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ABSTRACT: Although it is generally acknowledged that longitudinal data provide the most information on
growth and development and other time-dependent phenomena, such data are often analyzed by conventional
(cross-sectional) statistical methods. This widespread practice ignores the distinctive characteristics (e.g., cova-
riance structure) of longitudinal data and may yield misleading results. The purpose of this article is to present
some strategies and make available computer programs for the appropriate analysis of longitudinal data. User-
friendly PC programs for the estimation of average growth curves, computation of tracking indices, prediction of
future values, diagnosis, classification, clustering, estimation of missing values, and testing hypotheses concern-
ing individual and group differences are presented. Benefits of these methods over the usual techniques are
illustrated with the example of maxillary growth in the rhesus monkey.
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I. INTRODUCTION

It has long been recognized that the best ap-
proach for studying craniofacial growth, and
growth and development in general, involves the
observation of individuals at a number of times
throughout the maturation process. Thus numer-
ous techniques, such as cephalometric radiogra-
phy, vital staining of bone, and various imaging
methodologies have been developed and perfected
to collect data on growing individuals in order to
gain information on the morphological changes
that occur during ontogeny. Despite great increases
in the sophistication in methodology for collect-
ing longitudinal data, practical statistical methods
for analyzing them appropriately have lagged far
behind. Recent papers by Vacek et al. (1989),
Cullis and McGilchrist (1990), and Stanek (1990)
all point to the dual needs of developing appropri-
ate software and informing researchers of its ex-
istence. They also suggest that biologists often

use simple techniques because they are simple,
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without regard to their validity and the quality of
the information provided. We believe that both
clinical and basic scientists are capable of under-
standing the logical bases of more complex statis-
tical procedures provided only that they are clearly
explained and illustrated and will use them when
user-friendly software implementing such proce-
dures becomes available. It is the latter of these
notions that concerns us here. The authors and
collaborators Stephen M. Willis, Thomas R. Ten
Have, Amy Furey, Ingrid Y. Guo, and Elizabeth A.
Mauger have developed (and are continuing to
develop) an integrated set of easy-to-use programs
for longitudinal data analysis and wish to make
them available to the dental research community.
Thus, the purpose of this article is to describe and
illustrate these stand-alone PC programs for per-
forming various types of longitudinal data analy-
ses. The first analyses that we programmed are
best suited to highly structured data sets (i.e., as
might issue from a planned experiment), whereas
the more recent ones accommodate the irregular
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data sets (e.g., with missing data or different times
of measurement) that often arise in human, clini-
cal studies. These predominantly menu-driven

programs are written and compiled using GAUSS:

(Edlefson and Jones, 1985; GAUSS, 1992), obvi-
ating the need for a compiler and additional soft-
ware. Details for acquiring and using these pro-
grams are given in the Appendix.

A. Why Are Special Procedures and
Programs Needed?

This question is addressed best by way of a
real data analysis problem in the study of cranio-
facial growth. In the early 1980s, one of us (EDS)
collected a large number of longitudinal
cephalometric observations on the rhesus mon-
key, spanning the life of this long-lived primate.
Data for a typical variable in this data set are
shown in Table 1. These are measurements of
maxillary length taken from tracings of lateral
cephalograms made at half-year intervals from
0.5 to 10 years of age. The first column contain
group indicators, 1 for male and 2 for female.
Note the number of missing observations and the
sparseness of data for the females. Research goals
at the time of data collection were to establish
sex-specific average growth curves (AGCs), ex-
plore hypotheses about changes in growth rates
with maturation, and test for sex differences in
growth. In addition to describing central tenden-
cies in growth, it was also desired to determine
the variability associated with the AGCs
(Schneiderman, 1985).

The analytical goal at that time was to im-
prove on the practice of calculating a conven-
tional mean, standard deviation, and perhaps a
confidence interval at each time point. This has
been the usual way of summarizing longitudinal
data, for example, in the large-scale study on
craniofacial growth in normal children (Riolo
et al., 1974) and on cranial vault and facial growth
in children with clefts (Friede et al., 1986). While
this approach gives us a general idea of what
average size is at a given time, it has several
serious faults:

1. The covariance structure (the pattern of cor-
relations between all pairs of serial mea-
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surements) and hence the longitudinal na-
ture of the data is ignored.

2. The probability of making type I errors (the
o rate) is substantially inflated when test-
ing hypotheses about the growth curve
coefficients (a type I error occurs when one
falsely rejects the null hypothesis of no
difference or no change).

3.  The form of the true average growth curve
cannot be determined merely by connecting
these means.

4. Velocities and accelerations cannot be
determined from these means.

5. One cannot conclude that 95% of the popu-
lation falls within 2 SDs of the estimated
means, as is commonly done (e.g., Riolo
etal., 1974: p. 10). Also, conventional
univariate confidence intervals computed
from these summary statistics are spuriously
narrow; they imply greater precision than is
possible based on the sample.

While it has long been known that intercorrelations
in a longitudinal data set will inflate the o rate,
this fact has been often ignored by those faced
with analyzing longitudinal data; investigators
have had to do so because of limitations in avail-
able software. The simulation experiments of Hoel
(1964) allow us to explore the effects of
intercorrelation of serial observations and to illus-
trate the severity of this problem. The null hy-
pothesis addressed specifically by these experi-
ments is that the regression coefficients that specify
the AGC are equal to some specified constants
(e.g., zero); Hoel also notes that the same kind of
error will arise when testing the equality of two
sets of regression coefficients. He demonstrated
that if the correlation between observations one
time unit apart was r, that between observa-
tions two units apart was r?, etc., and if r = 0.80,
then with a nominal o rate of 0.05, the actual o
rate would be 0.92. The simulations producing
this result involved 25 time points and samples of
1000 from a multivariate normal distribution. In
our example (complete data blocks in Table 1), all
but one of the values for r are somewhat greater
than those in Hoel’s example (0.64, 0.90, 0.93,
and 0.97). This is alarming, in that it indicates that
if one attempted to determine the polynomial speci-
fication of the AGC (e.g., quadratic or cubic)



TABLE 1
Maxillary Length Measurements, Full Data Set Spanning from 0.5 to 10 Years of Age. Column 1
Contains Group Indicators, Where 1 = Male and 2 = Female. Note Blocks of Complete Data Set

in Boldface

NN NN NNNNNNNNDNNRNDNRN A b b el b ek b b oed od b ed b omd md o ek d b -

05 1.0

26.1
28.3
28.2
29.0
28.9

21.9
243

249

29.5
29.4

28.8
30.0
29.0

23.6
248

24.0

15
345
34.6
314

31.2
28.7

32.6
325
30.8
31.7

35.7
357
32.8
33.0

31.6
34.0
32.0
32.3

2.0
37.5

37.2
36.7
35.8
35.8
36.4
33.3
32.6
35.0
37.7
35.3
32.3

371
40.5
36.6
371

34.8
36.4
37.2
36.0
34.7

25
3.0
39.7

39.1

37.1

40.7

41.0
40.6
414
41.8
40.2

43.0

41.5
41.2
43.6
44.0
44.1
411
42.7

41.8
38.8

41.9
43.1
44.1
44.6
44.9
41.2
456

43.0
39.8

4.5
54.2

49.9
53.1
514
511
49.9
49.8

47.9
51.0
48.2
51.0

5.0

55.4
52.3
524
57.5
52.9
55.1
52.9
51.6
49.3
494
514

534

444
443
46.3
47.3
47.4

47.3

49.6

using ordinary least-squares (OLS) regression, he
or she would run a greater than 92% chance of
being wrong, not the nominal 5% chance.

Generating reliable estimates of growth pat-
terns is not merely of academic interest — know-
ing whether a growth curve is quadratic rather
than linear in form may tell us whether a disease
or therapy is having an accelerating effect on
growth or not; for example, in the case of children
afflicted with craniosynostosis, this knowledge
may be key to the prevention of brain damage or
development of gross disfiguration in head shape,
or in the case of a child with a cleft palate, the
development of a deformed midface.

It is common practice for investigators to test
more complex hypotheses in longitudinal data
(e.g., tests for between group differences) using a
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battery of t-tests, one-way or repeated measures
ANOVA. Riolo et al. (1974), for example, used
t-tests at each of 11 ages to test for sex differ-
ences. The problem of multiplicity when perform-
ing 11 tests is substantial, even under the unlikely
condition that the data are uncorrelated; in this
example, the overall or experimentwise error rate
would be 1 — (1 —0.05)!1 = 0.431. The chance of
concluding the presence of sex differences when
there are none (type I error) for this variable is
43%, not the nominal 5%. Thus, it is clear that
both the problems of intercorrelations and multi-
plicity in longitudinal data analysis can contribute
significantly to the inflation of the type I error
rate.

While on the surface, ANOVA or repeated-
measures ANOVA would appear to be more ap-
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propriate than the t-tests; they too require as-
sumptions that are seldom fulfilled with longitu-
dinal data sets. Univariate repeated measures
ANOVA assumes that all correlations between
pairs of measurements are equal (Fleiss, 1986;
Schneiderman et al., 1991;- Kowalski, 1993),
whereas in longitudinal data we normally expect
observations made close together in time will be
more highly correlated than those far apart.
Recognizing that the software available in
1983 was inadequate for properly analyzing cran-
iofacial growth data and that there was no empiri-
cal basis for choosing among various longitudinal
methods outlined in the biostatistical literature,
we began studying and implementing methods
for analyzing longitudinal data. In 1988 we ob-
tained an NIDR grant for implementing and evalu-
ating such methods. We hope with this article to
share our results with the dental research commu-
nity. We believe that the availability of these tools
is critical to improving our understanding of nor-
mal and abnormal craniofacial growth.
Implementation is the first step in developing
the knowledge base that will provide researchers
with a rational basis for choosing among methods
for longitudinal data analysis. Until the advent of
reliable matrix programming languages, a variety
of theoretically validated methods of growth curve
analysis had languished in the biostatistical litera-
ture. We began by implementing Rao’s (1959)
classic single-sample polynomial growth curve
model (Schneiderman and Kowalski, 1985). This
permitted the estimation of AGCs and 95% si-
multaneous confidence bands, as well as the poly-
nomial regression coefficients and corresponding
confidence intervals. First programmed on a main-
frame in SAS, it was later extended to accept
unequal time intervals and reprogrammed in
GAUSS to run on PCs, greatly enhancing its us-
ability (Schneiderman et al., 1991). Because this
method is based on generalized least-squares rather
than OLS, it explicitly incorporates the covari-
ance structure of the data into the model; the
investigator can make statements about the whole
course of growth covered by the analysis, that is,
the shape of the AGC and the width of the confi-
dence band at any particular time. Below we
present a concrete data analysis in which these
and several related longitudinal models are illus-
trated and then outline the features of these and 26

190

other longitudinal procedures and the PC pro-
grams implementing them. The names of the
programs are shown in uppercase.

B. An Example — Growth in Maxillary
Length

The graphic results of the analysis of maxil-
lary length using Rao’s model is shown in Fig-
ure 1. Using the related Hills’ model (1968), also
implemented as a GAUSS program (Schneiderman
and Kowalski, 1989), velocities and accelerations
were computed. These male data were fit ad-
equately with linear equations. This and approxi-
mately 30 other craniofacial growth measurements
for the rhesus monkey were similarly analyzed
with early versions of the RAO and HILLS pro-
grams (Schneiderman, 1985) and published as a
book (Schneiderman, 1992), making it the first to
contain longitudinal descriptions of lower facial
growth for any primate species based on an ad-
equate sample. The average values at the five
time points and simultaneous confidence inter-
vals, as generated by RAO and a related program
2STG, are shown in Table 2. Also shown are
conventional means and non-simultaneous confi-
dence intervals. One can see that the conventional
confidence intervals are 24 to 43% narrower than
those generated by RAO. This apparent gain in
precision provided by the conventional method in
spurious, an artifact of ignoring the intercorrelated
nature of this data. It is, however, desirable to
minimize these intervals, that is, maximize the
precision of the estimate of the AGC. Therefore,
we implemented Rao’s two-stage model (1965),
which will give the best unbiased estimates of the
AGC when its assumptions are fulfilled; when
the individual curves and the AGC can be fit
with the same degree polynomial this model will
yield tighter confidence bands. The confidence
intervals issuing 2STG (Ten Have ez al., 1991)
are approximately 18 to 22% narrower than those
issuing from RAQ, providing real gains in preci-
sion with this particular data set (these conditions
are by no means fulfilled with all data sets).

Despite breaking new ground, these methods
and computer programs have several limitations.
Note the three disjointed segments of the growth
curve (Figure 1). This was necessitated by the
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FIGURE 1. Average growth curves and simultaneous

confidence bands for maxillary length in males as com-
puted using Rao’s Single Sample Polynomial Growth
Curve Model. Conventional means for males and fe-
males are also shown as open symbols (squares and
circles, respectively). (A) Attained growth curve; (B)
growth velocity curve. (Reproduced with permission
from Princeton University Press from Schneiderman

(19

92).)

TABLE 2
Conventional Means and Their 95% Confidence Intervals
Conventional RAO 2STG
Age X Cl AGC Cl AGC Cl

-

DN =

3 4193 149 4248 226 4241 1.81
35 4536 1.37 4515 200 4507 1.62
4 4822 142 4783 188 47.73 1.52

4
5

5 5049 110 5050 194 5039 154
6266 1.41 53.17 2.15 53.05 1.67

Note: Fitted values of the AGC and 95% simultaneous confi-

dence intervals for each from the Rao and two-stage
analyses; maxillary length in millimeters, males only
(N = 13); ages are in years.
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requirement of the Rao and Hills procedures for
complete data; three separate blocks of time, for
which all subjects had all observations, were thus
analyzed independently of each other. Table 1
contains all observations for both males and fe-
males; note that only the central block of com-
plete data (in boldface) is sufficiently large to test
the hypothesis of no sex differences. Several re-
lated hypotheses about the AGCs for the two
sexes are tested using our programs (Ten Have
et al., 1992a and 1992b) implementing the
Potthoff-Roy (1964) procedure. This analysis
performed by our program PR demonstrates that
from 3 to 5 years of age there is a significant
difference in overall AGCs (test of coincidence)
as well as in parallelism (Table 3). Overall
univariate tests made on the coefficients also show
them to differ significantly between the two
groups.

While these results of the PR method in this
example are valid and important, as Luder (1987)
has pointed out, the apparent gap between the first
and second data blocks (Figure 1) is perhaps the

TABLE 3
Key Results of Potthoff-Roy Analysis

Centered AGC Coefficients
Sex N Oy oy

F 7 4355 2354
M 13 4742 5.033

Manova tests
For parallelism among avarage group curves
F(1.000, 18.00) = 30.63 PROB > F = 2.966e—05
For overall group differences
F(2.000, 17.00) = 22.80 PROB > F = 1.544e-05

Univariate tests for overall group differences
For coefficient of degree 0
F(1.000, 18.00) = 26.51 PROB > F = 6.740e—05
For coefficient of degree 1
F(1.000, 18.00) = 30.63 PROB > F = 2.966e—05

Group means of fitted (predicted) vaiues

Age
Sex 3 35 4 45 5

F 4119 4237 4355 4473 4590
M 42.38 4490 4742 4993 52.45
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most interesting in terms of the pubertal growth
spurt, and, by implication, sex differences in
growth patterns. Recently, we have implemented
more general methods that allow missing data
and different starting and finishing times for the
different subjects. These methods are based on
the work of Zerbe and Walker (1977) and Zerbe
(1979a, 1979b, and 1979c) allow the investigator
to use most if not all the available data for
an analysis. Using our program ZCOEFF
(Schneiderman et al., 1993d), we interactively fit
polynomial curves to subjects’ data for time spans
ranging up to 8.5 years. Twenty-two of the 35
potential subjects are used in the analysis; these
subjects are fit with polynomials of degree 3 or
less (Figure 2). Our program ZBANDS allows
one to compute simultaneous confidence bands
for the AGC as well as for the individual subject.
These are shown for the male sample in Figure 3.
Thus, it is possible to view the AGC and its
confidence bands in their entirety; this approach
uses most of the available data in marked contrast
to RAO and 2STG. A related program that builds
on the single-sample model in ZCOEFF allows
one to test for differences in AGCs among two or
more groups. This program, ZRTA, uses approxi-
mate randomization tests for hypothesis testing
and allows one to delimit the analysis to any time
span of interest. As one might expect, the results
for 3- to 5-year time span above are similar to
those yielded by PR — the difference is also
significant (p = 0.001). When the total span be-
tween infancy and adulthood is considered, the
overall growth curves are also found to be highly
different (p = 0.0005). However, when we focus
on the more ambiguous and interesting interval
between 0.5 and 3.5 years of age for which the
female data is scant, we find no evidence for
sexual dimorphism in maxillary growth (p =
0.227). If we next confine the analysis to the
interval between 3 and 4 years, the sex differ-
ences become significant (p = 0.002), confirming
statistically an earlier speculation (Schneiderman,
1992) that growth patterns diverge between the
sexes during this period. These computer pro-
grams have the advantage over the earlier ones in
that they allow us to use much more of the avail-
able data in the analysis. In this example, we are

“able to use about 92% (250) of the 271 observa-

tions shown in Table 1 in the Randomization
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FIGURE 3. Plot of the 95% confidence bands for the AGC and for the individual (prediction interval) for males.
All bands are of the Scheffé type and were generated by the program ZBANDS.

Tests, whereas only 37% (100) of the observa-
tions could be used in the RAO and other highly
structured analyses.

Other questions of interest when the monkey
craniofacial data were first collected were (1)
how stable are growth patterns within and be-
tween populations, that is, how well do they track?
and the related question, (2) can we predict later
growth outcomes from earlier growth behavior?
We were also interested in being able to (3) assess
an individual’s growth performance relative to
the rest of a sample, with the goal of being able to
diagnose growth problems. As no computer pro-
grams existed for these activities in the early 1980s,
we also set out to implement methods that would
address these questions.

Below is an overview of our current collec-
tion of GAUSS386i programs and the sorts of
longitudinal data analyses one can accomplish
with them. For greater detail regarding these pro-
grams and the underlying methods, we recom-
mend that the reader consult our earlier papers.
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These methods are categorized under three major
headings, One-sample, G-sample (multisample),
and Miscellaneous procedures, each with several
subheadings describing particular techniques. One-
sample procedures are appropriate in the situation
in which the investigator has a single sample of N
individuals, each measured at times that may be
equally or unequally spaced. G-sample procedures
are used for evaluating two or more groups of
subjects in a single analysis, most often to con-
trast them with one another. Miscellaneous pro-
cedures include several “general purpose” meth-
ods that do not fit under the first two rubrics.

ll. ONE SAMPLE PROCEDURES

A. Estimation of the Average Growth
Curve (AGC)

We have several programs that, given a
one-sample longitudinal data set, determine the



lowest degree polynomial adequate to fit the
AGC, fit the corresponding polynomial, and
provide confidence intervals for the coefficients
of the polynomial and confidence bands for the
AGC. There are several programs, because each
is appropriate for a different set of assumptions
concerning the covariance (correlation) struc-
ture of the longitudinal observations.

1. Rao’s 1959 Model

When this structure is considered to be arbi-
trary, we have implemented (Schneiderman and
Kowalski, 1985; Schneiderman et al., 1991) a
procedure due to Rao (1959). Our program RAO
(formerly GCAY7) finds the best polynomial speci-
fication for the AGC by using step-up goodness
of fit tests, computes 95% simultaneous confi-
dence intervals or bands, and reports the polyno-
mial regression coefficients and the correspond-
ing confidence intervals.

2. Hills Procedure

A second procedure due to Hills (1968) that,
while formally equivalent to Rao (1959), pro-
vides explicit estimates of growth velocities and
accelerations for each case and for the sample as
a whole (Schneiderman and Kowalski, 1989). Our
program HILLS and the underlying procedure
using divided differences is intuitively appealing
due to its simplicity.

3. Two-Stage Model

When the covariance structure of the re-
peated measurements may be assumed to have
a particular form, known as “Rao’s simple struc-
ture,” an alternative procedure may be used
(Ten Have er al., 1991). This structure arises in
the context of the so-called two-stage or ran-
dom coefficients polynomial growth curve
model (Rao, 1965) that, when the underlying
assumptions are tenable, can be expected to
produce sharper results than when the covari-
ance structure is arbitrary. This procedure is
implemented in the program 2STG.

4. Carter and Yang Model

An extension of the two-stage model due to
Carter and Yang (1986) that accommodates miss-
ing data has also been implemented (Furey ez al.,
1993b). In data sets where a small number of
observations are missing at random, this program,
CY, greatly extends the utility of the two-stage
model. We have extended this model further to
accommodate unique times of measurement for
subjects with the program CYU (Mauger et al.,
1994). We are currently testing a program (VC)
that further extends this model, after the work of
Vonesh and Carter (1987), to accommodate a
group indicator variable as well as unique times
of measurement for subjects.

B. Tracking

Another set of one-sample analysis programs
has to do with the computation of tracking indi-
ces. Tracking refers to the “regular behavior” of
growth profiles, for example, do individuals who
are “small” at one age tend to stay “small” as time
progresses? More generally, tracking can be de-
fined as the tendency of an individual to maintain
a particular course of growth over time relative to
other individuals. There are a number of ways in
which “regular behavior” can be defined, and we
have programs corresponding to several of these
ways.

1. Cohen’s Kappa

The first is based on the notion that indi-
viduals who are tracking tend to stay in the
same quantile (track) of the distribution of the
measurement whose growth is being monitored
as that distribution changes over time. A chance-
corrected measure of this tendency, based on
Cohen’s (1960) kappa statistic, is provided in
Schneiderman ez al. (1990). The statistic com-
puted by our program KTRK is based on the
numbers of times each individual is in each of
the tracks; these numbers being compared with
those that would be expected if individuals were
assigned to tracks by chance at each time point.
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2. Foulkes and Davis’ Models

Another way of looking at tracking is in terms
of pairs of individuals maintaining relative rank,
that is, when one of the individuals is always
smaller or larger than the other. Our program
FDTRK (Schneiderman et al., 1992a), following
Foulkes and Davis (1981), estimates the probabil-
ity that two randomly selected growth profiles
will not intersect and provides a confidence inter-
val for this quantity. A second program FDTRK2
(Schneiderman et al., 1993a) uses Rao’s (1959)
arbitrary covariance structure for fitting polyno-
mials to the growth curves and then computes a
tracking index based on the crossings of these
fitted curves.

3. McMahan’s and Goldstein’s Models

Yet another way to quantify tracking was
given by McMahan (1981), who said tracking
occurs to the extent that individuals are the same
numbers of standard deviations away from the
mean at each time of measurement. McMahan
(1981) incorporated polynomial smoothing (us-
ing the two-stage model) in his procedure. This is
implemented in our program MC (Guo et al.,
1994a). Goldstein (1981) simply compared the
sum of squares of the standardized scores be-
tween individuals with the total sum of squares.
This and related indices are computed by our
program GTRACK (Furey et al., 1994). A de-
tailed discussion and comparison of these track-
ing methods is presented in Kowalski and
Schneiderman (1992). Some of the differences in
operational properties of these methods were con-
sidered in Porter ef al. (1993).

C. Growth Prediction

Tracking is a useful concept in its own right,
but it is also related to our ability to predict growth.
We also have programs to perform simple types
of growth prediction.

1. Short-Term
We have N individuals comprising a norma-

tive sample measured at T points of time and a
“new” individual measured at the first T -1 time
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points, whose value at time T is to be predicted.
The program predicts the value at time T and
the confidence interval for that quantity
(Schneiderman et al., 1992c). Our program PRE-
DICT also employs the leave-one-out (LOO)
method, which can be used to further assess the
accuracy with which the predictions based on
this data set are made. In brief, the LOO method
involves repeating the analysis N times, leaving
one subject out of the standardizing sample each
time, and predicting his or her value at time T.
Because the true values at time T are known, the
actual and predicted values may be compared,
providing valuable insight into the predictability
of the measurement under consideration.

2. Long-Term

This can also be extended to more points in
time (Schneiderman et al., 1993b). Suppose, for
example, that the new individual has been mea-
sured at but T* points in time and it is desired to
predict the remaining R = T — T* values. The
program LONGTERM predicts these values and
their confidence intervals when the covariance
structure is arbitrary.

3. Ware and Wu’s Model

This program, WW (Guo et al., 1994b), is
similar to PREDICT above, except that it uses the
two-stage polynomial growth curve model (Ware
and Wu, 1981). If this model provides an ad-
equate fit for the data, then one might except
tighter confidence intervals and bands than if the
covariance structure is assumed to be arbitrary (as
in PREDICT).

D. Diagnostic Testing

We have implemented two procedures that
may prove useful in diagnostic contexts involving
longitudinal measurements. The first is due to
Zerbe (1979a). Given normative longitudinal data
on N individuals, he shows how to compute the
distances between the polynomial growth curves
fit to these individuals and a “new” individual



(the one we wish to diagnose). The new indi-
vidual is then assessed by computing his or her
percentile rank in the distribution of these dis-
tances. We determine the proportion, v, of these
distances that are less than or equal to the average
distance for the new individual. If this exceeds,
say, 95%, we may consider this new individual to
be “abnormal”. This rule has the property that
100 X y % of the individuals most central in the
normal sample would be correctly diagnosed. This
technique can be used to construct normal ranges
to classify an individual’s growth, velocity, and
acceleration of growth over a time interval, se-
lected by the user for its biological importance.
The procedure is nearly assumptionless and miss-
ing data are allowed. Our program, ZDIAG
(Schneiderman et al., 1994a) implements this
procedure.

The second diagnostic procedure was used by
Dawson, Todorov, and Elston (1980) in a study of
the development of head circumference in achon-
droplastic children. In addition to developing es-
timates of and confidence bands for the AGC,
they showed how one can obtain confidence bands
for individual growth curves. The former indi-
cates the accuracy with which the AGC has been
estimated; the latter can be used to assess the
likelihood that an individual is from the same
population as the one from which the standardiz-
ing sample was drawn (i.e., for diagnostic pur-
poses). Missing data are allowed. Our program,
ZBANDS (Schneiderman et al., 1994b), computes
and plots the confidence bands for both the AGC
and individual curves.

ll. G-SAMPLE PROCEDURES
A. Structured Models
1. The Potthoff-Roy (PR) Analysis

Potthoff and Roy (1964) approached the prob-
lem of growth curve analysis by generalizing the
standard multivariate analysis of variance
(MANOVA) model into a form that accommo-
dates fitting polynomial growth curves, construct-
ing confidence bands about these curves, and test-
ing hypotheses in the context of more complex
experimental designs than had been considered

previously. We have implemented the PR proce-
dure in both SAS (Ten Have et al., 1992b) and
GAUSS (Ten Have et al., 1992a) for the analysis
of G-sample data sets as defined in the Introduc-
tion. Our programs determine the polynomial of
lowest degree adequate to fit the AGCs in each of
the groups, fits polynomials of this degree to the
AGCs, tests the equality of the resulting regres-
sion coefficients, and performs pairwise compari-
sons among the groups both with respect to all the
coefficients simultaneously (MANOVA) and one
coefficient at a time (ANOVA). Two forms of the
multivariate tests are included: the first is for
parallelism of the growth curves (all coefficients
except for the intercept equal), the second for
coincidence (all coefficients, including the inter-
cept, equal). Several different forms of these tests
are computed, viz., those based on the Hotelling-
Lawley trace, Pillai’s trace, Wilks’ criterion, and
Roy’s maximum root criterion (see, Kshirsagar,
1972, p. 331, for more details concerning these
statistics).

In order to perform the PR analysis, one must
specify the form of a matrix containing the weights
to be used in the weighted least squares estima-
tion of the polynomial regression coefficients. In
our program, the user may choose between the
identity matrix, the sample covariance matrix, or
the matrix can be input by the user. Timm (1975,
p. 495) discusses the first two of these possibili-
ties. Potthoff and Roy (1964) illustrate how the
third option might arise in practice. It should be
noted that the PR method remains valid regard-
less of the choice of this matrix.

We also allow four choices of the within-
individual or time design matrix in the PR model.
The advantages of using orthogonal and orthonor-
mal time scores were detailed by Ten Have ef al.
(1992a, 1993); however, more traditionally popu-
lar time scores are also available, for example,
the successive-powers- of -t form used by
Schneiderman and Kowalski (1985).

2. Rao’s Time Metameter
Rao’s (1958) analysis is based on a transfor-
mation of the time axis with respect to which the

growth curves in the G groups are approximately
linear, regardless of the shapes of the curves on
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the t-axis. This new time scale, t¥, is referred to as
a “time metameter,” and its structure can be esti-
mated from the data in hand. Because the growth
curves are linear with respect to t*, the N x T data
matrix can be reduced to a N X 2 matrix contain-
ing the initial value of the measurement for each
of the N individuals and estimates of their growth
rates. The average growth rates in each of the
groups can now be compared using a simple
univariate analysis of variance or covariance,
adjusting for differences in the initial mean values
if necessary. Our SAS program (Ten Have et al.,
1992b) does both analyses, the user being free to
select the one most appropriate for his or her
situation. For additional information on Rao’s
time metameter see Rao (1961), Hoel (1964), and
Goldstein (1979, p. 89).

3. Comparison of Tracking Indices

We have extended our program for comput-
ing the tracking index based on the kappa statistic
(Schneiderman et al., 1990) to allow the compari-
son of the kappas computed within each of G
independent groups (Schneiderman et al., 1992b).
When the hypothesis of no difference between the
G kappas is not contradicted by the data, the
program KTRK computes an estimate of the over-
all value of kappa and provides a confidence in-
terval for this quantity.

B. Randomization Tests

The G-sample procedures considered above
require that individuals be measured at identical
times; that polynomials of the same degree can be
used to model the AGCs in each of the groups;
and that the distribution of the variable whose
growth is being monitored be multivariate nor-
mal. Zerbe (1979b) and Zerbe and Walker (1977)
developed a class of procedures that make none
of the above assumptions and thus are of great
value to those who must cope with all of the
problems inherent in collecting and analyzing
longitudinal data. These procedures are based on
randomization tests. For a good general account
see Edgington (1987).

In our programs (Schneiderman et al., 1994c)
distances are computed between growth curves
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for all pairs of individuals within each of the
groups. These distances are averaged within each
groﬁp and these averages are summed over the
groups. We then recompute this sum for each of
the possible assignments of N individuals to G
groups (exact tests) or a randomly selected subset
of all possible assignments (approximate tests).
The p-value for the hypothesis of no group differ-
ences is then the proportion of these sums that are
less than or equal to the sum of the average dis-
tances for the original data. The program ZRTA
implements the approximate randomization tests
and is suitable for any sample size; the program
ZRTE performs exact randomization tests and is
therefore suitable only for smaill problems.

IV. MISCELLANEOUS PROCEDURES

A. Computation of Orthogonal
Polynomials

Orthogonal polynomials are useful in a num-
ber of contexts, including longitudinal data analy-
sis. In order to obtain them you have had either to
use tables (equally spaced time points) or to do
laborious computations (unequally spaced points).
We have a program ORPOL that generates them
for you whether the points are equally spaced or
not (Ten Have er al., 1993).

B. Construction of Design Matrices

This program DESIGN may be used to evalu-
ate and compare alternate choices of the design
matrix in the general linear model, including
polynomial regression (Furey et al., 1993a).
Measures of the “stability” of the design matrix
are computed and influential data points are
identified.

C. imputation of Missing Data

The program MISSING may be used to esti-
mate randomly missing observations in longitudi-
nal data sets (Schneiderman et al., 1993c¢). This is
an extension of the theory of growth prediction
allowing “predictions” to be made at any point
along the time scale (not just at the end). Random



residuals are added to the imputed values to guard
against oversmoothing the growth curves.

D. Computation of Polynomial
Regression Coefficients

Zerbe (1979a) proposed a method for analyz-
ing longitudinal data in which data are missing.
Our program implementing Zerbe’s procedure
permits the estimation of polynomial growth,
velocity, and acceleration curves (Schneiderman
et al., 1993d). This program ZCOEFF allows the
interactive fitting of individual curves using step-
down goodness-of-fit tests to arrive at the lowest
degree adequate to fit them. The polynomial re-
gression coefficients can then be saved for subse-
quent analysis by other programs (e.g., the
MANOVA procedures provided in most com-
mercial packages).

After fitting a set of growth curves in this
fashion, it is then possible to compute confidence
bands for the AGC and individual growth curves
using our program ZBANDS (Schneiderman et al.,
1994b). Both Scheffé and Bonferroni type bands
are computed.

E. Classification/Clustering of Growth
Curves

Zerbe’s (1979a) approach to diagnostic prob-
lems can also be used to classify a “new” indi-
vidual into one of several existing groups. It is
possible to determine the new individual’s aver-
age distance from members of the various groups
and assign this individual to the group in which he
or she is “most central.” One can compute 7Y,
Y - - - » Y the percentile ranks of the new indi-
vidual in each of the groups and assign the indi-
vidual to the group for which this rank is minimal.
Our program ZCLASS (Schneiderman et al.,
1994d) performs these computations.

Clustering is converse of classification. In the
classification (sometimes called discrimination)
problem, we wish to assign a new individual to
one of G preexisting groups. Clustering, on the
other hand, refers to the situation in which we
have a sample of N individuals and wish to deter-
mine whether an underlying group structure can
be discerned from the measurements in hand.
Kendall (1980) gives a good description of both

procedures — and the differences between them.
If we are given N individuals, the search for a
group structure begins with a distance matrix with
elements d,, the distances between each pair of
individuals. Clustering algorithms then proceed
to form groups by putting together that pair of
individuals for which this distance is minimized,
that is, the pair of individuals who are most simi-
lar. This pair is said to form the first “cluster.”
Then, using a user-specified measure of the dis-
tance between individuals and clusters, individu-
als or clusters are further linked together to form
new clusters. This process continues until the user
is satisfied that further agglomeration is not war-
ranted, that is, that a balance between the within-
cluster and between-cluster distances has been
achieved. Anderberg (1973) provides a readable
account of the entire procedure. Our program
ZDIST (Schneiderman et al., 1993e) allows the
user to save the distance matrix for input into
other clustering programs.

V. DISCUSSION

We have described, illustrated, and made
available a number of user-friendly PC programs
for longitudinal data analysis that we hope will
strengthen the analysis of longitudinal data sets in
dental research contexts (see the Appendix for
details on acquiring copies). The interactive plot-
ting routines of the Z programs (i.e., those based
on Zerbe’s methods) should prove especially valu-
able for exploring longitudinal data as well as
performing analyses. These efficient plotting rou-
tines accept missing data, allow one to view di-
rectly unfitted and fitted curves (i.e., the corre-
spondence between the original data points and
their fitted counterparts); they also allow one to
examine the implications of fitting a particular
polynomial to an individual’s observations. Addi-
tionally, the user has complete control over the
display of a legend, symbols used for individual
observations, and the color and pattern and thick-
ness of lines used for plotting curves. While these
features may seem cosmetic or trivial, they are
actually essential to ensuring that one analyzes
and interprets his or her data correctly. These
features enable the investigator to immediately
establish the identity of an outlier. With these
program features, one can avoid the pitfalls of
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running a statistical analysis blindly — this is not
always done easily with commercial statistical
packages, especially with larger data sets.

This article is limited to brief descriptions of
the programs and is essentially an announcement
of their availability. Space limitations preclude us
from detailing the methods, interpretation of re-
sults, the situations in which particular proce-
dures may be applicable, and all of the assump-
tions that must be met before each technique may
be validly employed. The reader must refer to the
publications cited for this important information.
We are concerned not only that longitudinal meth-
ods be used to analyze longitudinal data sets; we
also want to encourage the use of the proper
longitudinal analysis in particular situations. We
feel it is important that the dental research com-
munity have this information; however, it should
be emphasized that intelligent use of these now-
available tools for longitudinal analysis will re-
quire further study of them.

ACKNOWLEDGMENT

This work was supported in part by grant DE
08730 from the National Institute of Dental
Research.

REFERENCES

Anderberg, M. R.: Cluster Analysis for Applications, Aca-
demic Press, New York (1973).

Carter, R. L. and M. C. K. Yang: Large-Sample Inference in
Random-Coefficient Regression Models. Comm. Stat.
8:2507-2526 (1986).

Cohen, J.: A Coefficient of Agreement for Nominal Scales.
Educ. Psych. Measur. 20:37-46 (1960).

Cullis, B. R. and C. A. McGilchrist: A Model for the Analy-
sis of Growth Data from Designed Experiments. Bio-
metrics 46:131-142 (1990).

Dawson, D. V., A. B. Todorov, and R. C. Elston: Confidence
Bands for the Growth of Head Circumference in Achon-
droplastic Children during the First Year of Life. Am. J.
Med. Genet. 7:529-536 (1980).

Edgington, E. S.: Randomization Tests, Marcel Dekker, New
York (1987).

Edlefson, L. E. and S. D. Jones: GAUSS (Computer Pro-
gram), Applied Technical Systems, Kent, WA
(1985).

Fleiss, J. L.: The Design and Analysis of Clinical Experi-
ments, Wiley, New York (1986).

Foulkes, M. A. and C. E. Davis: An Index of Tracking for
Longitudinal Data. Biometrics 37:439—446 (1981).

200

Friede, H., A. A. Figueroa, M. L. Neagele, H. Gould, N. Kay,
and H. Aduss: Craniofacial Growth Data for Cleft Lip
Patients Infancy to 6 Years of Age: Potential Applica-
tions. Am. J. Orthodont. Dentofacial Orthoped. 90:388~
409 (1986).

Furey, A. M., C. J. Kowalski, E. D. Schneiderman, and S. M.
Willis: A PC Program to Aid in the Choice of the
Design Matrix in Multiple Linear Regression. Int. J.
Biomed. Comput. 33:1-23 (1993a).

Furey, A. M., T. R. Ten Have, C. J. Kowalski, E. D.
Schneiderman, and S. M. Willis: A PC Program Ex-
tending the Two-Stage Polynomial Growth Curve Model
to Allow Missing Data. Int. J. Biomed. Comput. 33:287—
296 (1993b).

Furey, A. M., C.]. Kowalski, E. D. Schneiderman, and S. M.
Willis: GTRACK: A PC Program for Computing
Goldstein’s Growth Constancy Index and an Alterna-
tive Measure of Tracking. Int. J. Biomed. Comput. in
press (1994).

GAUSS (Computer Program): The GAUSS System Ver-
sion 3.0. Aptech Systems, Inc., Maple Valley, WA
(1992).

Goldstein, H.: The Design and Analysis of Longitudinal
Studies, Academic Press, New York (1979).

Goldstein, H.: Measuring the Stability of Individual Growth
Patterns. Ann. Hum. Biol. 8:549-557 (1981).

Guo, I. Y., T. R. Ten Have, C. J. Kowalski, E. D.
Schneiderman, and S. M. Willis: A PC Program for
Computing McMahan’s Tracking Indices from One-
Sample Longitudinal Data Sets. Int. J. Biomed. Comput.
35:255-266 (1994a).

Guo, 1. Y., E. D. Schneiderman, C. J. Kowalski, and S. M.
Willis: PC Program for Growth Prediction in the Two-
Stage Polynomial Growth Curve Model. Int. J. Biomed.
Comput. 35:39-46 (1994b).

Hills, M.: A Note on the Analysis of Growth Curves. Bio-
metrics 24:189-196 (1968).

Hoel, P. G.: Methods for Comparing Growth Type Curves.
Biometrics 20:859-872 (1964).

Kendali, M. G.: Multivariate Analysis, Griffin, London
(1980).

Kowalski, C. J.: Data Analysis in Craniofacial Biology with
Special Emphasis on Longitudinal Studies. Cleft-Palate
Craniofacial J. 30:111-120 (1993).

Kowalski, C. J. and E. D. Schneiderman: Tracking: Con-
cepts, Methods and Tools. Int. J. Anthrop. 7:33-50
(1992).

Kshirsagar, A. M.: Multivariate Analysis, Marcel Dekker,
New York (1972).

Luder, H. U.: Evidence for a Pubertal Spurt in Mandibular
Condylar Growth of Nonhuman Primates. In: Cranio-
Jacial Growth During Adolescence. pp. 49-68. (Carlson,
D. and K. A. Ribbens, Eds.) Center for Human Growth
and Development, Ann Arbor (1987).

Mauger, E. A., C. J. Kowalski, E. D. Schneiderman, and
S.M. Willis: Extension of the Carter-Yang Growth
Curve Model to Allow Unique Times of Measurement
for Subjects. Int. J. Biomed. Comput. in press, (1994).

McMahan, C. A.: An Index of Tracking. Biometrics 37:447—-
455 (1981).



Porter, C. L., P. H. Buschang, and E. D. Schneiderman:
Studying Mandibular Growth with the x Tracking Sta-
tistic: Effects of Sample Size and Number of Tracks. J.
Dent. Res. 72(SI):340 (1993).

Potthoff, R. F. and S. N. Roy: A Generalized Multivariate
Analysis of Variance Model Useful Especially for
Growth Curve Problems. Biometrika 51:313-326 (1964).

Rao, C. R.: Some Statistical Methods for the Comparison of
Growth Curves. Biometrics 14:1-17 (1958).

Rao, C. R.: Some Problems Involving Linear Hypotheses in
Multivariate Analysis. Biometrika 46:49-58 (1959).

Rao, C. R.: Some Observations on Multivariate Statistical
Methods in Anthropological Research. Bull. Int. Stat.
Inst. 38:99-109 (1961).

Rao, C. R.: The Theory of Least Squares When the Param-
eters are Stochastic and its Application to the Analysis
of Growth Curves. Biometrika 52:447-458 (1965).

Riolo, M. L., R. E. Moyers, J. M. McNamara, and W. S.
Hunter: An Atlas of Craniofacial Growth, Monograph
No. 2, Craniofacial Growth Series, Center for Human
Growth and Development, University of Michigan, Ann
Arbor (1974).

Schneiderman, E. D.: A Longitudinal Cephalometric Analy-
sis of Craniofacial Growth in the Rhesus Monkey
(Macaca mulatta), Univ. Michigan Doctoral Disserta-
tion, University Microfilms, Ann Arbor (1985).

Schneiderman, E. D.: Facial Growth in the Rhesus Monkey:
A Longitudinal Cephalometric Study. Princeton Univ.
Press, Princeton, New Jersey (1992).

Schneiderman, E. D. and C. J. Kowalski: Implementation of
Rao’s One-Sample Polynomial Growth Curve Model
Using SAS. Am. J. Phys. Anthrop. 67:323-333 (1985).

Schneiderman, E. D. and C. J. Kowalski: Implementation of
Hills’ Growth Curve Analysis for Unequal-Time Inter-
vals using GAUSS. Am. J. Hum. Biol. 1:31-42 (1989).

Schneiderman, E. D., C. J. Kowalski, and T. R. Ten Have: A
GAUSS Program for Computing an Index of Tracking
from Longitudinal Observations. Am. J. Hum. Biol.
2:475-490 (1990).

Schneiderman, E. D., S. M. Willis, T. R. Ten Have, and C. J.
Kowalski: Rao’s Polynomial Growth Curve Model for
Unequal-Time Intervals: A Menu-Driven GAUSS Pro-
gram. Int. J. Biomed. Comput. 29:235-244
(1991).

Schneiderman, E. D., C. J. Kowalski, T. R. Ten Have, and
S. M. Willis: Computation of Foulkes and Davis’ Non-
parametric Tracking Index Using GAUSS. Am. J. Hum.
Biol. 4:417-420 (1992a).

Schneiderman, E. D., S. M. Willis, C. J. Kowalski, and T. R.
Ten Have: PC Program for Comparing Tracking Indi-
ces in Several Independent Groups. Am. J. Hum. Biol.
4:399-401 (1992b).

Schneiderman, E. D., S. M. Willis, C. J. Kowalski, and T. R.
Ten Have: A PC Program for Growth Prediction in the
Context of Rao’s Polynomial Growth Curve Model.
Comput. Biol. Med. 22:181-188 (1992c¢).

Schneiderman, E. D., C. J. Kowalski, T. R. Ten Have, and
S. M. Willis: A PC Program for Computing the Foulkes-
Davis Tracking Index for Polynomial Growth Curves.
Int. J. Biomed. Comput. 32:35-43 (1993a).

Schneiderman, E. D., S. M. Willis, C. J. Kowalski, and
T. R. Ten Have: Longer-Term Growth Prediction Us-
ing GAUSS. Comput. Biol. Med. 23:149-154
(1993b).

Schneiderman, E. D., C. J. Kowalski, and S. M. Willis:
Regression Imputation of Missing Values in Longitudi-
nal Data Sets. Int. J. Biomed. Comput. 32:121-133
(1993c).

Schneiderman, E. D., S. M. Willis, and C. J. Kowalski: PC
Program for Estimating Polynomial Growth, Velocity,
and Acceleration Curves When Subjects May Have
Missing Data. Int. J. Biomed. Comput. 33:249-265
(19934d).

Schneiderman, E. D., C. J. Kowalski, and S. M. Willis:
Clustering on the Basis of Longitudinal Observations.
Comput. Biol. Med. 23:399-406 (1993e).

Schneiderman, E. D., S. M. Willis, C. J. Kowalski, and I. Y.
Guo: A PC Program for Diagnosis on the Basis of
Longitudinal Data. Int. J. Biomed. Comput. 35:247-254
(1994a).

Schneiderman, E. D., C. J. Kowalski, S. M. Willis,and 1. Y.
Guo: A PC Program for Computing Confidence Bands
for Average and Individual Growth Curves. Comput.
Biol. Med. 24:119-127 (1994b).

Schneiderman, E. D., S. M. Willis, C. J. Kowalski, and . Y.
Guo: Implementation of Exact and Approximate Ran-
domization Tests for Polynomial Growth Curves. Int. J.
Biomed. Comput. 36:187-192 (1994c).

Schneiderman, E. D., S. M. Willis, and C. J. Kowalski: A PC
Program for Classification Into One of Several Groups
on the Basis of Longitudinal Data. Comput. Biol. Med.
24(4): in press (19944d).

Stanek, E. J.: A Two-Step Method for Understanding and
Fitting Growth Curve Models. Star. Med. 9:841-851
(1990).

Ten Have, T. R., C. J. Kowalski, and E. D. Schneiderman:
PC Program for Analyzing One-Sample Longitudinal
Data Sets Which Satisfy Rao’s Two-Stage Polynomial
Growth Curve Model. Am. J. Hum. Biol. 3:269-279
(1991).

Ten Have, T. R., C. J. Kowalski, E. D. Schneiderman, and
S. M. Willis: A PC Program for Performing Multigroup
Longitudinal Comparisons Using the Potthoff-Roy
Analysis and Orthogonal Polynomials. Int. J. Biomed.
Comp. 30:103-112 (1992a).

Ten Have, T. R., C. J. Kowalski, E. D. Schneiderman, and
S. M. Willis: Two SAS Programs for Performing
Multigroup Longitudinal Analyses. Am. J. Phys.
Anthrop. 88:251-254 (1992b).

Ten Have, T. R., C. J. Kowalski, and E. D. Schneiderman: A
PC Program for Obtaining Orthogonal Polynomial Re-
gression Coefficients for Use in Polynomial Regression
Analysis. Am. J. Hum. Biol. 4:403-416 (1993).

Timm, N. H.: Multivariate Analysis with Applications in
Education and Psychology, Brooks/Cole, Monterey, CA
(1975).

Vacek, P. M., R. M. Mickey, and D. Y. Bell: Application of
a Two Stage Random Effects Model to Longitudinal
Pulmonary Function Data from Sarcoidosis Patients.
Stat. Med. 8:189-200 (1989).

201



Vonesh, E. F. and R. L. Carter: Efficient Inference for
Random-Coefficient Growth Curve Models with Un-
balanced Data. Biometrics 43:617-628 (1987).

Ware, J. H. and M. C. Wu: Tracking: Prediction of Future
Values from Serial Observations. Biometrics 37:424—
437 (1981).

Zerbe, G. O.: A New Nonparametric Technique for Con-
structing Percentiles and Normal Ranges for Growth
Curves Determined from Longitudinal Data. Growth
43:263-272 (1979a).

Zerbe, G. O.: Randomization Analysis of the Completely
Randomized Design Extended to Growth and Response
Curves. J. Am. Stat. Assoc. 74:215-221 (1979b).

Zerbe, G. O.: Randomization Analysis of Randomized Blocks
Extended to Growth and Response Curves. Comm. Stat.
A8:191-205 (1979c¢).

Zerbe, G. O. and S. H. Walker: A Randomization Test for
Comparison of Groups of Growth Curves with Differ-
ent Polynomial Design Matrices. Biometrics 33:653-
657 (1977).

APPENDIX
Computer implementation
The full set of PC programs for longitudinal

data analysis can be obtained on 5.25" or 3.5"
diskettes (please request type) by sending $25 to
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defray the cost of handling and licensing fees.
These programs require a 80386- or 80486-based
personal computer (PC) running the MS-DOS
operating system (version 5.0 or higher is recom-
mended, although versions as low as 3.3 will
suffice): 80386 computers must also be equipped
with a 80387 math coprocessor. At least 4 mb of
memory is required, and must be available to
GAUSS386i (i.e., not in use by memory resident
programs such as Windows). Five mb of hard disk
space are required to store the programs. EGA or
VGA graphic capabilities are required to display
the color graphics; VGA or SVGA is suggested to
display optimally the graphic results. Runtime
modules are supplied with the programs so that
no additional software (i.e., compiler or inter-
preter) is required to run these programs. One can
create and edit ASCII data sets for use by these
programs using the full screen editor supplied
with MS-DOS version 5.0. The programs are writ-
ten and compiled using GAUSS386i, version 3.0,
require no additional installation or modification,
and are run with a single command. When re-
questing the programs, address inquiries to the
corresponding author and make checks payable to
Baylor College of Dentistry.





