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Abstract: Recently, a constitutive theory for rubber-like materials has been developed by which stress arises
from different micromechanisms at different levels of deformation. For small deformations, the stress is
given by the usual theory of rubber elasticity. As the deformation increases, there is scission of some
junctions of the macromolecular microstructure. Junctions then reform to generate a new microstructure.
The constitutive equation allows for continuous scission of the original junctions and formation of new ones
as deformation increases. The macromolecular scission causes stress reduction, termed chemorheological
relaxation. The new macromolecular structure results in permanent set on release of external load.

The present work considers a hollow sphere composed of such a material, also assumed to be incom-
pressible and isotropic, which undergoes axisymmetric deformation under radial traction. There develops
an outer zone of material with the original microstructure and an inner zone of material having undergone
macromolecular scission, separated by a spherical interface whose radius increases with the deformation.
The stress distribution, radial load-expansion response, residual stress distribution, and permanent set on
release of traction are determined. It is found that a residual state of high compressive stress can arise in a
thin layer of material at the inner boundary of the sphere.

1. INTRODUCTION

The general form of the constitutive equation for nonlinear elastic solids is based on as-
sumptions that imply stress arises from a single unchanging material micromechanism
at all stages of deformation. Rajagopal and Wineman [1] have recently presented a con-
stitutive theory, which can be used to model the mechanical response of rubber-like ma-
terials that exhibit changes in micromechanism. In their model, the stress is determined
by one micromechanism within some regime of deformation; as deformation increases,
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a new micromechanism arises, which affects the mechanical response. They considered
the particular example in which the material acts as a rubbery solid if the deformations
are relatively small. When deformations become sufficiently large, some network junc-
tions in the original material break and then reform to produce a new network with a
new unstressed local configuration. Their work allowed for continuous conversion of
the original material to new networks as deformation proceeds. It was shown that the
material can undergo substantial softening and that there is permanent set when the ap-
plied load is removed. In the present article, the breakage of network junctions refers
to the process of scission of the macromolecular microstructure. The reduction of stress
due to this process is known as chemorheological relaxation (Tobolsky [2]) and is to be
distinguished from the more familiar process of stress relaxation associated with macro-
molecular reconfiguration.

There have been several applications of this constitutive theory to problems involv-
ing nonhomogeneous deformations. The examples all assume that the material is in-
compressible and that new networks are generated at sufficiently large deformations.
Wineman and Rajagopal [3] studied the finite extension and torsion of a circular cylin-
der. Huntley [4] considered the circumferential shear of a hollow concentric cylinder
whose inner surface is fixed and whose outer surface is rotated about the centerline.
Wineman and Huntley [5] studied a circular rubber membrane that is fixed at its bound-
ary and subjected to a uniform pressure over one of its surfaces. Huntley, Wineman, and
Rajagopal [6] analyzed the influence of this constitutive model on the monotonicity of
the load-expansion behavior of thick-walled spheres. In each of these studies, when the
deformation is sufficiently large, there is a region of original material separated from a
region of multi-network material by an interface whose location varies with the size of
the deformation. The ideas of [1] have been extended and generalized by Rajagopal and
Srinivasa [7,8] to describe the twinning of metals and the inelastic response of materials
in general.

The present work contains a detailed analysis of the response of a thick-walled
sphere under radial traction. The regions of multi-network material and original ma-
terial and their interface are determined as radial traction increases and then decreases.
Stresses in these regions are also found. The chemorheological relaxation due to macro-
molecular scission reduces the maximum stress, as well as the radial traction required to
impose a specified radial deformation. It is shown that there is a residual stress distribu-
tion and permanent set when the radial traction is removed.

The constitutive equation is presented in Section 2 and the equations governing the
radial expansion of a hollow thick-walled sphere are presented in Section 3. The numer-
ical method of solution is outlined in Section 4. Results for a numerical example are
discussed in Section 5. The article concludes with remarks on special cases in Section 6.

2. CONSTITUTIVE EQUATION

Consider a sample of material undergoing a homogeneous deformation described by
x = x(X, t), where x is the current position of a particle located at X in the undeformed
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reference configuration, when ¢ = 0. The deformation gradient associated with this map-
ping is F = 0x/0X and the left Cauchy-Green tensor is given by B = FFT. Assume
that there is a range of deformation on which the material behaves as an isotropic, in-
compressible, nonlinear Green elastic solid. It is well known ( e.g., Spencer [9] ) that
the Cauchy stress T for this material takes the form

T = —pI + 2W"B - w{VB), )

where —pl is an indeterminate hydrostatic stress state. It will be convenient to denote
the extra stress by 7 = T + pI. W) = W(I, L) is the strain energy per unit
volume, where I; = tr(B) and I, = tr(B~!) are the first two invariants of B. Also,
w = owW /a1, and WY = ow ) /31,

An activation criterion determines when the original material network begins to
undergo microstructural change and form new networks. This criterion is taken to
be expressed as a function of the deformation gradient F, which vanishes when mi-
crostructural change begins. Material frame indifference, isotropy, and incompressibil-
ity imply that the activation criterion can be expressed in terms of the invariants of B:
A(L, 1) = 0.

Transformation of the original microstructural network is assumed to be continuous
with increasing deformation. Introduce a scalar deformation state parameter s whose
value is determined by the extent of deformation. It can be expressed in terms of the
stretch invariants: s = s(I;, I3). The value of s increases as deformation increases.
No unique definition of the term increasing deformation is proposed. Instead, as in the
previous applications of this constitutive equation ([3, 4, 5]), an appropriate form of
s is selected for the deformation process under consideration. Recasting the activation
criterion in terms of the state parameter gives A([1, I2) = s(I1, I) — $4. Microstructural
conversion is initiated when the state parameter s first reaches the conversion-activation
value s,.

For s < s4, no conversion has yet occurred; thus all material is original and the
total stress is given by (1). At the current deformation state s, with s > s, stress in the
remaining original material is also a function of the current deformation gradient F.

Introduce the scalar-valued conversion rate function a(s). As increasing deforma-
tion causes the state parameter to increase beyond s = s,, the conversion rate func-
tion determines the amount of network transformation induced by additional defor-
mation. The conversion rate function may have any form respecting the constraints
a(s) = 0,s < s, and a(s) > 0,8 > s,. a(s) must remain non-negative so that an
increase in deformation always be associated with additional microstructural change. It
is assumed that q is a continuous function of s.

Consider a value of the deformation state parameter § > s,. It is assumed that a
network is formed at this value of the deformation state parameter. Its reference con-
figuration is the configuration of the original material at state 3. It is assumed to be
an unstressed configuration for the newly formed network. Stress in such a material
network is a function of the subsequent deformation of the network relative to this un-
stressed configuration. Define the deformation gradient for the material formed at state
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3 as F = Ox /0%, where X is the position of the particle in the configuration correspond-
ing to deformation state §. This gradient compares the neighborhood of a particle in the
configuration at state s with the configuration of the new network when it was formed at
state §. The associated left Cauchy-Green tensor is given by B = FFIT.

Let it be assumed that the material network formed at state 3§ is elastic, isotropic, and
incompressible. The extra CaucHy stress at state s in a network formed at deformation

state § then becomes X A
7O = 2wPB - wPB. @)

Here, W = w(® (I 1 Iz) is the strain energy density of the material formed at state §
and subseqgently deformed to state s. I and I, are the appropriate invariants of B. The
strain energy density functions W () and W () may be of any form. It is assumed that the
single function W(2) governs the strain energy density in each newly formed network.
The material defined by (1) and (2) should not be thought of as a simple material in the
sense of Noll (see Rajagopal [10]).

Total current stress in the material is taken as the superposition of the contribu-
tion from the remaining material of the original network and the contributions from all
networks formed at deformation states § € [s4, s]. During a process of increasing defor-
mation, the total current stress is given by

T = —pI+b(s)TM + / (3)Tds. 3)

The function b(s) is the volume fraction of the original network material remaining at
state s, with b(s) = 1,5 < s,, and b(s) € [0,1],s > s,. The volume fraction b(s)
decreases as s increases. 71, found from (1), is the current stress in the remaining
original material. The quantity a(§)d$ may be interpreted as the volume fraction of
material that ruptures and reforms as the deformation state increases from § to § + ds.
T2, given by (2), is the stress in that portion of newly formed material. With (1) and
(2), (3) can be written in the form

T = —pI + 2b(s)[W VB — WVB 1] + 2 / HWPB - wPBds. (@)

Equations (3) and (4) are constitutive equations for incompressible materials and respect
the requirements of frame indifference.

Assume that the material has undergone a process of deformation whereby s has in-
creased monotonically and that deformation is subsequently reduced, so that s decreases
monotonically. Two assumptions are made concerning the process of decreasing defor-
mation: (a) there is no further conversion of original material; (b) there is no reversal of
microstructural transformation. These assumptions are made partly for analytical con-
venience. It may also be said, however, that any more complicated theory governing
the reduction of deformation will only be useful when more information concerning real
material behavior is available to guide its formulation.

The above requirements imply that a(s) = 0 as deformation is reduced. Thus the
upper limit of the integral in (3) becomes fixed at s = s*, the maximum value of the state
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parameter reached during the process of increasing deformation. The volume fraction
of original material remaining undergoes no further change, so that b(s) = b(s*) as
deformation is reduced. The stress during a reduction of deformation from s = s* then
has the form

T = —pI + b(s* <1>+/ 5)T®ds )

where 7() is found from (1) and 7@ is given by (2). Equation (5) can be written with
(1) and (2) as

T = —pI + 2b(s*)[WIB - WVB] + 2 / 28 - wPB ds. (6)

Equations (1), (4), and (6) represent the complete constitutive equation for all deforma-
tion processes.

Much of the notation to be used in this article has already been introduced. How-
ever, before proceeding to study the application of the constitutive equation, it is impor-
tant that the notational scheme and the functional dependences that it implies be clearly
understood. An overview of the principal elements of the notational system is presented
here.

Unhatted kinematic quantities, such as F, B, I, and I, are referred to as current
and compare configuration at the current deformation state s with the initial reference
configuration. Kinematic quantities bearing the hat notation (A), such as F, B, I}, and
Iy, are called relative quantities. They represent comparison of the configuration at the
current state s with the configuration at state 3.

The superscript ( ){(!) appearing in stress quantities such as 7(!) indicates that the
stress is in material of the original microstructural network. Such stresses are func-
tions of the current left Cauchy-Green tensor B. The superscript ( )(2) appearing, for
example, in 7(?) indicates stress in a material network formed at deformation state 5.
These stresses are functions of the relative left Cauchy-Green tensor B. Unsuperscripted
stresses, such as T, are total stresses following the superposition given by (3) of stresses
in original and newly formed networks. They are thus functions of the current tensor B
and of the relative tensors B relating the current configuration to each state 3 € [Sa, s]
for increasing deformation. For a process of increasing deformation, unsuperscripted
stresses also depend explicitly on the current value of the deformation state parameter
s, which appears as the upper limit of integration and as the argument of b(s). During
reversal of deformation, unsuperscripted stresses depend explicitly on s*.

The function W) denotes the Helmholtz strain energy density in material of the
original network; it is a function of the current stretch invariants I; and I5. W® is the
strain energy density in the material of a subsequently formed network and is a function
of the relative invariants I 1 and 12 ~ ~

Nondimensionalized quantities bear the tilde notation ( ), as T.

For purposes of notational simplicity, none of the functional dependences mentioned
above is indicated explicitly when kinematic or stress quantities are written.
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3. FORMULATION

3.1. Kinematics of Deformation

Consider a sphere of initial outer radius R, containing a central spherical cavity of radius
R;. In spherical coordinates, the undeformed sphere occupies the domain

D ={(R,®,0): R€[R;,Ro); ®€[0,n]; © €[0,27m)}. @)

No restriction is placed on the thickness of the sphere: all values of R; and R,, with
R, > R;, are admissible. The sphere is considered to be composed of material that is
initially homogeneous, incompressible, elastic, and isotropic.

Let T, be a radial force per unit current surface area. A uniform radial tensile trac-
tion of magnitude T, is applied at the outer surface. The surface of the inner cavity is
traction-free. The resulting deformation is assumed to be spherically symmetric. With
(r, ¢, 8) denoting the current coordinates of the particle initially located at (R, ®,0),
the mapping describing the deformation has the form

r = r(R)
¢ = @ (®)
0 = O.

The radial deformation function r(R) is to be found. For the mapping given by (8), the
general deformation gradient in spherical coordinates (e.g., [9]) is found to simplify to

. dr r r
The statement of incompressibility, det(F) = 1, may be written from (9) as
r\? dr
(I_?,) R 1. (10)

Introduce the notation A = r/R. The incompressibility condition (10) becomes

20 _ (11)

)‘dR_

which gives dr/dR = 1/)2. Thus the current deformation gradient (9) with respect to
the initial coordinates may be written as

F = diag (—5\15, A, A) . (12)

It can be seen from the deformation gradient (12) that each particle R of the sphere
may be regarded as undergoing locally homogeneous equal biaxial extension. The 7-, ¢-
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and §-directions are the principal directions of stretch. There is no variation in deforma-
tion with the ¢- and #-coordinates; the state of equal biaxial extension is a function of
the radial coordinate R.

The current left Cauchy-Green tensor and its inverse are found from (12) to be

1
B = FF' = diag (F’ 2\ ,\2> (13)
and
—1 . ¢ 11
B! = diag )"F’ﬁ . (14)
The invariants of B are given by
1 2
I =22+ e I, = Vs P 15)
Note that (10) can be integrated to give the relation
R, 3 %
A=XR)= 1+(,\;?'—1)(EZ>] ;o (16)

where )\; denotes the equal biaxial stretch ratio A(R;) at the inner surface of the sphere.
Once the value of ); is specified, (16) gives the stretch ratio distribution A\(R) for the
entire sphere. The stretch ratio ); is thus considered a global deformation control pa-
rameter in the remainder of this article. It can be seen from (16) that, for a fixed particle
label R, X increases (or decreases) with );. A process of increasing (or decreasing) \;
thus assures a process of increasing (or decreasing) A for all R € [R;, R,).

Recall the requirement that the deformation state parameter s(I;, I5) increase with
some measure of the stretch invariants. For A > 1, both I; and I, as given by (15) in-
crease monotonically in A. Thus s can be expressed as s(\), a monotonically increasing
function of A. The parameter s also increases monotonically with ); at fixed R. Equa-
tion (16) also reveals that, for a fixed stretch \;, A and hence s decrease monotonically
as R increases.

Consider now the material of a particle R that undergoes conversion at some value
of the deformation state parameter § > s,. Let A be the equal biaxial stretch ratio
corresponding to deformation state §. It follows from (12) that

ox . 1 <«

-a-i = dlag (E, )\, >\> . (17)
Deformation then increases beyond state 5. Note that
- %\ !

= 18

F=F ( ax) (18)

implies

oy 2
F = diag [(;) % ﬂ ) (19)
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The relative left Cauchy-Green tensor and its inverse are formed from (19) as

B = FFT = diag [(;)4 (%)2 G) 2] (20)
B! = diag [(%)4 (%)2 (%)2} . 1)

The relative invariants are found from (20) to be
oy 4 oy 2
. N2 (X . A A\
=9(2 2 - =92 = =] . 22
h 2<,\) +(A) I 2<A) +(A) 22

3.2. Stress-Stretch Relations

Consider a process in which ); increases monotonically. As discussed above, the stretch
ratio A and hence the deformation state parameter s increase monotonically for all R €
[R;, Ro)-

For any particle R that has not undergone microstructural transformation, where
8 < Sgq, the nonzero current Cauchy stresses are given by (1), (13), and (14) as

Wl(l) (1)y4
(1)
Togy = —-p+2 [Wl(l))‘2 - %] ’ (23)

with p an indeterminate scalar. Also, T4 = Tpg. Note that, because the stretch tensors
are diagonal, all shear stress components are identically zero. From (23) it is clear that
the extra stress components are functions of A. As discussed above, however, A(R) is
given by (16) at any level of deformation of the sphere, once the deformation control
parameter \; is prescribed. Thus the extra stresses may also be considered functions of
the reference coordinate R.

The normal stress difference, T = T(R) = Tyo(R) — Tr+(R), is of primary interest.
From (23), the stress difference when s < s, is seen to be

T = 7 = 95 (v _ %) , 24)

where E(V) is the deformation-dependent modulus of the original material given by

EW = EO\(R)) = W + 22wV, (25)
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As )\; increases, particles at some R may stretch to such an extent that s(A(R)) > s,.
For particles with s > s,, the nonzero current Cauchy stresses are formed from (4), (13),
(14), (20), and (21) as

1 A\ A\
Ty = —p + 2b(s) [W{” i W ”x‘] +2 / () [ w? (X) —w? (;) } di

A\ 2
Top = —p-+ 2b(s )[W“),\2 WY 1}+2 / [Wf” (:\\) —w? (—}) }dé.

(26)
Again, Tyg = Tpg. The normal stress difference for s > s, is found from (26) to be

T=2 {b(s)E(l) ()\2 _ ;11) + /sja(g)E@) {(%)2 _ (;ﬂ d§} .

with the deformation-dependent modulus of the newly formed material given by
2
E® = E® G) =w® 4 (%) w2, (28)

Assume now that the sphere has undergone a process of increasing deformation
whereby the deformation control parameter has reached a maximum value of A; = A].
Let s* = s*(A\(R)) denote the distribution of the deformation state parameter corre-
sponding to A; = A}. The control parameter }; is subsequently decreased from A7.
It follows from (16) that this constitutes a process of decreasing deformation A for all
R € [R;, R,). Atany particle R for which s* < s,, no conversion has occurred. Cauchy
stresses during reduction of deformation follow the form of (23) and the stress difference
is given by (24). Any particle R for which s* > s, has undergone some degree of net-
work conversion. Stress components at such a particle during reduction of deformation
are formed from (6), (13), (14), (20), and (21) as

4
) ] #

S‘ < 4
T, = —p + 2b(s*) [W{l)% - Wg”x*] +2 / a(3) [W{” (%) —w? (
Sa
2
s

(29)

Sl >

> >

=20 020 8] o [ (3

with Ty = Tpg. The normal stress difference is formed from (29) as

B-() )}

*

S
T =2d6sEW (K- 1) & a(3)E@
A s
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Because s = s(A) and A = A(R) by (16), each value of A; determines a variation of s
with R. The state parameter s decreases monotonically with R for all \;. Figure 1 shows
the general form of the s-R distribution for the sphere at several levels of deformation
Xi. At alow value of \; = Ay, s < s, for all R € [R;, R,), as seen in Figure 1.
No microstructural change has occurred; the entire sphere is composed of the original
material. Due to the one-to-one correspondence between s and A, there exists a specific
value of \; denoted by \; = A4, with A\q > A, Which corresponds to s(A;) = sg.
Conversion is just initiated at R = R;; s < s, for all R € [R;, Ro]. When A; = N,
where Ay > A, there is an activation radius R, defined by s(A(R,)) = sq, where
A(Rg) = Ao Then s > s, for R € [R;, R,], while s < s, for R € [Rg, R,]. Thus there
is an inner spherical region where conversion is taking place and both original material
and newly formed networks are present and an outer spherical region composed purely
of original material.

The activation value of the stretch ratio A\, and the activation radius R, are related
by (16). With the substitutions A = A, and R = R,, (16) can be rearranged to give

31\
Ra=R,.(Ai 1) . 31)

X1

When ), is specified, it is clear from (31) that R, moves outward as A; increases during
a process of increasing deformation.

The Cauchy stresses for the inner region undergoing microstructural change, R €
[Ri, R,), are given by (26). Stresses in the outer region of original material, R €
[R4, R,), are given by (23). Note that R = R, belongs to both of the two closed in-
tervals on R. This holds because the results given by the two stress models (23) and (26)
are identical at R = R,,.

Consider now the process of reduction of deformation from a maximum value of the
control parameter A; = \;. Equation (31) indicates that the radius R = R, decreases
with A;. This establishes that the activation radius cannot move outward during a process
of decreasing deformation. The greatest value of R, reached is that corresponding to the
maximum stretch A}. This value, denoted by R}, is given by (31) as

1
A3 —1\3
Ri=R; % ) . (32)

s (Ag—l

For the process of reduction of deformation, then, R} defines the interface between the
inner zone R € [R;, R}, where conversion has taken place and both original material
and subsequently formed networks are present, and the outer region R € [R, R,] of
purely original material.

If the maximum value of the deformation control parameter is A} < A,, then R
is undefined, as no network conversion has occurred anywhere on [R;, R,]. The stress
components (23) and the stress difference (24) apply as deformation is reduced from
A= AL
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Fig. 1. Typical forms of deformation state parameter versus radius for various inner surface stretch ratios;

activation radius is indicated for A; = A,.
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When the maximum stretch A} imposed during the process of increasing deforma-
tion is given by A} > )\, then there exists an R} € [R;, R,] given by (32). As defor-
mation decreases, stresses in material on [R}, R,] follow (23) and (24). For material on
[R;, R}], the Cauchy stress components are given by (29) and the normal stress differ-
ence by (30).

3.3. Equilibrium

It should be noted that the spherical deformation described by (8) is a controllable de-
formation (Carroll [11]). For any incompressible isotropic solid, a scalar field p can
be found, which satisfies the equilibrium equations. Furthermore, it can be shown that
p = p(r).

It has been shown that the shear components of the Cauchy stress are identically
zero and that the extra stresses 7, and 744 = Tgg are independent of the coordinates ¢
and §. When body forces are neglected, and use is made of Ty = Tpg, the equilibrium
equations in spherical coordinates (e.g., [9]) are reduced to

dTy, +9 Trr — The
dr T
It may be observed from (16) that the mapping from R to r is one-to-one. Therefore, the
statement of equilibrium (33) can be expressed in terms of the reference coordinate R as
dTrr Trr - T00
2 =
dR + RX3
where A = r/R and (11) have been used. Written in terms of the normal stress differ-
ence, (34) becomes

=0. (33)

0, (34)

dT,, T

iR 2 € =0. 35)
Because the deformation is controllable, the equilibrium condition (35) is satisfied at
every point R € [R;, R,] and at every value of the deformation control parameter \;.

The radial normal stress 7., must be continuous and have a continuous first deriva-
tive dT;r/dR on [R;, R,]. In particular, these quantities must be continuous at the in-
terface R = R, between the inner region of converting material and the outer region
composed entirely of original material. Comparison of the expressions (23) and (26)
confirms that the extra stresses 7., and Tgg are continuous at R = R, for any form of
a(s). It can be shown from (16), (23), (26), and (35) that a(s,) = 0 and db/ds = 0 at
s = s, are sufficient conditions for continuity of dT;./dR at R = R,. These conditions
will be enforced through appropriate selection of a(s) and b(s).

The equations for p = p(R) are now presented, as they are needed for the calcula-
tion of the normal stresses T, and Typy. The inner surface of the sphere at R = R; is
considered free of traction, which gives the boundary condition 7;..(R;) = 0. Using this
condition and T, = —p + T,, integration of (35) gives

R T .
p="Tor—2 /& Z7di (36)
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When \; < ), it follows that s < s, for all R € [R;, R,). Equation (36) is thus
written using 75, = 77 as found from (23) and T = T(V) as given by (24). These
are the radial extra stress and normal stress difference expressions for untransformed
original material.

When \; > )., the activation radius R, is given by (31). Recalling that s > s,
on R € [R;, R,), p there follows the form (36), with 7,, found from (26) and T given
by (27). These are the radial extra stress and the normal stress difference in material
undergoing network conversion. On [R,, R,], p takes the form

Re F . (RPO
_ 7 _ r -
p=T¢ 2[/& el [ R}\3dR]. (37)

7;(71), found from (23), is the radial extra stress in the purely original material found on
[Ra, Ro); 71 , as given by (24), is the normal stress difference in the material of this un-
converted outer region. T', given by (27), is the normal stress difference for R € [R;, R,],
where both original material and newly formed networks contribute to the response.

When the sphere is subjected to a process of reduction of deformation from a maxi-
mum of A} < A4, pis given by (36) forall R € [R;, R,), with T, = 7;<,~1) from (23) and
T = T from (24). When \* > A\, pon R € [R;, R] is found from (36), with 7,
now found from (29) and T given by (30). For R € [R%, R,], p is given by (37), where
TV is found from (23) and T(1) is given by (24) and T' by (30).

3.4. Load-Expansion Relation

Let (35) be integrated form R; to R,. Imposing the boundary conditions that the surface
of the inner cavity be traction-free and the uniform radial tensile traction at the outer
surface be T, gives the result

T2R0TdR 38
o — Rim' ()

When \; < g, s < s, for R € [R;, R,) and T, is found from (38), with T = T() given
by (24). If A; > \,, microstructural transformation has been activated and s > s, on the
inner region of the sphere R € [R;, R,]. The external traction is then

Re T Ro TV
- - L _dr|.
T, 2[/11,- ST e R}

T is the current stress difference in material undergoing conversion and is given by
(27). Note from (24) and (27) that T is determined at each particle R by the current
value of A\(R) and the history of A(R). During a process of monotonically increasing
deformation, this history is identical for particles sharing a specified current value of A.
Furthermore, the distribution A(R) is determined by A; and R; in (16). Thus, with R,
specified, it follows from (38) that T, = T,();), a relation between the traction at the
outer surface and the equal biaxial stretch ratio at the inner surface of the sphere.

(39)
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Consider the process whereby A; has been increased to a maximum value of A} and
subsequently decreased. When A} < ), the external traction T, during this process of
reduction of deformation is given by (38) and (24). If A} > A,, Ty, is found from (39),
with T()(R) given by (24) and T(R) by (30).

In the context of the spherical geometry, let the residual deformation be defined by
the value of the deformation control parameter A\7* when the external traction T, has
been returned to zero, that is, T, (A7¢*) = 0. When A} < A4, (24) and (38) can be used to
show that there is no residual deformation, so that A7®® = 1. For A} > ),, it is expected
that A7¢® > 1, with the corresponding residual stretch distribution

1
\3)3
A€ = XT¢*(R) = {1 +[Oren)? 1] (%) } ' (40)
The condition that T, (A[¢®) = 0, together with (39), implies that
R, T R, (1)
——dR = 41
R R()\res)lidR + R: R()\res)SdR 0’ ( )

where T1 = T1(\"¢*(R)) is formed from (24) and T = T(A\"¢*(R)) from (30). With
(40), (41) becomes an integral equation for A7®°. It appears that numerical solutions for
specific cases are the only means to precise information about A7¢°.

4. NUMERICAL SOLUTION

To carry out a numerical solution, specific choices must be made for two material prop-
erties — the deformation state function s and the conversion rate function a(s) introduced
in (3). The deformation state function is chosen as s = A for A > 1. The stretch ratio
varies with the radius R, as does the state parameter; hence s(R) = A(R). The conver-
sion activation criterion is satisfied for the particle at radius R when s(R) = A(R) = A,.
The activation radius, then, is defined by A(R;) = Aq.

The conversion rate function a(A) = a(s) is chosen to be quadratic on a finite
domain:

0, A< A
a(’\) = a(A — )‘a)()\ - )\c), A€ [’\m )‘c] (42)
0, A> A

According to this definition of a()), the process of material conversion occurs as the
deformation state parameter A increases over a finite interval and the process terminates
when A > ). Since the deformations under consideration are finite, the parameter A
will not exceed some finite value. Thus A, can be chosen sufficiently large that, in the
present examples, the conversion process need not reach completion. (It should be noted
that other choices of a(\) can be made in which ). is not finite.)
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For simplicity, assume that the rate of decrease of volume fraction of original mate-
rial equals the rate of increase of volume fraction of material with new microstructure.
This implies that the volume fraction of original material remaining at any state of de-
formation A > A, is

~

b)) = 1— / ® s @3)

With a()) chosen as in (42) and b(\) chosen as in (43), the continuity condition for
dT,./dR at R = R, is satisfied. Let the total volume fraction of material that may
ultimately convert be denoted by C, where C' < 1. Then by (43),

Ae . .
C= a(A)dA. (44)
Aa
It then follows from (42) and (44) that
6C
a=—-————7. 45
EREPWE @)

Values of Ay, A;, and C are selected so as to make evident the differences in re-
sponse between the sphere undergoing conversion and an elastic sphere (no conversion,
C = 0). For the examples in this section, ), is chosen to be 1.5 so that network con-
version commences at a relatively low level of deformation. It is desired to continue the
simulation to the level A = 6.0. Thus A\, = 6.1 is chosen. This permits the simulation to
demonstrate the effects of conversion of nearly all of the material specified by C' while
not exceeding A.

Define a dimensionless radial coordinate by R = R/R;. The equation (16) giving
the stretch distribution becomes

/\ -1
A= A(R) = (1+ 7 ) : (46)

When J; is specified, A is a monotonically decreasing function of R. The numeri-
cal examples presented below assume a sphere occupying the reference domain R €
(1.0,10.0]. The dimensionless outer radius of the sphere, denoted by R, = R,/R;, is
thus R, = 10. The dimensionless activation radius R, = R, /R is given by

1
- A —1)\3
r-(322) @

Here, Ra is undefined for \; < A,. Ra moves outward through the sphere for increasing
Ai > Ag. Atlarge )\, the plot of R, versus )\; asymptotically approaches the straight
line R = X(A3 —1)73.

The stress components T;.., Ty4, and Tpg, the normal stress difference T, and the
traction T, are normalized by an elastic constant appropriate to the material model being
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considered. This gives dimensionless stresses denoted by Trr, T¢¢, ng, T, and To,
respectively. A dimensionless scalar field p is formed in the same way.

The numerical procedure for the solution begins with the specification of a value of
the deformation control parameter \;. Then A(R) is known everywhere from (46). With
the activation stretch ratio A, prescribed, (47) gives R,. Using the quadratic form of a()\)
specified in (42), the integral in the equation (26) for the Cauchy stress components can
be expanded analytically. Thus all extra stresses are calculated explicitly from (26) for
R € [1, R,] or from (23) for R € [R,, R,).

To calculate the scalar field p, the reglon 1, Ra] is discretized to form n intervals of
equal size demarcated by the nodes R=R;(j=1,n+1),with R; = 1and Rpy; =
R.. Similarly, discretization of the region [Ra, Ro] into m intervals is accomplished with
the evenly spaced nodes R = R; (j=1,m+1),with Ry = R, and Ry = R,. The
integrand of (26) is then evaluated at the nodal values R, and the integral is approximated
by Simpson's rule. The two distinct discretized regions are necessary because, as is
known from (37), different forms of T" apply in the separate regions. When A; > A, the
numerical integration must be carried out from R = 1 precisely to R = R, using T" as
given by (27); from R=R,to R =R,, the integration by Simpson's rule continues,
using the expression (24) for T =T,

5. EXAMPLE: NEO-HOOKEAN MATERIAL

Let it be assumed that the original material of the sphere is a neo-Hookean elastic solid
and that the material of each subsequently formed network also exhibits neo-Hookean
response. The strain energy density functions W) and W2 for the original and newly
formed network materials, respectively, are taken as

wO(I, L) = (L - 3); WO(hy, I) = D (I - 3), (48)

where (1) and ¢(?) are constants interpreted as material moduli. Comparison with (25)
and (28) shows that

D = EO =W, (& = @ - w®, (49)

In the present solution, stress quantities are normalized by the modulus E(). It is em-
phasized that the restriction to neo-Hookean network response is not necessary. Both
original and subsequently formed materials are taken as neo-Hookean to demonstrate as
clearly as possible the effects of the conversion phenomenon itself on overall mechanical
response. The possibility is allowed that the original and newly formed materials have
different moduli, that is, E() and E(®) may not be equal. Let E = E® /ED),
Consider first a monotonic process of increasing );. Figure 2 shows the radial nor-
mal stress T, versus R for various amounts of microstructural conversion C when
the deformation control parameter is \; = 6.0. Because A\, = 1.5, the dimensionless
activation radius is found from (47) to be R =~ 4.49. The ratio of moduli of newly
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formed networks and original material is E = 1.0. For comparison, the results for a
neo-Hookean material undergoing no transformation (C = 0.0) are plotted by the solid
line. The radial stress is seen in all cases to increase monotonically from the value im-
posed by the inner boundary condition T,,(l) = 0. The figure shows that T}, is lower
at all R for each value of C > 0.0 than is the case when C' = 0.0. Furthermore, it can
be seen that a larger value of C causes the radial stress to be lower for all R.

Figure 3 shows plots of the circumferential normal stress Tpg = T¢¢ versus R for
different values of C, with E = 1.0. Values were calculated using (26) and (37). The
stretch ratio at R = 1 in this deformation-control simulation i is again taken as A; = 6.0.
As has been shown for T}, in Figure 2, Figure 3 shows that ng is lower for all R when
C'is greater. This phenomenon is associated with the conversion-softening of mechan-
ical response implied by the constitutive equation. Figure 3, however, demonstrates
more than a simple reduction of Ty, at high values of C: a fundamental change in the
stress distribution occurs when greater amounts of conversion are assumed. In the neo-
Hookean case with no network scission, ng is greatest at the inner surface of the sphere,
R = 1, and decreases monotonically as R increases to R = R,. When C = 1.0, ng(l)
has been reduced to approximately 10% of the value it holds for C' = 0.0. Tog then
increases with R, reaching a local maximum before decreasing as R goes to R = R,.
These results show that the constitutive equation for materials undergoing microstruc-
tural change implies stress relief nearest the inner surface of the sphere: deformation
there is greatest; microstructural transformation is greatest at large deformation; the
reduction of stress compared to the elastic response is greatest when the most transfor-
mation has occurred. ~

Figure 4 shows Tyy versus R for three values of the deformation control parameter
Ai, with C = 1.0 and E = 1.0. Note tt~1at the vertical scale differs from that of Figure 3.
The stress is significantly lower near R = 1 when \; = 6.0 than when A; = 4.0. Thus
a process of increasing deformation results in decreasing circumferential stress nearest
the inner surface of the sphere when a large amount of conversion is assumed.

Figure 5 shows the external traction T, versus ); for three values of the ratio of
moduli E. The conversion fraction is taken as C = 1.0. For comparison, the neo-
Hookean case with C' = 0.0 is represented by the solid curve. It can be seen from
the figure that the external traction associated with a given value of the deformation
control parameter A; is smaller when conversion is assumed than in the purely elastic
case. It may be said in general that conversion leads to a softening of the response of the
sphere for A; > A,. Figure 5 indicates that variations of the modulus ratio over the range
Ee€ [0.5, 2.0] used in this work have little noticeable influence on the 7,-); relation. For
this reason, no further comparisons of response for different values of E are presented
in this article. The value E = 1.0 is used henceforth.

Figure 6 shows the T,-); relation for different values of C. The softening effect is
evident for A; > A, = 1.5 for each value of C' > 0.0 shown and is more pronounced
when C'is larger. It may be noted that the values of T, for A\; = 6.0 correspond to the
values of T}, given in Figure 2 for R = R, = 10. _

All of the curves plotted in Figure 6 demonstrate nonmonotonic T,-A; relations.
Indeed, Carroll [12] has shown that, for a sphere of a neo-Hookean material and any

(text continues on page 288)
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Fig. 2. Radial stress versus radius for various conversion fractions (; increasing), with R, =10, \; = 6.0,
E =1.0, s =1.5,and X\, = 6.1.
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- neo—Hookean C=0.75
c=1.0

R

Fig. 3. Ci[cumferential stress versus radius for various conversion fractions (); increasing), with R, = 10,
A =6.0,E=1.0,\, =1.5,and A\, =6.1.
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Fig. 4. Circumferential stress versus radius for various inner surface stretch ratios (\; increasing), with
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Fig. 5. External radial tensile traction versus inner surface stretch ratio for various extension modulus ratios
(A; increasing), with R, = 10, C = 1.0, Aq = 1.5, and A = 6.1.
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Fig. 6. External radial tensile traction versus inner surface stretch ratio for various conversion fractions (A;
increasing), with R, = 10, E = 1.0, A\, = 1.5, and A\; = 6.1.

normalized thickness flo, a loss of monotonicity will occur at some A;. It has been seen
from Figures 2 and 3 that all of the values of C' selected for plotting have implied cases
of conversion-softening. The effect is evident in Figure 6. The local maximum of T},
indicated on each curve by a heavy dot, can be seen to occur at smaller A\; when C is
greater. The critical value of \; decreases from A{" ~ 5.00 for the neo-Hookean material
to A{" = 4.06 when C' = 1.0. The external traction associated with A{" decreases from
T ~ 3.90 to T{™ ~ 3.64. A thorough discussion of the influence of the constitutive
model on the TO-)\i relation has been provided by [6].

Assume now that the sphere has undergone a process of increasing A; such that
the maximum value of the deformation control parameter reached is A} > A,. The
maximum value of the activation radius R, reached during this process is found from
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(47) to be

1
. A8 —1)3
Ra=<)\’g_1) . (50)

Let \* (R) denote the stretch ratio distribution when A\; = A%, It is formed from (46) as

. AR -1
M (R) = <1+ 7 ) . (51)

Assume that A; is subsequently reduced from A}. Figure 7 reproduces from Figure 6
the T,-); curves for various values of the conversion fraction C during a process of
increasing deformation. Superposed are the corresponding T,-\; curves for a reduction
of deformation from A} = 5.0 to A; = A{**, the value of the control parameter defined by

To(A7¢%) = 0. It is seen that the value of the external traction associated with any value of
X; given by A, € [A7¢S, A¥] during the reduction of deformation is less than T, ( ;) during
the process of increasing deformation. As deformation is reduced, the slope of the T;,-);
curve near \; = A\, = 5.0 indicates that large amounts of deformation recovery occur
early in the process and correspond to relatively small changes in the external traction.
Figure 7 shows that, for the present choice of geometric and conversion parameters, the
T,-A; curve remains monotonic for all values of C' as deformation is decreased.

From Figure 7, a residual deformation A7®* can be seen at T, = 0 after deformation
has been reduced from A} = 5.0. Figure 8 shows plots of A7®® versus A for different
values of C. When A} < A, = 1.5, there is no residual deformation. The residual stretch
ratio AJ¢° increases with A} for A7 > 1.5. The residual stretch A\}*® can also be seen to
be greater for all ¥ > 1.5 when the maximum possible conversion fraction C'is larger.
Greater amounts of network scission and reconstruction lead to greater permanent set of
the sphere.

Figure 9 shows the residual radial stress distribution T7¢*(R) when deformation is
decreased from various values of A}. The conversion fraction is taken as C = 1.0. In
all cases, the residual stress T,T,?s is everywhere compressive. The compressive residual
radial stress near R = 1.0 increases as A} increases. Figure 10 shows plots of TT“
versus R for several values of C' when deformatlon is reduced from A} = 5.0. For any
amount of network conversion, the residual radial stress is again compressive for all R.
As the parameter C is increased, the magnitude of this compressive stress increases for
all R. In both Figure 9 and 10, an internal region of high radial compressive stress can
be seen near R = 2. _ _

Figure 11 shows the residual circumferential stress distribution Tgs*(R) for differ-
ent values of A} when C' = 1.0. Comparison of Figure 11 and Figure 9 reveals that
the magnitude of TTes is in general greater than that of TTes The striking feature of
Figure 11 is a relatively thin region of material near R = 1 where To’e“ < 0. When
the deformation of the sphere is reduced from a greater value of A}, the boundary of
this compressive layer moves outward; the magnitude of the compressive stress also in-
creases everywhere within the layer. Figure 12 shows 0’53 versus R for various C, with

W=

(text continues on page 293)
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Fig. 7. External radial tensile traction versus inner surface stretch ratio for various conversion fractions (\;
increasing, then decreasing), with R, = 10, E = 1.0, Aq = 1.5, and A\ = 6.1.
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Fig. 8. Residual inner surface stretch ratio versus maximum stretch ratio for various conversion fractions, with
R, =10, E = 1.0, A\, = 1.5,and A\ = 6.1.
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Fig. 9. Residual radial stress versus radius for various maximum inner surface stretch ratios, with B, = 10,

C=1.0,E=1.0,) =15, and A, = 6.1.
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A7 = 5.0. It can be seen that the outer boundary of the residual compressive layer varies
only slightly as different amounts of conversion C are assumed. Yet the magnitude of
the stress increases for all R within the compressive region as C is increased. Thus any
amount of conversion assumed leads to the formation of a residual compressive layer of
nearly constant thickness; the assumption of a greater amount of conversion intensifies
the stress within this layer.

6. REMARKS ON SPECIAL CASES

6.1. Membrane

There exist experimentally convenient configurations for the measurement of the present
spherical deformation. One such configuration is the inflation of a spherical balloon by a
uniform internal pressure p;. It is easily shown that the T,-); relation is equivalent to the
Di-A; relation for incompressible materials. Thus the internal pressurization of a hollow
sphere may be considered within the framework already established for the study of the
deformation of a hollow sphere by a uniform radial tensile traction.

The present work has considered only the exact formulation of the boundary-value
problem, with emphasis on the variation of stresses and of microstructural conversion
through the thickness of the sphere. The inflation of a spherical balloon, however, would
be analyzed most naturally using the approximations of membrane theory, whereby all
stresses, material properties and conversion behavior would be regarded as constant
throughout the thickness of the membrane. With R,/R; = 1, it can be seen from (16)
that the initial radial position of all material particles can be approximated by a coordi-
nate R and the current radial position by a coordinate 7. A single stretch ratio A = 7#/R
would approximate the deformation of all material.

It is not the aim of this work to formulate an approximate theory for use in the
balloon inflation problem. Nonetheless, the nature of the results that would be obtained
can be appreciated within the context of the present formulation by numerical simulation
with R, ~ 1. Figure 13 shows T, versus J; for neo-Hookean network materials when
R, = 1.05. Shown are curves for increasing deformation and for deformation decreasing
from A} = 5.0. The parameters C = 1.0, E = 1.0, A, = 1.5 and A, = 6.1 are used.

Hart-Smith [13] and Beatty [14] have published results of experimental measure-
ment of inflating pressure versus stretch for balloons. It is encouraging that their plots
display some of the general features evident in Figure 13: (a) deformation decreases
along a different path from that of increasing deformation; (b) residual deformation or
permanent set is seen when the inflating pressure has been returned to zero. Comparison
of Hart-Smith's and Beatty's measurements with the results of numerical simulations
such as those shown in Figure 13 could provide a starting point for the verification or
correction of the constitutive equation for materials undergoing microstructural trans-
formation in equal biaxial extension. Experimental programs providing further data for
other materials would support this effort.

(text continues on page 298)
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Fig. 10. Residual radial stress versus radius for various conversion fractions, with R, = 10, A} = 5.0,

E =1.0, A = 1.5,and A\ = 6.1.
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Fig. 11. Residual circumferential stress versus radius for various maximum inner surface stretch ratios, with
R, =10,C =1.0, E =1.0, s = 1.5,and A\ = 6.1.
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Fig. 12. Residual circumferential stress versus radius for various conversion fractions, with &, = 10, A} = 5.0,

E =1.0, A\, =1.5,and X\ = 6.1.
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Fig. 13. External radial tensile traction versus inner surface stretch ratio (\; increasing, then decreasing), with
R, = 1.05 (membrane), C = 1.0, E = 1.0, Aq = 1.5,and A = 6.1.
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6.2. Microvoid

With the assumption R, > 1, the geometry and loading considered in this paper can
be applied to simulate a microvoid at the center of a large spherical specimen under
uniform radial tensile loading. Studying this case in the context of finite deformation is
imperative, as the equal biaxial stretch ratio at the boundary of the microvoid can become
extremely large even when the deformation of the outer surface of the specimen is small.
For example, with R, = 100, it can be seen from (46) that a stretch ratio A; = 10.0 at
the boundary of the micro-void is associated with a stretch ratio of only A, =~ 1.00033
at the outer surface of the specimen. (A similar phenomenon has been noted experimen-
tally by Sue and Yee [15], who observed very large strains in the neighborhood of rigid
inclusions in nylon specimens subjected to moderate deformation.) Deformation near
a microvoid can become so large that the applicability of many purely elastic theories
must be called into question (Alexander [16]; Treloar [17]). It seems reasonable to apply
to this geometry a constitutive equation that allows for microstructural change at large
deformation.

The general features of the results presented in Section 5 for the neo-Hookean mate-
rial with R, = 10 also apply when R, = 100. However, one important difference should
be noted. The activation value A, = 1.5 is used to obtain the results presented in Section
5; A; = 6.0 is the largest inner stretch ratio considered in that section. With these values,
the activation radius can be found from (47) to be R, ~ 4.49. This value is independent
of R,. Recall that the activation radius represents the outermost spread of microstruc-
tural transformation through the sphere; thus the effects of the conversion process are
localized in a very thin layer of material nearest the microvoid. To see some of these
effects, refer to the distributions of the circumferential stress ng (R) shown in Figures
3 and 4, and of the residual radial and circumferential stresses TT“(R) and T3¢°(R) in
Figure 9 through Figure 12. In a sphere-microvoid system with R, = 100, the distribu-
tions are very similar to those mentioned above for R, = 10. They indicate extremely
localized concentrations of large stresses in the material immediately surrounding the
microvoid.

The T,-\; relation describes the size of the microvoid associated with an applied
external traction. Non-monotonicity of this relation can indicate unstable growth of the
microvoid as the external traction increases. When the sphere is assumed to be composed
of a neo-Hookean material undergoing no transformation and R, = 100 is prescribed, a
local maximum of T}, in A; arises at A\; = 22.77. If it is possible that the material deforms
to such a stretch ratio in equal biaxial extension, it may not remain perfectly elastic. The
constitutive equation for microstructural change may better represent physical events
leading to unstable void growth. Indeed, it has been seen in Figure 6 that softening of
response due to network conversion can in general bring about a local maximum in 7T}, at
a lower value of A; than is the case when no conversion occurs. A constitutive equation,
which predicts a loss of monotonicity at stretch ratios that are more likely to be realized,
may aid in the study of the growth of microvoids.

Considerable attention has been devoted recently to the growth of microvoids in
elastic materials (Horgan and Pence [18,19]; Chou-Wang and Horgan [20]). Of particu-
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lar interest is work by [18] on composite spheres. The spheres consist of distinct inner
and outer regions: Both regions are assumed to be neo-Hookean, but their moduli differ.
Horgan and Pence showed that variations in the relative moduli of the inner and outer
regions can influence the growth of a microvoid. In particular, the level of deformation
and the associated external traction at which unstable growth is initiated are affected.
This application of the constitutive equation for materials undergoing microstructural
transformation to the sphere problem represents a natural extension of that work.
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