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ABSTRACT: Point-bonded fibrous networks are used in a variety of engineering applica-
tions, including reinforcement for polymeric composites, paper, and electrochemical sub-
strates, among many others. An understanding of the nature of the deformation of these
irregular microstructures is key to developing useful manufacturing guidelines for their
cost-effective production. The current approach allows such analysis, through use of a sto-
chastic approach in constructing the network. Resulting network properties are compared
with those in more regular arrays. Ultimately, determination of local deformations in these
kinds of networks will be used to predict local deformation due to flow front progression in
fibrous preforms for production of polymeric composite materials.

INTRODUCTION

VARIOUS APPROACHES HAVE been used in modeling of the deformation pro-
cesses and effective stiffnesses of nonwovens and bonded nonwoven fibrous
materials. The majority of classic approaches comprise conservation of strain en-
ergy analyses (e.g., Hearle and Newton, 1968; Hearle, 1980). These analyses re-
volve around calculation of the strain energy associated with affine deformations of
unit cells of known orientation relative to the direction of applied load. The as-
sumption of affine deformation, or deformation in which the strains at all scales of
interest are geometrically similar, neglects effects such as microbuckling of fibers
and random fiber slack. Other approaches (e.g., Backer and Petterson, 1960) em-
ploy averagings of orientation of fibers to derive the elastic moduli of bonded net-
works. While affine unit cell approaches and their extensions can provide
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Figure 1. Local orientation can continuously vary in a preform using directed fiber techniques
for preform production.

satisfactory prediction of elastic moduli of short fiber nonwovens, they amount to
highly averaged, continuum predictions. Homogenization approaches (e.g., Gudes
and Kikuchi, 1991) have also been developed to address the problem of optimiza-
tion of structures using smoothed continuum constitutive rules calculated from
known properties of distinct phases.

Current approaches in analysis of fibrous media can be thus categorized roughly
into three types of models: (1) continuum approaches, relying upon macroscopic
experiments to provide properties of interest, (2) micromechanical approaches us-
ing regular unit cells and constituent properties to model macroscopic properties
(including both strength-of-materials approaches and elasticity approaches), and
(3) homogenization approaches, where microstructural features are assessed and
smoothed to produce local continuum properties.

Full optimization of these materials requires that models incorporate the specific
microstructures obtainable, along with incorporation of their specified or antici-
pated statistical distributions in the component. Directed fiber approaches allow
production of fibrous preforms, for example, Figure 1, with continuously varying
fiber orientation, to within £5° precision (e.g., Gerard and Jander, 1993).

Cost control in production of composites reinforced with these materials re-
quires that analysis be detailed enough to (1) determine the effect of continuous
changes in microstructure on these properties (e.g., the change in permeability with
a 10% change in local orientation of fibers), and (2) determination of sensitivity to
these properties to production specifications (e.g., the determination of angle sensi-
tivity and fiber laydown and thus production precision).

Importantly, the connectivity of these microstructures greatly affects both
processability and performance. Realistically, production parameters can be speci-
fied only as averages, with certain allowable variabilities. The cumulative distribu-
tion functions of all network parameters can be changed to produce simulated
microstructures that can be studied using the current approach. The current ap-
proach employed stochastic microstructures for study of the material properties.
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METHODOLOGY

Stochastic fiber networks were generated to understand and predict local defor-
mations in point-bonded, fused fiber networks, addressing fundamental questions
about the drapability and processability of these structures. The main approach in-
volved four steps:

1. Networks were initially constructed by selecting distribution functions for six
main variables: fiber volume fraction within a unit cell, fiber orientation distri-
bution, fiber length distribution, fiber centerpoint (x- and y-) location, and fiber
aspectratio (L/d). Data were generated randomly according to these parameters,
and fibers were “placed” in the unit cell, as in Figure 2(a). The intersection
points were calculated and thereafter assumed to be rigid bonds.

2. Periodic boundary conditions were imposed [Figure 2(b)]. In this way, the ini-
tial volume fraction specified at the outset was imposed exactly for the unit cell,
as ends were “wrapped” back into the cell. Also, periodic boundary conditions
allowed analysis without spurious edge effects.

3. Non-load-bearing segments were removed. This included ends of overlapping
fibers that did not intersect one of the load boundaries and structures within the
cell that did not span the boundaries [Figure 2(c)], such as the triangle shown. Fi-
nally, a load direction was chosen (structures studied here were placed in uniax-
ial tension), and the networks were reduced accordingly, as in Figures 3(a) and
3(b), for x- and y-direction loading, respectively.

Using this methodology, several types of networks were constructed. By the
technique described, the controllable parameters in the simulated networks were
identical to those adjustable in a manufacturing process. The great majority of the
generated structures were highly indeterminate (mechanisms, if bending were not
considered to prevent unrestricted rotations about joints).

The analysis of the networks proceeded as follows. First, interfiber bonds were
assumed to remain rigid and intact (Figure 4). Second, it was assumed that bonds
were pointwise bonds. Third, bending was considered (Figure 4). In the uniaxial

S

7
(@) ®) (c)

Figure 2. Network construction technique; square cells of unit area.
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Figure 3. Network [Figures 2(a)-(c)] reduced for x-loading [Figure 3(a)] and y-loading [Figure
3(b)] respectively.

simulations described, a uniform displacement was applied at one edge, with the
other edge fixed.

The mechanical analysis proceeds from a calculation of potential energy in the
random structure (e.g., Cook et al., 1989). The general expression for potential en-
ergy in a linear elastic body is

I, = f‘,(1/2{8}T[E]{8}- &Y [Eleo} + &} oo )V
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where terms are defined

I1, = potential energy {®} = surface tractions

{u} = displacement field {D} =nodal d.o.f. of the structure

{€} = strain field {P} = externally applied loads to d.o.f.
[E] = stiffness matrix S, V = surface area, volume of structure
{F} = body forces {€0}, {00} = initial values of {¢}, {0}
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Figure 4. Network loading scheme. Point bonds are assumed rigid; segment geometry can
be altered through moment of inertia and aspect ratio.
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For a system of discrete elements (in this case, the segments between nodes), Equa-
tion (1) becomes

numel numel

I, =12 Z {d}y [k, {d} — E{d},{ 3 — DY (P} @

n=1 n=1

where

{P} = externally applied loads at nodes
[4] = element stiffness
[d] = transformation matrix (each “element” is oriented at a different angle)

Making I, stationary with respect to small changes in displacement, we obtain

[K{D} = {R} 3
where

[K] = element stiffness
{D} = nodal displacements; here, u, v, 6
{R} = externally applied loads at nodes, here, at boundary nodes

A schematic of the deformation of fibers about a rigid bond is shown at left in Fig-
ure 4; the elements shown at right (uniform, and lying along the x-axis) were super-
posed to obtain the stiffness matrix:
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Table 1. Simulation parameters.

Fiber Fiber Aspect
Case Length Ratio Orientation Distribution
A 1 0.01 uniform, 0-90 degrees
B 1 0.02 uniform, 0-90 degrees
C 1 0.1 uniform, 0-90 degrees
D 15 0.01 uniform, 0-90 degrees
E 1.5 0.02 uniform, 0-90 degrees
F 1.5 0.1 uniform, 0-90 degrees

where (T') is the transformation matrix. Edge displacements (representing uniaxial
tension for a displacement-controlled experiment) were applied to the boundary
nodes of the cell. A unit dummy load technique was used to solve for the applied
displacement boundary conditions.

Several cases were investigated to demonstrate the high variance in the behavior
of these structures owing to their stochastic construction.

RESULTS

Table 1 summarizes the structures simulated. Five cases were studied to assess
both the effect of bending on stochastic networks, as controlled by fiber aspect ratio
(where higher aspect ratio fibers produce networks whose deformation is more
bending-dominated), and the effect of fiber length-to-unit cell ratio on the networks
(it was not the aim to determine a “percolation point,” for short fiber materials, or a
point at which the volume fraction was sufficiently high to produce a load-bearing
network). Five networks were generated and reduced for each case. In case C, no
load-bearing structures were generated for any of the five data (because of the high
aspect ratio, the volume fractions studied dictated only between one and three fi-
bers in each case); therefore, a plot is not included.

Several plots of normalized effective network modulus versus intial [Figure
2(b)] volume fraction are shown in Figures 5 and 6. A significant portion of the sto-
chastic networks generated produced no load-bearing structures, resulting in zero
normalized moduli.

DISCUSSION/FUTURE WORK

The nonaffine deformations within the structures produced moduli outside the
bounds predictable by strength-of-materials approximations or by use of models
for analysis of regular microstructures. The computed moduli in all cases, for ex-
ample, were substantially less than those predicted via simple rule-of-mixtures, due
to the significant role of bending in the deformation. Little difference was found in
the structural properties of networks generated with staple lengths of 1-1.5.
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Figure 5. Normalized network moduli, for fiber length = cell length.
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Figure 7. Comparison of reduced networks generated for materials with aspect ratios of 50
(left) and 100 (right).

Higher aspect ratio materials produced higher effective network moduli than
lower aspect ratio materials, for the same initial volume fraction. This was due to
the network connectivity (Figure 7): lower aspect ratio networks produced lower
effective volume fractions than higher aspect ratio materials at the same initial vol-
ume fractions. These results suggest that an optimized process for mechanical
properties may entail the use of higher aspect ratio fibers at low volume fractions
for best connectivity in random structures.

Future work will include modeling of damage progression in these networks, due
to a variety of load conditions. The effects of bond strength will also be considered,
as will the effect of local architecture on flow front progression in liquid molding
processes. Particularly, the effect of distributed loads on local network deformation
will be of interest.
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