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Abstract: Our experience indicates coordination in concurrent engineering (CE) requires support for two types of relationships among decision
makers: supervisor/subordinate and peer-to-peer. Supervisor/subordinate relationships are created by the standard hierarchical decomposition
process that is required to solve any large design problem. Peer-to-peer relationships arise when teams of decision makers must interact, without
direct guidance, to achieve individual and common goals. In this paper, we describe a general decision-making methodology, which we call
hierarchical CE. The emphasis of hierarchical CE is to provide support for both supervisor/subordinate and peer-to-peer relationships. In addition
to the concept of hierarchical CE, we present a supporting agent-based framework in which the preferences and constraints of a design supervi-
sor are distributed to design subordinates, who are expected to exploit their local expertise within the context provided by this global information.
A distinct separation between feasibility and value facilitates optimal decision-making by design agents, since the bounds on feasibility do not
include arbitrary statements about value. This distinction may prove useful for other problem domains as well.
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1. Introduction

The core constituents of (future) CE organizations will
be, in our view, autonomous agents that represent various
facets of the design organization. These agents will come
from both inside and outside an enterprise. These agents
transcend the typical notion of agents, as they have models
of and can reason about their capabilities. They are truly au-
tonomous in the sense that an agent cannot be compelled to
act in particular ways by other agents (e.g., to join teams or
render particular services), but rather chooses to participate
or not in endeavors strictly because it is in its own interests
to do so. Thus, there are few truly central controls or
global, shared goals imposed on agents. Instead, organiza-
tions may influence the behavior of their constituents in-
directly through incentives, which might be more or less
tangible, and more or less compelling in varying cir-
cumstances.

Uncontrolled autonomy is not necessarily a desirable goal
in concurrent engineering for the following reason. Suppose
that each member of a design team (which may include
thousands of participants) is represented by an agent with
the capability to communicate instantaneously with other
agents throughout the design process, and all agents share a
common representation and ontology. In other words, the
traditional CE goals of fast communication and shared rep-
resentations have been met [1,2]. While these goals are im-
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portant, it is easy to see that chaos will result without a
mechanism to enforce coordination among the team
members for resolving conflicts.

Coordination of agents therefore becomes the central
issue in CE. It is necessary to ensure that all constituents in
a design organization are committed to overall organiza-
tional objectives (e.g., increase market share), while allow-
ing agents to make their own decisions in the appropriate
way.

Our experience indicates coordination in CE requires
support for two types of relationships among decision
makers: supervisor/subordinate and peer-to-peer. Supervi-
sor/subordinate relationships are created by the standard
hierarchical decomposition process that is required to solve
any large design problem [see Figure 1(a)]. A subordinate
receives specifications from a supervisor, and is required to
implement a subsystem within the limits defined in the
specification. Peer-to-peer relationships arise when teams
of decision makers must interact, without direct guidance,
to achieve individual and common goals. For example, life-
cycle engineering requires interaction among domain ex-
perts, each with their own preferences and expertise [see
Figure 1(b)]. We refer to CE that supports both types of rela-
tionships as hierarchical CE.

Many decision-making problems are solved by subcon-
tracting or delegating parts of a task. The process of subcon-
tracting, which has already been shown to be a viable ap-
proach to subtask distribution [3], creates a hierarchical,
decison-making organization. Coordination is accom-
plished by allowing general contractors, who have a global
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Figure 1. Sources of relationships among decision makers.

perspective, to provide direction to subcontractors, who
have local expertise.

Figure 2 illustrates our view of a typical hierarchical CE
problem. A supervisor agent contracts out a CE problem to
three domain agents, DA,, DA,, and DA,. DA, in turn sub-
contracts its responsibilities to two other agents, DA, and
DA;. Problem solving takes place through the interaction of
agents DA,, DA;, DA,, and DA;, with coordination pro-
vided by the supervisor agent and DA,. The preferences of
all agents are considered in the context of the existing
hierarchical organization. Thus, a hierarchy of preferences
is applied during problem solving.

We believe that it is both practical and desirable to direct
a subcontractor’s actions by explicitly stating a preference
structure that the agent must follow. Just as any contract
describes a set of constraints that must be met for the con-
tract to be fulfilled, a contract should include a preference
structure that must be followed by a subcontractor in order
to fulfill its obligations. Oddly enough, our experience with
a major automotive company, which we believe to be typical

of large engineering companies, shows that such pref-
erences are not explicitly or implicitly specified. Specifying
a preference structure for a subcontractor does not require
the general contractor to reveal all of its preferential knowl-
edge to the subcontractor, only the subset of preferences that
rank the implementation domain of the contracted subtask
need be specified.

In this paper, we describe a general decision-making
methodology and agent architecture for solving hierarchical
CE problems. In our approach, the preferences and con-
straints of a supervisor are distributed to subordinates, who
are expected to exploit their local expertise within the con-
text provided by this global information. Thus, global coor-
dination is achieved and the preferences of all decision
makers play a role in problem solving.

To support hierarchical CE, we have defined an agent ar-
chitecture based on a clear, theoretical distinction between
decisions about feasibility and decisions about preference or
value. By separating decisions about feasibility and value,
we can achieve optimal decisions, since the bounds on
feasibility do not include arbitrary statements about value.
This is in contrast to other approaches that attempt to cap-
ture preferences by introducing artificial bounds on feasibil-
ity, which has the negative consequence of possibly elimi-
nating the best solutions. For example, specifying
constraints such as total cost <$100 and total weight <10
Ibs. fails to take into account the possibility that the designer
is willing to accept 10.1 lbs. in total weight in order to save
$10 in total cost.

In the remainder of this paper, we first describe how our
research relates to previous work. Next, we provide a for-
mal model of the problem to be solved, and describe our
agent framework. We then describe how an existing tool,
The Automated Configuration-Design Service (ACDS), can
be extended to create a new tool, ACME, which meets the
needs of hierarchical CE. Finally, we provide a discussion
of our current results.

Domain
Agents

Subdomain
Agents

Figure 2. A hierarchical agent organization. Solid lines indicate
problem-solving networks, arrows indicate control relationships.
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2. Previous Work

Currently, there exist two primary approaches for solving
CE problems: multilevel optimization and agent-based
systems. The multilevel optimization approach is based on
mathematical programming techniques for decomposing
and optimizing large systems [4]. A single monolithic prob-
lem is decomposed into a number of subproblems, where
each subproblem corresponds to a specific discipline in-
volved in the design process. A coordination program
assigns optimization parameters to each subproblem, sub-
problems are solved, and the coordination program ana-
lyzes the results and assigns new optimization parameters.
This process is iterated until a convergence test is passed.
Depending on the type of problem, the resulting solution is
either locally or globally optimal. Examples of this ap-
proach include the work of Macko and Haimes [5], Haimes
[6}, Azarm and Li [7], and Sobieski [8].

The work of Sobieski is similar to that of Azarm and Li
in that both focus on solving a discipline-based decomposi-
tion of a single problem. These approaches do not allow the
local expertise of the participating disciplines to impact the
value of the final design, since each discipline must solve
the optimization problem specified by the global coordina-
tor. An optimal solution is obtained by restricting the defini-
tion of optimality to the preferences of the global coordina-
tor, and ignoring the preferences of domain (discipline)
experts. Although Haimes’ hierarchical holographic model-
ing provides a method for capturing and applying domain
preferences, it only supports peer agents, and as such, does
not provide a framework for an agent hierarchy. This ap-
proach is similar to agent-based systems, which will be dis-
cussed next.

Several agent-based systems focus on the needs of cooper-
ative problem solving among domain experts. PACT [1] is a
testbed for building large-scale, distributed CE systems,
where agents are grouped by discipline and communicate
through facilitators [9]. First-Link [10] emphasizes collabo-
ration among specialists and the development of hierar-
chical design representations. DesignWorld {11] is an auto-
mated engineering environment for the design and
manufacturing of digital circuits, which is built upon the
concept of facilitators. The focus of the above systems is on
knowledge representation and communication for a peer-to-
peer problem-solving network; there is no concept of
hierarchical control or preferences in these systems.

Some agent-based systems have attempted to address the
need for hierarchical control and preferences. DFI [12] is a
CE tool for steel-connection design. A system designer
hierarchically controls a network of agents, each of which is
a domain expert with its own preferences. The preferences
of the system designer are limited to specifiying a single at-
tribute to optimize, while an ad hoc scheme for representing
agent preferences allows agents to negotiate over values for
the remaining attributes. In ACDS [13,14], a system agent
distributes its preferences to catalog agents, who use these

preferences to select components. In this system, there is no
ability for catalog agents to apply their own expertise (pref-
erences). AGENTS [15] is an object-oriented Prolog-based
language for cooperating expert systems. To implement con-
current engineering, a system designer interacts with a
directorate design agent, who controls two agent commit-
tees, comprised of design agents and analysis agents, re-
spectively. There is no concept of preferences in AGENTS.
Although these systems attempt to address the needs for
hierarchical control and preferences, they lack a uniform
approach, and thus are limited in their capabilities.

As has been described, neither multilevel optimization
nor agent-based systems provide a general framework for
hierarchical preferences. What is needed is an approach that
provides global coordination, similar to multilevel op-
timization, and exploits local expertise, similar to agent-
based systems. In the next section, we formally define a
specific design problem to solve. We then describe how our
agent framework can provide a hierarchical CE environ-
ment to solve this type of design problem.

3. Problem Definition

In this paper, we restrict the problem domain to a com-
mon class of design problems characterized by the selection
of parts (components) from catalogs. For example, given a
catalog containing CPUs such as 68040 and Intel P6, the
68040 might be selected to implement the function CPU.
The selected parts must also satisfy any specified constraints
and be optimal in some sense. We define the problem for-
mally below.

Given:

® A set of parts, possibly distributed among several cata-
logs, that implement the desired functions.

P = {pu,. . -,ij,- .oy p,.j}

where

p.; = the jth part that implements function n
P.;ax = the level’ of attribute k for p,; (e.g.,
68040.cost = $100)

e A set of discrete design variables that represent the func-
tions to be implemented. The domain of each design vari-
able is the corresponding set of parts that implement the
function.

X = {xh- . .,x,,}

X. = {Pas|pn, is a part that implements function
X}

XnQi = P if X, pa;, for all k

"To avoid confusion in this paper, we restrict the use of the term value to the context
of formal value functions (see Section 4.2), and we use the term level when discussing
raw data values (e.g., power = 3W) or the value of a variable assignment (e.g.,
x =2).
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e A set of intermediate variables for specifying attributes
and constraints.

=i, .. i)
i, = f(X),i, €R

e A set of design attributes that directly contribute to evalu-
ating the optimality of a design.

A= a, a,. . ., &}
a. = f(X,]), a. € R

* A multiattribute value function v that captures designer
preferences [16].

v =Ewk Vi (@)
k

where

w; = a relative attribute weight
vi(a,) = an attribute value function (see Section 4.2 for
a definition of value function).

® A set of constraints that define feasibility and interoper-
ability.

C = [C|7 (5 PR Cm}
¢ = fX, I, A).
Find:

e A set of parts S,,. = {p.s,. . ., Pa;}, such that:

e S, is a feasible solution (it satisfies C)
* ¥(S,..) = w(S) for every feasible S identified.

Although the above problem definition is targeted toward
simple part selection problems, it can be easily extended to
address other types of configuration design problems, such
as those that must support multifunction parts and different
possible component configurations.

In the next section, we describe our agent framework,
with emphasis placed on modeling of preferences. Our
agent preference model provides a key component for sup-
porting hierarchical CE.

4. Agent Decision Making
Once an agent contracts its services to participate in a

design, we view the agent as making two classes of deci-
sions relating to the design process: those about feasibility

and those about value of feasible designs. In this section, we
provide details of these two aspects of decision making.

4.1 Modeling Feasibility

We model the task of determining the feasibility of a
design as solving a distributed, dynamic, interval
constraint-satisfaction problem (DDICSP) [13]. A con-
straint satisfaction problem (CSP) is characterized by a set
of variables to assign and a set of constraints that restrict the
possible assignments to the variables. In relation to the pre-
vious problem definition, the variables are those contained
in X, I, and A, and the constraints are those in C. With a dis-
tributed CSP, variables and constraints are distributed
among agents, and a distributed problem-solving algorithm
must be applied to derive variable assignments. A distrib-
uted problem-solving approach is desirable since solving
hierarchical CE problems involves the interaction of many
independent decision makers. The DDICSP model has sev-
eral desirable properties, including providing an efficient
technique for managing the problem’s inherent exponential
complexity, and a structure that facilitates identification of
heuristics suitable for particular design domains.

As presented in the problem definition, CSP constraints
are used to capture interoperability and feasibility relation-
ships. In other words, they are restricted to describing what
is physically possible, rather than what is desirable from the
perspective of the design organization. Modeling this sort of
preference information is the topic of the next section.

4.2 Modeling Preferences

Many design problems are characterized by multiple con-
flicting attributes, and formal models of preferences [17,18]
have shown promise in resolving conflicting design objec-
tives. A formal model, e.g., a multiattribute value function,
in contrast to ad hoc techniques, provides a well-defined
basis for predicting the quality of the results achieved. This
property is highly desirable, since many engineering-design
problems are so large that the desirability of solutions pro-
duced is difficult to evaluate.

Although there are many forms of value functions, an ad-
ditive value function is a simple form that is applicable to
many problems. An additive value function is a weighted
sum of attribute values, such that the value of an alternative
S with k attributes is given by:

WS) = Y Wi ve(a@y) )
k

where

w, = the tradeoff weight for attribute a,
Vi (ax) = the value produced by the value function of at-
tribute a,
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Keeney and Raiffa [16] describe the process for determining
the attribute value functions and trade-off weights.

The amount of quantitative analysis required to construct
the function can be reduced by using an imprecise value
function. Imprecisely Specified Multi-Attribute Utility
Theory (ISMAUT) [19] creates a partial order based on
preference relationships among a subset of alternatives.
ISMAUT uses a weighted sum of attribute values [see Equa-
tion (1)}, where all weights must be positive and their sum
must be unity:

Vk, w, = 0

Ewk=1
k

A preference statement of the form “S; is preferred to §;”
means that v(S;) = v(§,), and implies an inequality in the
space of possible weights according to the following rela-
tion:

Av = v(S) — (S) = Y wi [Ve(@u) — w(@w)] = 0
k

According to this interpretation, the statement that S; is
preferred to S; means that the trade-off weights are such that
the total weighted value of S; is at least as great as that of §;.
All these inequalities confine the weight space to a
subspace, W', that satisfies the inequalities. Thus, from
pair-wise preference statements, ISMAUT determines
ranges of attribute weights consistent with designer’s pref-
erences.

The imprecise value function v(S) can order pairs of alter-
natives other than those specified by the designer: S, is pre-
ferred to S; if, for every possible vector of weights < w,,
Wy,. . ., W, > within W’, the value of S; is greater than the
value of S;, for example,

Min Ay = MinEwk wi(ain) — w(ax)l =2 0, w, € W’
k

This relation can be tested for every pair of alternatives
that the designer has not already stated a preference. Thus,
the preferences specified by a designer by ranking a sample
of alternatives create a partial order over all design alter-
natives, and this partial order can identify the nondominated
set of design alternatives. The nondominated set contains
only those alternatives for which no other preferred alter-
native exists based on specified preferences. The non-
dominated set of alternatives is guaranteed to contain the
optimal one [18].

In the next section, we describe how agents interact to
perform hierarchical CE. As will be seen, the agent-
preference model plays a key role in applying local expertise
and achieving overall coordination.

5. Agent Coordination in a
Multilevel Environment (ACME)

We now describe how an existing CE tool, ACDS [13,14]
can be extended to meet the needs of hierarchical CE. We
call the resulting tool ACME, which provides support for
both hierarchical and peer-to-peer problem solving. When
subcontracting a task in the ACME environment, an agent
specifies both the constraints and preferences for the sub-
task. By agreeing to obey the contractor’s preferences, sub-
contractors collaborate in a manner consistent with global
preferences.

5.1 ACDS Overview

ACDS solves a class of DDICSPs and has the ability to
model design feasibility. In terms of the previously provided
problem definition, ACDS can achieve all criteria except
that of the multiattribute value function; the ACDS cost
function is too restrictive to model the preferences neces-
sary for hierarchical CE. In addition, ACDS does not pro-
vide the ability to subcontract tasks.

A DDICSP, implemented as a network of agents, can
solve catalog-based design problems. A network is com-
prised of a system agent, catalog agents, and constraint
agents. The system agent specifies the problem to be solved.
Each catalog agent has the responsibility of finding a set of
parts for the design variables it can assign such that con-
straints are satisfied. Constraint agents calculate attribute
levels and monitor constraint conditions.

Solving a problem proceeds as follows. The system agent
broadcasts to a network of catalog agents the functions to
implement (variables to be assigned). Catalog agents re-
spond with a desire to participate in the design. Currently,
the catalog agents participate in the design if their catalog
contains parts that implement the specified functions. No
other measure of worth from the perspective of the catalog
agent is taken into consideration. Constraint agents are then
created by the system agent or catalog agents. In the exam-
ple given in Figure 3(a), three catalog agents are available to
implement the three variables, x,, x,, and x,, broadcast by
the system agent, and two constraint agents have been
created. In this simple example, the design problem involves
assigning integer levels to the three variables, as opposed to
assigning parts. A true part assignment example is pre-
sented later in this paper.

Once created, the constraint agents request and check the
current range of possible assignments for each variable, and
report consistency violations to the catalog agents. A consis-
tency violation exists for a constraint if there is a possible
assignment of one variable contained in the constraint for
which no possible assignment of the remaining variables
satisfies the constraint. In Figure 3(b), a constraint agent de-
tects a consistency violation, since if x, = 3, there is no
possible assignment to x, and x, that will satisfy the con-
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System
Agent

X = {x1,x2,x3}

Constraint
Xy +X+X3< 2

Catalog
2¢ {0.1,3}

Catalog
X qe {0,1}

Constraint
X14+x321

(a) Creating a network.

{0,3] <2

Constraint Reduce

x1+x2fx35 2

Catalog

Reduce xz¢ {0,1}

Increase

Constraint Catalog
x1+x3 21 x3e {0,1}
[0,2] 21 Increase

(c) Removing constraint violations.

Constraint
Xy+Xp+X3< 2

Constraint

Catalog
x3 {0,1}

x1+x321

(b) Detecting consistency violations.

[2,2] <2
Constraint
X1+X24X3S 2
Catalog
xz¢ {0}
Constraint Catalog
X1+X32 1 x3e {1}
[2,2]21

(d) A decomposed, solved network

Figure 3. Solving an ACDS problem.

straint. The catalogs then prune their domains to eliminate
consistency violations.

After a consistent network is achieved, the constraint
agents then check to see if any of the attribute intervals
violate constraints. A constraint violation exists if any possi-
ble set of variable assignments violates a constraint. If a
violation exists, the constraint agents direct the catalog
agents to modify previous assignments to reduce the con-
straint violations, backtracking, if necessary. In Figure 3(c),
the top constraint agent detects that the sum of the three
variables may be greater than two, so the maximum level of
the variables must be reduced. This process is repeated until
no constraint violations remain [see Figure 3(d)].

A network where no constraint violations are present is
called a decomposable network. Once a network is decom-
posable, any possible assignment of variables results in a
feasible design. At this point, a shared cost function,
specified by the system agent, is applied to select the best
assignment in each catalog. For the example given in Figure

3, there is only one possible assignment for each of the vari-
ables, so there is no need to perform this step. Note that in
general there may be a large number of possible assign-
ments remaining for each variable.

5.2 ACME

Extending the ACDS algorithm to include a network of
agents with their own preferences and subcontracting abili-
ties requires that the concept of a catalog agent and system
agent be merged. In terms of the ACDS algorithm, catalog
agents gain the ability to specify preferences and to subcon-
tract design variables. In ACDS, this behavior is only possi-
ble in the system agent. This eliminates the need for a for-
mal distinction between the system and catalog agents, so
we refer to both types of agents simply as design agents.

In addition, preferences must be applied during problem
solving. The two phases of problem solving that are affected
are: achieving a decomposable network and solving a
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decomposable network. To achieve a decomposable net-
work, the current ACDS constraint-satisfaction approach
can be augmented with search methods similar to those ap-
plied by Sobieski [8]. These methods focus not only on
feasibility to direct the distributed search (see Figure 3), but
value as well. For example, when considering which parts
to bid to reduce a set of constraint violations, an ACDS cata-
log agent bids a set of parts such that each constraint viola-
tion is reduced. An alternative approach would be for a
catalog agent to bid the single part that minimizes value
loss, while still reducing at least one of the constraint viola-
tions. Heuristics, such as the one just discussed, help guide
the distributed search to identify design alternatives that
both satisfy constraints and maximize value.

Since ACME supports a wider range of value functions,
and thus can represent a wider range of preferential knowl-
edge, the difficulty related to solving a decomposable net-
work is increased. Once a decomposable network is
achieved in ACDS, catalog agents concurrently assign vari-
ables using a shared cost function. The ACME multiattri-
bute value function may be constructed based on nonlinear
attribute value functions, which couple variable assignments
in relation to determining value similar to the way con-
straints couple variable assignments in relation to determin-
ing feasibility. As a result, variable assignments cannot be
made concurrently, but must be done in a manner similar to
achieving a decomposable network. Specifically, just as
consistency checks eliminate possible variable assignments
while attempting to achieve a decomposable network, domi-
nance checks (see Section 4.2) eliminate possible assign-
ments while solving a decomposable network. To perform
distributed dominance checks, attribute ranges must be
propagated through the equations defining the multiattribute
value function. Thus, in addition to checking constraint
equations, constraint agents must also propagate attribute
levels to design agents, who can then perform dominance
checks.

We will now describe the operation of ACME by means of
an overview of the preference-related aspects of formulating
and solving an example problem.

5.2.1 EXAMPLE PROBLEM

For purposes of illustration, we will describe our ap-
proach using a part selection CE problem focused on
hardware-software codesign. In this application, the parts to
be selected include both hardware and software compo-
nents. The example presented here is a simplified version of
the problem described by Hu et al. [20]. A system agent
wishes to create the embedded controller shown in Figure 4.
The controller is comprised of both hardware and software,
and both must be considered simultaneously. The function
specification for this problem includes three software func-
tions to be supported, and requires that a computerboard
with enough RAM and CPU throughput be configured. Two
attributes, cost and feasibility factor, characterize the
system. Cost is a summation of hardware component costs,

CPU RAM

I

(a) System hardware

Read
Sensor
@ Actuator
Sensor @

(b) System software

Figure 4. Embedded controller example.

and feasibility factor [21] is a measure of the system’s ability
to guarantee that all software modules complete execution
before their respective deadlines.

The system agent formulates the problem as shown in
Figure 5. Design variables xcpy and xgaa are defined for the
two hardware modules, as are Xg..asensors Xritzers AN Xrueicatc
for the three software modules. These five variables are the
independent variables for the problem. The attributes of in-
terest, cost (d....) and feasibility factor (arr), are determined
by two constraints, ¢, and cxr, respectively. The c... con-
straint is expressed in terms of functions of independent
variables, while the ¢yr constraint is expressed in terms of
both a function of an independent variable, xcpy, and in-
termediate dependent variables, i,,; and i,.. These in-
termediate variables provide a lower and upper bound of the
amount of processing capacity required by the software. In

X = { Xrirer XReadsensor Xrueicaic Xcrvr Xramt
I={i,, i,
A ={a,,, ag)
V= WeoaVeoss ¥ WerVer
Veoss = fAc55)
Ver = flagr)
C={
Const * Aooee = [(XcpipXrarh
Crr " Apr = fXcppp birp L)
Cort ¥ birt = fXieer XReadsensor Xruercatc):
Coraa * biru = J(Xriner XReadsensor Frueicatc):
Cs' fxcpw Xrar) 2 X pitrer XReadsensor Xrueicatc)
Cs' Qg 2 0.0

}

Figure 5. Problem formulation.
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addition to constraints for calculating attribute values, two
constraints, ¢s and cs, determine the feasibility of a solution.
s ensures enough RAM exists to meet the needs of the soft-
ware modules, and c¢s ensures all software modules execute
before their deadlines.

To design the embedded controller, the system agent must
contract out the design work among the two organizations
shown in Figure 6. In both organizations, a supervisor is
responsible for assigning tasks. The organization headed by
the hardware agent is capable of configuring computer
boards with CPU, RAM, and hardware input/output (1/0).
The organization headed by the software agent selects the
appropriate software modules, including modules for low-
level 1/0 operations as well as high-level control algorithms.

5.2,.2 ESTABLISHING A NETWORK
OF DESIGN AGENTS

The system agent assigns responsibility for each indepen-
dent design variable to a design agent and each constraint to
a constraint agent. Assignment of variables to design agents
is performed using an approach similar to the contract-net
negotiation process [3]. When a design agent makes an offer
for a design variable, it commits to participate in the design
process in exchange for the possibility that its assignment
for the design variable will be used. In general, a given vari-
able can be assigned to multiple agents, with the agents
competing during the design process, and a single agent
may bid for multiple design variables.

Figure 7 illustrates the assignment of variables to design
agents. The system agent requests bids for the following
variables: Xrirer, Xgeadsensors Xruetcaics Xcpu, Xram- The hard-
ware agents bid for xcpy, Xram, and the software agent bids
fOF X ritcers XReadsensors XFuetcatc- LOWer-level agents do not make
bids at this point, since they can only bid on offers from
their respective supervisors. The system agent accepts the
bids from the two agents, and in this case, the two agents
subcontract all design variables to their subordinates.

5.2.3 ESTABLISHING CONSTRAINT AGENTS

Figure 8 shows the constraint agents created for the exam-
ple problem. In some cases, such as the example problem,
all constraint agents are created by the general contractor

Software
Agent

Hardware

Agent

cPu HW 1O RAM
Agent Agent Agent

Figure 6. Two groups of design agents available to implement the
embedded system.

(X rinar ; X nesasoneor » X Fuercaic }
{ Xcru, Xram}

Hardware

Figure 7. Forming a design organization.

(system agent), however, this is not a requirement. The set
of agents connected by constraints forms the problem-
solving network. Other agents, such as the system agent,
only indirectly participate in problem-solving through the
contracting of preferences to active participants in the net-
work.

5.2.4 DISTRIBUTING PREFERENCES

With constraints among agents established, agents can
proceed to specify preferences. First a random sample of
designs, $* = {S,,. . ., S}, is generated and distributed to
all agents. The only restriction on the elements in $* is that
they must be feasible. The process for finding a feasible
alternative is identical to solving for the most preferred
alternative, except that any set of preferences may be used.

Next, the agents hierarchically define preferences by
ranking elements in the sample, $* and defining attribute
value functions [see Figure 9(a)]. The system agent specifies

System
Agent

V2 AN

.
Qe
X7

Figure 8. Creating constraint agents.
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Figure 9. Specification and distribution of preferences.

a set, Tsys = {ti,. . ., t.}, of two element tuples, ¢, = (S,
S, S:, S; € $*, ranking the alternatives in the sample. A
ranking of elements in S* is a partial order represented by
the set of two element tuples, where the first element in each
tuple, S,, is at least as preferred as the second element in the
tuple, S;. This ranking is based on the attributes of interest
to the system agent, for which the agent also specifies attri-
bute value functions, v,;. This process allows an agent the
ability to specify preferences over the attributes that are im-
portant to the agent. In the example, the system agent
specifies preferences over the cost and feasibility factor at-
tributes, a.,. and arr, the hardware agent over cost and CPU
throughput, a... and xcpytr, and the CPU agent over CPU

cost and CPU throughput, xcpy cost and xcpy tr. In addition
to the constraints specified by the system agent, these pref-
erences become part of the problem specification, and
therefore, must be followed during the design process.
Figure 9(b) shows how preferences are distributed from
the system agent down to the CPU agent. Each agent takes
the preferences sent to it, and sends these along with its own
preference down to any agents lower in the hierarchy. Each
set of preferences (€.8., Veosr» Vrr, and Tsys for the system
agent) provides all of the information required to construct
an imprecise value function (e.g., vsys for the system agent).
Recall that an imprecise value function is defined by speci-
fying attribute value functions (e.g., V..., Vrr) and ordering
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a sample of alternatives, (e.g., Tsrs). The weights (e.g.,
W.ast, Wrr, fOr the system agent) in the imprecise value func-
tion are constrained by the ranking and attribute value func-
tions. Each set of preferences implies a value function,
resulting in multiple value functions for some agents [see
Figure 9(c)].

5.2.5 DECISION MAKING

Identifying the best design is accomplished by first
achieving network consistency, then achieving decom-
posability, and finally identifying a nondominated alter-
native. Achieving network consistency is identical to the
process followed in ACDS, in that all decisions made at this
stage are purely related to design feasibility. Once a consis-
tent network is achieved, ACME design agents perform
decision making based on both feasibility and value analysis
in an attempt to achieve a decomposable network. Analysis
results are combined as described at the beginning of Sec-
tion 5.2, and the appropriate parts are eliminated. In this
phase, feasibility analysis is identical to ACDS, but value
analysis, as described in the following, is based on the
hierarchical preferences that must be obeyed. Finally,
agents perform decision making based entirely on value to
identify a nondominated alternative. In this last phase, a dis-
tributed search algorithm explores possible part combina-
tions, pruning search paths based on dominance checks.

When considering the selection of an alternative based on
value, an agent first applies the value function that is highest
in the hierarchy, yielding a set of nondominated alternatives.
The agent then applies the next function in the hierarchy to
the nondominated set, continuing this process until either
there is only one nondominated alternative left, or all value
functions have been applied. This process is guaranteed to
produce at least one nondominated alternative based on the
attribute information that is currently available. If more than
one alternative still remains, then one is chosen at random.

For example, to choose a CPU, the CPU agent must first
evaluate the change in value, Avgyg, for various pairs of alter-
native CPUs. Alternatives that are dominated are elim-
inated, and the remaining alternatives are the nondominated
set based on the system agents preferences. If the agent is
unable to identify a single, nondominated alternative, the
agent evaluates Av,, for various pairs of the nondominated
alternatives found by Avgys. If more than one nondominated
alternative still remains, then the CPU agent applies Avcey
in a similar manner. Note that agent value functions are
never directly combined, since in general it is very difficult
to ensure that all agents use the same value scale.

6. Summary and Discussion

In this paper, we have identified the need for a framework
to solve CE problems in a hierarchical organization. Hierar-
chical organizations arise from hierarchical problem
decomposition, subcontracting of subtasks, and supervisor
and subordinate relationships. Hierarchical control provides
global coordination to domain experts, who must utilize

local expertise to solve a CE problem. Existing approaches
focus on either solving a decomposed, single monolithic
problem or peer-to-peer problem solving. What is needed is
a combined approach that provides both global coordination
and exploitation of local expertise.

To fill the gap in the existing CE research, and thus solve
the problems related to hierarchical CE, we discussed a new
tool, ACME. Each autonomous ACME design agent has the
ability to independently contract for tasks and contract out
subtasks. A contract between a supervisor and subordinate
includes both the constraints and preferences of the supervi-
sor. Contracting of preferences creates a hierarchical pref-
erence structure, and provides hierarchical control of the
network of agents. Agents with local expertise are free to
apply their own preferences as long as they do not violate
contracted preferences. Agents interact to solve a problem
by means of distributed constraint satisfaction, during
which search heuristics attempt to identify the best design
based on the specified hierarchical preference structure.

At this time, we are completing code development for the
ACME system. Value decisions involve the repeated
calculation of Av, which can require extensive communica-
tion among agents. We are attempting to reduce these costs
by isolating the impact of a change in a design variable
assignment to Av. Initial test results related to isolating the
impact of variable changes on value have been encouraging
[22]. Isolating this impact may require propagation of inter-
vals through nonmonotonic functions if a wide class of
problems is to be supported, and techniques based on the
work of Faltings [23] and Hyvonen [24] may prove useful.
A firm definition of the optimal solution for a hierarchical
organization of agents must still be identified, as well as
conditions when such a solution can be found. This may in-
volve research from the area of mathematical programming,
group decision making, and negotiation.
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