned. This last assumption must, however,
be employed judiciously. For example, if the linear network has several
pairs of poles in its transfer function which are near i_jag, it is a
questionable practice to consider al(l) and aa(l) only. On the other
hand, if the linear network has one pair of poles in its transfer func-
tion near the * Joog and its remaining (n-2) poles far in the left-hand
plane, the assumption that al(l) and ae(l) dominate is a reasonable one.

In what follows, approximate stability criteria based upon the assumption
that al(l) and aa(l) dominate are presented first. These criteria are
then modified so that they take all the n characteristic exponents into
consideration.

Now if it is assumed that al(l) and az(l) are the dominant charac
teristic exponents and that (alo + all) and (aeo + ael) are satisfactory
approximations to al(l) and ag(l), respectively, it is necessary to con-
sider o, and @, only because &, = +ju, and O, = -Ju [see Eq. (5.24)].
It is known from Eq. (5.31) and indirectly from Eq. (5.41) that @, end

aal are equal to the two roots of the following quadratic equation:

o® - a{v, [Blan)s - AGiw)] + vy, [Bl-3)S] - AC-3))]}

* V1nVon [B(J“g)sg - A(jwé)] [B(~Jwb)sg - A(-Jw%)] (5.31)
- vinven‘B(ja%)B(-jw%)ngs S;2s =0 .

S
The quantities SO, 5%, and s 25 defined as follows:



T/2
jo t ~-Jw_t
o_ 1 daF s
so= 1 J ldt [2(6) = c)ge ® + e ]
/2 x=p(t)
and
izs aF F Jewt
S = T.[ x| ¢ ac.
~T/2  x=p(t)
ngt +28 -28
S is a function of only, and So and So are functions of both ©
and '

Since the constant term in Eq. (5.31) is equal to the product

of all and 021, it is apparent that one stability criterion is

<© A(Jw ) o A(-ng) +28 28

(- 5] [ sy] -5 > o

In addition to being an approximate stability cfiterion, the above expres-
sion is also the Jacobian condition [see Eq. (3.22)]. This connection
between the Jacobian condition and the approximate stability criterion

is pointed out in Chapter V. It is particularly important to recall

that along the boundary,

g° A(jaﬁ) s° A( jm%) S+2s S-2s =0
o~ Bijwsi o~ BZ-J&)S5 " o o
the slope(%%—

s
E
A second approximate stability criterion is, considering Eq.

) becomes infinite.
+8

(5.31) again, clearly
o) [e A(Jw,)
Re Vin B(Jw% [ o 3135;7-] <0 . (5.34)

In order to employ this criterion,,vln must be evaluated. However, since

Vip is @ function of all the characteristic roots, A, (3=1, 2, «v., n),

1n
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of the "y = 0" differential equation (see Section 2.4 and Appendix E),
it is necessary to calculate the xj's before this second stability cri-
terion can be utilized. As is shown in Chapter II, these hj's (j = 1,

2, ..., n) are related to the characteristic roots, Xﬁ (3 =1, 2, «uu,

n), of the linear differential equation,

A(z)x - Nj B(z)x = O, (2.6)
by the relation
}\j=ﬁx3 (J=l) 2) ceey n),
Ps
where p = — ., Note that the parameter P is a convenient measure for

J
angular frequency deviation from some fixed angular frequency, @y - It,
P, is employed extensively in the working of an example in the last sec-

tion of this chapter. In particular, the vjn‘s (3 =1, ..., n) can be

considered to be the following functions of B (see Appendix E):

v. (B=1)
vie) = L (E3)
B(n'l)
where
n4l
via(B1) = (1) (E2)
(A - xj) (A(j_l)— r) (>‘(3+1)' xj) cee (0 - xJ.)

and =1, 2, ..., n. The temm vln(ﬁ) can be determined from the above
two expressions and, then, substituted into the stability criterion, Eq.
(5.34). Note that for this stability criterion it is necessary to know
only the argument of the complex term, vln(ﬁ), and it can be seen from
Eq. (E3) that the argument of vjn(ﬁ) (J=1, ..., n) is independent of
B (a real positive numbef).

If it is not assumed that the two characteristic exponents,
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| al(l) and ag(l), dominate, then the first approximations, Q.+ (1=

il

3, 4, ..., n), to the remaining (n-2) characteristic exponents are deter-

mined by the following expressions:

G = N = BA (1=3,% ..., n), (5.24)
and
a, =v, B { s - gé;i; } G=3 4% ..y (5.49)
or AGER,)

Q
|

= vy (B) BER) {8 - }i=3 4 .0, ).

B(BX;)

6.5 First Approximation to the Periodic Response: Second Canonical Form

The determination of the first approximation,
Jjo_ t ~jw_t
s * s .
p(t) = ¢ o€ +¢y0€ + h(t; m%),

t0 & periodic response is slightly more complicated in the case of the
second canonical form. The complication is caused by the presence of
the term h(t; ) in the first approximation.

It is shown in Section 2.5 that h(t; a%) is equivalent to the
steady-state response of a linear system which is characterized by the
transfer function,

z(z) = B(2)

2™ 4" [ c() - NJ.B(%)]

to the forcing function, e(t). Therefore, if e(t) is expanded in a Fourier

series,



Jhat
L
e(t) = D E ¢ R ) (2.32)
f==0
_ W
where ay, = E? (q an integer), the expression for h(t; w%) is
w Jiw t
, B(JﬂwT)e “r
hit; )= > E e - - (2.33)
: o a7 o[ 3oy
f=-e0 (3tap)” + 8% [ o|5=) -03B(—=) ]
p J g
W
where o = pay, (p an integer) and, again, B = Ei—-. ‘Note that h(t; m%)

is a function of ® (equivalently, B). J

After h(t; m%) is determined, clo is determined from the re-

quirement that it satisfy the following describing-function-like relation.

A(Jw,)

no - Wr‘ O) (3'29)

wanere
- T/ . . _
t -Jw T -Jo_ t
1 JO ¥ Y J
T o T j. F{Cloe >+ cp€  ° 4 h(t; w%)} e ° at. (c8)
10
-T/2
*

It is also true that c_. satisfies the complex conjugate of Eq. (3.29).

10
The significant difference between the zeroth-order describing function
defined above and the one defined for the first canonical form is that

the above zeroth-order describing function is not necessarily real and

is a function of 6 and w, (or B) as well as "a." (Recall that c . =

10
a Jje
26 o)'
Once the appropriate expressions are substituted into Eq. (3.29)
A(jw.)
s . .
for no and ETEEQT , its solution can be accomplished by a variety of methods.

The best method will depend upon the special characteristics of the par-
ticular problem under consideration. Graphical techniques are, of course,

often useful.
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6.6 First Approximations to the Stability Criteria: Second Canonical Form

The determination of the first approximations to the stability
criteria for the second canonical form resembles closely the same deter-
mination for the first canonical form (see Section 6.4). |

If it is assumed that the two characteristic exponents, al(l)

and az(l), dominate, then the first approximate stability criterion is,

again, . .
© _ A(st) s© _ A(-st) _gtes o3 5
o Bijwsy o] Bz-jwsj o o} ’
where T/2
ol 1
5 = 71 f dxx—d%t)
/2 *°P
and :
T/2 .
si s 1 j, dF €=F ,J2wst .
o) o7 dx :
_T/2 X_p(t)

The difference between the above case and the first canonical form is
that here p(t) is of the form,

jw t ~Jo t

J(DS JW

_ S . .
p(t) = c o€ + ey € + h(t; ws) ;

whereas, in the case of the first canonical form, it is of the form,
Jw t -Jo t
p(t) =c,e ° +c,e °
10 10 '
The second approximate stability criterion is, similarly to the

first canonical form,

Re{vln B(st) [52 - gé%g:—;—]} <o. (5.34)

The term v, 1is evaluated just as it was for the first canonical form.

1n
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If it is not assumed that the two characteristic exponents,
a(l) and ag(l),-dominate, then the first approximations to the remain-
ing (n-2) characteristic exponents are determined, again similarly to

the first canonical form, by the following expressions:

(i=3, 4% ..., n) (5.24)

and -
A(BA,)

B(8%, )

ail = vi;l(ﬁ) B(Bxi) { Sg - } (1 =3, 4% ..., n). (5.49)

6.7 Higher-Order Approximations to the Periodic Response: First Canonical

Form

In Chapter II, a perturbation parameter is artificially intro-
duced into the differential equation which characterizes the nonlinear
feedback system of interest. The periodic solutions of the resulting
p-dependent differential equation are denoted p(t, p). At u = 1, these
p-dependent periodic solutions, p(t, p), correspond to periodic responses
of the original nonlinear feedback system; i.e., the desired responses are
p(t, 1).

A coordinate transformation is also introduced in Chapter II.
This transformation converts the single nth-order différential equation,
Eq. (2.17), which characterizes the problem into a system of n first-
order differential equations, Eq. (2.27). The desired solutions of this
system of equations are denoted [cj(t, w)], where [cj(t, )] is an n-
component column matrix. The desirable property which [cj(t, )] pos-

sesses is that it satisfies the following "periodicity condition":

AT
c (T, wed -c.o,w)] =0 (=1, ..., n), (3.2)
J J .
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where the kj's are the characteristic roots of the "y = 0" differential
equation. This condition is referred to as a "periodicity condition”
because it guarantees that the solution, p(t, u), of the nth-order dif-
ferential equation, which is related to the cj(t, w's (3 =1, 2, ..., n)
by
Klt hat Xnt

p(t, ) =c (b, wle ™ +c,(t, e ™ + oo+ (b, p)e”™
is periodic in t with period T. Therefore, determination of the cj(t, n)'s
is equivalent to a determination of the periodic solution, p(t, u).

A recursion procedure is developed in Chapter IV for the deter-

mination of the desired cj(t, w)'s as power series in y; i.e.,

2 o
c'j(t, u)—cjo‘f’ucjl(t)"'ucjz(t) + e . (J—l, 2, sy n)o

The first terms in these power series, 50 (J=1, 2, +v., n), determine
the first approximation,
+jw t ~jo t
_ s * s
p(t) = C 08 +¢y0€ ,
to the periodic response. It is shown in Chapter IV that CJO = 0 for

*
J=3, 4% ..., nand cs0 = C10° The term o 18 determined by the methods

of Section 6.3.

The higher-order terms in the power series expansions for the
cJ(t, w)'s are determined by a rather straightforward recursion procedure.
A typical step in this recursion procedure follows the ensuing pattern:

a) At the outset of this step all the cjk(t)'s, except the

mean values of clk(t) and c,, (t) (equivalently: the initial

conditions a., and azk), are completely known. Furthermore,

1k
all the terms in the power series for the cj(t, w)'s which
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precede the cjk(t)-terms-are conmpletely known.
It is first necessary to determine the mean values for

clk(t) and c2k(t). [Recall that, because N

Ny = mdwg clk(t) and cgk(t), in contradistinction to

cjk(t) (§ =3, b, ...,‘n), are periodic with period T.
[see Eq. (4.3).] Owing to the requirement that the solu-

= st and

tion p(t, u) be real, the mean value of cgk(t) must equal

the complex conjugate of the mean value of c.. (t). This

1k
is a first relation which can be employed in the determi-
nation of these unknown mean values. The second and key
relation is the kth-order describing function relation,
A(jw_)
n}{ - g(_—a)—s—)— = O ()""031)
I

where n, is the kth-order describing function. This des-

cribing function is derived in the following manner. First,

o0} 00
, }\.lt 5 Kk }\.nt 5 K
k=0 k=0

is formally substituted into F(x), and the resulting func-

tion is expanded in a power series in u; i.e.,

At At © «
F"{cle + eee t e } = kgg Fowo . (4.20)

Each F, (k =0, 1, 2, ...) is a function of Clo7 *r Sy’

c cees Coy and t. Now, assuming

20’ ‘.l, cgk’ .0., cno,
that all the steps in the recursion procedure occurring

before the present step has been carried out properly; all
the Cjk

functions of time. Consequently, Fk can be. considered, in

's, except for the mean value of clk(t), are known
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the present step in the recursion procedure, to be a func-
tion of t and mean value of clk(t) only. Moreover, F,_ is
periodic in t with period T for any value of the mean value

of clk(t) [see the discussion following Eq. (4.20]. Expan-

. o (o] . .
ding Fk(t, clk) [clk = the mean value of clk(t)] in a Fourier
series gives

® jaht
o )4 o]
F(t, cp,) = > F (cq, )e , (4,21)
I==0

_ ex - . .
where G = F - The kth-order describing function, n., is

defined as follows:

+S
nk co ’
1k
+s Jo t
where F is the coefficient of the ¢ s -term in the Fourier

k
series, Eq. (k.21).

It should be noted at this point that the Jacobian expres-
sion arises in the solution of the kth-order describing-function
relation, Eq. (4.31). If Eq. (4.31) and its complex conjugate
are considered to be a pair of simultaneous equations in czk
and (cik)*, the resulting system of equations,

&%°1k T B(] ) Lk T
*(CO )* _ A("st) O *
Me\Cik Bz-j S; (clk) =0,
reduces to a linear inhomogeneocus system of equations whose
system determinant is just the Jacobian expression. This

statement is not proved here, but it is shown to be the case
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for the example which is worked out in Section 6.11.
A rigorous proof of this statement is given by Coddington
and Levinson ([10], pages 363-364) in their proof of the
uniqueness of the solutions obtained by a recursion pro-
cedure which is closely related to the recursion procedure
of Chapter IV. In any event, this is another demonstra-
tion of the importance of the Jacobian expression.

c) After the mean value of clk(t) is determined, the next

terms, in the power series c )(t) (=1, 2, vv., n),

J(k+1

can be completely determined, except for the mean value of

cl(k+l)(t)’ through the following expression:
t =-N.S
cj(k+l)(t) = 2501) * Vin /’ e Y g(s)as (J=1,2, ...,n) (6.1)
0 (k=1,2, ... )

is the initial condition for

[See Eq. (4.10)], where 85 (kal)
cj(k+l)(t) and
n At 1
g (t) = B2)F,(8) - 3 cy (0)Alz)e © , (2= ), (6.2)
=1

where (k = 1, 2, ... ). This expression for gk is obtained
by substituting the cjk(t)'s (=1, 2, ..., n) which have
been determined into Eq. (4.23). A significant characteris-
tic of this substitution is that it results in a periodic
function, gk(t), whose Fourier series contains no terms of
angular frequency w . Therefore, it is known that the co-
y%ts -t
efficients of ¢ and ¢ in Eq. (6.2) always add up to

zero if a suitable set of cjk(t)'s has been substituted into
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Eq. (4.23). Consequently, at this point in the recursion

procedure, if the mean value of c_ (t) has been determined

ot 1k
by Eq. (4.31), the ¢ =~ terms in g, can be neglected. It
is shown in Section 6.11, in the example, that this charac-
teristic of gk(t) simplifies the operation characterized by
Eq. (6.1).
After the integration in Eq. (6.1) has been carried out,

the initial conditions, must be determined. This is

%5 (x+1)
easily done for j =3, 4, ..., n. It is only necessary to

' s -
select the 2 (k1) '® (3 =3, 4 ..., n) so that the corres
ponding cj(k+l)(t) (3 =3, 4% ..., n) satisfies the "period-

icity condition",

AT
Cj(k+l)(T)€ J - CJ(k+l)(O) = 0. (ll'-3)

Since the definite integral in Eq. (6.1) is, after integra-
tion, made up of a constant plus an exponentially-damped
periodic function, it is merely necessary to choose aj(k+l)
so that it cancels the constant term which results from the
integration. Moreover, the procedure need not really be
carried out: the constant term which results from the inte-
gration can just be neglected.

In the case of j = 1 and j = 2, the determination of
is slightly more complicated than for j = 3, 4, ..., n.

83 (k+1)

Because Al = ng and KE = -jws, the "periodicity condition",

AT
Cyran) DY - eyany(@ =0 (1=1,2),

is satisfied for all al(k+l) and ae(k+l)' Therefore, the
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"periodicity condition" does not determine a ) and

1(k+1

% (kel)" In other words, both cl(k+l)(t) and c2(k+l)(t)

are periodic with period T for all values of their initial
conditions. However, since these initial conditions deter-

mine the mean values of cl(k+l)(t) and c )(t), the fact

2(k+1

that a and a are undetermined is equivalent to

1(k+1) 2(k+1)

and ¢ being undetermined.

co o
1(k+1) 2(k+1)
However, just as the present step in the recursion pro-

o
cedure was begun with clk and cgk undetermined, the next

. . . . . 0
step in the recursion procedure begins with cl(k+l) and
cg(k+l) undetermined. Therefore, the foregoing constitutes

one step in the recursion procedure.

6.8 Higher-Order Approximations to the Stability Criteria: First Canonical

Form

As is discussed in Section 6.4, whether or not a periodic res-
ponse is asymptotically stable is determined by its associated character-
istic exponents, ai(l) (i=1,2, «.., n). A recursion procedure is devel-
oped. in Chapter V for the determination of these characteristic exponents
as power series in u; i.e.,

2 .
ai(p)—aio+uail+pai2+... (l-—l, 2, ceey n)o

The approximate stability criteria which result from considering aiO and

@, only are given in Section 6.4, The procedure to be followed for the

determination of o, (i=121,2, voe, n; k=2, 3, «v..) is outlined in
this section. Since in many practical situations a knowledge of aiO’

ail’ and ai2 only will suffice and since each of the steps in the recur-

sion procedure developed in Chapter V follows the same pattern, only the

step which determines G (i=1, 2, ..., n) is outlined here.
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The determination of Otiz(i =1, 2, ..., n) follows, then,the
ensuing pattern:

a) At the outset of the determination of o, (i =1, 2, ..., n),

i2

both @, , and &, (i=1, 2, ..., n) are assumed to have been
determined by the methods of Section 6.L4.
b) The functions I}O(t) (=1, 2, ..., n) are evaluated from

the expression,

L]

I"J.O(t) = B(z+>\.J.)So(t) - A(xj) (z = 3 ) (5.20)

where j =1, 2, ..., n and

s (¢) = &
° dx jo_t ot
X =2C € s + C* € S
- 710 10
(0w (0)

c) The gquantities -lg-r—y and —__-(_7 are evaluated from

{all = Yin [B(st’si - A(j‘”s)]}

u 0
120(0) (5.35)
u___(0) +2s
110 v, B(Jw) S
1n J s o)
and
o]
2 - _ R
21000) {0‘21 Von [2( Jo)S, - Al J“’s)]} (5.42)
u_({0) - » GTY (5.
220'° v, B(-ju ) 5°°°
2n s’ o
28 -28 .
d) The quantities Sl s Sl , and Sl are determined from the

following expressions:

o - 1 j’ S (t 5,

-T/2
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T/2 .
F jow t
t2s _ L1 s
577 = & f Sl(t)e at,
-T/2

where Sl(t) is the second term in the power series expan-

dr .

X = p(t} H)
dr 2
x=p(t, u)

The next two steps pertain only to the determination of alz'

e) The appropriate quantities evaluated in b) and c¢) are sub-
stituted into Egs. (5.36), (5.37), and (5.38). These equa-
tions determine ulll(t), ulzl(t)’ ceey ulnl(t). The term invol-

ving @., in the integrand of Eq. (5.36) has been chosen so

11
that the mean value of this integrand will be zero; therefore,
the constant terms in this integrand can be ignored. The

term involving Q.. in the integrand of Eq. (5.37) has been

11 .
-Jawst
chosen so that this integrand will have no € -term in
-Jjew t
its Fourier series; therefore, the ¢ S _terms can be

ignored in the integrand of Eq. (5.38).

The initial conditions, ulll(o), “121(0)’ ceey ulnl(o),
must be chosen so that all the functions, uljl(t) (§ =1, 2,
«++, n), are periodic with period T. Therefore, for j =
3, 4, ..o, n, the initial conditions, uljl(o)’ are chosen so
that the term,

(Xj-Jw%)t

a5, (0)e (J=3, b4 vy m)
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, (n,- jw%)t
cancels the ¢ J -term which results from the integra-

tion in Eq. (5.38).
121(O), the function ulEl(t) is periodic
with period T for all u121(°)5 therefore, a simple periodi-

In the case of u

city condition is not sufficient for the determination of
ulEl(O)’ and it must be determined later in the recursion
procedure.

The term ullO(O) is merely a scale factor which is never
evaluated, and “111(0) has been, as it may be, set equal to
zero arbitrarily.
a12 is then determined by substituting the quantities and

functions which have been determined in the foregoing steps
into Eq. (5.68).
The next two steps pertain only to the determination of a22'

g) The fungtions uEll(t)’ u221(t)’ ceey uenl(t) are determined
through Egs. (5.43), (5.44), and (5.45). The procedure to
be followed here is analogous to that followed in the deter-
mination of ulll(t), ul2l(t)’ ees, and uinl(t) [see e)].

h) a22 is determined by substituting the appropriate quantities
and functions into Eq. (5.77). All the necessary quantities
and functions have been determined in the foregoing steps,

The next two steps pertain only to the determination of ai2 (1 =3,L4 ...,n).

i) The functions uijl(t) (i=3,% oo, n; J=1, 2, «v., n)
are determined through Egs. (5.50) and (5.51). The term a,
in the integrand of the integral in Eq. (5.50) has been chosen

so that this integrand has mean value zero; therefore, the

constant terms in this integrand can be ignored.
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J) 5 (i=3,1% ..., n) is determined by substituting the
appropriate quantities and functions into Eq. (5.81). All
the necessary quantities and functions have been determined
in the foregoing steps.

The determination of the ai 's for k > 2 follows a pattern which

k
is analogous to the foregoing pattern. This determination is discussed in

Section 5.7.

6.9 Higher-Order Approximations to the Periodic Response: Second Canonical

Form

The determination of the higher-order approximations to the res-
ponse of those noplinear feedback systeﬁs which are'characterized by the
second canonical form is analogous to the same determination for nonlinear
feedback systems which are characterized by the first canonical form. The
only diffefence between the method presented in Section 6.7 for the first
canonical form and the method needed here for the second canonical form is

that here the functions, F , are derived from the series expahsion,

k

% At o0
k
F‘{clekl + .ot CoE o4 n(t; wé)} = ZE LTI (4.33)
: k=0
instead of Eq. (4.20).

6.10 Higher-Order Approximations to the Stability Criteria: Second Canonical

Form

The determination of the @,,'s (i=1, 2, ..., n) for those non-

i
linear feedback systems which are characterized by the second canonical
form is analogous to this determination for nonlinear feedback systems which

are characterized by the first canonical form. The only difference between

the method presented in Section 6.8 for the first canonical form and the
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method needed here for the second canonical form is that here the functions,

Sk’ are derived from the series expansion,

dr 2

&" = SO+uSl+“’82 + s e F)
klt Ant

x = c,€ LIRPRRE e + h(t;w%)

instead of

dF 2

a-x--So+pSl+u82+... .
Alt At

X = C,€ + ... +cCce

1 n

6.11 An Example of the Application of the Algorithm Presented in this Chapter

In this section, the algorithm which is presented in this chapter
is used to determine approximations to the periodic responses of a third-
order nonlinear feedback system and, further, approximations to the charac-
teristic exponents associated with these periodic responses.

The block diagram of the nonlinear feedback system which is con-

sidered here is shown in Fig. 6.5.

s
e(t) = 2B cos ®t

- (0.8 x 10*6) z : | X
+ 23 + 1002° + 10, 800z + 106

y = (-1500 x 10'6)x + (6.66 x 10'6)x3 -

FIG. 6.5 BLOCK DIAGRAM FOR THE THIRD-ORDER NONLINEAR FEEDBACK
SYSTEM CONSIDERED IN THIS EXAMPLE
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Consequently,
A(z) = 23 + 1002° + 10,800z + 10° A
6
B(z) = - (0.8 x 107)z ,
‘ ” (6.3)
F(x) = (-1500 x 10'6)x + (6.66 x 107)x°
Jo t ~jo t
e(t)=Ee © +Ee ¢ (E, real), )

and the differential equation which characterizes this nonlinear feedback

system is

3 2
9-’% + 100 9-’5 + 10800 %—f— + 1%
dt dt

+ (0.8 x 106) %’5 [(-1500 x 10'6)x + (6.66 x 10'6)x3 (6.4)
+ 2E cos w t] = 0.
e

It is assumed throughout this example that w% is within some small neighbor-
hood of 100.
The diagram for a physical system which might be characterized

by an equation in the form of Eq. (6.4) is shown in Fig. 6.6.

T

IiF

Ideal Current Generator: 2E cos a%t

FIG. 6.6 DIAGRAM FOR A PHYSICAL SYSTEM WHICH MIGHT BE CHARACTERIZED BY
AN EQUATION IN THE FORM OF EQ. (6.4).
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It is assumed here that the circuit diagram in Fig. 6.6 characterizes an
electron tube oscillator under the influence of an externai signal. In
order for this physical system to be characterized by an equation in the
form of Eq. (6.&), it must be assumed that grid current can be ignored
and that plate current is Independent of plate voltage. Granting these
assumptions, the grid voltage in Fig. 6.6 will correspond to the inde-
pendent Variable,x, in Eq. (6.&). The current from the ideal current
generator in Fig. 6.6 will be, of course, equal to 2E cos w%t. (Note
that, contrary to normal practice, E represents a current.)

6.11.1 Selection of the Pertinent Canonical Form. The first

problem which arises in the use of the algorithm presented in this chapter
is the determination of which of the two possible canonical forms is appli-
cable, This determination is, in turn, as is discussed in Section 6.2,
intimately related to the selection of @, the angular frequency of the
dominant term in the first approximation to the response. The selection
of w is accomplished by investigating the characteristic roots of the

following linear differential equation:

A(z)x - NB(z)x = 0.
There are, of course, several methods for finding the characteristic roots
of the above equation. For example, the root locus ([21], pages 559-612)
technique from control system theory is one possibility. The poles and
B(z)

i i i L ] L ] L] h
zeros of the transfer function KTET are located as shown in Fig. 6.7. The

root locus pattern associated with Fig. 6.7 would be of the form shown in

Fig. 6.8.

' -6
It is clear from Fig. 6.8 that the critical N, N,, is -1000x10 ~.

The corresponding characteristic roots for this value of N are:
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A Im(2)

X

POLE: (-2 + 1102.04)/

POLE: (-96 + jO)
'/—‘_) Re(z)

* g
ZERO: (0 +10)/

POLE: (-2 —,j|02.04)\

X

FIG. 67 LOCATION OF THE POLES AND ZEROS OF %%
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AT N=-1000 X 107% THIS PO:E/ w
HAS SHIFTED TO z= +jl00

N DECREASING

TOWARD -0 ZERO\

A Im(z)

X

Re(2)
< < * H—a 'S
<L\‘r N = —1000 X I0°® THIS POLE
HAS SHIFTED TO z:=-100
A
AT N==I000 X 10"® THIS POLE
HAS SHIFTED TO z = —jlOO

FIG. 6.8 ROOT LOCUS PATTERN ASSOCIATED WITH FIG. 6.7
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A = 100 (= JaNl)

Ay = =J100 (= -jay ) (6.5)
1

X3 = =100.

Since ®, is assumed to be in some small neighborhood of 100, the
best choice for ag is obviously W, = a%. Therefore, this example is a case
of harmonic response as opposed to subharmonic, ultraharmonic, or ultra-
subharmonic response. Furthermore, because O, = @, the forcing function
e(t) contains a term of angular frequency w_; consequently, the first ca-
nonical form is the pertinent canonical form.

The characteristic roots of the "p = 0" differential equation,

TR h3, are, from Eq. (2.14) and the paragraph following it,

N = JLO0B,
N, = -j1008, (6.6)
x3 = -1008,

g Ce
where p = —— = 100

to be a normalized frequency variable. If w, is equal to le, p equals 1.

. It is important to appreciate that B can be considered

If @, is greater than.ahj, then P is greater than 1; and if @, is less than
le, then P is less than 1. This point is emphasized because P is used as
the frequency variable ip much of that which follows.

At this point, then, the pertinent canonical form has been selec~_
ted and certain preliminary calculations have been completed. The remain-

der of this section is devoted to determining an approximation to the periodic



173

response and approximations to the associated characteristic exponents.

In each case the coefficients of the related power series are determined
2

up through the coefficient of the u -term. Thus, if the periodic solu-

tions, p(t, u), are expressed in a power series in u,

p(t, n) = p(t) +upy(t) + uepe(t) Foeee (6.7)

the coefficientsl determined in this section are p(t), pl(t), and p2(t),

and the approximation to the response is

p(t, 1) = p(t) + p (%) + py(t). (6.8)

Similarly, if the characteristic exponents are expressed in a power series

in u,

2 , |
ai(p,) maio‘*‘“ail“"p.aie“l' se e (l— l, 2, cesy n), (6.9)

the coefficients determined in this section are aiO’ Q 1’ and ai2 (1= 1,

i
2, ..., n), and the approximation to the characteristic exponent associated

with the periodic response is

ai(l) = Qo+ Gy + 0, (i=1,2, «., n) . (6.10)

6.11.2 First Approximation to the Periodic Response. The first

approximation to the periodic response of the nonlinear feedback system
which is considered in this example is determined by the methods of Section
6.3. As is discussed in that section, these methods are principally con-
cerned with the solution of the zeroth-order describing function relation,

Xlt Xht
1 Note that pk(t) = clk(t)e + oees + cnk(t)e fork=1, 2, ..., and

it is periodic with period T.
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A(ja%) gts
n

- ~ + =0 (3.16)
o) B(Jug) 10 ’

where the solution of the equation, 0’ forms the first approximation to

the periodic response as follows:

Jot 4 -dot
p(t) = ¢ o€ + ¢y €

+jo- t
The term E'° in Eq. (3.16) is the coefficient of the ¢ ° -term

in the Fourier series for the forcing function e(t). 1In the present case,

e(t) = 2E cos [agt] (E real)

and

therefore, E® - Eand E° = E.
AlJw)) )
The term ETEEQT in qu (3.16) is given by

Aljw)  -dwd - 10002 + § 10,8000 + 10°
Jbg - =3(0.8 x 10%)a

The locus of this term as w_ varies is sketched in Fig. 6.9. Further,
A(Jw)
s

for the purposes of this example, Erfa—y is sufficiently-well approximated
I8

by the following linear expression:

A(Jwy) )
ETEE;T’“ [-1000 + 250(10mB)] x 10

6

6 _ jleso(1omg)] x 107 |,

where &8 = B - 1 is a measure of the deviation of w, from le = 100; i.e.,

w, = (L + aB)100.

The term s the zeroth-order describing function, is determined

by the following relation:

(6.12)
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which in this case is

Letting c

T/2 .
: Jw_ t -Jot. -jot
_ 1 5 * s s
% = o J F{opge + e }e as, (c1)
-1/2
T/2 .
_ 1 -6 jw%t * -Jwbt
n = . f [(-1500 x 10 ){cloe +cyp€ }
-T/2 (6.13)
Jo t -jo t 3 -jw t

+ (6.66 x 10-6)-{cloe 5 4 0;06 s } ] e ° dt,

_ -6 -6
n, = (1500 x 19 ) + (20 x 1077) ¢ %0 - (6.14)
10 = % ejg, the expression for n, becomes
n = (-1500 x 10'6) + (5 x 10'6) a® . (6.15)

A plot of n_ vs. a® is presented in Fig. 6.10.

All the functions which appear in Eq. (3.16) are now known expli-

city and the determination of the desired c is now a matter of substitu-

10

ting these functions into Eq. (3.16) and finding the solutions of the re-

sulting equation. The solutions of this equation are determined here

through use of the graphical technique illustrated in Fig. 6.h4.

A typical step in this graphical technique is illustrated in

Fig. 6.11 and follows the ensuing pattern:

A(Jo)
a) The locus of §T35;7 vs. o, is plotted.

b) The locus of n_ vs. "a" is plotted on the same complex plane
A(dw,)
] . .
that the locus of ETEZ%T'VS' o, is plotted on. 1In this case
the locus of n starts at -1500 x 10‘6 for a = 0 and moves

toward the right along the real axis as "a" increases. Fig.

6.10 gives the value of "a" (actually, ae) which corresponds
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to a given point on the locus of nb.

c) A value is assumed for E, say E = 2 x 1073,

LA}

d) A value is assumed for "a", say a = 12.
: +8

e) The magnitude of g—- is calculated:
10
+S
=l - Z_ 33351200 .
10

f) The point on the locus of n vs. "a" which corresponds to

6

a = 12 is determined: from Fig. 6.10, no(lE) = =780 x 10 °,
A(jw,) |
. . . S
g) The intersections with the ETEEET -locus of a vector YgiCh

origirates at no(lz) = -780 x 10'6 and is of length %—-—- =

333 x 10-6 determine the possible values for (recaii that

W, = wé). It can be seen from Fig. 6.11 that these values
are w_ = 99.61 and @, = 101.28.

h) The vectors in g) also determine the angle €. This can be
seen by noting that the vectors are determined by

-0 Al

2
a

therefore, the angle of each vector is equal to the negative
of its associated ©. Then, from Fig. 6.11 it can be seen that
the angle associated with @, = 99.61 is © = 2000, and the
angle associated with w, = 101.28 is 63°,
The above procedure is repeated for new values of "a“ so that the behavior
of "a" vs. _and 6 vs. w for constant E, in this case E = 2 x 1073, can
be determined. A new E is then selected, and the procedure is repeated.
The results of the use of this graphical technique are presented in Figs.
6.12, 6.13, 6.14, 6,15, and 6.16. Additional information which pertains

to later parts of this example is presented in Fig. 6.12,
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The foregoing completes the determination of the first approxi-
mation to the periodic response. The next problem'is the determination
of the first approximations to the stability criteria.

6.11.3 Fifst Approximations to the Stability Criteria. The first

approximations to the stability criteria are obtained by employing the
methods discussed in Section 6.4. According to Section 6.4, the first ap-
proximate stability criterion is that the Jacobian expression should be

positive; that is,

A(Jw_) A(-jw_)
o) S ) S +28 _-28 (6.16)
|:So - Bljwsi:l l:so - BZ-JwSS:I -5 5, 0

28

where Sg and S? are defined in Section 6.4. Referring to Eq. (6.3),

it can be seen that

%% = (-1500 x 10"6) + 3(6.66 x 10‘6) 2 .
Consequently,
o -6 -6 -6 -6, 2
s, = (-1500 x 10 ") + (40 x 10 )cloc_?f_O = (-1500 x 10 7)) + (10 x 10 ")a“,
S;gs___ (20 x 10'6)ciO - (5 x 10°0)2%9%° | ang (6.17)
S;ES = (20 x 10-6)c3‘_§ = (5x 107 afet9%

Substituting Egs. (6.17) and (6.12) into the inequality (6.16), gives the
following relation:

2

1072{[-500 + 108® - 250(2008) | + 250%(1008)% - 252*}> 0 (6.18)

where (10028) = G»s-lOO). The locus of those points at which this Jacobian
expression vanishes is plotted in Fig. 6.12.. Note that this locus passes

through the points on the "a" vs. w, curves at which %gi- becomes infinite.
s
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This is Jjust as expected from the discussion in Chapter III of the Jacobian
condition. Further, note that the condition (6.18) is not satisfied inside

the closed curve formed by this locus. Finally, it can be seen from Eq.

(5.31) that points on the locus are points at which all and/or agl equals
Zero.
"The second approximate stability criterion presented in Section
6.4 is
(Jw ) - '
0
Re{ B(Jw, ) [so ]}‘ < o. (5.34)

In this example, condition (5.34) reduces to

é? 107%(500 - 108%) < o, (6.19)

where Vi3 is, from Eqs. (E2) and (E3),
1 -4

vl3(5) = - uaz (L +3) x10 . (6.20)
Similarly,

v,.(B) = - 25 (1-4) x0Tt (6.21)

23 42 ;
! -k
v33(B) = " x 10 (6.22)

It is readily seen that condition (6.19) further reduces to

a > +ﬁ ~ T.07 . (6.23)

The boundary between regions in which condition (6.23) is satisfied and
regions in which it is not satisfied is shown in Fig. 6.12 as a horizontal
line through a = ./50. It can be seen from Eq. (5.31) that points on

this line at which the Jacobian expression is positive are points at

which Re @. ., and Re Q

11 2l
The first approximation to the third characteristic exponent,

both equal zero.
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a3(l), associated with a periodic response of the system considered in this
example is determined from Egs. (5.24) and (5.49) (see Section 6.4). Thus,

from Eq. (5.24),

O‘3o = -100p , (6.24)

and from Egs. (5.49) and (6.22),

L oo 2
ay~ Fx10 {-500 + 102" + 250(10013(3)} . (6.25)

The corresponding approximate stability criterion is

Re (oc30 +Q,.)< 0, (6.20

31

and, clearly, the boundary between stable and unstable regions is

Re (a30 + a3l) =0 . (6.27)

Substituting Eqs. (6.24) and (6.25) into Eq. (6.27) gives

-B10O0 + %9 pe 10"L+ {-500 + 1082 + 250(10%{3)} =~ 0, (6.28)

For small AB and P~ 1, the solution to Eq. 6.28 is well-approximated by

a = /2550 + 2500 AP . (6.29)
It can be seen from Eq. (6.29) that "a" must be quite large relative to
the range of "a" considered in Fig. 6.12 before the first approximation
to the third characteristic exponent passes into the right half-plane.
At this point the entire first approximation is completed; that
is, first approximations have been obtained to the periodic response and
all three stability criteria (characteristic exponents). The next problem

is to determine higher-order approximations to the periodic response,
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6.11.4 Higher-Order Approximations to the Periodic Response.

The higher-order approximations to the-periodic response are determined
by employing the methods of Section 6.7. In order to facilitate the em-
ployment of these methods, a set of new symbols is introduced. Recall
that the periodic solution which is being determined in a power series
in y is denoted p(t,'p). Further, the power series expansion is repre-
sented as

2
p(t, u) = p(t) +up (¢) + up(8) + .o (6.7)
The first approximation and each of the pk(t)'s are a periodic function
of t with period T. Expanding each pk(t) in a Fourier series gives

2 jlu&t

pk(t) = 5 P, € k=1, 2, ...) . (6.30)

==-00
The Fourier coefficients, pﬁ, are employed extensively in what follows.
The symbol pi designates the coefficient of the term in Eq. (6.30) for
which Jl@r = Jw%. The symbols p;s s pis, etc. follow the same pattern,
The first term in the power series shown in Eq. (6.7) is, of course,

jw t ~jo t
p(t) = ¢ eJ 8 el e e .
10 10
The next few paragraphs are devoted to the determination of pl(t).

Determination of pl(t):

The function p,(t) is related to the cjl(t)'s (=1, 2, 3)as

follows:
Jo T -ja%t A3t
pl(t) = cll(t)e + CEl(t)e + c3l(t)e , (6.31)
o 0 100t
-J100Bt -
pl(t) = cll(t)g‘jloOBt + czl(t)e JLO0Pt c3l(t) Pt (6.32)
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The first step in the determination of the functions cll(t), CEl(t)’ and
c3l(t) is the carrying-out of the integration indicated in Eq. (6.1).

As is pointed out in Section 6.7, the proper selection of c implies that

10

the integrand in Eq. (6.1) contains no terms of angular frequency @, .

Therefore, Eq. (6.1) reduces to

t
-\.8 Jw s -Jw 8

_ j _ - 5 _ -8 s 1

cjl(t) =8y + vJ,3 f € B(z) [Fo(s) F_ € F e ] ds.
° (6.33)
(J =1, g, 3)
For this example,

Jw s -jw s ‘ J3w_s -j3w_s
+5 s -s 5 _ 613 s *3 S
[F(s) - FPe ®-F % ° ] =6.66x107 [cjge + e de ;

vj3(£3) (3 =1, 2, 3) are given in Egs. (6.20), (6.21), and (6.22); and
B(z) is given in Eq. (6.3). Substituting these expressions into Eq. (6.33)
and carrying out the indicated integration gives the following expressions

for cll(t), CEl(t)’ and c3l(t):

2.06,. . -4 3 Jal)st
e (t) = ¢ + (1+3) x 10 T el €
11 11 52 10 mw . (6.3&)
- -J
+ l;%i (1+3) x 10 b cig € s,
p
i -jew t
Cel(t) = cgl + g48-6-(1-3) x 10 b cig € s
(6.35)
. Jhw t
+ lg—gj-(l—j) x 10 h clg e 5
8 25 _5 3 -(}\‘3‘- !j3ws)t
c3l(t) = - =52x10 (3+J)clO €
B (6.36)
~(M+ J3w_ )t
_8.25 X 10—5(3—3) cfg ¢ 3 s

52
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In Egs. (6.34) and (6.35), the mean values of cll(t) and ch(t), cil and
cgl, are, as yet, undertermined, and must be determined by the nl-describing-
function relation. (Recall that these mean values being undetermined is

being undetermined.)
(t)

equivalent to the initial conditions, and a

%11 21’

The initial condition, has been chosen for c3l(t) so that c

a3l,

contains no constant term.

31

The n,~describing-function relations are as follows:

1
A(Jw)
Ill - :-“TUTST = 0 (6037)
where
F+S
71
nl = T . (6'38)
‘11
In this example,
F, = [(-1500 X 10'6) + (20 x 10'6) pg(t)] pl(t); (6.39)
consequently,
(c2.)*
- - - 2
n = [(-1500 x 10°0) + (10 x 10 6)clo cfo] + (20 x 1070) et e
‘11
o P (6.50)

-6 %
+ (20 x 107) ey o
‘ 11

. ;
Note that a knowledge of pi is implicit by Egs. (6.34), (6.35), (6.36),
s S o] -8 0% o
and (6.31). It shéuld also be realized that p, = c,; and p _(cll) = ¢,
Substituting Eqs. (6.40) and(6.12) into Eq. (6.37) and simultan-

eously considering the complex conjugate of the resulting equation gives

the following linear inhomogeneous system of equations:

* - -
[{-soo-eso(looaa)+ 4o e, ey + 3250(10055)} x 1070 ]cil + [(eo x 10 6)cio] (cil)*

- (20 x 1079 ¥ p{3s (6.41)

(Second equation of this system appears on the following page.)
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0

- , -6
[(20 x 10 6)cf§ ] cpp + [ {-500-250(100&&) + hoc, jc¥, - 3250(100A5)}.x10 ](cgl)* ~
-6, 2 _-38
- (20 x 10 ) 1o Py .

A comparison with Eq. (6.18) shows that the determinant of the above system

of equations is equivalent to the Jacobian expression.

3s
1

from Eqs. (6.34), (6.35), and (6.36) into Eq. (6.41) and solving the resul-

¢}

Substituting the expressions for p7 and piBS which are obtained

ting system for 1 gives,
co ~ o (3.8uxlo'“)a“[ {100+33.5(100Aﬁ)-a2} +3 { 33.5+66.6(100Aﬁ)-a2}] (6.42)
11 10 ? *

2
[-500-250(100&&) + 10a° ] + (250)2(1001313)2 - esa”

2 90

clo =x5€ . The above equation completes the determination

of pl(t). It is interesting to note that c

where, again,

o
1l

the Jacobian condition is satisfied. Moreover, there is clearly only one

exists as long as, once again,

possible cil.
Evaluation of Egs. (6.34), (6.35), (6.36), and (6.42) for the three

sample points indicated in Fig. 6.12 gives the following expressions for

p(t) + up, (¢):

Point 1,

p(t) + ppl(t) ~ 4 cos [101.8t + 0.1%x] (6.13)

b cos[101.8t + 0.395x] + 9.8 x lO-ucos[305.ht + O.h78n]} ;

+ u{ 0.93 x 10~

Point 2,

p(t) + upl(t) ~ 7.5 cos[101t + 0.156x] (6.44)

+ p{:h62 X lO-ucos[lOlt + 0.305x] + 66.4% x lO-hcos[303t - 0.566x] } 5
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Point 3,

p(t) + up,(t) ~ 12.75 cos[100t]
(6.45)

I

+ U {-320 x 10 'cos[100t - 0.6hx] + 334 x lO-ucos[300t + O.lOOn]} .

The next few paragraphs are devoted to the determination of pe(t).

Determination of p.(%t):

The determination of pz(t) follows exactly the same pattern fol-
lowed in the determination of pl(t). Equation (6.33) is replaced by the
corresponding equation for the cja(t)'s. The mean value of cle(t), cia,

is determined by the n_~describing-function relation. The system which

2
results from this describing-function relation is, just as Eq. (6.4l), a
linear inhomogeneous system whose determinant is the Jacobian expression.

. Carrying out the indicated computations, the expressions for

pe(t) corresponding to the three sample points are as follows:

Point 1,
pz(t) ~ 19,48 x 10-8cos[lOl.8t + 0.268x]
+ 147.0 x 10 0c08[305.kt - 0.606x] (6.46)
+ 2,92 x 10'8cos{509.0t + 0.68Tx]
Point 2,
pe(t)== 22.3 x 10'“cos[101t + 0.865x]
+ 1.54 x lO'ucos[303t - 0.5%rx] (6.47)
+ 0.058 x lo'hcos[505t + 0.944x] ;
Point 3,

.pg(t)=a 1.76 x lO-ucos[lOOt + 0.815x] - 0.812 x lO-ucos[300t]
(6.48)

+ 0.86k4 x 1o'h cos[500t + 0.,171lx] .
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The expressions for p(t) + upl(t) + pzpe(t) can be obtained through a com-
bination of Egs. (6.43), (6.44), and (6.45) with Egs. (6.46), (6.47), and
(6.148).

The one remaining problem is the determination of the higher-order
approximations to the stability criteria (characteristic exponents).

6.11.5 Higher-Order Approximations to the Stability Criteria.

As was stated previously, the characteristic exponents, ai(l) (i =1, 2, 3),
are evaluated here up through the pa-term in their powef series representa-
tion., The first two terms in these series, aiO and ail (i=1, 2, 3), can

be determined by the methods of Section 6.4. In particular, for aiO’

Q.. = +j8100,

10
a,, = =310, (6.49)
o, = -B100;
and, for ail’
oy, {%9 x 107 (500 - 10a2)} (6.50)

2

+ %Q x 107 \/ 500-1082)2 -2 {[-500-250(1oom)+10a2] +2502(1ooaa)2-25a4} ,

20 -4 2
a,, %~ {=x 10 (500 - 10 a)
21 B } (6.51)

20 . -k 2.2 | 22 > >
-5 x 10 (500-10a°)" -2 {[-500-250(100&{3)+10a ] +250°(100A8 ) “~25a. } ,

and
40 -4 2
oy ~ % x 10 { -500 + 108 + 250(20088)} . (6.25)
The sbove aio's and ail's (i =1, 2, 3) are evaluated for the three

sample solutions, 1, 2, and 3 for which the higher-order approximations have

been evaluated. The resulis of this evaluation are as follows:
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Point 1,
Qpg + poyy = J101.8 + u[0.67 + j2.43]
Cpg + MOy =~ -§101.8 + u{0.67 - j2.43] (6.52)
a3o + p,a3l ~ -101.8 + u[0.43]
Point 2,
aJ.O + gall ~ 3101 + u[-0.12 + jO.37]
Qo + Hity = -Jl0L + pu[-0.12 - J0.37] (6.53)
a3o + “a3l ~ 101 + u[l.23]
Point 3,
Q)+ uG; & Jl00 + pl-1.72]
Gy + Oy~ =J100 + p[-2.72] (6.54)

a3o + ua3l ~ 2100 + pl4.bh]

The next terms in the power series representations for the ai(l)'s
(1 =1, 2, 3) can be determined by the methods of Section 6.8. For example,

the determination of ozl2 follows the ensuing outline.

U, 54(0)
120 . .
a) The term W is determined from Eq. (5.35). In this case,

“120(0) ~ —t3(1+,j)xloh 20 . .~=b 2 2
= Q. == x10 (500-10a7)+3j(~500-500(100A8) + 10a87) !}t . (6.55)
U5 o(0) 800 o2 { 11 B [ : ]}

10

b) The terms I"lo(t) and. l"eo(t) are determined by Eq. (5.20).

In this example, these terms are
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T'}o(t) ~{28 + [1.928 - 2.0 - 808 s 1}x 1P

jom ¢
- { sabop 5T x 106} e ° (6.56)
) -jew t
+{38058025x106}e 5,
Jow t -jew t
2 -
Dt~ T+l "e ° +I%®ec™ @ (6.57)
and
Tt~ {28 - 3[1.98 - 2.0 - 80 8°]} x 2°
2w t
-{ 3808 S;as x 106} e °© (6.58)
> -320 %
+{ seuop so28 x 106} e 5,
jew t -28 -jo t
F2O(t) zl_'ag + Fzgs e ° +P20 € s (6.59)

¢) The foregoing terms are substituted into Egs. (5.36), (5.37),

and (5.38), which partially determine-ulal(t),

determine ulll(t) and ul3l(t). These substitutions result in

functions of the form

and completely

. pe JEE oo miEmt o -ghat
upq(8) = wpyy +ugyy e g € gy € ’ (6.60)
j2m t -j2m t -t
o 2s S -2g s -hs S
u121(t) = Uy, + U, € * U € +t U, € s (6.61)
and

Jew t -jaw t -jho t

o 2s s ~25 ) -k4g ]
ul3l(t) =Upg) tUg € *upg € U e , (6.62)
where u§21 is undetermined. An example of a typical expres-~

sion for one of the above Fourier coefficients is
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-2s u .. (0) o +2s
Lo +ulzolo) 20 ~ 10 w. (o) I.>28
110 , o120 20
Jew, uy10l0)  Jhag

(¢]

uqq = ullO(O)vl3 . (6.63)

o) +28 -2
19 Sl , and Sl

d) of Section 6.8. For this example,

d) The terms S are evaluated as in Paragraph

o _ -6 ¥ o0
5, = 40 x 10 [clo(cll)* + cll] , (6.64)

2 - *
SI S _ 140 x 107 [clo c;l + ey p%s] s (6.65)

and

- - * -
slas - 40 x 107 [?lo(cil)* * ey pl3s] (6.66)

e) «a,, is determined by substituting the terms evaluated above

12
into Eq. (5.68).
A similar procedure is carried out for aél and aBl.
The results for the sample points 1, 2, and 3 are as follows:

Point 1,
ala ~ 0.0k + 30.032

~ - 6.6
a,, ~ 0.01h - j0.032 (6.67)

~ -0.014
052 1

Point 2
qle ~ -0.027 - jO.O7h4

~ -0.027 + JO.OTh
%2 (6.68)

2

Q3 -0.011
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Point 3

=~ 0.16

2

0.23 (6.69)

a,., = 0.076

In each case, the approximation to the characteristic exponent, ai(l) (i =
1, 2, 3) is

ai(l) =0+ 0y A,



CHAPTER VII

SUMMARY AND CONCLUSIONS

T.1 Introduction

A new method for uﬁilizing the techniques of perturbation
theory for the analysis of a class of nth~order nonlinear feedback sys=
tems under the influence of a general periodic forcing function has been
developed. This method is suitable for the determination of periodic
responses and the investigation of whether or not these periodic responses.
are asymptotically stable. In addition, this method can be extended so
that it is useful for the analysis of nonlineer systems which are even

more general than those considered in this study.

T.2 Conclusions

A, It is pointed out in Chapter I that there are roughly two
bodies of literature which pertain to the problem which is of interest in
this study. The first contains writings by those authors (Tucker, Smir-
nova, Adler, Hunton and Weiss) who analyze certain physical systems by
methods based on "averaging" or equivalent linearization and plausibility
arguments (see the outline of Tucker's argument in Chapter I). The sys=-
tems studied by these authors form a subclass of the class of nonlinear
systems considered in this study. The difficulties with these methods
are several: their development does not clarify the sense in which the
solutions obtained are approximations, nor do they admit to a refinement
of the approximation if this is desired; the stability criteria are
limited to an approximation of Jjust two characteristic exponents out of

the n which are needed for a complete description of the stability or

198
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instability of an nth-order system; moreover, there is no obvious manner
in which to refine the approximation of these characteristic exponents;
finally, these methods cannot be extended to more general nonlinear sys-
tems with much consistency or confidence.

The second body of literature contains writings by those
authors (Poincare, Coddington and levinson, Cesari, and many others)
who discuss the application of perturbatioh techniques to the analysis
of differential equations. As is pointed out in Chapter II, these
authors usually stress the "normal perturbation problem" at the expense
of the "inverse perturbation problem", which is a satisfactory restate-
ment of the differential equation which characterizes the nonlinear
feedback system as a problem amenable to solution by perturbation tech-
niques. They are more interested in developing the mathematical tools
of perturbation theory than in the application of these techniques to

the analysis of nonlinear feedback systems.

B. It is shown in Chapter II that the "inverse perturbation
problem” is the central issue in any application of perturbation tech-
niques to the analysis of nonlinear systems. The essentially synthetic
character of this problem is pointed out, and it is emphasized that

' More-

there is no unique solution to the "inverse perturbation problem.'
over, the mutual relation between the original and the "u = 0" differen-

tial equations is stressed.

C. A new method for obtaining a partial solution of the "in-
verse perturbation problem" associated with the application of perturba-
tion techniques to the class of nonlinear systems considered in this

study 1s presented in the last two sections of Chapter II. This method
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involves a division of the original differential equation into two parts:
(1) a part which if equated to zero would constitute a linear differen-
tial equation that possesses a periodic solution with period commensurate
with that of the forcing function, e(t); and (2) a part which comprises
the difference between the preceding part and the original differential
equation. The second part of this division is multiplied by the arti-
ficially introduced parameter, u, so that at u = O the equation reduces
to a linear differential equation, and at u = 1 the equation becomes the
original differential equation.

The above division of the original differential equation is
carried out so that it allows the entire analysis which follows to be
conducted in‘terms of easily identifiable expressions from the nonlinear
feedback system. For example, the numerator and denominator of the trans-
fer function for the linear network, B(z) and A(z), are, except for new
arguments in certain cases, retained intact throughout the analysis. This
is true also for the transfer function of the nonlinear element, F(x), and
the forcing function, e(t). The principle advantage of this restatement
of the original differential equation is that the steps in the recursion
procedures for the solutions and the characteristic exponents reduce to
relatively simple operations involving describing-function-type relations.
In fact, it is reasonable to consider the work in this study partly as a
generalization of the describing function technique.

Another advantage of this method of restatement is that by
introducing two canonical‘forms it allows, as is clarified in Chapter III,

a wider range of forcing functions, e(t), to be considered.
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D. In Chapter III, equations which determine the first
approximations to the true periodic responses of the nonlinear system
are developed by application of perturbation techniques to the two
canonical forms. Because of the special choice in Chapter II for the
canonical forms, the equations which determine the first approximations
are in a form which is similar to the normal describing function rela-
tion. This is esﬁecially true for the first canonical form.

However, these equations can be applied to a wider range of
nonlinear feedback systems than can the normal describing function. Fur-
ther, since these equations are the first step in a recursion procedure
which determines a higher order approximation with each step, the approxi-
mation determined by these equations can be refined at will. This is not
the case for the describing-function-type relation as it is usually devel-

oped; e.g., Tucker [3].

E. In the latter part of Chapter III, the usual Jacobian exis-
tence condition from perturbation theory is shown to be equivalent,
except for the special case in which a certain determinant vanishes [Eq.
(3.39) for the first canonical form, and Eq. (3.45) for the second canoni-
cal form], to requiring that the slope of the frequency of the first
approximation versus its amplitude be nonzero. At those points where this
slope does become zero the first approximation is not continuable. Fur-
thermore, it is shown in Chapter V that there is a relation between this
Jacobian existence condition and one of the approximate stability cri-
teria. Therefore, the relation between the aforementioned slope and the
Jacobian existence condition is doubly important: (1) because it allows

the Jacobian condition to be readily spplied, and (2) because it
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simplifies one of the approximate stability criteria.

F. In Chapter IV, the application of perturbation techniques
to the analysis of the class of nth-order nonlinear systems which is
of interest in this study is continued. A recursion procedure is devel-
oped whereby the periodic responses, p(t,u), of the nonlinear system

are obtained as a power series in the parameter, u, as follows:

First Canonical Form,

n (o) k)\.Jt
p(t,u) = Z X cjk(t)ue (7.1)
J=1 k=0 -
Second Canonical Form,
n © kh{)t
p(t,u) = L X e, (thue* +nh(tn) (7.2)
j=1 k=0 9

where h(t;ws) is a periodic function with period T and the cjk(t)'s satis-

fy the following "periodicity" conditions

kT j=l,2,-..,n

o {

~~
Y
=)
~—r
m
Cae
]
(g
>
—~~
ct
-
]

) } (7.3)

L]

O’l’...

The actual responses of the nonlinear feedback system correspond to the
p(t,u)'s with u set equal to one, and the first approximations to the
responses obtained from the equations developed in Chapter III correspond
to the p(t,u)'s with u set equal to zero.

As a part of this recursion procedure, & hierarchy of describing
function-type relations are defined. The first or zeroth order relation
of this hierarchy for either canonical form is Jjust the appropriate equa-

tion from Chapter III. The succeeding members of this hierarchy are each
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associated with a particular one of the steps of the recursion procedure.
The advantage of this hierarchy is that it simplifies the recursion pro-
cedure and places the usual equivalent linearization approaches (i.e.,

zeroth order describing function relation) in a context instead of allow-

ing the equivalent linearization approximations to be an end in themselves.

G. The method developed in Chapters II, III, and IV allows
the periodic responses of the nonlinear system to be determined by per-
turbation techniques as a power series in the artificially introduced
parameter, u. In Chapter V, perturbation techniques are utilized to dis-
cover whether or not these periodic responses are asymptotically stable.
An important feature of the perturbation techniques employed in Chapter
V is that they harmonize with those used in Chapters II, III, and IV. It
is, therefore, possible to maintain.a consistent point of view throughout
the entire analysis. As each step in the recursion procedure for the
determination of the periodic solution, p(t,u), is carried out, the
corresponding step in the recursion procedure for the determination of
the characteristic exponents, a&(u) (1 =1,...,n) can be carried out.
This allows the estimate of the characteristic exponents to be refined
at the same time that the approximate solutions themselves are being
refined.

Again, because of the choice of canonical forms in Chapter II,
the expressions which occur in the determination of the characteristic

exponents are simple, recognizable, and easily related to the nonlinear

feedback system. This is particularly true for the expressions which

determine the o 0's and the ¢ l's (f =1,...,n). Since these two terms

i i
are often sufficient to answer the yes-or-no part of the stability
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question, this is an important simplification.

Another important advantage that this method of investigating
the stability question has is that it resolves the two usual difficulties
present in stability criteria which are based on equivalent linearization
arguments. Since a periodic solution whose stability is being investi-
gated is known only approximately, its associated variational equation
is known only approximately. Therefore, even if the characteristic ex-
ponents of the resulting variational equation could be determined
exactly, they would still be approximate in relation to the true periodic
solution. But, even if the variational equation were known exactly,
there would still be the problem of carrying out some type of approximate
analysis for the determination of its characteristic exponents. The per-
turbation procedure used in Chapter V carries out both of the necessary
approximations--variational equation and the characteristic exponents
thereof--simultaneously, and allows the estimate of the characteristic
exponents to be refined at will. The usual stability criteria developed
from equivalent linearization arguments do not have this flexibility.

It is pointéd out in the course of Chapter V that there is a
relation between the Jacobian condition, and Oil and Oél' In particular,
it is shown that Oiloél > 0 if the Jacobian expression is positive and
ailoél < 0 if the Jacobian expression is negative. Moreover, assuming
that the equation, (3.16) or (3.29), which determines the first approxi-

mation, p(t), has a solution of the form [ws = ws(a),e =6(a)l, 0 0y =

dw
0 if EEE = 0. Since the Qﬁo's and the oal's are often sufficient for the

formulation of suitable stability criteria, and, further, since al(u)
and Oé(u) are often (but not always) the most likely characteristic ex-

ponents to cross into the right-hand plane [recall that ai(p) and aé(u)
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are both on the imaginary axis at yu = O and that the other ai(p)'s
(i = 3,+..,n) start in the left-hand plane], the relation between 0

and.ael and the Jacobian condition is especially useful and important.

H. There are several disadvantages and limitations associated
with the methods employéd and developed in this study. First, there are
two related and unsolved problems: (1) the determination of the allow-
able p-intervals, and (2) an estimation of the error resulting from
approximating the ai(p)'s with a finite number of terms from their power
series expansion in pu. It is always possible to circumvent these two
problems by considering only "weakly-nonlinear" systems--that is, sys-
tems which are almost linear. On the other hand, there are many
"strongly-nonlinear" systems which can be treated by the methods developed
in this study. Conseéuently, a solution to these two problems which
would designate which "strongly-nonlinear" systems could be considered
would be of great importance.

Another, less serious difficulty is that, in Chapter V, the
characteristié multipliers are assumed to be distinct for O < u <1,

) (u)T o, ()T
except for € and € which coalesce, as u -0, at 0. In those
rare cases in which it is absolutely necessary to consider multiple
characteristic multipliers, special methods are availasble (see Moulton
[16], pages 331-348).

A limitation of the methods developed in this study is that
they do not, as presented, apply to servomechanisms. This comes about

because the linear network in the nonlinear feedback system has been

B(0) _
A(0) ~

by an extension of the methods of this study, which is outlined in the

restricted thus: O. However, this limitation can be overcome

following section of this chapter.
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As is mentioned in Chapters II and VI, there is still the problem
of determining the period, Ts’ of the dominant term in the periodic res-

ponse of the nonlinear system.

Finally, it is true that the determination of the higher-order
approximations for both the solution and the characteristic exponents

rapidly becomes laborious as k becomes larger than two.

T.3 Suggestions for Future Research

Since the methods for analyzing nonlinear systems developed in
this study are explicitly based upon the theory of perturbations and not
upon approximations which arise from merely "averaging over a cycle," it
is possible to extend these methods in a consistent manner in order that
they can be applied to a class of nonlinear systems which is even more
general than that considered in this study. Some of the possible exten-

sions are as follows:

A, It was pointed out in Chapter I that the limitation of the
transfer function, F(x), of the nonlinear element to being just a func-
tion of x ruled out the consideration of some important nonlinear physi-
cal phenomena; e.g., hysteresis effects, back-lash, etc. Therefore,
the extension of the methods of this study to nonlinear feedback. systems

which contain nonlinear elements which are characterized by a function

(k) (k). &%
) .(X = "—T{'
dat

importance. Fortunately, this extension does not appear to offer serious

of the form, F(X,X,...,X ), is of considerable practical
difficulties as long as the term, B(z)F(x,i,...,x(k)), contains no deri-
vative of order higher than (n-l). In cases in which this is not true,
the extension could become difficult, especially if the derivatives of

order n appeared in terms of degree higher than one. In any event, it
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is to be expected that the describing functions associated with such non-
linearities may be complex and frequency-dependent. This is in contrast
to the present study, in which only the describing function (zeroth

order) associated with the second canonical form is complex and frequency-

dependent.

B. In addition to extending the methods of this study to in-
clude nonlinearities which depend on the time-derivatives of x as well as
on x itself, it should be possible to extend these methods to other, more
complicated systems. A system containing more than one nonlinearity could
be treated. In a vacuum-tube oscillator the grid-circuit nonlinesrity
as well as that of the plate circuit could be considered. In many prob-
lems of this type it should be possible, by following the pattern of
Chapter II, to recast the differential equations which characterize these
nonlinear systems as problems amenable to treatment by perturbation tech-
niques. Moreover, it should Be possible to carry out the operations of
the perturbation analysis in terms of quantities which are easily related
.to the actual nonlinear system. In other words, it should be possible to
continue the generalization of the describing-function approach which has

been commenced in this study.

c. 1If é(t) = 0, the resulting nonlinear system cannot be
analyzed with either the methods developed for the first canonical form
or those developed for the second. In both these cases the Jacobian con-
dition is not satisfied. As is well known (Truxal [21], pages 601-611;
Coddington and levinson [10], pages 364-369), in such systems not only
the solutions but the period of undisturbed oscillation, To, must be

expanded in a power series of p and obtained by a recursion procedure.
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It would be worthwhile if a recursion procedure possessing a hierarchy
of "describing function relations" analogous to that developed in Chapter
IV were developed for these homogeneous systems. A classic and important

example of such homogeneous systems is the self-excited oscillator.

D. Since the methods of this study apply to any periodic forc=-
ing function, it may be that by considering a random forcing function to
be a limit of a periodic forcing function as its period approaches infinity
the responses of nonlinear feedback systems under the influence of noise

can be analyzed with the methods of this study.

E. In this study only a special class of responses has been
considered, i.e., periodic. It should be possible to combine various per=-
turbation techniques to handle, among others, almost-periodic responses.
For example, the solutions could be made up of two parts: (1) a u-
dependent part periodic in t with a period which is commensurate with that
of the forcing function, and (2) a u-dependent part periodic in t with a

u~dependent period.

F. As has already been pointed out,.the methods of this study
cannot be applied, without modification, to a low-pass servomechanism.
This limitation of the methods is a consequence of the restriction on the

B

linear network that -é%% = 0. This restriction was required in order that

A
the necessity of considering constant terms (e.g., dynamic shifts in the
operating point) in the approximate solutions could be eliminated. How=-
ever, the possibility of such constant terms must be admitted in low-pass

servomechanisms and other nonlinear feedback systems for which i 8) # 0.
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Therefore, it is apparent that the type of generating solution or first
approximation which should be sought is a constant term plus a sinusoidal
term. For example, such a generating solution for a canonical form simi-
lar to the first canonical form of this study would be

Jot o =det

p(t) = cy0€ + ¢1g€ + Qg (7.4)

where QO is an, as yet, undetermined constant. Just as the allowable
clo's would have to be determined as part of the analysis, so would the
proper QO have to be determined in the course of the analysis. A possible

"w = 0" differential equation corresponding to a generating solution such

as Eq. (7.4) would be [see Eq. (2.16)]

2% +p" [C(é) - NﬁB(é&]x =

(7.5)
8" [ clo) - w;p(0)]ay,

and a corresponding u-dependent family of differential equations could be

[see Eq. (2.17)]

2"x +an[c(g-) - NJB(gT)]x = an[c(o) - NJB(O)] Q,

+ p[en {c(g) - iva(g-)}x -{c(z) - NJB(Z)}X
(7.6)
+ B(z){F(x) - ij} + B(z)e(t)

- sn{c(o) - NJ.B(O)} QO].

Then, using the following coordinate transformation:
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i ] [ ALt at [ ] B ]
€ 1 el r Q
X 1 o)
xlt At
X A€ A€ r, 0
= + (7.7
At At
(n-1) (n-1) ™1 (n=1) ™
X xl € . e e xh € T 0
- -J L - — = L -
the following canonical form could be obtained:
-xlt
I'l = “,Vlne g(t,rl, o .,I‘n,QO)
. . » » . . . 3 L] . . . L] . 3 . . (7.8)
-knt
fn = W€ g(t’rl’f°"rn’Qo)
where
At At
_ 1 n
g(t,rl,...,rn,Qo) = B(z)F{r,e + oo kT € 4 QO}
n xjt
-2 r.A(z)e - A(0)Q_ + B(z)e(t)
FERE °

Then, following & line of reasoning similar to that used to justify Egqg.
(3.6), the following necessary condition can be obtained for generating

solutions:

T -y»st *
é € g(t:clO:ClOJO:°-':O,Q0)dt = 0. (7.9)

This necessary condition is a single relation between the two unknowns,

clo and Qo, and is cbnsequently, not sufficient for the determination of

10 and QO.‘ Clearly, some other relation must be found between 10 and Qo.
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But, purely on the basis of requiring that the generating solution be con-
tinuable, any generating solution, Eq. (7.)l+), satisfying Eq. (7.9) and a
Jacobian condition is satisfactory. Therefore, continuability is not
enough for the determination of 0 and QO, and, because the inverse per-
turbation problem does not have a unique solution, the choice of a second
relation between CJ.O and QO is somewhat arbitrary. However, the most
straightforward choice is

T

*
£g(t,clo,clo,o,...,O,Qo)dt = 0. (7.10)

However, this is certainly not the only choice.

Given the preceding equations as a start it should be possible
to construct a set of relations for this new canonical form analogous to
those constructed in Chapters III, IV, and V for the two canonical forms
considered in this study.

It should be noted that Eq. (7.10) indirectly raises an important
point in regard to approximations to periodic solutions of differential
equations. It is generally not necessarily true that that approximate solu-
tion which results in the smallest remainder when substituted into the

differential equation is the best approximation. For example, consider
x = P(x),

which has a periodic solution, ®(t).. Let p(t) be a periodic approximation

to®(t) such that

lp - F(p(t))] < ¢ {f‘or t over an interval equal
to one period of ®(t)
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That p(t) for which ¢ is smallest is not necessarily the best approxima-
tion. This assumes, of course, that the class of functions from which
p(t) can be selected does not containd(t). For a general statement
about so-called e-approximate solutions, see Coddington and Levinson
{[10], page 8}. In any event, it can be seen that choosing Q_ on the
basis of minimizing the remainder of the original differential equation
when the first approximetion haé been substituted into it may or may not
minimize the error between the actual periodic solution and the first

approximation.

G. There are still the previously-mentioned unresolved prob-
lems associated with the method developed in this study. These are: the
p-interval problem, the estimation of the error involved in considering
only a finite number of terms in the series for the ai(p)'s; and determina-

tion of ‘I‘s for cases in which it is not obvious.

H. It might be worthwhile to allow singular perturbations as
well as those considered in this study. Among other possibilities, it
should be possible to have "u = 0" and "y = 1" differential equations of
different order. As was pointed out in Chapter II, this would make it

possible to refine the first approximation at will.

I. Note that throughout the development of higher-order approxi-

mations, no use is made of any assumed behavior of i :) versus z. On the
other hand, one of the cornerstones of the usual argument used in the
B(Jw,)

. s
development of the describing function is that KT&E;T does not pass higher
order harmonics. Consequently, it should be possible for a special class

of nonlinear systems to introduce this concept into the recursion procedure

of Chapter IV.



APPENDIX A
STABILITY CRITERIA FOR PERIODIC SOLUTIONS OF ORDINARY

DIFFERENTIAL EQUATIONS: VARIATIONAL EQUATIONS

Asymptotic stability is defined in Chapter I. The purpose of
this appendix is to outline the development of the fundamental criteria
with which it can be determined whether or not a given periodic solu-
tion of a differential equation is asymptotically stable.

Consider the following differential equation:

dx
T = F(t, x), (A1)
where & is the column matrix (Efi =), x> (x ), and
dt d,t ) ts sy dt ) :> l} vo 0y Xn,

F(t,x) is the column matrix (fl(t,x), cors fn(t,x)). Let p(t) be a
given soluiion of Eq. (Al) which is periodic in t with period T. Further,
let F(t,x) be analytic in xj (3 =1, 2, +v., n) in the region of (t,x)-
space which contains the solution curve [t, p(t)], 0< t < o, and let
F(t,x)be continuous and periodic in t with period T (not necessarily a
least period).

Let @ be another solution of Eq. (A1), whose initial conditions

are within some small neighborhood of those of p(t). Then, letting
y=&- P(t):

- R(t, v + 0(8) - F(t, B(t)). (a2)

Expanding F(t, y + p(t)) in a power series about x = p(t), Eq. (A2)
becomes

%% = F (¢, p(t))y + 2(t,y) , (A3)

213



oLk

of
where F_(t, p(t)) is the nxn metrix made up of J (3, k=1, 2,
32; x=p(t)

«e., n). Since F(t, x) is analytic in each xj and continuous in t,

Z(t, y) = o(ly|) (AL)

for small lyl uniformly in t over any finite t interval.
If 2(t, y) is omitted from Eq. (A3), the resulting linear sys-

tem with periodic coefficients,
dy _

is referred to as the first variation of Eq. (Al) with respect to p(t)
or, more succinctly, the variational equation. It is Shown by Coddington
and Levinson ([10], pages 321-2), among others, that if the trivial solu-
tion of Eq. (AS5) is asymptotically stable, then p(t) is asymptotically

stable. Conversely, if the trivial solution of Eq. (A5) is not stable,
then p(t) is not stable.

Therefore, the question of the asymptotic stability of p(t)
reduces to the question of the asymptotic stability of the trivial solu-
tion of the linear system with periodic coefficients in Eq. (A5). For-
tunately, the theory for this type of linear system is well developed
(see: [10], pages 78-81)] and often referred to as Floquet Theory [17].
This theory shows that for every fundamental matrixl, M(t), there exists

a periodic nonsingular matrix D(t) with period T, and a constant matrix

1 A fundamental matrix of Eq. (A5) has the following properties:

M =F (t, p(t))M (1)

det M(t) £ O for -0 <t < oo (i1)

In addition, it is convenient to require that M(0) = E, the identity
matrix. This allows the solution of Eq. (AS5) which satisfies the
initial condition I to be written y(t, I) = M(t)I.
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R such that

M(t) = D(t)e® (A6)

The characteristic roots of the matrix,eTR, mi(i =1, ..., n), are refer-
red to as the characteristic multipliers. If the magnitudes of all the
characteristic multipliers, m,, are less than one, the trivial solution
of Eq. (A5) is asymptotically stable. If one or more of the character-
istic multipliers, mi, are greater than one in magnitude, the trivial
solution of Eq. (A5) is not stable. The characteristic roots of the
matrix R, ai(i =1, ..., n), are referred to as the characteristic ex-
ponents. If all the characteristic exponents have negative real parts,
the trivial solution of Eq. (A5) is asymptotically stable. If one or
more of the characteristic exponents have positive real parts, the trivial
solution of Eq. (A5) is not stable.

The relation between the characteristic multipliers and the

characteristic exponents is
m, = ¢ i=1,2, ,..,n (A7)

%? can be added to ai without chang-

ing the value of mi. It is, in fact, shown in Floquet Theory that the

Note that any integer multiple of J

characteristic exponents can be determined only up to integer multiples
of j%% . This indeterminacy can be appreciated by inspection of Eq.
(A6). Clearly, terms of the form etég can be assigned either to D(t)
or etR; therefore, the matrices D(t) and etR are not unique. On the

other hand, the matrix eTR is, in this sense, unique; consequently the

characteristic multipliers, mi, are uniquely determined.



APPENDIX B

IDENTITIES NECESSARY FOR THE JACOBIAN CONDITION IN CHAPTER III

1. First Canonical Form

The Jacobian condition for the first canonical form which appears

in Chapter III is as follows:

23, 3, 2, dq
B S B £ o g>{a=a0), =0}, (3.20)
%a, Oa, e, a) |7

where [from Eq. (3.5)]

T -Jw t
s, =v S 5 g (¢ )dt (B1)
q.l 2 'J' - ln e gl b pl, ey pn 2
(o]
~ T +jw%t
L0, W =v, [ e g (£, pys ees £ ), (82)
(o]}
and
-y A
gl(t, Pys vees pn) = B(z)F{ P € + eee +pE } (2.28)
n At
+ B(z)e(t) - X o A(z)e J
Then
~ T
daq. ~jot[n dg .
—i=vlnf e ° [Z —+ 4| g, (B3)
1 ° J=1 dp; e
552 T sjwt[n dg; apj
__=v2nfe 51y —=£.—4 |at, (Bk)
58.2 J=1 apJ aa’a

216



217

~ T
oq -jotn dg, Jp.
— = Vin f e ° [Z 2 d dt, (B5)
aaa 0 J=1 Bpj 8&2
and
852 T +jw tf n 3gl dp .
=2 v, [ L 2. (B6)
Bal o =1 5pj aal
Note that from Appendix D,
) At . ) N A ANt
d
=N [B(Z)F {ple L s p€ n }] = B(z)[——g {ple I 4 S n }]. (BT)
dp., dp,
J | J
Therefore, from Egs. (2.28) and (B7),
og ALt ALt
2 -8 [Eed ]-a@)e? (3=1, .., B). (86)
J
Equation (2.27) gives
s
pj(t,A,p) = aj UV j. e Y gl(s, s oo pn)ds (3 =1, ..., n),(B9)

o)

from which it follows that
o] %
- 2

— g: 1, 2, ...,n),(BlO)
7 k

I

=0 (k#£gJ;3=1,2, ..., n) (k

da Y

J

Equations (B3), (B4), (B5), and (B6) then become

ag T -jw t Jo t Jo_t
B e [ E] e o

Assuming that
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+Jjw t ~Jjo t ® Jhu t

darF * J/ P

o ( P08 5 P10¢ s > = L So € (a% = pwﬁ), (B12)
l:nw

and assuming that this Fourier series can be differentiated term-by-ternm

through the highest-order derivative contained in B(z), Eq. (Bll) becomes

3
g;i =v, T {B(me)sg - A(ju%) } . (B13)
4
1
Similarly,
aN
Szg = Vo, T{:B(-jw%)sg - A(-ja%) } , (B1k)
21y
da.
Y v, TB(Ja )stes (B15)
aa n s 0
ol 7
and
3,
— . -28
aal y = Ven TB(-Jw%)SO . (B16)

2., Second Canonical Form
The Jacobian condition for the second canonical form which

appears in Chapter III is as follows:

2.2 2| 4o, y>h=800,u=0}, (3.30)

and, similarly to Eq. (3.5),
~ ' -ngt
ql(A}H) = VY5 A € gQ(t’ Pyr == pn)dt, (B17)
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+jw t
~ S
QQ(A)“-) = v2n fe g2(t) pl) ey pn)dt}
(o]

where [from Eq. (2.38)]

Xlt )\nt
ga(t, Pys +ees pn) = B(z)F{ple + e 4 p e + h(t; ws)}

n At
- 2 pA(z)e J- Al(z)n(t; o) .
=1 J s

Assuming that

Jo t -jo t

* ® 1 Jia t 5
Tlojge ° +oye ° +n(ts0)}= L she o (o = 5), (B20)

s

the necessary identities are, again,

3q
1 . o} s
;— = Vln I {B(st)so - A(Jms)} ’
1 4
3,
Y ) .
aag y = Von T{B(-,jws)so - A(-J(DS)} ,
3q.
L = Vin 'I'B(jaas)s;as , and
56.2 Y
dq ._
Tl L v, TB(-ju)s.%°
% | n s’ o
1

where SgEs is the coefficient of the term of Eq. (B20) with frequency +

(B18)

(819)

(B21)

(B22)

(B23)

(B24)

2w
s
e



APPENDIX C

IDENTITIES INVOLVING DESCRIBING FUNCTIONS

1. PFirst Canonical Form

By definition on page 68

+s T/2 . : .
n = FO = l f F { Cc GJwSt + C* € stt} €-JwSt dt (Cl)
o] c c. T 10 10 *
10 100 -T/2
Letting ¢, = % J° (a, © real), Eq. (Cl) becomes
T/2 J(w_t+0) -j(w t+0) . -j(w_t+0)
2 a s a s s
nb(a,G) == // F{ 5 € +5€ }e dt. (c2)
-T/2

Since the above integral has a periodic integrand and an interval of
integration equal in length to the period of the integrand, the inte-
gral is independent of the location of the interval of integration

on the t-axis; correspondingly, it is independent of ©. n0 can also be

shown to be real for the same reason. Therefore,

arlO
—_ = 0
39
1/2 Jlw_t+0) j(w t+8) =j(w t+0)
___9.=g..f —@ .[J?’.e s _'?_'.e s ]e 5 dt
o  of ax 2 J 32 (c3)
-t/2 7
2 +T/2 -J(w%t+9)
- &d FI € dt.
aT Y
-T/2

Recalling thaty => A = A(0) and 4 = 0, and

220



221

T/2 T/2 o
o 1 aF +2s 1 aF +32wét
== £l dtand 5. == = dt,
o T dx o) T /2 dx
/2 |7 T
it can be seen that Eq. (C3) reduces to
on .
—2 =480 - 4s*® I L gy = 0 (ck)
3 o ) )
So S+25 6-320 -n = 0 .
o) o o)
Similarly,
o -2s +j2e =
5, -8, € -n =0 . (c5)
anO
Now consider — . Differentiating Eq. (Cl) with respect to "a" gives
da
the following identity:
on .
a —2 4 n, = Sg + 9% S;Es . (cé6)
da
Similarly,
ano e} +j20 .=2s
a — +n_ = S +¢ s =7 . (c7)
aa e} o)
Combining Egs. (C5) and (C6) gives
[o] a an.O (
S = = — 41 . CTA)
0 2 3 e}
2. BSecond Canonical Form
By the definition on page 71
+s T/2 . . .
F Jo_ t -Jjw_t -jo t
_ o _ 1 s * s ) s
n = -C—l—& = cloT f F{cloe + ¢y € + h(t; cus) }e dat. (c8)

-T/2
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Again, letting c = % ng (a, © real) Eq. (C8) becomes
5 T/2 o j(agt+9) a -j(mgt+9) -j(agt+9)
no(a,O,mS) = o= j. F{E € +3 € + h(t; wé)} € dat. (Cc9

-1/2

Because of the presence of h(t; wb),_no(a,é,ws) is not necessarily inde-
pendent of © and ws or need it be a real number,

Let

{3e
2

where QI = %; . Then the following identities can be obtained by differen-

'Y - > t
J(wbt+9)' J(w%t+9) Jaen,

+2¢ +n(ts0)} = L sé ¢ , (con)

1=
(MES

tiating Eq. (C9) with respect to ©:

dn .

_o _ J[SO - S+2s -j2e -nl, (c10)
3 ) o) o

an * '

E;jz = -J[Sg - S;as et . nO]: (c11)
e

+2s
where S; is the coefficient of the term in the Fourier series, Eq. (C9A),

1",

with angular frequency + 2&3. And, differentiating with respect to 'a

gives the following identities:

on
o 0 +28  -j20
a — = -
~ S, * 5, € n, o, (c12)
*
on .
- *
a—2 = s5%+s 2s e+J2g -n R (c13)
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Combining Egs. (C10) and (C12) gives

Q On on
S, = 3 -2 - —24n . (C1k)
da » °

O je.



APPENDIX D

COMMUTATION OF THE OPERATORS gg‘ AND B(z)
J

l. First Canonical Form
The purpose of this section is to show that along a solution

of the first canonical form, [rj] = [pj(t,A,u)], the following equation

is valid:
At At At
5%—[#(Z)F r.e L + .e. +TE n }] = B(z)[%g € J ], (p1)
J [r;] = [oy] x = o(t,I,u)

where (j = 1,2,...,n) and z = 3%’ That this is true follows immediately
from the nature of the transformation, Eq. (2.19), which relates the
(x,ﬁ,...,x(n"l))-variables to the rj-variables.

First note that the term

At At

1 n
B(z)F r€ T+ ... +TE } (D2)

implies the following sequence of operations: First, B(z) operates on

F(x),

Bz)F(x) = 6{x,&,%,...,x0 V) (03)

then, by the transformation given in Eq. (2.19),

Eq. (2.19)
where
. Mt At
1
G{rl,rg,...,rn,t} = B(z)F{rle LIRPRRE S n } (D4A)
Therefore,
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At | At
1
[5%3 B(z)F{rle +t ee. +T € n }] = [5%5 G{rl,rz:---:rn:t}] (25)
for j = l,e,..’,n'.

But it follows from Eq. (2.19) that

k At Nt At At
—QE'[(rle L +re® ) ] = (Akrle N )| (D6)
3 pj (r.] = [p.]
J dJ
for kX = 0,1,...,(n=1). This implies that
k At AT
—QE [(rle Lt r € 1y J
(D7)
k AT At
= [—Qg(rl€1‘+...+rnen :' |
ot [rj] = [pj]

for k = 0,1,2,...,(n=1). Since F(x) is an analytic function of x, this, in

turn, implies that
At

t
B(-ﬁi-[:F{re)\l+...+ren} :|
dt 1 n _
[rj] = [DJ]
A At (08)
t
3 L n
3 TP
Consequently, substituting Eq. (D8) into Eq. (D4A) and noting that the
resulting equation is valid for arbitrary {pj], the following relation is
obtained.
AT ANt
o) 1 n
G{rl,rz,...,rn,t} = B(SE)F{rl€ + oo + T € }. (D9)
It then follows that
: N T M
2 C 2 dyple L .
S;gG{rl,rE,...,rn,t} = arj B(at)F{rle + .o +T e } (D10)

After an interchange of the order of partial differentiation, Eq. (D10)

becomes
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At At
1
'a—ra"JT G{I‘l,rg, . o.,rn’t} = B(B%') 5‘23“ F{rl€ + see F I‘ne n }

(D11)
d\| 4F Kjt
- MR &
Mt At
X=I‘l€ +...+I’n€

where j = 1,2,...,n. Then, letting [rj] = [pj] and employing essentially

the same argument which led to Eq. (D8), the following equation is ob-

tained:
B i
v dx At At
x=re+ +r.e [r.] = [p.]
l e n j j
(p12)
At
= B(z)[% € J :I (z = a%):
X = (p(t,I)P')
where § = 1,2,...,n. Therefore, Eq. (D1) is Jjustified.
2. Second Canonical Form
In this case it is desired to show that
At At
< B(z)F{? el +...+re® 4 h(t;w ﬂ}
or, 1 n S
J [rj] = [pj]
Lt (p13)
- 5(a)| Ele (2 = ),
x = o(t,I,un)

for j = 1,2,...,n. That Eq. (D13) is valid, follows from an argument

which is analogous to the one employed for the first canonical form.



APPENDIX E

INVERSION OF THE VANDERMONDE MATRIX

The Vandermonde matrix, which occurs in this study, has the

following form:

1 1 .« e 1
Kl he . L] . Kn
- 2 2 2
vV = }\.l )&2 ¢ o @ )\.n ]

L] o L] L4 L] . . * ]

(n-1) , (n-1) (n-1)

hl o .« o e Ah

L ——

where the Aj’s (3 = 1,25...5n) are the characteristic roots of the "u = 0"
differential equation. The hj's (3 = 1,254.45n) are assumed to be dis-
tinct; therefore, the above matrix is nonsingular. The inverse of this

matrix is, by definition,

V11 Y12 s e Vin

-1 Va1 Voo e Von

v = .
an vne * Vnn

The elements of the last column of this inverse matrix (vln’v2n""’vnn)

occur repeatedly throughout this study. Expressions for these elements
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are developed in this appendix.

From the standard procedure for matrix inversion,

vl .
v - -——Eg-
jn det V7

where [V]n 3 is the (n,j)th cofactor of V; that is

1 1 N | 1 R §
k]- Kg . ] . )\(j_l) }\(j+l) . [ ] * %-n
_ (_,\B+] 2 2 2 2 2
[Vl = (-1)7aet| n S, cee NGy Mus) ot M
(n-2) , (n-2) (n=2) ,(n-2) (n-2)
Kl K2 . . L] h(j-l) K(j-’-l) . L] . Kn .
Sincel

det V = ("a""l)("3""2)(>‘3"‘1)("u"‘3)("u"‘2)("u""l)"'

eee (N ) ()\n-k(n_z y)ees (A ™)

and, correspondingly,

[V] s = ('1)n+j(}\2'>\l)(}\3">‘2) (>"3-}"l)"'(A(J_l)-x(j_z))"'(}"(J_l)-hl) s

nj
.o '("(j+1)"‘(3-1))("(jn)"‘(j-e)) .o '("(j+1)""1) .o .(xn-x(n_l)).. .

oo (g ) Y Gagy Do e s (M)

1 Kaplan, W., "Ordinary Differential Equations," p. 128, Addison-Wesley

Publishing Company, Inc., Reading, Massachusetts, 1958.
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it follows that

( _l)n+l

- (E1)
Vin ("1"‘3) (xg-xj) . (x(j_l)-xj)(x(jﬂ)-xj) e (xn-xj)

Furthermore, it is usually desirable to consider v n to be a function of

J
w

B. Recalling that g = u—;‘f‘- and ), = a}'{j (see Sections 4 and 5 of Chapter

N
2), it can be seen that J

n+l
28t e e (82)
a (Al"‘kj)()\-e"kj) .o .()\(j-l)-kj)(x(j-i-l)-)\j) .o o(}\.n"}\.j)

therefore,

v, (8=1)

an(B) = -ﬁrajiy- . (E3)

Note that the argument of the complex function vjn(a) is independent of

Be This fact is useful in certain of the stability criteria.
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