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Intraluction

Many disussions of the effects s of Galton’s problem on

estimates of relationships between variables in cross-

cultural studies have presented adjustment procedures that

might be used to deal with the problem. In this paper, we

develop some theoretical models of diffusion processes; we

analyze several sets of simulated data to demonstrate some

of the effects s of Galton’s problem on the estimates of

relationships; and we evaluate the adjustment strategies
that have been presented in the literature. In particular,
we evaluate Naroll’s s (1961, 1964, 1970) linked pairs test

and Wirsing’s (1975) use of second order partial
correlation. Finally, we suggest alternatives for dealing
with Galton’s problem.

The Linear Regression Mo~1

We begin with a discussion of the linear regression model
which provides a theoretical basis for the discussion of

Galton’s problem. The basic elements in the model are three

variables linked by a linear equation:’

The model represents d dependent variable (Yp) which is

assumed to be produced by an explanatory or independent
variable (Xp) , and one or more disturbance variables

(Up) which represent all factors that influence the

dependent variable other than the independent variable.3
For example, one might be investigating the influence of

technological complexity of societies (Xp) on their

organizational complexity (Yp), but many other variables

(e.g., environmental factors, energy resources, historical

factors) also influence organizational complexity. This

residual category of factors other than technological
complexity is represented in the model by the disturbance

variable (UP). It is, in fact, an aggregate of all
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Figure 1. Causal Malel Descr!bEd

by Limar Regression Equation

variables that &dquo;disturb&dquo; the relationship being investi-

gated. The two Greek letters in the equation (a and 6) are
constant terms representing the intercept and the slope of

the linear relationship. Figure 1 provides a diagram of the

causal model that would be described by the regression
equation.

The use of the regression model for statistical

inferences is facilitated if we can make the following
assumptions about the distribution of the disturbance

variables:

1) The disturbances have a mean of zero. Some factors

increase Y, but others decrease it, so that in the

long run we expect thdt the effect on the mean

value of Y will be zero.

2) The disturbances are normdlly distributed and have

a constant variance.

3) The disturbances are independent of each other,
i.e., knowledge of the disturbances at point p does

not allow one to predict the value of the

disturbances at any other point.
4) The disturbances are independent of the explanatory

variables.4
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Given this model, statisticians have developed d set of

procedures which allow one to estimate the unknown constants

of the equation (the slope, ~ and the intercept a ) and to

make probability statements about the distribution of these

estimates. Some of the statistical properties of the model

are very helpful in understanding Galtun’s problem, and it

is therefore useful to describe them in detail. We make use

of a data simulation technique to illustrate some of the

statistical properties of the linear regression model.
The strategy of the simulation is very simple; we

generated twenty hypothetical studies that conform to the

assumptions of the linear regression model. We then applied
the statistical procedures to those data to see to what

degree we would have arrived at the correct conclusions

about the mechanism that generated the data. By averaging
our results over twenty studies we can illustrate the

general behavior of the statistics. Later we modify some of
the assumptions of the model, repeat the simulation and the

analysis, and examine the effects of the modification.

The specific characteristics of the initial simulation

were as follows: (1) sixty random Xp values were drawn

from a uniform distribution ri with a ra nge of zero to

ninety-nine; (2) sixty Up values were drawn from a normal

distribution with a mean of zero and a standard deviation of

ten, (3) the slope (6) was assigned the value of one and the

intercept (a) the value of zero, and (4) Yp was calculated

according to formula (1). We repeated the procedure twenty
times, generating twenty hypothetical studies of sixty cases
each. We then analyzed the data using linear regression
techniques.

The results of the analysis are presented in Table 1. We

focus attention on estimation of the slope coefficient

because it is the value of primary theoretical importance in

most t studies; however, our general conclusions would hold

equally well for estimation of the intercept.
There are three important properties of the ordinary

least squares (OLS) regression estimates5 that we want to

emphasize:
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1) The regression estimate of the slope is an unbiased

est imate;
2) the regression estimate of the slope is the most

efficient estimate of the slope;
3) the regression estimate of the standard error of

the slope is an unbiased estimate. These three

properties can be derived deductively from the

definition of the normal linear regression model,
and proofs are available in the statistical

literature,6 Our purpose is simply to explain
their meaning; later we will show how Calton’s

problem influences them.

Column two of Table 1 illustrates the first property of

the OLS estimates of the slope. The twenty slope estimates
vary around the true value--some are larger and some are

smaller--but the average of the twenty estimates (.996) is

almost exactly equal to the true value (1.0). The distri-

bution of the estimates of the slope around the true slope
is an empirical analog of the theoretical concept of the

sampling distribution of the slope. The sampling distri-

bution of a statistical estimator is the distribution that

would be obtained if an infinitely large number of estimates
were made and the results tabulated. Our sample of twenty
estimates can be thought of as an estimate of the sampling
distribution of the particular statistic under consider-

ation. In fact, it is a sample size of twenty from that

sampling distribution and, like all samples, we do not

expect it to correspond exactly to the characteristics of

the population. It will, however, provide d useful tool for

estimating the characteristics of the population.
The statement that the regression estimate of the slope

is an unbiased estimate refers to the fact that the mean of

the sampling distribution uf the slope estimate will be

exactly equal to the true value of the slope. Thus, our

simulated data illustrate this principle to the extent thdt

they have a mean that is very close to the true value of the

slope. They do not, of course, have a mean of exactly 1.0
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because they represent only a sample from the population of

al possible estimates of the slope.7
The second and third characteristics of the OLS estimates

refer to the amount of variation of the slope estimates

around the true values--that is, to the dispersion of the

sampling distribution of the slope estimates. The statement

that the regression estimates are the most efficient

estimates of the slope means that, compared to alternative

estimation procedures, the OLS estimates have the smallest

variance around the true value.8 It is important to have

an estimation procedure with a small variance because, in

the long run, the estimates would be closer to the true

value than they would be were we using a less efficient

estimation procedure. The standard deviation of the slope
estimates provides us with a measure of their efficiency.
Since the estimates are unbiased and thus their expected
value is the true value, their standard deviation provides
us with an approximation of the standard deviation of the

true sample distribution (i.e., the standard error). We

emphasize that these values are only approximations because

of the relatively small number of replications that we have

conducted.

The third important property of the OLS estimates is that

the estimate of the standard error of the slope is an

unbiased estimate. The standard error of any statistic is

the standard deviation of its sampling distribution. An

estimate of this value gives the researcher an idea of how

much one can expect the estimates to differ from the true

value in the long run, and provides the basis for tests of

significance. It can be demonstrated that the OLS pro-

cedures provide estimates of the standard error of the slope
that have an expected value identical to the true standard

error of the slope (Beals 1972: 237). This property is

illustrated in Table 1, which shows the mean of the twenty
estimates of the standard error (.045) as almost t exactly
equal to the standard deviation of the slope estimates

(.048). In other words, the mean of column 3 is approxi-
mately equal to the standard deviation of column 2; this is
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to be expected, since both of these values represent
estimates of the standard error of the slope estimates.

The fourth column of Table 1 provides the coefficient of

determination (the square of the product moment correlation

coefficient) for the twenty sets of data. Previous discus-

sions of Galton’s problem have focused almost exclusively on
this value; some of the misunderstanding of the nature of

the problem is a result of the failure to distinguish
between the correlation coefficient and such other

statistics as the slope estimates and the estimates of the

standard error of the slope--which estimate completely
different aspects of the regression model. The coefficient

of determination estimates the proportion of the variation

in the dependent variable that can be attributed to

(explained by) the variation in the independent variable.

The mean of the values in Table 1 (.895) corresponds closely
to the true value for the model (.90). In subsequent
discussion we do not emphasize the coefficient of deter-

mination or the correlation coefficient, because the most t

important effects of Galton’s problem on statistical

estimators can be seen more clearly with respect to the

estimates of the slope and the standard error of the slope.

2he Nature cf G~lton’s Problem

Given the linear regression model, we argue that Galton’s

problem is not a single phenomenon or issue. Rather it is a

special problem that frequently arises when dealing with

historically interdependent social units influenced by many
common geographically distributed factors. In what way are

the assumptions of the model violated by interdependence of

units and what are the consequences for the statistical

estimators of that model? We discuss five specific models

which represent different types of violations (or apparent
violations) of the assumptions; then we demonstrate with

simulated data how the usual OLS estimates are influenced by
the modifications of the assumptions; finally, we apply two

adjustment procedures to see whether they provide better

estimates.
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Five Diffusion Mx1els

The diffusion models used in this study are similar to

those used in earlier studies by Loftin (1975) and by
Wirsing (1975); the models assume that diffusion moves in

only one dimension along an array which is analogous to

Naroll’s (1961: 26) diffusion arcs.9 Diffusion is

simulated in the models by constructing the values of a

variable at point p such that they are partially determined

by the values of the same variable at an adjacent point
(p-1), but not by other points in the array. The

assumptions built into the models, especially that diffusion
moves in only one dimension, are significant simplifications
and should not be ignored in subsequent work. For present

purposes, however, they provide a way to investigate the

properties of estimators such as those suggested by Wirsing
(1975) systematically and to clarify the theoretical nature

of Galton’s problem.
Figures 2-6 summarize the assumptions of the five dif-

fusion models used in our study. Note that there are two

versions of each model; version A is distinguished from

version B only by the value assigned to the slope (1.0 in

version A and 0 in version B). In other respects, including
the actual numbers used in the simulations, the two versions

of the models are identical. Tables 2-6 summarize the most

relevant results of the data analysis.

Mode1 1.

Model 1 (see Figure 2) is constructed so that only the

independent variable is diffusing: Xp is a function of

Xp-1 and the disturbances represented by V ; the

dependent variable is a fmction of the independent variable
and the disturbances represented by Up, but the dis-

turbances of Xp and the disturbances of Yp are dif-

ferent and independent of each other. Naroll (1964: 866)
has argued that in cases such as this, where only one

variable is diffusing, Galton’s problem does not exist.

Since none of the assumptions of the linear regression model
is violated, Naroll’s conclusion is supported by the logic
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Figure 2. Model 1: Only tiE In3eperderf variable Diffusers

of the model. It can be demonstrated that all of the

desirable properties of the regression estimators will be

retained when only the independent variable diffuses.l0
The results in Table 2 are consistent with these expecta-
tions ; the mean of the OLS estimates of the slope is very
close to the true value (1.014 is the estimate of the true

value of 1 for version A and .014 is the estimate of the

true value of 0 for version B); the mean of the estimated

standard errors of the slope (.064) is very close to the

standard deviation of the twenty slope estimates (.06) and

no errors would have been made in either version of the

model had the slopes been tested for statistical

significance..1 1
While it is true that the OLS procedures provide valid

estimates for Model 1, the model points up some serious

errors in the research strategy that Naroll has suggested
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for analyzing data such as those generated according to

Model 1. In version B of Model 1 the application of a test

such as Naroll’s (1964, 1970) linked pair test would lead

one to the appropriate conclusion for this model. That is,

X would be significantly autocorrelated, but Y would not be,
so one would ignore Galton’s problem and draw inferences on

the basis of the OLS estimates of the model. In contrast,
note what would happen in a case like version A of Model

1--where both X and Y are autocorrelated because X is

autocorrelated and it has a direct effect on Y. The mean

autucorrelated coefficients for the twenty replications of

version A dre: rXX = .831 and ryy = .662. Following
Naroll’s logic, one would conclude that Galton’s problem
exists and that some precautions should be taken in drawing
inferences from the OLS estimates. In fact, there are no

problems with inferences from the OLS estimates; the slope
estimate is unbiased and efficient, and the standard error

estimate is unbiased. A judgment based on the magnitude of

the autucorrelation coefficients would be misleadmg.
It is interesting to see what would happen were we to

apply an adjustment procedure such as Wirsing’s second order

partial regression to the data generated according to

M udel 1.12 2

Table 2 shows thdt Wirsing’s estimates of the slope and

the standard error of the slope are very close to their true

values (i.e., they dre unbiased), but they are less ef-

ficient than the OLS estimates. This is reflected by the

ldrger mean of the estimates of the standard error of the

slope (.118 for Wirsmg’s method as opposed to .064 for the

OLS estimates), and the increase in the number of errors

that one would make in testing the significance of the

version B slopes (one with the Wirsing method and none with

the OLS estimates). The application of Wirsing’s method

thus leads, in the case of Model 1, to estimates that are

slightly less desirable than those which would have been

obtained by applying the usual regression procedures.
Table 2 and subsequent tables also present the results of

another estimation procedure closely related to Wirsing’s
but which requires a few additional calculations. This pro-

cedure has been suggested by Durbin (1960) for use in time-
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series analyses. &dquo; 

It requires two steps: The first is

identical to Wirsing’s method; the dependent variable is

regressed on the independent variable at point p, the p-1
value of the independent variable (Xp-1)’ and the p-1
value of the dependent variable (Yp-1)’ The model is as

follows:

In the second stage the estimated coefficient of the

Yp-1 variable, which we will call 0, is used to construct

two new variables: (Y p - - 0 Yp-1) and (Xp - 6 Xp-1)’
Then a new regression analysis is conducted with the model:

where a* = a( 1 -0).

Durbin has shown that the OLS estimates of the a* and B
coefficients will be efficient estimates for large samples.
Note that in Table 2 the Durbin method provides estimates

that are virtually identical to the OLS estimates and better

estimates than those derived from Wirsing’s procedure.

Makl 2.

Model 2 (see Figure 3) provides an interesting contrast
to Model 1; in this case only the disturbance variables are

diffusing. This is a violation of the assumption of the

linear regression model that disturbances are independent of
each other (see assumption number three above), and will

lead to problems with the OLS estimators. Note, however,
that since the independent variable is not diffusing (the
mean of the autocorreldtion coefficients for Xp in Model 2

is .00001) Naroll’s linked pair test would lead one to the

conclusion that Galton’s problem is not an issue in this

analysis, and one would proceed as though there were no

problems. Such a conclusion would be somewhat misleading.
It can be shown (Johnston 1972: 247-249) that where the

disturbances are interdependent, as they are in Model 2, the

OLS estimates of the slope will remain unbiased, but the



118

Figure 3. M:xie1 2: Only tle Disturmrr:e Variable DjfflJS2S

estimate of the standard error of the slope will be biased.

However, the extent of the bias will be negligible where the
disturbances are the only variables that are autocorrelated.

Only when the disturbance and the independent variable are

both autocorrelated will the bias be serious; we deal with

this case in Model 3. We believe that t in most empirical
situations, it would be quite unusual to find a case like

Model 2. These qualities of the OLS estimates under the

assumption of Model 2 are reflected in the simulated data

(Table 3) by the fact that the mean of the OLS estimate of

the standard error of the slope (.099) is very close to the

standard deviation of the twenty slope estimates derived

from the data analysis (.092).
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Note that the slope estimates remdin unbiased even though
the disturbance variables are interdependent. This is an

important fdct because previous discussions of Galton’s

problem hdve suggested thdt interdependence of units of

analysis tends to produce spuriously high estimates of

relationships between variables.
The Wirsing method provides better estimdtes for Model 2

than OLS regression, in that the estimates of the slope are
more efficient. However, the Durbin method estimates dre

even more efficient thdn the Wirsing estimates dnd they,
too, are unbiased.

M:x1el 3.

Model 3 combines Models 1 and 2 to produce a case where

both the independent variable and the disturbdnces are

diffusing (see Figure 4). This is the only one of the three

models discussed where Naroll’s linked pair test would

consistently lead to the appropriate conclusion about the

existence of Galton’s problem; but note that it would not

allow one to distinguish between version A of Model 1, where

there is no problem with the OLS estimdtes, and version A

and B of Model 3, where there will be serious problems with
the OLS estimates. Our primdry concern in this paper is not

with tests for the existence of Gdlton’s problem, but with

those instances where the dependent variable is continuously
distributed dnd regression analysis is appropriate. A

better test thdn any of those suggested by Naroll would be

the Durbin-Watson statistic which hds been used extensively
in time series analysis. The Durbin-Wdtson statistic uses

the estimated disturbances of the OLS regression analysis to

test for the existence of autocurrelation in the

disturbances--see Bedls (1972: 348-352); Wonnacott dnd

Wonnacott (1970: 52-53).14 Where it is not possible to

estimate the disturbance variables, other techniques will

have to be used, but uur analysis points out an important
class of errors thdt may be made by relying on the linked

pair test.

Like Model 2, the interdependence of the disturbances in

Model 3 is an explicit violdtion of an assumption of the
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Figured. M~e1 .3: The Irriep2ment ani Distur~ar~
Variables Diffuse Irrz’e~rr.,~nt1 y

linear regression model, and the consequence for the OLS

estimates are similar (see Table 4); the estimates of the

slope remain unbiased, but they are no longer as efficient.

Moreover, the estimates of the standard error of the slope
are rather severely biased; the mean of the estimates of the

standard error of the slope is only about one fourth of the

standard deviation of the twenty estimates of the slope
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derived from the simulated data. These results are

consistent with proofs that are readily available in the

statistical literature (Johnston 1972: 247-249). In Model

3, the estimate of the standard error is mare severely
biased than in Model 2 because both the independent variable

and the disturbances are autocorrelated, 15
In view of previous discussions of Gdlton’s problem, the

fact that the slope estimates are unbiased is an especially
important feature of our argument. The simulation illus-

trates that in a situation such as Model 3, where the inde-

pendent variable and the disturbances are autocorrelated,
slope estimates are not spuriously high. Problems arise

with the variability of the slope estimates, not with their

mean.

One might suspect that the lack of spuriously high
estimates of the relationship is somehow a feature of our

choice of the slope coefficient to measure the relationship.
Thus if we had selected other measures of association such

as Kendall’s Tau or Goodman and Kruskal’s Gamma we would

have found that the relationships were spuriously high.
This, however, is not the case. The major features of our

argument are not affected by the choice of the measure of

association. For example, had we selected the product
moment correlation coefficient as our measure of association

in version B of Model 3 we would have made exactly the same
number of errors as we did using the slope estimate and

ordinary least squares regression. In fifteen out of the

twenty samples we would have concluded that there was a

statistically significant relationship, when in fact the

true relationship was zero. In six of the fifteen erroneous

inferences we would have concluded that the relationship was

negative and significant and in nine of them we would have

concluded that it was positive and significant.
There is one important difference between correlation and

regression slope coefficients in this context. Because the

autocorrelation of the disturbances leads one to under-

estimate the unexplained variance, the absolute value of the

correlation coefficient, but not the regression coefficient,
tends to be overestimated. This does not influence the mean

correlation, since some will be positive and some will be
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negative. However, were one to look only at the absolute

magnitude of the correlation or only at the coefficient of

determination (r2), one would conclude that the

associations were spuriously high.
The Wirsing and the Durbin estimates of the slope are

also unbidsed and are more efficient than the OLS estimates

by abuut the same amount. However, estimates of the

standard error uf the slope derived frum the Wirsing and the
Durbin n prucedures also appear tu be biased downward. The

magnitude of the bias is less than with the OLS estimates

(only about forty to fifty percent rather than seventy-five
percent for the OLS estimates) and thus the number of errors

thdt would be made in tests of significance for versions B of

the model is reduced (from fifteen to four or five), but the

bias will still be a source of errors in inferences about

the true model.

lbdel 4.

Model 4 is like Model 3 in that both the independent t
variable and the disturbance variables are diffusing (see

Figure 5). There is a difference, and a very important one;
the model is constructed so that the variables diffuse

according to a similar pattern. In terms of the model, both

Xp and Up (and therefore Yp) shdre the term Wp which

represents a common diffusion process. Model 4 thus

violates two of the assumptions of the linear regression
model; like Models 2 dnd 3, the disturbance variables are

not independent of each other, and in addition, the dis-

turbances are not independent of the explanatory variable

(see assumption number four above). The effects of this

modification of the model on the statistical estimates are

dramatic (see Table 5). The most important effect is that

all of the estimates of the slope (OLS, Wirsing’s and

Durbin’s) are severely biased upward. The reason for the

bias is that the covariation between Xp and Yp that is

due to the common diffusion factor (the Wp disturbance

factors in Figure 5) is attributed to the direct relation-

ship between Xp and Yp. * The impact of the bias is

particularly serious for version B, where there is no true
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Figure 5. Ma:1el 4: T~ Irrlepenient ani Distur~r~
Variable Diffuse Together

relationship between Xp and Yp. * Here dll of the slope
estimates are significantly gredter than zero, and one would

make an error in all twenty replications if one followed the

usual procedures and concluded that there is a true non-zero

relationship between Xp and YP* All of the three

desirable properties of the OLS estimates are lost in a case

like Model 4: the slope estimdtes are biased (column 1),
the estimates of the standard errors of the slope are biased



126

<U 0
U
C LJ
~)
a M
-~ C
4- 0

« P
·0

V) f-w

U
4- N
-0
0

2 x
> p
U x
.-i

CO
LTt
0 w

’ 0

N
P U

v a
.61 E

T)

-4 LO
T x
~ ~-’

C

0
f- 1-
~ .r



127

downward (compare column 2 with column 3), and the estimates

dre inefficient (column 3). Of course, the relatively small

estimates of the standard error of the slope are not

completely erroneous. The slope estimates are not widely
dispersed around their mean. The problem, however, is that

since they are biased estimates, they are dispersed around

the wrong value. Nevertheless, this bids in the slope
estimates is confounded by an additional bias in the

estimates of the standard error of the slope. This can be

seen in Table 5, where the mean of the OLS estimates of the

stdnddrd error of the slope (.060) is only twenty-three
percent of the standard deviation of the twenty slope
estimates derived from the simulations (.259).

It is important to note that Model 4 is the only one of

the models that produces the kind of spurious relationships
generally thought to characterize Galton’s problem. This

illustrates the importance of distinguishing among different

conf igurations of the problem and the utility of the linear

regression model as d way of thinking about the problem.
Returning to Table 5, note that the Wirsing method and

the Durbin method are no better than the OLS estimates of

the model. They provide no &dquo;solution&dquo; to Galton’s problem
when the disturbance variables are confounded with the

independent variable. The only way to derive better

estimates would be to obtain direct measures of the common

disturbance factors and bring them explicitly into the

equation, and then estimate the effect of X on Y controlling
for the effects of the common variables. Therefore, the

solution requires dn expansion of the theoretical model to

include additional independent variables. There are no

estimation procedures which will improve the situation,
because the source of the problem is a theoretical

misspecification.

lvtxiel 5.

Model 5, the final model to be considered, is one in

which both the independent and the dependent variables are

diffusing but the disturbance variables are not (see Figure
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6 and Table 6). No apparent violations of the OLS

regression model are built t into the specif ication of Mudel

5, yet there are serious problems with the OLS regression
results presented in Table 6.~6 For Version A of the

model, the OLS regression produces slope estimates which are
biased upward and standard error estimates which dre biased

downward and are not efficient. For versiun B of model, the

slope estimates are not bidsed, but the standard errur

estimates are--leading tu a large number of errors in the

tests uf significance.

Figure 6. l-hiel 5: Tl~ Irriepenient ani L~p~er~er~t
Variables Diffuse Irrle~rx~rr~Z y
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The explanation for these results is similar to the

explanation raised in the discussion of Model 4; that is,
the OLS regression with Xp as the sole independent vari-

able is d misspecificdtion of the theoretical model which

generated the data. The dependent variable is caused by
both X and by the dependent variable at the previuus point
in the array. By omitting this second cause of Y, we are

allowing the X variable alone to account for variations in

the dependent variable, and we are forcing the error term of

the regression equation to be autocorrelated because of the

omitted lagged value of the dependent variable. Clearly,
the situation is undesirable. This is a case where Naroll’s

linked pair test would lead to the correct conclusion that

Galton’s problem exists and that caution should be exercised
in interpreting the OLS estimates. The mean autocorrelation

coefficients for the model are: rXX = .884; iyy = .980

(version A); and ryy = .841 (version B).
There are, however, adjustments which can improve the

estimation of the model. The best solution to the problems
raised by this model is to identify correctly the theoreti-

cal model that generated the data. When we analyzed this

model, using the correct specification uf two independent
variables (Xp and Yp-1), the regression estimates were

unbiased and efficient. In practice, however, it may
be difficult to determine, a priori, what the appropriate
model is. In a situation such as this one, the Wirsing
procedure produces good results because it employs a model

that is very close to the true model used to generate the

data. The Wirsing estimate of the slope (.983) is unbiased;
the estimate of the standard error of the slope (.134) is

unbiased (compare columns 2 and 3), and the slope estimate
is far more efficient than the OLS regression estimate (.137
vs. 1.151). The Durbin procedure is also superior to OLS

since it yields unbiased slope and standard error estimates

(.936 and .312 respectively), yet the estimates are not as

efficient as the Wirsing estimates (.281 vs..137). In this

case, the Durbin procedure is less desirable because it is

generally used to adjust t for autocorrelation of the
disturbances and in this model, the disturbances are not

autocorrelated once the model has been specified correctly.
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The results for this model also illustrate the ddvantaqe
uf using the Durbin-Watson statistic to test for autocor-

relation over a technique such as Naroll’s linked pair test.

The Durbin-Watson statistic for the OLS regression for

version A of the model is significant in each of the twenty

samples we analyzed. This is an indication that the

disturbances are autocorrelated and that there are potential
problems with OLS procedures to estimate the model. The

same conclusion follows from the linked pair test. However,
the Durbin-Watson statistic is a more sensitive indicator of

the nature of the problem. When the model is specified
correctly, as with the Wirsing procedure, the corresponding
Durbin-Watson statistics are not significant. Thus the

statistic can be used to identify what configuration of

Gdlton’s prublem is at hand, while the linked pair test has

a much more restricted use. In short, if the Durbin-Watson

statistic is significant, the first step is to rethink the

model under examination to guard against omitting causal

variables. If the Durbin-Watson statistic is still

significant for respecified models, the problem lies in the

autocorrelated disturbances, and the strategies suggested
under our discussion of Models 2 and 3 are appropriate.

GJzbriixJn of OLS, wirsirg <3rd Lurbin flk9thx>

It is apparent from our empirical analysis that Wirsing’s
procedure provides more efficient estimates of the slope
coefficients than does OLS regression for Models 2, 3, and

5; it is less efficient in the case of Model 1, and provides
little, if any, improvement over OLS estimates in the case

of Model 4. On the other hand, the Durbin procedure pro-

vides estimates that are as good as or better than OLS and

Wirsing estimates for Models 2 and 3.

For Model 1, no adjustment procedure is necessary,

because none of the assumptions of the linear regression
model is violated. OLS regression is appropriate; the

Durbin-Watson statistic for the OLS regression indicates

that the disturbances are not autocorrelated, therefore one

can proceed with OLS estimation.
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None of the three estimation procedures discussed here

(OLS, Wirsing, and Durbin) provides unbiased, efficient

estimates for Model 4, because this model not only violates
the assumption that the disturbances are independent of each

other, but also represents a severe violation of the

dssumption that the disturbances are independent of the

explanatory variables.
Model 5 is the most complicated model we have analyzed,

and strategies for adjustment procedures are different than

for Models 2 and 3. The problem that occurs with OLS

estimates for Model 5 is that the model hds not been cor-

rectly specified. The Wirsing procedure is a good approxi-
mation of the correct model, so estimates with this

procedure are better than OLS estimates. The Durbin

procedure is unnecessary and undesirable because once the

model has been correctly specified, the disturbance

variables are not autocorrelated.

For models with autocorrelated disturbances (e.g., Models
2 and 3), there is empirical and theoretical justification
for choosing the Durbin procedure over the Wirsing
procedure. The problem with those models is the violation

of the assumption that the disturbance variables are

independent of each other (assumption number three above).
It is important to realize that so long as the disturbance

variables are independent of each other, it makes no

difference whether the dependent variable and the independ-
ent variables are autocorrelated.l8 Interdependence of

variables other than the disturbances does not violate dny

of the assumptions of the linear regression model, and thus

the OLS estimates of the slope and its standard error will

be unbiased and efficient if the model is correctly
specified. Wirsing’s justification for his procedure is

misleading in that he suggests that it &dquo;is able to control

for the diffusional effects uf both sociocultural traits&dquo;

(Wirsing 1975: 150).19 The problem with Models 2 and 3 is

not that both sociocultural traits diffuse; rather it is

that the disturbances diffuse. Wirsing’s estimation

procedures are sometimes more efficient than OLS regression
estimates, but not for the reasons that he suggests. The
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estimates are better because Wirsing’s procedure includes a

control for the effects of the diffusion in some of the

models. For example, in Model 3 we can derive Wirsing’s
estimation equation from the definitions that are provided
in Figure 4. The equations for Yp and Up are as

follows:

Substituting the second equation into the first gives:

The Y p-1 values dre generated by the same process and can

be written as:

This can be rearranged and substituted into the Yp
equation as follow:

The last expression is the model that Wirsing uses for

his estimation procedure. While it may seem that this equa-
tion will meet all of the assumptions of the linear regres-
sion model, it does not. Because the equation contains

Y p-1’ there is a dependence between Wp and the values of

Y subsequent to Yp, and therefore assumption number four
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is violated. It can be demonstrated that because of this

dependence the estimates of the coefficients in the equation
will be biased and often relatively poor in the sense that

they will have a high variance. However, as the sample size

increases, they will tend to converge on the true value and

thus provide estimates that are close to the true value

(Wonnacott and Wonnacott 1970: 146-147; Beals 1972: 367-

368). In addition, it can be shown that Durbin’s procedure,
which uses the estimate of 0 from a model which is identical

to Wirsing’s estimation equation to transform the Xp and

Yp values, will I generally provide better estimatesof S
than the estimates that are derived from the first stage
(i.e., Wirsing’s estimates of S).20

Our simulation fails to illustrate clearly this property
of Durbin’s estimates because the number of cases in each

set of data is relatively large (N = 60); therefore, the

estimates of ~ derived from Wirsing’s procedure are good
estimates and are not improved by the use of Durbin’s

transformation. However, it is important to emphasize that
this is because of the large number of cases in the samples,
and we would expect that the Durbin procedure would have

provided an improvement over the Wirsing estimates had the

number of observations in each sample been smaller.

Cbrc’.Zus-LorLS

In summary, Galton’s problem is actually a series of

potential problems rather than one unique problem. We have

presented five models which are different configurations of

the diffusion process, and the nature of the problem and the

appropriate correction procedures vary across the models.

There is no unique &dquo;solution&dquo; to Galton’s problem, just as

there is no unique configuration of the problem. There are,

however, analysis strategies that are useful for specific
research problems.

For any particular research problem, it is necessary to

test first for the presence of diffusion, and second, to

identify the configuration of diffusion that is operating.
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The Durbin-Watson statistic can be used to test t for

diffusion of the disturbance variables, while the autocor-

relation coefficients for the independent and dependent
variables can help in identifying the nature of the

diffusion process. If the Durbin-Watson statistic does not

show that the disturbances are diffusing, then no adjustment
procedures are necessary; the regression estimates are

unbiased and efficient even in those cases where the

independent variable is diffusing (see Model 1 results). If

the Durbin-Watson statistic does show that the disturbances

are diffusing, adjustment procedures may be necessary. In

this case, the autocorrelation coefficients should be

examined in conjunction wih the Durbin-Watson statistic. If

the autocorrelation coefficients do not indicate diffusion,
then the effect of diffusion of the disturbances on the OLS

estimates will not be severe, and the Durbin procedure we

have reviewed will be a sufficient correction technique (see
Model 2). If, on the other hand, the independent variable

is also diffusing, as indicated by a significant
autocorrelat- ion coefficient, then the biasing effects of

diffusion will be more pronounced. In this case, however,
the bias affects the variance of the estimates rather than

the mean; the Durbin procedure is again appropriate,

although Wirsing’s procedure will also provide better

estimates than OLS (see Model 3).
The configurations of Galton’s problem which involve

theoretical misspecification of the model are the most

complex and the most difficult to deal with. The

statistical procedures we have discussed will not help in

those cases where the model has not been correctly
specified, nor will they provide guidelines for indicating
whether such misspecification is relevant. Models 4 and 5

illustrate the point. Both are misspecified by the OLS

model, and the undesirable properties of both are clear in

the results. However, partialling &dquo;works&dquo; as a solution to

Model 5 because the inclusion of lagged values for the

independent and dependent variables models the true

mechanism which generated the data. Partialling does not

work for Model 4 because of the omission of the variable
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which is causing the disturbances to diffuse. In practice,
of course, it would not be possible to distinguish between

Model 4 and Mudel 5, so the best strategy here, as with all

models, is a careful examination of the theoretical specifi-
cation of the model.

In short, Galton’s problem does not necessarily lead to

bias in the estimates of relationships, but it may, in some

cases. There is no one solution to the problem, short of

very careful theoretical specification and rigorous checks
on the estimates obtained. We have relied on regression
analysis to illustrate the nature of the problem(s) and

various adjustment procedures. However, the problems we

have discussed are not unique to the statistics presented
here. Any statistical procedure will be problematic; the

nature of the effects of diffusion is perhaps more clear

with regression estimates, but alternative estimation

procedures are certainly not a guarantee against faulty
inferences where Galton’s prublem is involved.

Finally, we have relied on the statistical literature on

time series to build our models and to examine the effects

of diffusion. Throughout the discussion, we have assumed

that our cases are &dquo;aligned&dquo; in a meaningful fashion, just
as cases in a time series are, by definition, aligned in a

meaningful way. This is a crucial simplifying assumption,
and the application of our discussion depends on the ability
to model spatial diffusion to produce the time series

dnalogy. This is by no means a straightforward task.
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2 Additional discussion of the linear regression model

may be found in Blalock (1979: 382-396) and Beals (1972:

Chap. 1). More technical treatments may be found in

Goldberger (1964: 151-212, especially pp. 161-162) and

Johnston (1972: Chap. 8).

3 The subscript "p" is used throughout this paper to

stand for a particular point in an ordered array, such as

one of Naroll’s (1961: 24-29) diffusion arcs.

4 In many specifications of the model, Xp is assumed

to be a nonstochastic variable with values fixed in repeated
samples. This assumption makes the demonstration of the

properties of the regression estimates of the model easier,
but it is not a realistic assumption for non-experimental
studies. The weaker assumption, that the disturbances are

independent of the explanatory variable, does not modify the

major derivations that can be made from the model and is

more consistent with cross-cultural research. Also,
strictly speaking, two other assumptions are necessary: that

the values of Xp in the sample must not all be equal to

the same number; and that if there is more than one

explanatory variable, no exact linear relationships exist

among them (see Goldberger 1964: 161-162).

5 In our discusion we use the term OLS regression
estimates to refer to estimates derived from ordinary least
squares procedures. The special designation is useful

because we discuss other estimation procedures.

6 See, for example, Beals (1972: 235-240) and Johnston

(1972: 123-127).

7 If the number of samples were infinitely large, the

mean of the distribution would equal the true parameter.

8 More precisely, this statement is restricted to

linear and unbiased estimates and should be stated as

follows: "Within the class of linear unbiased estimators
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of &alpha; (or &beta; ), the least square estimator has minimum

variance" (Wonnacott and Wonnacott 1970: 21).

9 Our models draw on the analogy between Galton’s

problem and the first-order autoregressive model, the

properties of which have been analyzed extensively in the

context of time series analysis. See, for example, Kmenta

(1971: 269-297). Blalock (1968: 175) first pointed out the

importance of the time series analogy.

10 
Formulas are available which allow one to derive the

true standard error of the slope of our models (see Johnston

1972: 146-249). For Model 1 the OLS estimates of the

standard error of the slope are unbiased and therefore are

expected to be equal, in the long run, to the true standard

error of the slope.

11 The test is of the model that &beta;= 0, with .05 level 

of significance. The critical value of t for a two-tailed

test with approximately sixty degrees of freedom is 2.0.

12 Wirsing used partial correlation, while we use

partial regression. The issues are clearer in the case of

regression, and therefore we rely on these statistics. Our

conclusions are general and apply to both correlation and

regression.

13 A discussion of Durbin’s procedure can be found in

Johnston (1972: 263-264).

14 The Durbin-Watson statistic is closely related to the

autocorrelation coefficient for the disturbances. It is

preferable to the autocorrelation coefficient because it has

a known distribution which can be used for tests of

significance, while the distribution of the autocorrelation

coefficient is difficult to determine (Beals 1972: 348-349).

15 There are two sources of error in the estimate of the

standard error; one affects the estimate of the variance of

the regression coefficient, and the other affects the
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estimate of the variance of the disturbance. Both are more

severe when the disturbance and the explanatory variable are

diffusing (see Johnston 1972: 247-249).

16 In fact, there is a violation of the OLS regression
model. Since Yp-1 is an explanatory variable, the

disturbance variables are not independent of all of the

explanatory variables (see assumption four above). But, so

long as the disturbances are independent (assumption three)
this will not be a serious problem. The OLS estimates can

be expected to perform well. In technical terms they will 

be "consistent." See Johnston (1972: 305-306) for 

additional discussion.

17 For version A of the model, the mean of the slope
estimates is 1.007; the mean of the estimates of the

standard error of the slope is .069; and the standard

deviation of the slope estimates is .059. For version B,
the comparable results are .025, .063, and .062,
respectively.

18 Of course, autocorrelation of the explanatory
variable contributes to the bias in the standard error

estimates, but only where the disturbances are also

autocorrelated. This is demonstrated by the contrast

between models 1, 2, and 3. There is no bias in the
standard error estimates in Model 1, where only the

explanatory variable is autocorrelated.

19 It is clear from the context that the two socio-

cultural traits referred to are the independent and

dependent variables.

20 Durbin has shown that the second stage estimates not

only converge on the true value as the sample size

increases, but also that the variance of the estimates will

be smaller than any other "consistent" estimator (i.e., it

is an asymptotically efficient estimator). For a discussion

see Rao and Griliches (1969).
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